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ABSTRACT
Melanoma is the most aggressive and deadly form of skin cancer that arises from the transformation of melanocytes, the pigment 
producing cells of the skin. In the year 2024 there will be approximately 10,000 new cases of melanoma diagnosed and approxi-
mately 8,000 deaths attributed to melanoma in the United States. In this study we treated a group of male and female transgenic 
mice that spontaneously develop metastatic melanoma, TGS, with a G-protein-coupled estrogen receptor agonist LNS8801 to 
assess the efficacy on disease progression. A second group of male and female TGS mice was also exposed to UVB irradiation to 
mimic exposure to sunlight. Over the course of the 32-week experiment, visible images were taken by the small animal imaging 
IVIS system to track tumor progression, and blood and tissue samples were collected for molecular analyses. Results showed 
that sex-biased effects were observed in the efficacy of LNS8801 and that LNS8801 shows a UV-protective influence in both male 
and female TGS mice.

1   |   Introduction

Our group previously described an abnormally expressed nor-
mal neuronal receptor, metabotropic glutamate receptor 1 
(protein-mGluR1/gene-Grm1), in melanocytes that led to cell 
transformation in vitro and metastatic tumor formation in vivo 
(Pollock et  al.  2003). Grm1 is a G-Protein-Coupled Receptor 
(GPCR) that is normally expressed and functions in the central 
nervous system (Aiba et  al.  1994; Ménard and Quirion  2012). 
When activated by its natural ligand, L-glutamate, the receptor 
undergoes a conformational change, exchanging GTP for GDP 
that activates phospholipase C (PLC). PLC hydrolyzes phospha-
tidylinositol (4.5)-biphosphate (PIP2) to diacylglycerol (DAG) 

and inositol 1,4,5-triphosphate (IP3), which act as secondary 
messengers and trigger the release of calcium into the cytosol 
and activates protein kinase C (PKC) (Lüscher and Huber 2010; 
Taylor et  al.  1991). Activated PKC initiates a phosphorylation 
cascade that stimulates the mitogen-activated protein kinase 
(MAPK) and phosphatidylinositide 3-kinase/AKT (PI3K/
AKT) pathways, leading to cell proliferation and cell survival 
(Schönwasser et al. 1998).

Estrogen has been postulated to play a role in the prevention 
of the transformation of melanocytes to melanoma. Activation 
of the G-Protein-Coupled Estrogen Receptor (GPER), a GPCR, 
on melanocytes is predicted to be the mediator of this process 

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is 

properly cited.

© 2024 The Author(s). Pigment Cell & Melanoma Research published by John Wiley & Sons Ltd.
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(Natale et al. 2018; Revankar et al. 2005). In melanocytes, estro-
gen signaling is mediated mostly through GPER which is dis-
tinct from the classical estrogen pathways (Filardo et al. 2002). 
Increased estrogen levels in melanocytes enhance pigmenta-
tion, and differentiation and decrease cell proliferation (Natale 
et  al.  2018). Melanocortin receptor 1 (MC1R) is a GPCR that 
regulates both pigmentation and differentiation in melanocytes. 
MC1R is stimulated upon binding to a class of pituitary peptide 
hormones (melanocortins) including melanocyte-stimulating 
hormone and adrenocorticotropic hormone, which then acti-
vates adenylyl cyclase and upregulates the production of cyclic 
adenosine monophosphate (cAMP) (Abdel-Malek et  al.  1999). 
Elevated levels of cAMP initiate a cascade of activities via activa-
tion of protein kinase A (PKA), this then triggers cAMP response 
element-binding protein (CREB), a transcription factor that pro-
motes the transcription of microphthalmia-associated transcrip-
tion factor (MITF), the master regulator of genes required for 
melanin synthesis (D'Orazio and Fisher 2011). Suggesting that 
GPER is a valid target to upregulate melanocyte differentiation 
and down-regulate melanoma tumor progression.

G-1, a nonsteroid, is a very selective high-affinity agonist of 
GPER (Bologa et al. 2006). G-1 only activates GPER, not classi-
cal estrogen receptors. G-1 has been used to treat multiple mod-
els of cancer including cervical, lung, and prostate cancer (Chan 
et  al.  2010; Kurt, Çelik, and Kelleci  2015; Zhang et  al.  2015). 
When GPER is activated by G-1, there is an increase in the cyto-
kine IL-10 production mediated through the MAPK/ERK path-
way (Brunsing and Prossnitz 2011). Earlier studies demonstrated 
that in the estrogen receptor (ER)-positive (MCF-7) and ER-
negative (SKBr3) breast cancer cell lines, inclusion of G-1 in the 
growth media inhibited cell proliferation and induced cell cycle 
arrest in the G2/M phase (Ribeiro, Santos, and Custódio 2017; 
Weißenborn et  al.  2014). Ridky and co-workers demonstrated 
that systemically delivered G-1 was well-tolerated in melanoma 
xenografts and allografts and also extended the survival of 
tumor-bearing mice. Not only is G-1 effective in vivo in reducing 
tumor progression, but protective effects against the formation 
of new tumors even after secondary challenge using the same 
cell line were observed, suggesting immune memory protection 

