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Abstract

It is regarded as best practice in phylogenetic reconstruction to perform relative model selection to determine an
appropriate evolutionary model for the data. This procedure ranks a set of candidate models according to their goodness
of fit to the data, commonly using an information theoretic criterion. Users then specify the best-ranking model for
inference. Although it is often assumed that better-fitting models translate to increase accuracy, recent studies have
shown that the specific model employed may not substantially affect inferences. We examine whether there is a sys-
tematic relationship between relative model fit and topological inference accuracy in protein phylogenetics, using
simulations and real sequences. Simulations employed site-heterogeneous mechanistic codon models that are distinct
from protein-level phylogenetic inference models, allowing us to investigate how protein models performs when they are
misspecified to the data, as will be the case for any real sequence analysis. We broadly find that phylogenies inferred
across models with vastly different fits to the data produce highly consistent topologies. We additionally find that all
models infer similar proportions of false-positive splits, raising the possibility that all available models of protein evo-
lution are similarly misspecified. Moreover, we find that the parameter-rich GTR (general time reversible) model, whose
amino acid exchangeabilities are free parameters, performs similarly to models with fixed exchangeabilities, although the
inference precision associated with GTR models was not examined. We conclude that, although relative model selection
may not hinder phylogenetic analysis on protein data, it may not offer specific predictable improvements and is not a
reliable proxy for accuracy.

Key words: phylogenetics, protein models, relative model selection, maximum likelihood.

Introduction
When analyzing sequence data in evolutionarily aware con-
texts, and in particular when inferring phylogenetic trees us-
ing modern statistical approaches, researchers must select an
appropriate evolutionary model. The most common model-
ing framework for such applications follows a time-reversible
continuous-time Markov process, usually considering either
nucleotides, codons, or amino acids as states (Yang 2014;
Arenas 2015). Since this framework’s introduction, a wide
array of model parameterizations have been developed, rang-
ing in complexity from the simple equal-rates Jukes–Cantor
(JC) model (Jukes and Cantor 1969) where substitution rates
among all states are equal, to the most complex form where
all substitution rates are distinct (Tavare 1984), generally re-
ferred to as the general time reversible (GTR) model.
Additional levels of complexity beyond a model’s core sub-
stitution rates, such as incorporating among-site rate varia-
tion (ASRV), further increase the number of models from
which practitioners can choose (Yang 2014).

To choose among dozens, if not hundreds, of available
model formulations, the field has largely converged upon a
strategy of relative model selection. For a given multiple se-
quence alignment, this approach systematically evaluates the
statistical fit to the data for a set of candidate models using

various metrics, most commonly information theoretic crite-
ria (Posada and Buckley 2004). Such criteria include, for ex-
ample, Akaike Information Criterion (AIC) and Bayesian
Information Criterion (BIC), which provide a measure of
goodness of fit to the data while penalizing models with ex-
cessive parameters that could lead to overfitting (Sullivan and
Joyce 2005). Once available models are ranked by a given
criterion, the model with the best fit to the data is subse-
quently specified during phylogenetic inference.

First popularized by the seminal software MODELTEST
over 20 years ago (Posada and Crandall 1998), many different
frameworks that perform relative model selection have been
and continue to be developed (Darriba et al. 2011, 2012, 2020;
Whelan et al. 2015; Kalyaanamoorthy et al. 2017). Alongside
this popularization has emerged a near-dogmatic mentality
that employing the best-fitting model will increase the reli-
ability, and potentially the accuracy, of inferences. Relative
model selection has been described as “an essential stage in
the pipeline of phylogenetic inference” (Arenas 2015) and is
often viewed as a panacea to avoid model misspecification
and biased inferences. Although it is of course necessary to
select a model of evolution for any analysis, whether relative
model selection is the optimal procedure for doing so has
been challenged in recent years (Luo et al. 2010; Brown 2014;
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Brown and Thomson 2018; Abadi et al. 2019). Even so, casual
and potentially misleading remarks about the role of relative
model selection abound across biological research fields. For
example, the popular online database for HIV sequences, HIV
LANL (https://www.hiv.lanl.gov/), contains an analysis option
“FindModel” to perform model selection on sequence data,
leading with the header “Purpose: FindModel analyzes your
alignment to see which phylogenetic model best describes
your data; this model can then be used to generate a better
tree” (emphasis added; https://www.hiv.lanl.gov/content/se-
quence/findmodel/findmodel.html). As most users of this fea-
ture are likely not experts in phylogenetic reconstruction, this
phrasing will most likely interpreted to mean better-fitting
models give better results by definition.

In spite of this pervasive attitude, there is no guarantee
that the best-fitting model will infer the most accurate phy-
logenies. Indeed, relative model selection is inherently unable
to determine whether a given model is reasonable to use in
the first place. To circumvent this drawback, many have ad-
vocated for a shift in focus toward absolute model selection
methods, or similarly tests of model adequacy (Bollback 2002;
Brown 2014; Brown and Thomson 2018). Such approaches
include analysis of posterior predictive distributions or hy-
pothesis tests that ask whether the given inference model
produces molecular properties (e.g., number of invariant sites,
mean GC-content for nucleotide-level data, and entropy)
that mirror those seen in the data at hand (Goldman
1993a, 1993b; Bollback 2002; Ripplinger and Sullivan 2010;
Gelman et al. 2013; Brown 2014; Duchêne et al. 2015, 2016;
Brown and Thomson 2018; Höhna et al. 2018). Despite rec-
ommendations that model adequacy approaches should be
used in conjunction with relative model selection, they have
yet to see widespread adoption in large part due to their
time-consuming, computationally intensive nature
(Duchêne et al. 2015; Brown and Thomson 2018). As such,
the majority of researchers performing phylogenetic recon-
struction will most often rely on relative model selection to
justify using a given model.

Several lines of recent research have questioned the reli-
ability of relative model selection in phylogenetic contexts.
For example, Spielman and Wilke (2015b) showed that, in the
context of identifying selection pressures from sequence data
using codon models, AIC and BIC strongly prefer systemati-
cally biased models, and models that mitigate bias have rel-
atively poorer fits to the data. Keane et al. (2006) observed
that selecting protein models based on ad hoc assumptions of
biological relevance to the data may not result in improved
inferences. Similarly, Spielman and Kosakovsky Pond (2018)
found that the model employed when estimating site-level
evolutionary rates in protein alignments has little, if any, effect
on the inferred rates, with the primary exception that the
simple equal-rates JC model has unique and previously unrec-
ognized power to identify rapidly evolving sites.

In the context of phylogenetic inference specifically, several
studies have been conducted to investigate the consequences
of employing different model selection criteria on nucleotide
data. Ripplinger and Sullivan (2008) showed that, although
different criteria choose different models, resulting

phylogenies are not significantly different from one another,
with most differences occurring at poorly supported nodes.
Most recently, Abadi et al. (2019) echoed and extended this
insight to show that phylogenetic topologies inferred with the
most complex time-reversible nucleotide-level model
(GTRþIþG) did not differ significantly from the entirely
uninformative JC model, even though JC is generally a poor
fit to most data sets. In total, these studies have suggested
that model selection itself may either be unnecessary or in-
advertently lead to high confidence in biased results. A thor-
ough examination of the practical ramifications of relative
model selection is merited to reconcile these recent findings
with the overarching sensibility that relative model selection
is a fundamentally necessary component of phylogenetic
analysis.

In this work, we explore whether there exists a systematic
relationship between model fit and inference accuracy. In
particular, we ask whether phylogenetic reconstruction per-
formed with better-fitting models consistently leads more
accurately inferred topologies compared with poorly fitting
models, specifically when conducting phylogenetic inference
from protein data. Protein models are uniquely phenomeno-
logical compared with codon-level and nucleotide-level mod-
els because nucleotides, not amino acids, are the fundamental
unit of evolution (Liberles et al. 2013; Jones et al. 2018). As
such, precise evolutionary quantities such as mutation rate
cannot be directly applied to protein data. From biological
first principles, then, there is no mechanistic way to describe
the evolutionary process when only protein data are available.

