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Research-based assessment instruments (RBAIs) are ubiquitous throughout both physics instruction and
physics education research. The vast majority of analyses involving student responses to RBAI questions
have focused on whether or not a student selects correct answers and using correctness to measure growth.
This approach often undervalues the rich information that may be obtained by examining students’
particular choices of incorrect answers. In the present study, we aim to reveal some of this valuable
information by quantitatively determining the relative correctness of various incorrect responses. To
accomplish this, we propose an assumption that allows us to define relative correctness: students who have
a high understanding of Newtonian physics are likely to answer more questions correctly and also more
likely to choose better incorrect responses than students who have a low understanding. Analyses using
item response theory align with this assumption, and Bock’s nominal response model allows us to uniquely
rank each incorrect response. We present results from over 7000 students’ responses to the Force and

Motion Conceptual Evaluation.

DOI: 10.1103/PhysRevPhysEducRes.16.010107

I. INTRODUCTION

Many instructional and research questions over the past
three decades have been answered by examining student
responses to multiple-choice research-based assessment
instruments (RBAIs) [1,2]. Tens of thousands of students
have provided responses to questions on the Force Concept
Inventory (FCI [3]), the Force and Motion Conceptual
Evaluation (FMCE [4]), and many others [5], and dozens of
analyses have been published that use these results to
measure student learning (see Refs. [6,1]). A common
factor throughout most of these analyses is that students’
responses are typically scored as being correct or incorrect;
very little attention has been paid to which incorrect
answers students choose. This dichotomous scoring
scheme is very beneficial for simplifying student perfor-
mance on a RBAI or growth in learning to a single number
that may be compared between students or across pop-
ulations. The simplicity of this analysis and the ability for
instructors and researchers to compare their results with
other datasets has contributed to the proliferation of RBAISs,
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to the benefit of the physics education research (PER)
community; however, the dichotomous scoring scheme
implicitly ignores any information about students’ choices
that are not correct. All incorrect answers are treated
equally, regardless of how similar or different they may
be to the correct answer.

RBALIs are so powerful because their questions help to
elicit students’ core beliefs about how the world works
in ways that mathematical or problem-solving questions
often do not. Many of the incorrect “distractor” response
choices correspond with deeply held intuitive understand-
ings that fit well with everyday experiences (and corre-
spond with historically accurate models) but conflict with
the principles of Newtonian physics [1]. The ability to
deeply probe students’ conceptual understanding of phys-
ics and represent this understanding with a single numerical
value is very powerful. The authors of the FMCE, in fact,
argue against using a single numerical score to represent
student understanding [7], instead favoring the examination
of student performance on individual or small groups of
questions [4], but the common practice persists. Moreover,
the common practice of reporting normalized gain as a
measure of student learning has been shown to be biased
against students with little prior exposure to formal physics
instruction [8].

Other analyses of student responses to RBAI questions
examine specific choices that students make and relate
these choices to various mental models [9], misconceptions
[3], views [10], or pieces of knowledge [11,12] that

Published by the American Physical Society
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students may have or use when answering particular
questions. These analyses provide a lot of rich information
about students’ ideas, but the processes of conducting these
analyses are often quite time intensive, and the presentation
and visualization of the results can be conceptually dense
and difficult to interpret [13,14]. As such, these analyses
are not nearly as common as reporting a single
numeric score.

Our ultimate goal is to develop a method for analyzing
RBAI data that combines the benefits of having an easy-to-
use tool that generates a single numeric score with the deep
insights that can only be seen by considering both correct
responses and the good ideas that may be expressed in
some incorrect responses. The first part of defining a metric
to create a numeric score of this type is to determine
whether or not some incorrect answers may be considered
better than others. In this usage, “better’” could mean closer
to correct, incorporating more productive ideas, or indicat-
ing a higher level of understanding.

In addition to developing a more complete metric for
reporting student achievement, analyses that provide more
detailed information about students’ responses, such as
consistency plots [13—15] or conceptual dynamics [10],
often examine how these responses change over time.
Interpretations of the results of these analyses would
benefit greatly from a well-defined ranking of incorrect
responses. In that way, if a student chooses different
incorrect responses to a particular question before and
after instruction, one could argue whether or not that
student’s understanding of the course material increased
even though they never chose the correct answer.