against rechallenge (Natale et al. 2018). G-1 is a racemic mix-
ture, and the specific enantiomer responsible for the activity, 
LNS8801, was identified (Natale and Garyantes 2021). LNS8801 
was shown to reduce cell proliferation, cell invasion, and c-Myc 
levels. LNS8801 is currently in Phase 1/2 trial (NCT04130516) 
either alone or with an immune anti-checkpoint inhibitor, pem-
brolizumab, and has demonstrated activity in melanoma and 
other solid tumors (Rodon et al. 2023; Shoushtari 2023). Based 
on these encouraging results we decided to carry out an in vivo 
study using LNS8801 and our melanoma-prone transgenic 
mouse model, TGS.

The TGS model was established by crosses between the original 
transgenic melanoma mouse model, TG-3 (Eddy et al. 2023; Zhu 
et al. 1998), and the hairless model, SKH (Benavides et al. 2009). 
The benefit of using this model is the spontaneous development 
of pigmented lesions that are visible without the fur; further-
more, these pigmented lesions can be tracked using a small ani-
mal imaging system (IVIS) as described (Eddy et al. 2023).

We initiated the in vivo study to investigate the putative thera-
peutic efficacy of LNS8801 in immunocompetent TGS mice in a 
longitudinal study of 32 weeks with or without UV irradiation. 
We only selected heterozygous TGS for the study due to their 
longevity (Eddy et  al.  2023). A total of 48 heterozygous TGS 
mice at 8 weeks old were divided into the following groups with 
equal number of male and female mice in each group: (1) No 
UVB and vehicle (oral gavage, three times a week, 13% DMSO, 
82% sesame oil and 5% 200 proof ethanol), (2) UVB (30 mJ/cm2) 
once a week and vehicle, (oral gavage, three times a week, 13% 
DMSO, 82% sesame oil and 5% 200 proof ethanol), (3) No UVB 
and LNS8801 (oral gavage, three times a week at 1 mg/kg), and 
(4) UVB (30 mJ/cm2) once a week plus LNS8801 (oral gavage, 
three times a week at 1 mg/kg). For the two groups not exposed 
to UVB, IVIS images of the dorsal side of the animal were taken, 
along with an aliquot of blood and measurement of body weights 
every 4 weeks. For the two groups exposed to UVB, the images, 
blood samples, and weight of each mouse were performed every 
2 weeks. Whole blood samples taken were centrifuged and the 
plasma was collected and stored at −80°C for further analyses. 
At 32 weeks from the start of treatment, the study was termi-
nated, and samples were taken of tumors, nearby normal skin, 
lymph nodes, brains, lungs, and livers.

Calculation of tumor burden of each mouse throughout the study 
was described earlier (Eddy et al. 2023). A statistically signifi-
cant increase in tumor burden from as early as 4 weeks after ini-
tiation of the experiment was observed in TGS male mice treated 
with vehicle and UVB (Figure  1A). In contrast, in LNS8801 
treated male TGS, the addition of UVB irradiation did not fur-
ther increase tumor burden (Figure 1A). These results suggest 
that treatment with LNS8801 protected the male mice from 
UVB-induced augmented tumor burden. In contrast, in vehicle-
treated TGS female mice, UVB did not further increase tumor 
burden as observed in male mice (Figure 1B). Furthermore, the 
addition of UVB to LNS8801-treated female mice also exhibited 
significantly lower tumor burden (Figure 1B), similar to the ob-
servation in LNS8801-treated male mice (Figure 1A). LNS8801 
appeared to protect the UVB-enhanced tumor burden in both 
male and female mice (Figure 1A,B). Taken together, these re-
sults confirmed earlier results with G-1, the agonist of GPER. It 

Summary

•	 Experimental animal models have been the gold 
standard to evaluate the efficacy of therapeutic com-
pounds for human diseases; however, there are very 
few models with intact immune systems for longitudi-
nal studies.

•	 For this study, we used a melanoma-prone, immuno-
competent mouse model to assess the consequences of 
treatment with an agonist of G-protein-coupled estro-
gen receptor.