The simplest protein model, under the general time-
reversible framework, is described by a continuous-time
Markov process with an instantaneous rate matrix, for the
substitution amino acid i to j, Qij ¼ rijpj scaled such that
�
P

piQii ¼ 1. Parameters rij describe the substitution
rate, or exchangeabilities, between amino acids i and j, and
pj represents the stationary frequency of target amino acid j
(Yang 2014; Arenas 2015). These exchangeabilities represent
the average propensity of each type of amino acid substitu-
tions. As there are 189 such free parameters, assuming sym-
metric exchangeabilities, these values are rarely estimated
from a given alignment itself. Instead, empirically-derived
models with fixed exchangeabilities that have been a priori
derived from hundreds or thousands of training data sets are
most commonly applied. Early efforts to generate these mod-
els produced seminal matrices such as the Dayhoff model
(Dayhoff et al. 1978), and statistical advances over time led
to more robust models derived from substantially larger train-
ing data sets that were specifically intended for phylogenetic
reconstruction. These include the commonly used models
JTT (Jones et al. 1992), WAG (Whelan and Goldman 2001),
and LG (Le and Gascuel 2008), as well as certain specialist
amino acid models like the chloroplast-sequence-derived
cpREV model (Adachi et al. 2000) or influenza-sequence-
derived FLU model (Dang et al. 2010), for example. Unlike
exchangeability parameters, the pj parameters are more often
estimated from the alignment at hand, either optimized dur-
ing phylogenetic reconstruction or directly obtained by
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counting the amino acids in the alignment, known as theþF
parameterization (Yang 2014).

Although this modeling framework has become the de-
fault analysis choice for most users constructing trees from
protein sequences, it ignores heterogeneous site-specific evo-
lutionary constraints which are known to dominate protein
evolution (Echave et al. 2016). It is possible to incorporate
ASRV, by scaling individual site rates according to a discrete
Gamma distribution or similar (Yang 2014), but this proce-
dure will still assume that the same evolutionary pattern
governs each site in a given unpartitioned alignment. Other
modeling approaches have been developed to more directly
account for the pervasive heterogeneity in protein evolution,
such as the Bayesian CAT model in PhyloBayes (Lartillot and
Philippe 2004; Le et al. 2008) or mixture models which con-
sider a distribution of individual matrices (Le et al. 2012;
Arenas 2015). In spite of their known benefits, these models’
computational complexity and resource requirements have
somewhat limited their adoption as the standard modeling
framework standard in protein phylogenetics. For example,
although the Bayesian CAT model is well-suited for long,
multigene alignments, the underlying MCMC sampler gener-
ally cannot accommodate more than �100 taxa, ultimately
restricting the CAT model’s utility to phylogenomic analyses
on a small number of sequences (http://megasun.bch.umon-
treal.ca/People/lartillot/www/phylobayes4.1.pdf). Therefore,
in this study, we focus on the effects of applying more widely
used single matrix protein exchangeability models.

In addition, we may expect that relative model selection
when applied to protein models has distinct behaviors versus
when applied to nucleotide models. Relative model selection
was first applied in phylogenetics with an eye toward identi-
fying the model with the most suitable level of complexity for
the data, in the context of nucleotide-level models (Posada
and Crandall 1998). Although nucleotide models often have
different numbers of parameters, all empirical protein ex-
changeability models contain the exact same number of fixed
exchangeability parameters, and options for increasing model
complexity most entail adding very few additional parameters
to account for phenomena such as ASRV or proportion of
invariant sites. As such, the primary differences among em-
pirical protein models emerge from different exchangeabil-
ities and not from the complexity of substitution process
itself. This study therefore also seeks to clarify the specific
role that relative model selection plays in the context of pro-
tein sequence data, since many of the complexity concerns
that exist for nucleotide models are not applicable.

Overall, we do not observe a strong, systematic relation-
ship between relative model fit to the data and inference
accuracy in resulting topologies. Except for the most relatively
poorly fitting models, protein models with drastically different
fits to a given data set infer highly consistent topologies. This
study therefore demonstrates that relative model selection, as
applied to protein data, may not have substantial effects on
analysis so long as the most poorly fitted models are not used.
Therefore, we ultimately conclude that relative model selec-
tion is not an appropriate predictor of accuracy for this phy-
logenetic application.

Results

Model Selection on Simulated Data
We began by simulating two broad sets of sequence align-
ments which we term MutSel simulations and control simu-
lations, as described in Materials and Methods. Simulation is a
powerful tool for studying the power and limitations of sta-
tistical methods, but the procedure is often highly con-
founded: a model must be employed to simulate data
(generative model), but of course a model must also be cho-
sen to analyze the data (inference model). If the inference
model is accurately specified, we can expect strong inference
model performance, particularly when using a consistent
method such as maximum-likelihood estimation (Self and
Liang 1987). However, when the generative and inference
models correspond closely, it is easy to become overconfident
about a model’s performance. Indeed, in real data analysis,
any model used will be misspecified to a degree, some more
than others. Therefore, to ensure that insights gained from
simulations are not confounded by this logical gap, it is key to
examine how models perform when the model is misspeci-
fied to the data. Such approaches have previously been
shown, in evolutionary sequence analysis, to reveal unrecog-
nized performance behaviors or biases in inference methods
which would go unnoticed if the data met all model assump-
tions (Holder et al. 2008; Spielman and Wilke 2015b, 2016;
Jones et al. 2016, 2018; Spielman et al. 2016).

With both MutSel and control simulations, we can there-
fore ensure that results are not biased by similarities between
generative and inference models. All control simulations use
the WAG model which, like all empirical other protein mod-
els, can be decomposed into a vector of frequencies and
symmetric matrix of exchangeabilities, but the MutSel model
cannot be similarly decomposed. This is because, although
both empirical protein models and MutSel satisfy detailed
balance, they employ entirely distinct focal parameters: em-
pirical models consider a site–invariant matrix of phenome-
nological exchangeabilities among amino acids, but MutSel
models, as employed here, consider site-wise codon fitness
parameters coupled with site-invariant nucleotide-level mu-
tation rates.

As ModelFinder does not evaluate the relative fit of the JC
or the GTR models, we first examined their relative fit com-
pared with m1–m5 for each simulation (supplementary fig.
S1, Supplementary Material online). Across all MutSel simu-
lations (supplementary fig. S1a, Supplementary Material on-
line), JC showed consistently poor fit and always ranked
between models m4 and m5. By contrast, the GTR model
was consistently either the best-fitting model (for the larger
NP, HA, and HIV simulations) or ranked in between the m1
and m2 models for most LAC simulations. Thus, GTR was a
relatively high fit to the data for most MutSel simulations. For
control simulations, the GTR model was always much lower-
ranked, generally ranking between either models m3 and m4,
or between models m4 and m5 (supplementary fig. S1b,
Supplementary Material online). Thus, for control simula-
tions, the parameter-richness of GTR was strongly penalized
unlike for MutSel simulations. Similar to MutSel simulations,
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JC always ranked above the m5 model, which was always the
poorest-fitting model.

We generally expect that the best-fitting model deter-
mined by relative model selection (m1) should be the model
that best reflects evolutionary properties of the given data. If
this is indeed the case, we further expect that m1 should be
broadly consistent among simulations with the same set of
deep-mutational scanning (DMS)-derived parameters.
Considering only the selected model matrix (i.e., both LGþI
and LGþF would be considered the same model matrix, LG),
we observed this expected trend in MutSel simulations
(fig. 1). Interestingly, the m1 model was mostly consistent
for all simulations, regardless of which DMS parameter set
was used, with either a JTT-based (Jones et al. 1992), HIVb-
based (Nickle et al. 2007), or (for two LAC simulations) a
WAG-based matrix emerging as the best-fitting model
(fig. 1). Similarly, the model matrix mtArt, a model trained
on arthropod-derived mitochondrial sequences (Abascal
et al. 2006), was always the worst-fitting m5 model across
all alignments (with one exception of a single LAC simulation
whose m5 model was mtMAM, a model trained on mamma-
lians mitochondrial sequences; Yang et al. 1998) by a substan-
tial BIC margin. Contrasting with the m1 and m5 models, a
wide range of model matrices corresponded to m2, m3, and
m4 models, with between 3 and 13 model matrices observed
at a given performance ranking (supplementary table S1,
Supplementary Material online).