Considering one incorrect answer to be better than
another can be a tricky business. A simple method for
defining which responses are better than others would be
to ask expert instructors and researchers to rank the
responses; however, reasonable people may disagree on
this ranking. Any decision about the relative correctness
of various responses based on expert opinions would
inherently contain personal biases from the experts
surveyed and the decision makers. We want to minimize
the potential for bias in our rankings of incorrect
responses. As such, we carefully articulate an assumption
for defining what makes one response better than another,
and we choose an analysis method that correspond to that
assumption to quantitatively rank incorrect responses
based on students’ response patterns.

Assumption: Students who choose correct responses on
most questions are more likely to choose better incorrect
answers than students who choose few correct responses.

This assumption is based on the premise that students
who understand more about Newtonian physics are more
likely to choose better incorrect answers than students
who understand less physics, and these students are also
more likely to choose a greater number of correct
responses. This assumption is consistent with previous

work that has used item response curves (IRCs) to
examine and rank incorrect responses on both the FCI
and the FMCE [16-19]. We expand on this prior work by
using a nested-logit item response theory (IRT) model to
simultaneously estimate students’ overall understanding
of Newtonian mechanics (the IRT latent trait, or person
parameter) and determine how closely each response
choice correlates with a high level of understanding
using the estimated parameters of the model [20-25].
Based on this assumption we would claim, for example,
that a student who only incorrectly answers one question
is more likely to choose a response that is almost correct
than a student who answers 20 questions incorrectly. In
Sec. VII we discuss alternate assumptions and the
implications for future analyses based on those.

To illustrate the applicability of our assumption, we
analyzed more than 7000 students’ matched pretest and
post-test responses to the FMCE to demonstrate how
quantitative analyses can provide information about which
response choices may be better than others. We present
a ranking of incorrect responses for all FMCE questions
as well as the parameter values used to make these
determinations.

II. DATA SOURCES AND PREPARATION

Our data come from two primary sources:

e sets of student responses to the FMCE provided to
one author (TIS) by colleagues from four different
colleges or universities, schools 1-4 [26], as part of
current and previous research projects (N = 952), and

 student responses uploaded to PhysPort’s Data
Explorer (N = 6336) [27].

Some information is known about the instructional
settings at schools 1-4 (all of which used research-based
instructional materials of some sort), but this information
is not available for the PhysPort data. For the purposes of
the current analysis, we combine all data into one set of
N = 7288 students. We are not interested in how instruc-
tional factors impact student learning for this analysis, or
whether or not student responses are different before or
after instruction. As such, we have combined all pretest
and post-test responses into a dataset of N = 14576
response sets.

To prepare the data for analysis, we omit any responses
that are inappropriate for a given question (e.g., a given
response of E on question 45, which only includes options
A, B, C, and D). We also omit response J (None of these
answers is correct) from interpretations of our analyses
because it does not represent a well-defined indication of
what each student would consider correct: two students
who choose answer A agree on what they consider to be
correct, but two students who choose answer J may have
very different ideas of what would be a correct answer, so
we cannot claim similarities between the responses of
students who choose J. We also removed response sets with
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TABLE I. Question clusters on the FMCE [11].

Cluster Questions Context
Force Sled 1-7 sled on ice
Reversing Direction 8-13, 27-29 coin toss/car on ramp
Force Graphs 14-21 toy car

Accel. Graphs 22-26 toy car

Newton III 30-39 collisions/pushing
Velocity Graphs 4043 toy car

Energy 44-47 sled on hill

three or more blank or unscorable responses. This gave us a
usable dataset of N = 12388 response sets.

The structure of the FMCE makes it an interesting focus
for this work. Unlike many other RBAIs, the FMCE
contains several questions for each physical scenario
presented (e.g., a toy car moving horizontally, see
Table I), and all questions in each set have the same set
of response choices. This is particularly interesting because
a response choice that corresponds with the most common
intuitive answer to one question, may not relate to any
documented reasoning for another question.

