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a b s t r a c t   

Additive manufacturing and data analytics are independently flourishing research areas, where the latter 
can be leveraged to gain a great insight into the former. In this paper, the mechanical responses of additively 
manufactured samples using vat polymerization process with different weight ratios of magnetic micro-
particles were used to develop, train, and validate a neural network model. Samples with six different 
compositions, ranging from neat photopolymer to a composite of photopolymer with 4 wt.% of magnetic 
particles, were manufactured and mechanically tested at quasi-static strain rate and ambient environ-
mental conditions. The experimental data were also synthesized using a data-driven approach based on 
shape-preserving piecewise interpolations while leveraging the concept of simple micromechanics rule of 
mixture. The overarching objective is to forecast the mechanical behavior of new compositions to eliminate 
or reduce the need for exhaustive post-manufacturing testing, resulting in an accelerated product devel-
opment cycle. The ML model predictions were found to be in excellent agreement with the experimental 
data for prognostication of the mechanical behavior of physically tested samples with near-unity correlation 
coefficients. Furthermore, the ML model performed reasonably well in predicting the mechanical response 
of untested, newly formulated compositions of photopolymers and magnetic particles. On the other hand, 
the data-driven approach predictions suffered from processing artifacts, demonstrating the superiority of 
ML algorithms in handling this type of data. Overall, this analysis approach holds great potential in ad-
vancing the prospects of additive manufacturing and model-less mechanics of material analyses. A by-
product of the ML approach is using the results for quality assurance, accelerating the acceptance of 
additively manufactured parts into industrial deployments. 

© 2022 The Author(s). Published by Elsevier B.V. 
CC_BY_NC_ND_4.0   

1. Introduction 

Recent advances in manufacturing processes and unprecedented 
progress in data analytics have nurtured important innovation in 
materials and design, and fueled the fourth industrial revolution. On 
the one hand, advanced manufacturing has engulfed every aspect of 
the supply chain in every industrial sector, ranging from consumer 
goods to space and defense applications (Goh et al., 2020). For 

example, additively manufactured (3D printed) running shoes and 
protective helmets are now available in the open market at relatively 
competitive prices, revolutionizing many aspects of the conventional 
supply chains such as leading to skilled labors, shorting time-to- 
market (i.e., logistics), and eliminating or reducing material waste 
(Tan et al., 2020). The latter is an inherent aspect of additive man-
ufacturing, where the part or component is fabricated from the 
ground up by adding one layer of material at a time, in contrast to 
conventional subtractive manufacturing. On the other hand, the in-
dustrial tracking and scientific testing of the additively manu-
factured parts using a plethora of materials and methods results in a 
wealth of experimental data that can be mined in real-time for ways 
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5. Conclusion 

In this paper, we reported on the mechanical behavior of addi-
tively manufactured composite samples fabricated using the digital 
light projection process. The samples consisted of a composite of 
photopolymer and magnetic microparticles, where the latter in-
cluded 0.5, 1, 2, 3, 4 wt.% weight ratios. The samples were me-
chanically tested using a load frame at a quasi-static loading rate 
under ambient environmental conditions. Subsequently, the data 
were synthesized using machine-learning and data-driven ap-
proaches to prognosticate the mechanical behavior of existing and 
new compositions. The machine-learning approach outperformed 
the data-driven method that suffered from unintended artifacts and 
truncated predictions due to limitations with interpolation and data, 
respectively. While the artifacts can be removed from the data- 
driven prediction by adding a postprocessing step, we refrained from 
doing so since the machine-learning forecasts did not undergo any 
additional processing; the truncated prediction challenge is irre-
mediable, given the anisotropy of the mechanical response of the 
composite samples. On the other hand, the machine-learning stress- 
strain predictions were in excellent agreement with the experi-
mental data and were consistent with mechanics-intuitions for the 
new compositions. Therefore, the machine-learning approach holds 
great potential for advancing additive manufacturing and the me-
chanics of materials. 

Future research will emphasize two directions. First, improving 
the mechanical behavior of additively manufactured magneto-
electric composite materials by enhancing the bonding interface 
through particle functionalization while introducing additional 
functionality. This new class of materials can potentially transform 
flexible and wearable electronics. To achieve the latter, a compre-
hensive multiscale physical characterization framework will be de-
veloped to elucidate the mechanical, electrical, and magnetic 
properties of the manufactured samples. Second is to amend the 
proposed machine-learning algorithm with physics and mechanics 
constitutive models, i.e., physics-informed machine-learning, to 

improve the predictive-ability performance. The mechanical testing 
data used herein, and multi-physics experimental data will be used 
to train, validate, and test the new physics-informed models. 
Collectively, these research directions collate into the accelerated 
product development lifecycle, driving further progress in additive 
manufacturing processes and situating them as viable and in-
telligent replacements for conventional processed. 
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