For all control simulations, a WAG-based matrix (always
either WAGþIþG or WAGþG) always emerged as the m1
model, matching the generative model and therefore repre-
senting a case of mostly accurate model specification. Similar
to MutSel simulations, a wide variety of models corresponded
to m2, m3, and m4 models, with between 9 and 20 model
matrices observed at a given performance ranking (supple-
mentary table S1, Supplementary Material online). Further,
the m5 model for all control simulations was mtMam (Yang
et al. 1998), again by substantial BIC margin.

There are several possible explanations for the overall sim-
ilarity among m1 model matrices for MutSel simulations.
First, although these simulations accounted for realistic differ-
ences in protein-level selection, other simulation parameters
could have induced overly similar properties across align-
ments. For example, all simulations assumed symmetric and
equal mutation rates among nucleotides, the same fitness
among synonymous codons (no codon usage bias), and no
indels (insertions/deletions). Alternatively, the similarity
among m1 model matrices may reflect inherent biases in
experimentally derived DMS preferences themselves.
Although DMS can recover local evolutionary constraints
acting on each position in a protein, pooling all sites together
may obscure protein-specific evolutionary signal, giving the
appearance that entirely distinct proteins have more compa-
rable evolutionary patterns (Ramsey et al. 2011). Indeed, it has
been suggested that DMS-derived fitnesses may not always
reflect true evolutionary constraints observed in nature due
to the controlled laboratory conditions in which they are
obtained (Haddox et al. 2016).

Finally, it is possible that JTT and HIVb happen to possess
evolutionary information that generally represents protein
evolution, in spite of the strong biological differences between
the training data sets for each of these models. To probe
relationship among these models further, we calculated the
Pearson correlation between all pairs of model instantaneous
rate matrices that ModelFinder considers (supplementary fig.
S2, Supplementary Material online). In fact, compared with all
other models, HIVb model exchangeabilities are most
strongly correlated with JTT exchangeabilities at R¼ 0.906.
Furthermore, both JTT and HIVb models show the lowest
correlations with mtArt (R¼ 0.792 and R¼ 0.645, respec-
tively). The HIVb and JTT models are therefore much more
similar than their origins suggest. That said, although HIVb’s
strongest correlate is JTT, the JTT model itself is most strongly
correlated with its variant JTTDCMUT (Kosiol and Goldman
2005) (R¼ 0.999), followed by models VT (Müller and
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FIG. 1. Best-fitting model (m1) matrix across MutSel simulations, where each column shows the selected model matrix for 20 simulation replicates.
For visual clarity, the following abbreviations have been applied: plant, green plant; fish, ray-finned fish; mammals, placental mammals; Lassa, Lassa
virus; Opis., Opisthokonta.
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Vingron 2000) (R¼ 0.954) (Müller and Vingron 2000), WAG
(Whelan and Goldman 2001) (R¼ 0.935), LG (Le and Gascuel
2008), and mtInv (Le et al. 2017) (R¼ 0.916 and R¼ 0.914,
respectively), and finally HIVb at R¼ 0.906. Even so, the
strong correlation between HIVb and JTT may explain why
these two specific models predominated as m1 models.

Inferred Tree Topologies Show Consistent Distances
from the True Tree, Regardless of Relative Model Fit
To assess the relationship between model fit and phyloge-
netic topological accuracy, we first calculated the Robinson–
Foulds (RF) distance between each inferred tree and the true
simulation tree. To ensure consistent comparisons across
simulation conditions, all RF distances were normalized by
the maximum possible RF for the given phylogeny.
Throughout, we use the acronym “nRF” to refer to normal-
ized RF distance.

If relative model fit is a reliable proxy for accurate protein
phylogenetic inference, we should observe that nRF increases
as model goodness of fit decreases, with the best-fitting
model (m1 or GTR for MutSel simulations, and m1 for con-
trol simulations) inferring the most accurate tree topology.
Our results from MutSel simulations, shown in figure 2, did
not convey this trend: nRF was remarkably consistent across
inference models, with slight elevations apparent for m5
models under certain simulation trees, most notably
Opisthokonta. Instead, the most apparent trend we observed
was that nRF decreased as the number of sites in the data set
increased, with HIV simulations showing much smaller nRF
values compared with HA, NP, and LAC simulations. Results
from control simulations (supplementary fig. S3,
Supplementary Material online) broadly echo these trends,
which indeed suggests that sequence length is a primary
driver for decreased nRF. Moreover, the overarching similarity
between MutSel and control (whose simulations employed
WAGþIþG with ten rate categories) demonstrates that
these results hold under both circumstances of strong model
misspecification (MutSel results) and circumstances of little-

to-no model misspecification (control simulations, namely
m1 results).

We fit a mixed-effects linear model to determine the spe-
cific influence of protein model fit on nRF in MutSel simu-
lations, specifying nRF as the response, the protein model
(m1–m5, JC, and GTR) as a fixed effect, and the simulation
tree and DMS parameterization each as random effects. We
performed a Tukey test to evaluate pairwise differences in
mean nRF among protein models. Trees inferred with models
m1, m2, m3, m4, and JC (with the single exception of the m1–
m4 comparison) did not have significantly different nRF val-
ues, suggesting highly comparable performance among most
models regardless of fit. Trees inferred with m4 models did
show a significantly larger nRF compared with m1 trees, but
with a vanishingly small effect size of merely 0.7%. Trees in-
ferred with GTR showed significantly smaller nRF compared
with all other models, and trees inferred with m5 models
showed significantly larger nRF compared with all other mod-
els. All significant differences detected had exceedingly small
effect sizes, with the largest difference in nRF of 3.3% from the
comparison between GTR and m5. As such, the average nRF
improvement from applying the best-fitting model compared
with the worst-fitting model is, at most, roughly 3%, ulti-
mately demonstrating that relative model fit does not have
a strong systematic influence on phylogenetic inference ac-
curacy. Analogous linear models performed on the control
simulations again were largely consistent, with only extremely
small effect sizes (at most 2.2%) for all models with signifi-
cantly different nRF.

All Models Infer Similar Amounts of Strongly
Supported but Incorrect Splits
Although model fit did not substantially affect nRF in any
simulations, very few inferences exactly matched the true tree
(RF distance of 0). Out of the total 4,480 tree inferences
conducted for each simulation set (seven trees inferred for
each of 640 simulated alignments, for Mutsel and control
each), only 130 Mutsel inferences and 412 control inferences
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FIG. 2. Normalized Robinson–Foulds distance (nRF) between tree inferences and the respective true tree from all MutSel simulations. Each boxplot
represents the distribution of nRF values for 20 simulation replicates.
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achieved RF distance of 0 (supplementary table S2,
Supplementary Material online). All of these inferences, for
both MutSel and control simulations, were from simulations
along either the Spiralia, Opthisthokonta, or Yeast phyloge-
nies, the three trees with the fewest number of taxa (table 2).
For MutSel simulations, only NP (23/130), HA (20/130), and
HIV (87/130) alignments achieved phylogenies with nRF of 0.
For control simulations, all simulation lengths achieved phy-
logenies with nRF of 0 (LAC: 28/417, NP: 90/417, HA: 132/417,
and HIV 162/417). Notably, all models, including m5, were
able to reach the true tree for at least one replicate, for both
MutSel and control simulations, although less commonly
than other models. Further, the GTR model most frequently
yielded the true tree (44/130) for all MutSel simulations, but
only yielded the true tree for 57/417 control simulation infer-
ences. The m1 model most frequently yielded the true tree
(88/417) for control simulations.

However, RF distance is a notoriously conservative metric
that considers only presence or absence of nodes without
considering their uncertainty, that is, the level of support
for inferred nodes under a given inference model. If differing
splits are poorly supported, RF will overstate the distance
between trees being evaluated. By contrast, differing splits
with strong support represent more problematic deviations
from the true tree.

We therefore evaluated bootstrap support for each in-
ferred phylogeny using the ultrafast bootstrap approximation
(UFBoot2) implemented in IQ-TREE (Minh et al. 2013; Hoang
et al. 2018). Because UFBoot2 is presumed a less biased mea-
sure compared with the standard nonparametric bootstrap, it
necessitates a somewhat different interpretation such that
nodes with � 95% support are considered highly reliable
(Minh et al. 2013; Hoang et al. 2018). In addition, this thresh-
old of 95% for identifying supported splits is expected to
correspond to a false-positive rate (FPR) of 5%.