•	 The results highlight the need to compare short-term 
versus long-term in vivo studies with different treat-
ment options for melanoma and other cancers.

•	 The goal of this research is to translate to the clinic 
to provide treatment with enhanced efficacious out-
comes, minimum toxicity and to increase the quality 
of life for melanoma patients.
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appears that the female sex hormone, estrogen, has a protective 
role in melanomagenesis induction via UVB, a well-known en-
vironmental toxicant. Female mice have a much higher basal 
level of estrogen in circulation allowing for increased activation 
of GPER in melanocytes leading to constant protection from ini-
tiation of tumors and tumor progression to melanoma. A second 
explanation could be that the increased exposure of UVB led to 
increased mutations leading to Thymine-Thymine dimers that 
have been shown to increase p53 activity and upregulate the pro-
duction of epidermal melanin (Eller, Yaar, and Gilchrest 1994). 
Both the enhanced activity of the tumor suppressor p53 and 
amplified melanin production will create a protective shielding 
environment for the melanocytes not to be transformed by UVB.

At the end of the study after 32 weeks, H&E histopathology 
was performed with excised liver samples from randomly se-
lected male and female mice from each of the treatment groups. 
Minimal small macrophage aggregates with vesiculate nuclei 
were observed in some mice at the 32-week time point with no 
other significant microscopic observations in all liver tissue sec-
tions, suggesting no noticeable toxicity.

A portion of the tumor and adjacent normal skin without any pig-
mented lesions were collected, respectively, at the termination of 
the study at 32 weeks and subjected to protein lysate preparation 
for western immunoblots to probe for Tyrosinase, MITF, Sox10, 
and c-Myc. Each of the lanes consisted of 3–4 independent skin or 
nevi samples collected, each western was performed at least two 
times, and the values shown are the average of the scans done 
with Image J. A representative image of each western is shown 
below its corresponding quantification (Figure 2). Expression of 
MITF, Sox10, and c-Myc was normalized to Tyrosinase to limit 
to melanocytes. For levels of Tyrosinase, we used α-tubulin for 
normalization. We normalized the levels of protein expression 
for skin (without any pigmented lesions) set at 1 and the data are 
expressed as percent of skin. MITF, a master regulator for mela-
nocytic cell lineage, showed the highest levels at the initiation of 
the study (designated as week 0); the TGS mice were 8 weeks old 
at this point. As the mice aged throughout the experiment, no 
significant alterations in MITF levels were detected regardless 

of if the mice were given LNS8801 (Figure  2A). Similar ob-
servations in Sox10, a transcription factor that participates in 
terminal differentiation and maintenance of melanocytic phe-
notypes, were observed (Figure 2A). It is not surprising that as 
the TGS mice aged, levels of Tyrosinase increased. Tyrosinase 
is a rate-limiting enzyme for melanin production; the elevated 
Tyrosinase levels detected are likely due to the increased mel-
anin production in pigmented lesions (Figure  2A). c-Myc is a 
multifunctional transcription factor that has been implicated in 
various cell proliferation and cell transformation tasks. Earlier, 
Ridky and co-workers showed a reduction in c-Myc protein 
expression in melanocytes in the presence of LNS8801; our re-
sults confirmed the earlier results when comparing Week 32 to 
Week 0 in male mice (Figure 2A). In female TGS mice, similar 
results were seen in MITF and Sox10 as in males (Figure 2B). 
In contrast, Tyrosinase levels did not increase as we observed 
for male mice (Figure 2B). c-Myc levels were also higher but not 
statistically significant in LNS8801-treated mice with or without 
UVB (Figure 2B). None of the protein markers yielded statisti-
cally significant differences between Week 0 and Week 32, UVB 
versus no UVB, or LNS8801 versus vehicle. Lack of significant 
difference may represent a limitation of assessing protein lysates 
derived from heterogenous tissues, despite the normalization of 
each protein maker with corresponding Tyrosinase levels.