III. ITEM RESPONSE THEORY MODELS

Item response theory (IRT) uses students’ responses to
multiple-choice questions to simultaneously estimate each
student’s overall understanding of the material (a.k.a. the
latent trait or person parameter, d) and determine the
probability that a student will be correct on each question
given his or her understanding [28,29]. The latent trait is
normalized such that the average value is (#) = 0 and the
standard deviation is 69 = 1. In the two-parameter logistic
(2PL) IRT model, the probability of a student answering a
specific question correctly is given by

1

PO = 1o

(1)

where a is the discrimination parameter and b is the
difficulty parameter. Some previous work has used the
three-parameter logistic model to analyze RBAI data [30],
but we feel that the inclusion of the third “guessing”
parameter is inappropriate for our analyses given that
student responses to the FMCE are concentrated in a small
subset of responses for each question: they are not, in fact,
guessing [7,11].

The interpretation of the parameters in the 2PL. model
may be understood by examining plots of P(0) vs 0: Fig. 1
shows examples from several questions. The difficulty b is
the value of 8 at which P(b) = 0.5, and the discrimination
a is proportional to the slope of the curve at 6 = b:
dP/d6|, = a/4. Questions 1 and 14 [Figs. I(a) and
1(b), respectively] have similar difficulty parameters (the
b value differs by less than 0.1 standard deviations of the

1.0 - 1.0+ -
0.8 - 0.8 -
s 0.6 r 2 0.6+ r
o 0.4+ - a 0.4+ -
0.2 - 0.2 -
0.0 - 0.0 -

T T T T T T T T T T T T T T

3 -2 -1 0 1 2 3 3 -2 -1 0 1 2 3

0 0

(a) Question 1
a=25b=045

(b) Question 14
a=3.7b=054

1.0 = 1.0 =
0.8 r 0.8 r
@ 0.6 r @ 0.6 r
o 0.4 - o 0.4 -
0.2 r 0.2 r
0.0 r 0.0 r

T T
-3 -2 -1 0 1 2 3 -3 2 -1 0 1 2 3

(¢) Question 22
a=28,b=-027

(d) Question 47
a=1.1,b=0.10

FIG. 1. Item response theory plots for questions 1, 14, 22, and
47: probability of answering correctly as a function of the latent
ability parameter 6. The plots help to illustrate the meaning of the
discrimination a and difficulty b parameters in the two-parameter
logistic (2PL) IRT model shown in Eq. (1).

latent ability 6), but Q14’s higher discrimination parameter
a shows up as a sharper transition from most likely
incorrect to most likely correct, and a steeper slope at
the midpoint of the curve. Question 22 in Fig. 1(c) has a
similar discrimination to Q1 [similar slope at P(6) = 0.5],
but the difficulty is much lower [shown by a shift to the left
compared to Fig. 1(a)], with many below-average students
(0 < 0) being fairly likely to answer correctly. Question 47
in Fig. 1(d) has a difficulty parameter that is about average
(close to zero), but the discrimination is relatively small, as
shown by a shallow slope, and a more gradual transition
from probably incorrect to probably correct than any of the
other three. Higher values of discrimination a mean a sharp
transition and steeper slope; lower values mean a gradual
transition and shallower slope. Higher values of difficulty b
mean a graph that is shifted to the right; lower values mean
a graph that is shifted to the left.

Bock’s nominal response model (NRM) provides the
probability of a person choosing each possible response
based on 6 [20],

eak(é‘_bk)
Pi(0) = SR (2)
i=1
where k indicates the particular response choice, and the
summation is performed over all N response choices.
According to Bock and Moustaki, the value of the a;
parameter may be used to rank the incorrect responses,
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with a higher value indicating a response that is more
closely correlated with the latent trait and, therefore,
better than a response with a lower value [31]; however,
the meaning of the a; and b, parameters is not as easily
interpreted as the a and b of the 2PL model [21]. (See
Supplemental Material [44] for a physicist’s interpretation
of these parameters that provides additional insight.) One
shortcoming of the NRM is that the parameters are not
uniquely defined, and a normalization constraint is
required. This is often accomplished by setting the value
of both parameters associated with one particular
response to be fixed (at O or 1) and determining all
other parameters relative to those. The NRM is excellent
for analyzing data for which no prior information is
available regarding the relative correctness of any of the
responses; however, we have found that for our FMCE
data, the parameters occasionally become reversed with
choosing the correct response being associated with
having a low value of 6 (i.e., a poor overall under-
standing of Newtonian mechanics).