For each inferred tree, across all models, we evaluated
whether each inferred node was accurate (present in the
true tree) and whether each inferred node was strongly

supported (UFBoot2 � 0:95) under the given model. We
evaluated the FPR as well as the accuracy at this UFBoot2
threshold. For these calculations, we specifically considered a
given node as “true” if it was present in the true tree, and we
considered a given node as “false” if it was not present in the
true tree. We considered a given node as “positive” if its
UFBoot2� 0:95, and we considered a given node as
“negative” if its UFBoot2< 0.95. FPR is calculated as FP

FPþTN,
where FP is the number of false-positive nodes and TN is the
number of true negative nodes. The accuracy is calculated as

TPþTN
TPþFPþTNþFN, where TP is the number of true positive nodes,
TN is the number of true negative nodes, FP is the number of
false-positive nodes, and FN is the number of false-negative
nodes. The resulting classification metrics, specifically for HA
MutSel simulations, are shown in figure 3. Corresponding
results for LAC, NP, and HIV MutSel simulations are in sup-
plementary figures S4 and S5, Supplementary Material online,
and analogous results for all control simulations are shown in
supplementary figures S6 and S7, Supplementary Material
online. Trends in results from control simulations were again
largely consistent with those from MutSel simulations.

Results for this analysis agreed with those from nRF anal-
ysis: protein models ranging in fit to the data yielded similar
levels of support, with both FPR and accuracy being remark-
ably similar across all inference models. However, the FPR was
not well-bounded at the expected value of 5%, suggesting
that UFBoot2 may not be as robust to model violations as
has been previously presumed (Hoang et al. 2018). That said,
FPR was additionally not well-bounded for control simula-
tions, even those whose trees were inferred with the correctly
specified WAG model (supplementary fig. S6, Supplementary
Material online). Further investigation of the sensitivity of this
approximate bootstrap measure to model misspecification,
and more generally, may therefore be merited. It is worth
noting, however, that the overall percentage of false-
positive splits out of all splits ( FP

TPþFPþTNþFN), rather than
FPR, was generally <5% for all simulations, meaning that
while FPR is somewhat high, the inferred trees are certainly
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FIG. 3. (a) False-positive rate (FPR) in inferred splits, for HA MutSel simulations, using 95% UFBoot2 as a threshold. Each point represents the FPR of
a single simulated alignment. The horizontal line in each panel is the y¼ 0.05 line, representing the expected FPR. (b) Proportion of accurately
classified splits in tree inferences, for HA simulations, using 95% UFBoot2 as a threshold. Each point represents the accuracy of a single simulated
alignment.
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not dominated by false-positive nodes (supplementary fig. S8,
Supplementary Material online, for MutSel simulations, and
supplementary fig. S9, Supplementary Material online, for
control simulations).

We again analyzed this data with two linear models, con-
sidering either FPR or accuracy as the response, both with
protein model as a fixed effect and DMS parameterization
and tree as random effects, using a Tukey test to perform
pairwise comparisons across protein models. Separate models
were conducted for MutSel and control simulations. Similar
to results from nRF analyses, MutSel modeling results showed
no significant difference in FPR among trees inferred with all
models m1, m2, m3, m4, and JC. By contrast, the GTR model
had significantly larger FPR compared with m1, m2, and JC,
and the m5 model had significantly larger FPR compared with
m1, m2, m3, and m4. There was no significant difference in
FPR between m5 and GTR. Even so, the largest effect size for
any comparison was still extremely small at a maximum of
3.7% (for the comparison between m1 and m5). Accuracy
was not significantly different among models m1, m2, m3,
m4, and JC, but GTR did show significantly higher accuracy
compared with all other models, and m5 showed significantly
lower accuracy compared with all other models. Again, how-
ever, effect sizes for all significant comparisons were very
modest, with at most a 2.3% difference in accuracy for the
comparison between GTR and m5 models, and analogous
linear modeling results for control simulations were generally
consistent.

In total, consistent with nRF analysis, protein models rang-
ing in fit to the data performed highly comparably, with the
worst-fitting m5 model only producing marginally worse
results than other models. That neither FPR nor accuracy
was significantly different among m1, m2, m3, m4, and JC
models provides further evidence that relative model fit does
not have substantial bearing on phylogenetic inference from
protein data. These results were also robust to the particular
simulation strategy.

Most Inferred Trees Fall in the Confidence Set of Trees
under the m1 Model
We next performed a series of AU (approximately unbiased)
tests of tree topology to assess whether the observed topo-
logical differences represented significant deviations from the
m1 phylogeny (Shimodaira 2002). For each alignment, we
performed an AU test to compare the alignment’s eight as-
sociated topologies: seven inferred trees and the true tree.

Across all MutSel simulations, we identified exceedingly
few instances where any inferred phylogeny fell outside the
m1 confidence set, at a threshold of P< 0.01 (supplementary
table S3, Supplementary Material online). All trees inferred
with models m2, m3, m4, and JC fell inside the respective m1
confidence set of trees (all P � 0:044). By contrast, for 19
simulations (4% of total), the m5 tree uniquely fell outside
the m1 confidence set, and for a single simulation replicate
the GTR tree uniquely fell outside the m1 confidence set.
Most importantly, the true tree was in the m1 confidence
set for all but 31 simulations (6.5% of total), most commonly

HA simulations. That true trees most commonly fell in the
m1 confidence set was somewhat surprising, given the sub-
stantial topology differences between inferred and true to-
pologies (fig. 2). It is therefore a distinct possibility that trees
with substantial topological differences may have more sim-
ilar than anticipated likelihoods, an issue which merits future
investigations. For control simulations, only 22 inferences fell
outside the m1 confidence set of trees: 17 inferred with m5
and 5 inferred with JC. Only 12 true trees fell outside the m1
confidence set.

Analysis of Natural Sequence Data Reveals Similar
Levels of Consistency across Models
We next examined how relative model fit affects phylogenetic
inference for a set of natural protein sequence alignments.
Because such analyses cannot truly assess inference accuracy
(as the true phylogeny is unknown), we asked whether pro-
tein models ranging in goodness of fit to the data yielded
consistent or significantly different topologies. Furthermore,
although the JC and GTR models performed well on simu-
lated data, it is possible that these results were an artifact of
the relative simplicity of simulated data compared with the
complexity of natural sequence data. Examining how these
protein models perform on real data is therefore crucial to
properly contextualize their strong performance in
simulations.

We randomly selected 200 protein alignments from the
PANDIT database, considering only those with 20–500 (in-
clusive) sequences and 100–1,000 sites (inclusive). As with
simulated data, we determined the five protein models which
most closely matched the BIC quartiles, and we used each
model, as well as JC and GTR, to infer a phylogeny. The exact
protein models identified at the BIC quartiles were substan-
tially more varied compared with selected models for simu-
lated data (supplementary table S4, Supplementary Material
online), although over 75% of data sets selected an LG-based
m1 model (fig. 4a). This strong bias toward LG likely reflects
that the LG model itself was trained using PFAM alignments,
the source for the PANDIT database (Whelan 2006; Le and
Gascuel 2008). Similar to results from simulated data, the vast
majority of m5 models were either mtArt (Abascal et al. 2006)
or mtMam (Yang et al. 1998). The general poor fit of certain
mitochondrial models for both simulated and natural se-
quence data here may reflect the highly unique nature of
the data on which these models were originally trained.

Starkly contrasting with simulated MutSel alignments, but
similar to the control simulations, the GTR model only
emerged as the best-fitting model for a single PANDIT align-
ment (fig. 4b). Even so, GTR was generally a better fit to each
data set than were JC and m5 models. As the PANDIT align-
ments analyzed here were substantially more sparse com-
pared with simulated alignments, with percent of gaps and
ambiguous amino acids ranging from 19% to 79% across
alignments, the relatively poorer fit of the GTR model is
not unreasonable. We tested whether certain features of
the alignments, including percent of ambiguous characters,
number of taxa, length of alignment, and/or treelength (sum
of inferred branch lengths) could explain the relative rank of

Spielman . doi:10.1093/molbev/msaa075 MBE

2116

D
ow

nloaded from
 https://academ

ic.oup.com
/m

be/article-abstract/37/7/2110/5810088 by R
ow

an U
niversity user on 23 July 2020

https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msaa075#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msaa075#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msaa075#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msaa075#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msaa075#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msaa075#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msaa075#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msaa075#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msaa075#supplementary-data


the GTR model among the seven models examined for each
alignment. Step-wise linear model selection using R2 showed
that the best model to explain GTR rank was GTR_rank �
number of taxa*treelength, with R2 ¼ 0:61 (fig. 4c). Thus,
GTR tended to be a better relative fit for more informative
alignments.

We examined to what extent tree topologies inferred
across protein models were consistent with one another us-
ing two separate analyses: 1) an all-to-all comparison of RF
distances, and 2) AU tests for each inferred set of trees to
assess whether they fell in the respective m1-inferred tree’s
confidence set. In figure 5a, we show the distributions of nRF
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FIG. 4. Model selection results on 200 PANDIT alignments. (a) Best-fitting model (m1) matrix across PANDIT alignments. (b) Relative rank, among
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distances across each pair of models, with the median value
shown for each distribution. Overall, the mean nRF between
m1 and m2 trees was significantly lower than all other com-
parison distributions (P< 0.01), but we emphasize that the
m1-GTR comparison showed the second lowest median nRF
difference. There was virtually no other difference in average
nRF for most comparisons among m1, m2, m3, m4, and GTR
models. As such, although there are clear topological differ-
ences among trees inferred across these models, no single
protein model of these five stood out as yielding substantially
different topologies. These results are highly consistent with
those from simulations and again suggest that relative model
fit does not systematically affect inferred tree topologies.

By contrast, nRF comparisons with m5 and JC models were
much higher, indicating that these two protein models
tended to infer distinct topologies from m1–m4 and GTR
models. We did not observe a significant difference in mean
nRF for the m1–JC and m1–m5 comparisons, suggesting that
m5 and JC yielded trees with similar levels of deviation from
m1. Interestingly, the mean nRF for the m5–JC comparison
was significantly larger than were all other comparisons
(P< 0.001). Therefore, although trees inferred with JC and
m5 models were fairly distant from m1 trees, they were
even farther from one another, indicating qualitative differ-
ence between JC and m5 trees. Indeed, although both of these
models fit the natural sequence data poorly, the poor fit of JC
likely derived from their equal and therefore uninformative
exchangeabilities, but the poor fit of m5 models more likely
derived from their misleading unequal exchangeabilities.

Further analysis with AU tests revealed that, for each align-
ment, most trees indeed fell in the m1 confidence set of trees
(fig. 5b). For the 200 alignments examined, 199 (99.5%) of m2
trees, 194 (97%) of m3 trees, and 198 (99%) of GTR trees fell in
the m1 confidence set of trees (P> 0.01). Therefore, although
m2, m3, GTR models were poorer fits to the data compared
with m1, trees inferred with these three protein models were
statistically consistent with those inferred with m1 models. By
contrast, the m4 models deviated from the m1 confidence set
somewhat more frequently, with only 183 (91.5%) of infer-
ences consistent with the m1 model. Finally, at least 1/3 of
inferred trees under m5 and JC each fell outside the m1
confidence set of trees for their respective alignments.

We further asked whether the deviating trees inferred with
m4, m5, and JC models represented the same or different
PANDIT alignments, as depicted with the Venn Diagram in
figure 5c. There was relatively little overlap between which m4
and JC m5 trees fell outside the m1 confidence set, but there
was much more overlap between which m5 and JC trees fell
outside the m1 confidence set. Even so, there were many
instances where only the JC tree (from 19 alignments) or
the m5 tree (from 37 alignments) uniquely differed from
the m1 tree, again suggesting that JC and m5 inferred qual-
itatively distinct phylogenies.

Unlike simulation results, where all JC trees fell inside the
m1 confidence set, many JC trees built from natural sequence
data had significantly different topologies. We therefore sug-
gest that further work is necessary to truly understand the
performance of this simplistic yet potentially effective model.

Indeed, based on figure 5a, it appears that the equal-rates JC
model inferred unique topologies compared with any protein
model with unequal exchangeabilities. Although it is impos-
sible to know which model(s), if any, converged upon the true
phylogeny, the patterns observed from PANDIT data analysis
imply that, so long as relative model fit is not exceptionally
poor, the specific model is unlikely to strongly mislead or bias
phylogenetic inference on protein data.

Discussion
We have investigated whether relative model fit has a sys-
tematic effect on inference accuracy in single-gene protein
phylogenetic inference. From both simulated and natural se-
quence data, we find that inferred topologies are highly ro-
bust to the fit of the employed protein model. These results
were additionally robust to the simulation strategy, consider-
ing both generative models which violated and satisfied
assumptions of empirical protein inference models. We em-
phasize that this study primarily considered the merits of
relative model selection as a proxy for accuracy in phyloge-
netic topologies, but did not specifically consider accuracy in
branch length estimation. As such, our results do not neces-
sarily imply that relative model selection is wholly unimpor-
tant for phylogenetic inference. Instead, our results lead to the
conclusion that relative model selection does not perform
better than random chance at identifying which empirical
protein model will yield the most reliable topology from
amino-acid data.

Critically, the results presented here do not suggest that all
protein models infer identical trees. The at-times wide distri-
bution of nRF distances demonstrates that phylogenies in-
ferred across varying models have, in many areas, distinct
branching patterns (figs. 2 and 5a; and supplementary fig.
S3, Supplementary Material online). Instead, our results dem-
onstrate that there is no clear, systematic shift toward more
accurate inferences when relative model fit, as measured with
information theoretic criteria, increases. Although applying
model selection procedures will not necessarily worsen a
given analysis, there is similarly no robust evidence that ap-
plying relative model selection will improve analysis, as many
users often presume. This is not to say relative model selec-
tion itself is either unnecessary or inaccurate, but rather that
relative model selection is not a reliable “litmus test” for iden-
tifying which model will produce the most accurate and re-
liable inferences. In addition, because this study focused on
relative model fit rather than absolute model fit, it remains a
distinct possibility that all protein models had similar (poten-
tially poor) absolute fits to the data. Future research endeav-
ors should therefore assess the precise relationship between
relative and absolute model fit measures to achieving a uni-
fied understanding of the merits of phylogenetic model se-
lection approaches.

An unexpected but key finding in the simulation study
presented here is that most models, regardless of relative
fit, will recover similar proportions of highly supported but
incorrect nodes (fig. 3 and supplementary figs. S3–S9,
Supplementary Material online). This insight has important
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consequences for fundamental questions in phylogenetics
and systematics. In particular, one reason it is desirable to
avoid misspecified models is their presumed potential to yield
supported but incorrect splits, or conversely correct splits
which appear unsupported by the model (Sullivan and
Joyce 2005). For example, recent studies aiming to disentangle
fundamental relationships among mammals (Philippe et al.
2011; Moran et al. 2015; Tarver et al. 2016) and metazoans
(Ryan et al. 2013; Pisani et al. 2015) have suggested that re-
solved phylogenies may have been elusive because many
studies employed inadequate models which tend to yield
strong yet inconsistent support. Our results imply that any
protein empirical protein model is likely to support incorrect
splits, but no model is substantially overrepresented for such
splits.

Moreover, it has previously been observed that while the
specific phylogenetic model used may not always impact to-
pology, overly simplistic models may have strong influences
on measures of nodal support (Sullivan and Joyce 2005). We
in fact did not observe this effect: the simplistic JC model
tended to show similar levels of support compared with
models with more complexity, considering MutSel and con-
trol simulations (fig. 3 and supplementary figs. S4–S9,
Supplementary Material online). That said, the substantially
larger differences in topologies inferred between JC and other
models for empirical data sets obtained from PANDIT sug-
gests any potential effect of model complexity on nodal sup-
port is simply not pronounced in simulated data. One
potential reason for the comparable levels of nodal support
between JC and more complex models in simulations is be-
cause, in fact, the models do not substantially differ in com-
plexity because exchangeabilities are a priori fixed. Between
any two commonly used empirical protein models, the num-
ber of free parameters will usually differ by at most two: the
proportion of invariant sites (þI) and/or a parameter repre-
senting ASRV such as the shape parameter of a discrete
gamma distribution (þG). As such, the primary differences
between any two empirical protein models are the specific
values of their fixed substitution rates. This scenario is in stark
contrast to nucleotide-level phylogenetic models, which are
generally distinguished by the number of free parameters they
consider. Indeed, the simplest nucleotide model contains only
one free parameter, but the most complex models contain up
to 12 free parameters, considering substitution rates along
(Yang 2014). Therefore, although further work will improve
our understanding of how protein models of varying com-
plexity influence nodal support, it is possible that the rela-
tionship between model complexity and nodal support is
mostly a concern for nucleotide-level data and associated
nucleotide models.