IV. RANKING INCORRECT RESPONSES

A. Using a nested logit model to quantitatively
rank responses

In order to rank incorrect responses while properly
accounting for the correct response, we use the 2PL-
NRM nested logit model developed by Suh and Bolt
[22]. In this model, the probability of a student choosing
a specific incorrect response k is given by

1 e (0=Dy)
Pk(e) N (1 - 1+ e_a(g—b)) Zi;r’:correctea"(g_bi) - G)

where the parenthetical term is the probability of being
not correct from the 2PL model, and the second term is
Bock’s NRM with the summation being over only the
incorrect responses. In this model, the values of all 6, a,
and b parameters are calculated using the 2PL model,
and all g, and b, parameters are determined using the
NRM, given the 2PL results. We used the multidimen-
sional item response theory (mirt) package in the R
programming language to perform all IRT analyses
[23,24,32].

To determine the ranking of incorrect responses, we
calculated the values of a and b for every question, and
a; and b, for each incorrect response choice. According
to de Ayala, a dataset must have at least 10 times as
many response sets as the number of parameters to be
calculated for an IRT model to have good convergence
[29]; with our dataset of N = 12388 response sets we
are more than able to determine the 722 necessary
parameters.

As a result of using the mirt package to apply the 2PL-
NRM nested logit model, every response choice within

each question has a unique a; value, implying that all
answers are meaningfully different from each other. The
question is then whether or not any of the a; values may be
considered approximately equal to others, indicating
approximately equal correlations with the 6 parameter
(i.e., response choices that are equally correct). To deter-
mine whether or not response choices are different from
each other, we calculated the sampling distribution of
values for each a;, parameter by selecting random sample
of 7300 respondents using the sample function in R, and we
used the mirt package to calculate each parameter [33]. We
repeated this process over 100 000 times to create a set of
values for each parameter.

The mirt package uniquely determines each value of
a by setting one parameter equal to 1 for each question
[24]. In order to ensure that we obtained a distribution
of values for all parameters of interest, we chose to
include one set of responses that included a “dummy”
response and set ay = 0 for this response. All other a,
parameters are determined relative to a; as such, the a;
values are only meaningful when compared within the
same question, and there are no thresholds for determin-
ing whether a particular value of g, is high or low in
and of itself.

B. Determining whether or not parameters
are meaningfully different

Using the effsize package, we calculated a Hedges’ g
effect size to quantify the magnitude of the difference
between the a; values for each pair [34]. In our full dataset,
every response to every question is selected in at least one
response set. The a; values reported in Table II are those
determined from the full dataset, with the dummy response
set included to uniquely determine each parameter. Given
that the values of a; parameters are only meaningful in
relation to other values for the same question, the inclusion
of the dummy response set has minimal impact on the
overall results.

Figure 2 shows a graphical representation of the param-
eter distributions for question 19. There are several key
features to notice about these distributions:

(1) there is no distribution for the correct response
because the 2PL-NRM does not calculate an a;
parameter for the correct response; it is automati-
cally assumed to be the best,

(ii) the distribution for a, is higher than any other value
of a;, with only minimal overlap with ag, indicating
that A has the highest parameter, and is thus the best
incorrect response, and

(iii) the distributions a. and ag are practically identical,

indicating that these parameters have very similar
values; thus, we would interpret them as being
equally correct.
Other comparisons between various responses are a bit
more ambiguous. The ap and ap distributions look quite
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FIG. 2. Distributions of a; parameters for question 19. Plot
created using the geom_density function in the ggplot2 package,
and the directlabels package for R [35,36].

similar, but not as similar as a. and ag. The ay distribution
is noticeably shifted to the left of a- and ag, but there is
still quite a bit of overlap. We use Hedges’ g to quantify the
magnitude of the difference between each pair of distri-
butions of the a; values: if g is small (¢ < 0.5) we conclude
that the parameter values are effectively equal and the
responses are equally correct, if g is very large (g > 1.3) we
conclude that the parameters are significantly different and
that the responses represent different levels of understand-
ing, and if 0.5 < g < 1.3 then we cannot make a conclusive
determination.

C. The final rankings

Table II show the IRT ranking results for each question
on the FMCE, including the a, value for each response,
the value of Hedges” g for each nearest-neighbor com-
parison, and the percentage of the dataset that chose each
response. Consider the ranking shown for question 19 as
it relates to Fig. 2. The ac and a; parameters are nearly
identical (when rounded to two decimal places), and the
effect size between their distributions is negligibly small
(g = 0.01). The effect size between D and F is also quite
small (g = 0.12), suggesting that choosing either of these
two responses indicates a similar level of understanding,
and the effect size between G and H is large, but not
above our threshold for different responses (g = 1.19)
[37]. All other effect sizes for question 19 are very large,
indicating considerably different values of a, that corre-
spond to different levels of understanding.

Question 19 on the FMCE presents students with a
situation in which a toy car “moves toward the left and is
speeding up at a steady rate (constant acceleration)” and
asks them to choose an appropriate graph of force vs
time. The correct response to question 19 is B: a graph
with a constant negative value (zero slope). According to
these results, the best incorrect answer is A: a graph with
a constant positive value (zero slope). The second-best
incorrect response is E: a graph with a constant zero
value (zero slope). All other responses are graphs with

nonzero slope. This suggests that realizing that a constant
acceleration indicates a constant force is indicative of an
above-average understanding of basic Newtonian
mechanics. This result alone may not be revolutionary
to anyone who has taught introductory mechanics, but the
implication that claiming that zero force is required to
make an object speed up is a better answer than selecting
a graph showing a changing force may be more surpris-
ing. Response E is chosen by fewer than 1% of the
dataset, but these students seem to otherwise have a fairly
strong understanding of Newton’s laws as measured by
the FMCE.

Table III shows IRT rankings that have been filtered to
only include responses given by at least 1.00% of the
population. For some questions (such as 1, 16, and 22) the
difference is quite stark, with only the correct and one
incorrect answer choice remaining. For many of the
questions (such as 2, 14, and 26) the rankings remain
the same, but many of the responses that are seen as
equivalent to others (or ambiguously ranked) have been
eliminated. Moreover, a smaller fraction of the rankings in
Table III are “>" as compared to Table II (29% vs 35%),
and a greater fraction of rankings are “>"" (56% vs 36%).
This suggests that many of the ambiguities in rankings may
be attributed to the relatively low probability of choosing
those responses at all levels of physics understanding,
which could result in relatively broad distributions of
parameter values generated by randomly selecting subsets
of data.

V. RELATING RESPONSE RANKINGS
TO IRT PLOTS

We can use plots of the IRT curves to better under-
stand these rankings. Figure 3 shows the 2PL-NRM
curves for every response to several question. (The 2PL-
NRM IRT plots for all other questions are included in
the Appendix.) In the filtered ranking, question 1 only
includes two dominant responses. This is consistent with
Fig. 3(a) in which responses A and B dominate at all
values of 6 (overall understanding), and all other
responses have near zero probability of being chosen.
Figure 3(c) shows that Q14 is a bit more interesting:
there are still two dominant responses (the correct E and
a single incorrect A), but less-common incorrect
responses are chosen differently by students with differ-
ent 6 values. Students who choose response H are likely
to have an above-average understanding (6 > 0) with the
H curve having a roughly symmetric probability dis-
tribution centered around 6 = b = 0.75, while response
C is mostly chosen by students with below-average
understanding and is more and more likely with lower
values of 6. This is consistent with the ranking in
Table III with H being a better response than the most
common A, and C being a worse response. We can also
see in Fig. 3(c) that responses B and C on Q14 have a
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TABLE III.

IRT ranking results: filtered so that only responses given by at least 1% of the population are included.

Ql:

Q2:

Q3:

Q4:

Qs:

Q6:

Q7:

Q8:

Q9:

Q10:
Ql1:
Ql12:
Ql13:
Ql4:
Q15:
Qle6:
Q17:
QI8:
Ql19:
Q20:
Q21:
Q22:
Q23:
Q24:
Q25:
Q26:
Q27:
Q28:
Q29:
Q30:
Q31:
Q32:
Q33:
Q34:
Q35:
Q36:
Q37:
Q38:
Q39:
Q40:
Q41:
Q42:
Q43:
Q44.
Q45:
Q46:
Q47:

\
aw

\%

\
mQmm

VoI vl

\

THrWoOQWOwWOrTmQQ»>
\
[@Nes!