In addition, we did not consider phylogenetic reconstruc-
tion from nucleotide data. However, a recent study by Abadi
et al. (2019) used simulation to demonstrate that the
GTRþIþG model and JC model as applied to nucleotide
alignments do not produce systematically different phyloge-
netic topologies. Our results suggest that this phenomenon
may also extend to protein-level data, ultimately providing
increasing evidence that relative model selection is not

predictive of accuracy in phylogenetic inference, in spite of
decades of tradition. Similar to findings from Abadi et al.
(2019), we also observed strong differences between the
free-rate GTR and JC models as applied to natural sequence
data, meaning that JC may not be as robust as simulations
suggested.

Moreover, this study focused specifically on measures of
topological accuracy when investigating how relative model
fit might affect phylogenetic inference, and we did not inves-
tigate the effects of model fit on branch length inference.
Although such an analysis is clearly desirable, branch lengths
under the simulation model (which operated at the codon
level) and under inference models (which operated at the
amino acid level) are not directly comparable, and their rela-
tionship cannot be generalized. Under the MutSel simulation
model, branch lengths are defined as the number of neutral
codon changes per unit time, whereas under protein models
used for inference, branch lengths are defined as the number
of amino acid changes per unit time, rendering these two
quantities fundamentally distinct. Future efforts therefore
may seek a unifying framework to compare branch lengths
and divergence levels across model formulations.

Finally, this study focused exclusively on the practical ram-
ifications of relative model selection when a single protein
exchangeability models are applied to single-gene, nonparti-
tioned data. We did not consider more complicated scenar-
ios, such as the analysis of multiple concatenated genes in a
partitioned analysis (Kainer and Lanfear 2015; Lanfear et al.
2017) and/or the use of more complex mixture models, such
as the CAT model (Lartillot and Philippe 2004; Si Quang et al.
2008) or approaches that consider several exchangeability
matrices proportioned across sites (Huelsenbeck et al. 2008;
Le et al. 2008, 2012). As mixture models have been shown to
fit many data sets better than single exchangeability models,
in particular for saturated or highly heterogeneous data (Le
et al. 2008; Si Quang et al. 2008; Arenas 2015), future work
should investigate whether the improvement in fit these
complex models confer corresponds to qualitatively different
phylogenetic inferences.

In sum, results presented here contribute to a growing
body of evidence that the practical ramifications of model
selection in phylogenetics may be vastly overstated. A key
unanswered question in many of these findings is “why” there
are such substantial differences in relative model fit even
when these models perform extremely similarly. One possible
explanation is that, although observed patterns in the data
may more closely match some models than others, all avail-
able protein models may be similarly distant from describing
the evolutionary process which in fact gave rise to the data. As
such, although different models may better capture certain
features of the data, none of them may have sufficient ability
to capture the generative process of biological evolution. This
insight may pave the way for the development of categorically
novel modeling frameworks; if new protein exchangeability
models are developed solely to improve the relative fit to
data, but these new models do not yield meaningful conse-
quences for inferences, the benefit to “building a better
mouse trap” is modest at best.
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Materials and Methods

Simulation Approach
We adopted a simulation-based approach to assess whether
employing models of different fit induce systematic shifts in
the accuracy of inferred phylogenetic topologies. All simula-
tions were conducted using the Python library pyvolve
(Spielman and Wilke 2015a). We simulated alignments
according to the site-wise codon-level mutation–selection
(MutSel) model (Halpern and Bruno 1998). The instanta-
neous rate matrix for this model at a given codon site k is
specified as:

qk
ij ¼

lij

Sk
ij

1� expðSk
jiÞ

single nucleotide change

0 multiple nucleotide changes

;

8>>><
>>>:

(1)

for a substitution from codon i to j, where lij is the site-
invariant nucleotide-level mutation rate, and Sk

ij is the scaled
selection coefficient for site k, which represents the fitness
difference between codons j and i at site k, for example,
Sk

ij ¼ Fj � Fi, where Fj is the fitness of codon j. Each site k
in a given alignment is therefore specified by a unique 61-
length (the three stop codons are excluded) vector of codon
fitness values.

We obtained site-specific codon fitness parameters used in
simulations from four DMS experiments (table 1). DMS sys-
tematically determines the relative amino acid preferences P
for each site k in a real protein of length L (Firnberg et al.
2014). We converted these amino acid preferences to fitness
values as Fa ¼ logðPaÞ, where Fa is the fitness of amino acid a,
and Pa is the experimentally determined preference for amino
acid a (Sella and Hirsh 2005). We assigned codon fitnesses
based on these amino acid fitnesses, assuming equal fitness
among synonymous codons at each site k. We assumed site-
invariant equal mutation rates among all nucleotides.

Each simulation was designed to mimic the evolutionary
landscape of one of the real proteins given in table 1. The
length of each simulation therefore exactly matched the
length of its respective originating protein. For example, all
LAC-based simulations contained L¼ 262 codon sites, and
the MutSel model operating at site k was parameterized by
the experimentally informed 61-length vector of codon fit-
nesses that corresponded to that position in the actual pro-
tein. This simulation strategies allows for highly realistic levels
of ASRV as well as heterotachy (Spielman and Wilke 2015b;
Jones et al. 2016, 2018). We simulated 20 alignment replicates
for each set of DMS parameters along eight empirical phy-
logenies obtained from the literature (table 2), resulting in a
total of 640 simulated alignments. Because the MutSel model
scales branch lengths to equal the expected number of neu-
tral codon substitutions per unit time (Tamuri et al. 2012;
Spielman and Wilke 2015a), all input phylogeny branch
lengths were scaled up by a factor of three so that branch
lengths would better approximate the number of amino acid
substitutions. Simulated codon-level alignments were trans-
lated to amino acids before subsequent analyses.

To complement these simulations, we performed a second
set of simulations using the empirical protein model
WAGþIþG (Whelan and Goldman 2001), where the propor-
tion of invariant sites was set to 0.05. The discrete gamma
distribution had ten categories and a shape parameter of 0.8.
The simulations represent a set of control simulations where
each model used for inference have same mathematical gen-
eral time-reversible form as does the generative simulation
model. All control simulations were performed along the
same phylogenies (table 2), with 20 replicates for each of
lengths 262, 497, 564, and 661 to act as analogs for MutSel
simulations with LAC-, NP-, HA-, and HIV-derived parame-
ters, respectively.

Model Selection and Phylogenetic Inference
For each simulated protein alignment, we employed
ModelFinder in IQ-TREE v1.6.8 (Nguyen et al. 2015;
Kalyaanamoorthy et al. 2017) to determine the relative fit
of standard protein exchangeability models using BIC.
Because previous studies have shown that either most stan-
dard measures of fit when used in phylogenetics (BIC, AIC,
small-sample Akaike Information Criteria [AICc], and decision
theory) perform comparably in terms of impact on the
emerging topology (Abadi et al. 2019), or that BIC may be
somewhat more robust than other options (Luo et al. 2010),
we focus on BIC alone in this study as the criterion for model
selection.

We specified ModelFinder arguments that mimic behavior
of the commonly used ProtTest software (Darriba et al. 2011).
ModelFinder examines a set of 21 commonly used protein
models, as well as their respective parameterizations þI

Table 1. Deep-Mutational Scanning Experimental Data Used for
MutSel Simulations.