VVIVVIVVVVIVVVIVYV

VVVVYV
>moog
Vo v
Qo

\%
v

vV VIVIVV VYV
vV VvIVVI] VYV

vl

IV VIV |

IV V VIVIVIVVVIIVI

>roWomOmTmppOprroooOmErQO@>oQTmpOmes»>e>2>P>>d800nTO®
VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVYVYV
jwil--NoNwilvsNeslesHes it dleslesHesNesleslwiissBwilocResHes e R R Sies Bl esliocRariie g 2l ool @I Jasl @l B RwilecRwilss BesHoNes HesNoies

TOFPOQA0D@m@mTAOATTAOAIT>T>TmQEO®IOEO
[oNelvian s lviolvioNol--NolviolvEGNe N RvleNesNes NN Nes

VIV I IVIVIV V]

IV IVIV \
w)
vV V VIV

aoQQw
Qoan
VoIV
mm O

Il
VIV
P>

IV V IV
anii@an

|
e
\%
@)
V
Q

QroOrQ T QTO
\% Vv
Q U

I vV V.V VI

VIV IV
Awg

IIVIVV VIVIVVIVIIWVIIVI
T>QN0wmO000O»wW»»w

similar shape, with the highest probability of choosing
each being at the low end of the 6 axis; this is consistent
with these responses being considered equivalent in
Table III even though the value of the probability is
quite different for each. It is also important to notice
that the curves for the correct responses (B for Q1 and E
for Q14) are identical to the 2PL curves for the
questions shown in Fig. 1.

Question 19 in Fig. 3(e) is very similar to Q14 in that
there is a single most-common-incorrect response (D),
a better response (A) that has a relatively narrow
symmetric probability distribution centered around
0~b >0, and some worse responses (C, G, H) that
have their highest probabilities at the low end of the 6
axis. The major differences between the plots for Q19
and Q14 are that the most-common-incorrect response
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IRT plots from the 2PL-NRM nested logit model for questions 1, 8, 14, 18, 19, and 47: probability of choosing each response

as a function of the person parameter € (representing overall understanding of Newtonian mechanics).

has a much broader range of values in the 8 < 0 regime
for Q19. In fact, response D is approximately equally
probable to responses C, G, and H around 6= —3.
Moreover, the probability curves for the equivalent
responses C and G are basically on top of each other
for the entire range of 0. This is strong evidence that
students choose these responses in roughly the same
proportions, and it may indicate that students are choos-
ing them for the same reasons. Response H also has
similar probabilities to C and G, but has a distinctly more
negative slope than either, indicating a greater likelihood
of being chosen by students with lower 0 values.

The plot for question 18 in Fig. 3(d) is even more
complex than that of Q14, but there are several simi-
larities between them. Once again there is a single
dominant incorrect response (H), but it is less dominant
than the most common response to Q1 or Q14. This is
largely due to G and D being equivalent to H (according
to Tables II and III), and all three sharing a similar shape
in which the probability is relatively uniform for 6 < 0
(but has a slight peak around —1 <6 < —0.5) and
decreases to zero for 0 < & < 2. Responses D and G
each have probabilities between about 0.1 and 0.15 for
6 < 0, which accounts for the probability of the most
common response H never rising above 0.75. Also in
Fig. 3(d) we can see a small bump in probability for the

better-than-common response A around 6 = 0.75, and the
worst responses (C and F) are most common at the
lowest values of 6. Questions 14, 18, and 19 all indicate
that students with above-average understanding (6 > 0)
are more likely to choose both the correct response and
the highest-ranked incorrect response than students
with 0 < 0.

The 2PL-NRM plot for question 47 in Fig. 3(f) shows
an example of a question on the FMCE for which there is
not a single dominant incorrect response. Once again we
can see the ranking from Table III in the shape of the
curves: A is correct, D and B have similar shapes with
maximum probabilities around € =~ —1.5, and C with the
highest probability at the low end of the 8 axis with a
distinctly negative slope. What makes Q47 really inter-
esting is that none of the responses is uniformly zero over
a broad range of 0 values. All incorrect responses have
probabilities above 0.15 for -3 <0 < —1, and the
probabilities for two of the incorrect responses (B and
C) are roughly equal to the correct response around 6 =
—0.5 (with response D only about 0.10 lower). The
relatively high probabilities of all incorrect answer
choices on Q47 may contribute to the low value of
the discrimination parameter a (see Fig. 1).

Question 8 [Fig. 3(b)] shows an interesting example
of a case where there are multiple responses (B, C, D,
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and E) ranked higher than the most common incorrect
response G. Only response F is ranked lower than G
(with g = 3.1). On the FMCE, question 8 is the first in a
set of three that asks students about the forces on a toy
car as it rolls up and down a ramp. In question 8, the
car is moving up and slowing down: response A is
correct that the net force on the car is constant and
down the ramp, response G is that the force is up the
ramp and decreasing, while response F is that the force
is up the ramp and increasing. Responses B and C both
indicate a force down the ramp (increasing and decreas-
ing, respectively), response D indicates zero net force,
and response E is that the force is up the ramp and
constant. All of these better-than-most-common
responses agree with the correct answer in one way
(either the direction of the force or the fact that it is
constant), while G and F have nothing in common with
the correct response.

From a visual perspective, the approximate value of 6
for which the probability curve for a particular response
is maximized indicates the ranking for that response [38].
The curve for the correct answer is always a monoton-
ically increasing function of @; answers that are better
than a most-common incorrect answer [like H on Q14 in
Fig. 3(c) and A on QI8 in Fig. 3(f)] have relatively
narrow probability distributions with peaks around 8 = b;
the worst response in each rank has its highest value at
the low end of the displayed @ axis with a distinctly
negative slope, indicating that lower values of 6 would
yield even higher probabilities of choosing those
responses. Plots of IRT probability curves for all
FMCE questions are included in Figs. 6-8 in the
Appendix.

VI. ANOMALOUS RESULTS

We used Rowan University’s high-performance com-
puting cluster to generate the distribution of values for
each parameter. In examining the results, we noticed that
each parameter had two distinct distributions: a lower
distribution containing approximately 99% of the analy-
ses from the sampled data, and a higher distribution
containing 1% of the analyses. All claims from the
previous section were based on the main (99%) distri-
bution, which is typified in Fig. 2. Figure 4 shows the
full parameter distributions for questions 19, including
the anomalous values for each parameter as shown by the
small bumps on the right side. Figure 5 shows an
enlarged version of the smaller (1%) distribution [39].

Comparing Figs. 2 and 5, we see that the overall
shapes and locations of the parameter distributions are
similar. The distributions in Fig. 5 are not as smooth or
as broad as those in Fig. 2, but this may be attributed to
the sampling method. Possibly the most interesting
feature of these distributions is that there is not overlap
between the left (99%) and right (1%) distributions of

-
o

Hg gD

-
o

Probability Density

e
2

0.0 —
-6 -3 0
Parameter Value

FIG. 4. The complete parameter distribution for question 19.
The large labeled curves on the left side of the plot contain 99%
of the results (also shown in Fig. 2), and the small bumps on the
right side of the plot contain about 1% of the results (also shown
in Fig. 5). A gap in the horizontal axis of about 1.5 exists between
the left and right distributions for all parameters.

any parameter (which is not clear in any of the figures).
For example, consider the distribution of the parameter
for response A in Fig. 4: the left distribution for the
parameter a, (also shown as the black curve in Fig. 2)
contains values between —4.2 and —1.9, while the right
distribution (also shown as the black curve in Fig. 5)
contains values between +1.3 and +2.3. This leaves a
gap of 3.2 that contains no results.

We found the same anomalous results in the distri-
butions for all parameters in all questions. In 1003 out
of the 105600 analyses all of the a; parameters are
about 2-5 units larger than in the other 104597
analyses. The same 1003 analyses provide the higher
results for all parameters, and for all questions the
distributions of the higher values are similar in shape
and relative location to the distributions for the lower
values. Given the similarities in the distributions, and
the consistency of the same 1% of analyses providing
the differences for all parameters, we feel comfortable
using the results from the 104597 main analyses to
make claims about the differences and similarities

5
.
a3
Z A
2o
°
o

1

0

2
Parameter Value

FIG. 5. Enlarged version of the right side of Fig. 4. These

distributions represent about 1% of the total results. The overall
shapes and locations of the parameter distributions are similar to
Fig. 2.
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between the a; parameters for each response choice as
we did in Secs. V and IV. We include the anomalous
results in this section in order to maintain the trans-
parency of our analysis methods.