Name Description
Number
of Sites References

LAC TEM-1 b-lactamase 262 Firnberg et al. (2014);
Bloom (2014b)

NP Influenza H1N1 nucleoprotein 497 Bloom (2014a); Doud
et al. (2015)

HA Influenza H1N1 hemagglutinin 564 Thyagarajan and
Bloom (2014)

HIV HIV-1 Env protein 661 Haddox et al. (2018)

Table 2. Empirical Trees Used for All Simulations.

Name Number
of Taxa

Tree
Lengtha

References

Green plants 360 24.67 Ruhfel et al. (2014)
Ray-finned fish 305 29.44 Hughes et al. (2018)
Placental mammals 274 13.88 dos Reis et al. (2012)
Aves 200 5.21 Prum et al. (2015)
Lassa virus 179 6.62 Andersen et al. (2015)
Spiralia 103 25.01 Marl�etaz et al. (2019)
Opisthokonta 70 20.92 Ryan et al. (2013)
Yeast 23 9.45 Salichos and Rokas (2013)

aComputed as the sum of branch lengths, measured in expected substitutions per
site, from the phylogeny. In all simulations, these tree lengths correspond to amino
acid substitutions.
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(proportion of uninformative sites), þF (using observed
amino acid frequencies), and þG (four-category discrete
gamma-distributed ASRV), totaling 168 examined parameter-
izations. We ranked all evaluated models by their BIC score
and identified five models ranging in goodness of fit for sub-
sequent phylogenetic inference. Specifically, we identified the
five models whose BIC scores most closely matched the five-
number summary (minimum, first quartile, median, third
quartile, and maximum) of the full distribution of BIC scores
of all models evaluated for each alignment. We refer to the
best-fitting model m1, the second best-fitting model m2, and
so on for subsequent ranks along the five-number summary.

We then used IQ-TREE v1.6.8 (Nguyen et al. 2015) to infer
a phylogeny (e.g., optimize topology, branch lengths, and any
additional free model parameters) using each of these five
models, along with two additional models which were not
considered in ModelFinder: the JC (Jukes and Cantor 1969)
model, as well as the GTR model, where exchangeability
parameters are optimized to the data during inference.
Notably, these two modeling frameworks are generally un-
used in protein phylogenetics; the JC model is assumed to be
overly simplistic and likely to underfit the data, and the GTR
framework is presumed too parameter-rich and likely to over-
fit the data (Yang 2014). A full overview of the analysis pipe-
line for this study shown in figure 6, using a single HA
simulation replicate along the Placental Mammals tree as
an example.

Calculation of RF distance and other topological compar-
isons were performed using the Python library dendropy
v4.4.0 (Sukumaran and Holder 2010). AU topology tests
(Shimodaira 2002) were performed in IQ-TREE by specifying
the argument -zb 10,000 -au to perform 10,000 RELL repli-
cates (Kishino et al. 1990).

Empirical Data Analysis
All empirical protein data sets were collected from the
PANDIT database (Whelan 2006). About 200 alignments
(and corresponding PANDIT phylogenies) were randomly
chosen from all PANDIT families where the “PANDIT-aa-
restricted” set of sequences contained between 20 and 500
(inclusive) sequences with between 100 and 1,000 sites (in-
clusive). Relative model selection and phylogenetic inference
were performed as described earlier.

Statistical Analysis and Availability
All statistical analysis and visualization were performed in R (R
Core Team 2017), making use of the tidyverse visualization
and analysis framework (Wickham 2016; Wickham et al.
2019). Linear modeling was conducted using the lme4 pack-
age (Bates et al. 2015), with corrections for multiple compar-
isons performed with multcomp (Hothorn et al. 2008).
Significance throughout was assessed using a threshold of
a ¼ 0:01. All data and code, including results from all linear
modeling analyses, are freely available from https://github.
com/spielmanlab/aa_phylo_fit_topology (last accessed April
6, 2020) and archived at https://doi.org/10.5281/zenodo.
3705372 (last accessed April 6, 2020).

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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Höhna S, Coghill LM, Mount GG, Thomson RC, Brown JM. 2018. p3:
phylogenetic posterior prediction in revbayes. Mol Biol Evol.
35(4):1028–1034.

Holder MT, Zwickl DJ, Dessimoz C. 2008. Evaluating the robustness of
phylogenetic methods to among-site variability in substitution pro-
cesses. Philos Trans R Soc B. 363(1512):4013–4021.

Hothorn T, Bretz F, Westfall P. 2008. Simultaneous inference in general
parametric models. Biom J. 50(3):346–363.

Huelsenbeck JP, Joyce P, Lakner C, Ronquist F. 2008. Bayesian analysis
of amino acid substitution models. Philos Trans R Soc B.
363(1512):3941–3953.

Hughes LC, Ort�ı G, Huang Y, Sun Y, Baldwin CC, Thompson AW,
Arcila D, Betancur-R R, Li C, Becker L, et al. 2018.
Comprehensive phylogeny of ray-finned fishes (Actinopterygii)
based on transcriptomic and genomic data. Proc Natl Acad Sci
U S A. 115(24):6249–6254.

Jones CT, Youssef N, Susko E, Bielawski JP. 2016. Shifting balance on a
static mutation–selection landscape: a novel scenario of positive
selection. Mol Biol Evol. 34(2):391–407.

Jones CT, Youssef N, Susko E, Bielawski JP. 2018. Phenomenological
load on model parameters can lead to false biological conclusions.
Mol Biol Evol. 35(6):1473–1488.

Jones DT, Taylor WR, Thornton JM. 1992. The rapid generation of
mutation data matrices from protein sequences. Comput Appl
Biosci. 8(3):275–282.

Jukes TH, Cantor CR. 1969. Evolution of protein molecules. In: Munro
HN, editor. Mammalian protein metabolism. 3rd ed. New York:
Academic Press. p. 21–132.

Kainer D, Lanfear R. 2015. The effects of partitioning on phylogenetic
inference. Mol Biol Evol. 32(6):1611–1627.

Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS.
2017. ModelFinder: fast model selection for accurate phylogenetic
estimates. Nat Methods. 14(6):587–589.

Keane TM, Creevey CJ, Pentony MM, Naughton TJ, Mclnerney JO.
2006. Assessment of methods for amino acid matrix selection and
their use on empirical data shows that ad hoc assumptions for
choice of matrix are not justified. BMC Evol Biol. 6(1):29.

Kishino H, Miyata T, Hasegawa M. 1990. Maximum likelihood inference
of protein phylogeny and the origin of chloroplasts. J Mol Evol.
31(2):151–160.

Kosiol C, Goldman N. 2005. Different versions of the Dayhoff rate
matrix. Mol Biol Evol. 22(2):193–199.

Lanfear R, Frandsen PB, Wright AM, Senfeld T, Calcott B. 2017.
Partitionfinder 2: new methods for selecting partitioned models of
evolution for molecular and morphological phylogenetic analyses.
Mol Biol Evol. 34(3):772–773.

Lartillot N, Philippe H. 2004. A Bayesian mixture model for across-site
heterogeneities in the amino-acid replacement process. Mol Biol
Evol. 21(6):1095–1109.

Le SQ, Dang CC, Gascuel O. 2012. Modeling protein evolution with
several amino acid replacement matrices depending on site rates.
Mol Biol Evol. 29(10):2921–2936.

Le SQ, Gascuel O. 2008. An improved general amino acid replacement
matrix. Mol Biol Evol. 25(7):1307–1320.

Le SQ, Lartillot N, Gascuel O. 2008. Phylogenetic mixture models for
proteins. Philos Trans R Soc B. 363(1512):3965–3976.

Le VS, Dang CC, Le QS. 2017. Improved mitochondrial amino acid
substitution models for metazoan evolutionary studies. BMC Evol
Biol. 17(1):136.

Liberles DA, Teufel AI, Liu L, Stadler T. 2013. On the need for mech-
anistic models in computational genomics and metagenomics.
Genome Biol Evol. 5(10):2008–2018.

Luo A, Qiao H, Zhang Y, Shi W, Ho SY, Xu W, Zhang A, Zhu C. 2010.
Performance of criteria for selecting evolutionary models in phylo-
genetics: a comprehensive study based on simulated datasets. BMC
Evol Biol. 10(1):242.

Marl�etaz F, Peijnenburg KTCA, Goto T, Satoh N, Rokhsar DS. 2019. A
new Spiralian phylogeny places the enigmatic arrow worms among
Gnathiferans. Curr Biol. 29(2):312–318.e3.

Minh BQ, Nguyen MAT, von Haeseler A. 2013. Ultrafast approximation
for phylogenetic bootstrap. Mol Biol Evol. 30(5):1188–1195.

Moran R, Morgan C, O’Connell M. 2015. A guide to phylogenetic
reconstruction using heterogeneous models – a case study from the
root of the placental mammal tree. Computation 3(2):177–196.

Müller T, Vingron M. 2000. Modeling amino acid replacement. J
Comput Biol. 7(6):761–776.

Spielman . doi:10.1093/molbev/msaa075 MBE

2122

D
ow

nloaded from
 https://academ

ic.oup.com
/m

be/article-abstract/37/7/2110/5810088 by R
ow

an U
niversity user on 23 July 2020



Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. 2015. IQ-TREE: a
fast and effective stochastic algorithm for estimating maximum-
likelihood phylogenies. Mol Biol Evol. 32(1):268–274.

Nickle DC, Heath L, Jensen MA, Gilbert PB, Mullins JI, Kosakovsky
Pond SL. 2007. HIV-specific probabilistic models of protein evolu-
tion. PLoS One 2(6):e503.

Philippe H, Brinkmann H, Lavrov DV, Littlewood DTJ, Manuel M,
Wörheide G, Baurain D. 2011. Resolving difficult phylogenetic
questions: why more sequences are not enough. PLoS Biol.
9(3):e1000602.

Pisani D, Pett W, Dohrmann M, Feuda R, Rota-Stabelli O, Philippe H,
Lartillot N, Wörheide G. 2015. Genomic data do not support comb
jellies as the sister group to all other animals. Proc Natl Acad Sci U S
A. 112(50):15402–15407.

Posada D, Buckley TR. 2004. Model selection and model averaging in
phylogenetics: advantages of Akaike information criterion and
Bayesian approaches over likelihood ratio tests. Syst Biol.
53(5):793–808.

Posada D, Crandall KA. 1998. MODELTEST: testing the model of DNA
substitution. Bioinformatics 14(9):817–818.

Prum RO, Berv JS, Dornburg A, Field DJ, Townsend JP, Lemmon EM,
Lemmon AR. 2015. A comprehensive phylogeny of birds (Aves)
using targeted next-generation DNA sequencing. Nature
526(7574):569–573.

R Core Team. 2017. R: a language and environment for statistical com-
puting. Vienna (Austria): R Foundation for Statistical Computing.

Ramsey DC, Scherrer MP, Zhou T, Wilke CO. 2011. The relationship
between relative solvent accessibility and evolutionary rate in pro-
tein evolution. Genetics 188(2):479–488.

Ripplinger J, Sullivan J. 2008. Does choice in model selection affect
maximum likelihood analysis? Syst Biol. 57(1):76–85.

Ripplinger J, Sullivan J. 2010. Assessment of substitution model ade-
quacy using frequentist and Bayesian methods. Mol Biol Evol.
27(12):2790–2803.

Ruhfel BR, Gitzendanner MA, Soltis PS, Soltis DE, Burleigh JG. 2014.
From algae to angiosperms-inferring the phylogeny of green plants
(Viridiplantae) from 360 plastid genomes. BMC Evol Biol. 14(1):23.

Ryan JF, Pang K, Schnitzler CE, Nguyen AD, Moreland RT, Simmons
DK, Koch BJ, Francis WR, Havlak P, NISC Comparative Sequencing
Program, Smith SA, Putnam NH, Haddock SHD, Dunn CW,
Wolfsberg TG, Mullikin JC, Martindale MQ, Baxevanis AD.
2013. The genome of the ctenophore Mnemiopsis leidyi and its
implications for cell type evolution. Science
342(6164):1242592–1242592.

Salichos L, Rokas A. 2013. Inferring ancient divergences requires genes
with strong phylogenetic signals. Nature 497(7449):327–331.

Self SG, Liang KY. 1987. Asymptotic properties of maximum likelihood
estimators and likelihood ratio tests under nonstandard conditions. J
Am Stat Assoc. 82(398):605–610.

Sella G, Hirsh AE. 2005. The application of statistical physics to evolu-
tionary biology. Proc Natl Acad Sci U S A. 102(27):9541–9546.

Shimodaira H. 2002. An approximately unbiased test of phylogenetic
tree selection. Syst Biol. 51(3):492–508.

Si Quang L, Gascuel O, Lartillot N. 2008. Empirical profile mixture
models for phylogenetic reconstruction. Bioinformatics
24(20):2317–2323.

Spielman SJ, Kosakovsky Pond SL. 2018. Relative evolutionary rates in
proteins are largely insensitive to the substitution model. Mol Biol
Evol. 35(9):2307–2317.

Spielman SJ, Wan S, Wilke CO. 2016. A comparison of one-rate and
two-rate inference frameworks for site-specific dN/dS estimation.
Genetics 204(2):499–511.

Spielman SJ, Wilke CO. 2015a. Pyvolve: a flexible python module
for simulating sequences along phylogenies. PLoS One
10(9):e0139047.

Spielman SJ, Wilke CO. 2015b. The relationship between dN/dS and
scaled selection coefficients. Mol Biol Evol. 32(4):1097–1108.

Spielman SJ, Wilke CO. 2016. Extensively parameterized mutation–
selection models reliably capture site-specific selective constraint.
Mol Biol Evol. 33(11):2990–3002.

Sukumaran J, Holder MT. 2010. DendroPy: a Python library for phylo-
genetic computing. Bioinformatics 26(12):1569–1571.

Sullivan J, Joyce P. 2005. Model selection in phylogenetics. Annu Rev Ecol
Evol Syst. 36(1):445–466.

Tamuri AU, Reis M. D, Goldstein RA. 2012. Estimating the distribution
of selection coefficients from phylogenetic data using sitewise
mutation-selection models. Genetics 190(3):1101–1115.

Tarver JE, dos Reis M, Mirarab S, Moran RJ, Parker S, O’Reilly JE, King
BL, O’Connell MJ, Asher RJ, Warnow T, et al. 2016. The interrela-
tionships of placental mammals and the limits of phylogenetic in-
ference. Genome Biol Evol. 8(2):330–344.

Tavare S. 1984. Lines of descent and genealogical processes, and their
applications in population genetics models. Theor Popul Biol.
26:119–164.

Thyagarajan B, Bloom JD. 2014. The inherent mutational tolerance and
antigenic evolvability of influenza hemagglutinin. eLife 3:e03300.

Whelan S. 2006. PANDIT: an evolution-centric database of protein and
associated nucleotide domains with inferred trees. Nucleic Acids Res.
34(90001):D327–D331.

Whelan S, Allen JE, Blackburne BP, Talavera D. 2015.
ModelOMatic: fast and automated model selection between
RY, nucleotide, amino acid, and codon substitution models.
Syst Biol. 64(1):42–55.

Whelan S, Goldman N. 2001. A general empirical model of protein
evolution derived from multiple protein families using a maximum
likelihood approach. Mol Biol Evol. 18(5):691–699.

Wickham H. 2016. ggplot2: elegant graphics for data analysis. New York:
Springer-Verlag.

Wickham H, Averick M, Bryan J, Chang W, McGowan L, François R,
Grolemund G, Hayes A, Henry L, Hester J, et al. 2019. Welcome to
the Tidyverse. J Open Source Softw. 4(43):1686.

Yang N, Nielsen R, Hasegawa M. 1998. Models of amino acid substi-
tution and applications to mitochondrial protein evolution. Mol Biol
Evol. 15(12):1600–1611.

Yang Z. 2014. Molecular evolution: a statistical approach. Oxford:
Oxford University Press.

Topological Accuracy in Single-Gene Protein Phylogenetics . doi:10.1093/molbev/msaa075 MBE

2123

D
ow

nloaded from
 https://academ

ic.oup.com
/m

be/article-abstract/37/7/2110/5810088 by R
ow

an U
niversity user on 23 July 2020


	Relative Model Fit Does Not Predict Topological Accuracy in Single-Gene Protein Phylogenetics
	Recommended Citation

	OP-MOLB200076 2110..2123