VII. SUMMARY AND FUTURE DIRECTIONS

The 2PL-NRM nested logit IRT model may be used to
rank incorrect responses to FMCE questions by considering
the calculated a; value as a measure of the correlation
between choosing a particular response and the value of
the 6 parameter representing overall understanding of
Newtonian mechanics (as measured by the FMCE). We
have shown that using random samples of a large dataset
can generate distributions of values for each a, that allow
us to determine whether or not these parameters are
meaningfully different, and we used Hedges’ ¢ as a
statistical measure to quantify these differences. We made
particular choices regarding the values of g that we consider
to represent parameters that are approximately equal, those
that are definitely different, and those that could go either
way, and we have reported the value of g for all compar-
isons to allow the reader to evaluate the validity of our
claims or determine a ranking based on other choices of
thresholds.

In many cases the responses that could not be
determined to be definitely different or approximately
the same as others are those that are rarely chosen by
students. Future research will focus on clarifying these
comparisons and trying to determine a robust ranking for
all responses to every question. One way to accomplish
this will be to perform similar analyses on other large
datasets. Online data collection and analysis tools such as
PhysPort’s Data Explorer [27] and the Learning About
STEM Student Outcomes (LASSO) [40] make this task
much more achievable than it would have been even a
decade ago.

As stated in Sec. I, our ultimate goal is to develop a
method for defining student scores on the FMCE (and other
RBAIs) that incorporates both the number of questions
answered correctly and the value of the good ideas
contained in other responses. That task is beyond the
scope of the current study, as it would require more robust
rankings of incorrect answers than are available from one
type of analysis based on one assumption of what makes
one response better than another.

The results presented here are based on the assumption
that students who understand more about physics will
answer more questions correctly on the FMCE, and will
also select better incorrect responses than students who
understand less overall physics. We also ignored whether
data were collected before or after instruction: we did not
care how students obtained their understanding, just that
they had some level of understanding when they chose their
responses. In future work, we will explore the implications

of different assumptions for what makes one response
better than another.

One such assumption is that students will choose better
responses after instruction than before instruction. This
assumption is supported by the fact that (on average)
students are more likely to choose correct responses after
instruction than before: even low class-averaged gains from
traditional instruction tend to be positive [2,7,41]. A
method consistent with this assumption would be to look
for asymmetric transitions between response choices in
matched pretest and post-test data using a McNemar-
Bowker chi-square test [42,43].

Another assumption that could be made is that students
are more likely to choose correct responses after instruc-
tion if they chose better incorrect responses before
instruction. Using conditional probabilities would allow
us to identify a progression of responses to each question,
with students moving up the progression being consid-
ered getting closer to correct. This is consistent with
Thornton’s conceptual dynamics in which students move
between various views as they progress toward the
correct response [10].

Each of these methods could be used to test the rankings
presented above and help clarify the ambiguously ranked
responses. These methods and assumptions may also be
applied to other research-based assessments to determine a
robust ranking of incorrect responses for any multiple-
choice question.
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APPENDIX: ADDITIONAL 2PL-NRM PLOTS

Figures 6-8 are included to allow the reader to see
how the rankings in Table II relate to the probability of
choosing each response, given the value of a student’s 0
parameter. Each curve is labeled near the maximum
value (with slight adjustments to avoid overlapping
labels and curves), so the horizontal location of the
label provides an approximate ranking of the responses
(right is better, left is worse). Ambiguously ranked
responses often show up as lines near zero probability
for all values of 6.
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FIG. 6. IRT plots from the 2PL-NRM nested logit model for questions 1-20: Probability of choosing each response as a function of the

person parameter € (representing overall understanding of Newtonian mechanics). Plots created using the mirt and directlabels packages
in R [24,32,36].
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FIG. 7. IRT plots from the 2PL.-NRM nested logit model for questions 21-40.
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FIG. 8. IRT plots from the 2PL-NRM nested logit model for questions 41-47.
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