Interleukin-10 (IL-10) and interferon-γ (IFN-γ) are immuno-
modulatory cytokines, and they are normally detected in a sub-
population of T-helper and T-regulatory cells. Earlier studies by 
others demonstrated that simultaneous application of IL-10 and 
IFN-γ significantly inhibited the stimulation of CD4+ helper T 
cells by dendritic cells (Hirata et  al.  2009). IL-10 serves many 
key functions, one of which is to aid in the development of mem-
ory CD8+T cells and natural killer cells (Foulds, Rotte, and 
Seder 2006; Lauw et al. 2000). Activation of GPER was shown 
earlier to increase IL-10 levels (Hedrich and Bream 2010). IFN-γ 
is secreted by T helper 1(Th1) cells when they are activated by 
the immune system in response to many stimuli including the 
detection of cancer cells. The secreted IFN-γ then aids in B cell 
differentiation and proliferation (Snapper and Paul  1987). We 
were interested to know if the observed reduced tumor burden 

FIGURE 1    |    Average tumor burden in mice treated with vehicle or LNS8801. (A) Male and (B) female mice were treated three times a week for 
32 weeks with vehicle or LNS8801. UVB exposure was performed once a week at 30 mJ/cm2. A small animal imaging system, IVIS, was used to 
acquire images. Tumor burden was calculated using ImageJ software as described (Eddy et al. 2023). The average tumor burden for each treatment 
group is normalized to its respective week 0. *p ≤ 0.05, NS stands for no significance. Statistical significance was calculated using a one-way ANOVA 
with Bonferroni post hoc analysis.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 weeks 4 weeks 8 weeks 12 weeks 16 weeks 20 weeks 24 weeks 28 weeks 32 weeks

nedrub ro
mut egarevA

Males

No UV Vehicle UV Vehicle No UV Treatment UV Treatment

0              4               8              12            16            20            24             28        32  

A

NS

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 weeks 4 weeks 8 weeks 12 weeks 16 weeks 20 weeks 24 weeks 28 weeks 32 weeks

Av
er

ag
e 

tu
m

or
 b

ur
de

n

Females

No UV Vehicle UV Vehicle No UV Treatment UV Treatment

NS

B

*

*

0              4               8             12            16             20            24            28        32          (weeks) (weeks)

 1755148x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/pcm

r.13197, W
iley O

nline L
ibrary on [02/10/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



4 of 7 Pigment Cell & Melanoma Research, 2024

FIGURE 2    |    Protein expression levels of MITF, Sox10, Tyrosinase, and c-Myc in vehicle or LNS8801 treated TGS mice. Representative westerns of 
(A) male and (B) female mice that were treated with vehicle or LNS8801 for 32 weeks. UVB exposure was once a week at 30 mJ/cm2. S = normal skin, 
N = raised nevi, Veh = vehicle, LNS = LNS8801. At 32 weeks, samples of raised nevi or nearby normal skin without nevi were taken and processed 
for protein lysate. The protein lysates were then used in western immunoblots and probed for MITF, Sox10, Tyrosinase, and c-Myc. Protein band 
intensities were scanned and quantified with ImageJ; average of at least two independent westerns was calculated. MITF, Sox10, and c-Myc levels 
were all normalized to Tyrosinase to limit to melanocytes. Tyrosinase was normalized to tubulin. Statistical significance was calculated using a one-
way ANOVA with Bonferroni post hoc analysis; no significance was observed.
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by LNS8801 may be mediated through one or both IL-10 and 
IFN-γ. We took advantage of the IFN-γ and IL-10-ELISA kits 
designed to measure the level of circulating IFN-γ or IL-10 in 
the collected blood plasma samples across treatment groups 
throughout the study.

For IL-10, the addition of UVB exposure increased IL-10 levels 
in TGS male mice regardless of whether the mice were treated 
with vehicle or LNS8801 but was not statistically significant 
(Figure 3A). In contrast, TGS female mice displayed a signifi-
cant decrease in IL-10 when treated with LNS8801 without UVB 
(Figure 3A). These results suggest that the protective properties 
by LNS8801 in tumor burden observed in UVB-exposed TGS fe-
male mice likely were not mediated by IL-10. For IFN-γ, elevated 
IFN-γ levels were detected in male TGS in the UVB-irradiated 
group also when LNS8801was added. In the absence of UVB, 
a reduction in IFN-γ was seen in LNS8801 treated male mice 
(Figure 3B). For TGS female mice, raised IFN-γ levels were only 
detected in UVB plus LNS8801-treated mice (Figure  3B), sug-
gesting that increased IFN-γ may participate in the protective 
activity in tumor burden from LNS8801 in the presence of UVB.

2   |   Summary

The current study took advantage of our melanoma-prone TGS 
mice with an intact immune system to assess the long-term 
therapeutic and/or protective effect of LNS8801, the active en-
antiomer of G-1. Blood plasma, tumors, and nearby normal skin 
samples were taken at various timepoints for analyses in protein 
markers and two cytokines. Preclinical therapeutic testing is 
critical and essential in drug development. Many of these stud-
ies rely on the in vivo results from the gold standards of allograft 
and/or xenograft studies. These graft studies are short-term, in 
some cases are performed in immunocompromised mice, and 
the consequences are frequent failure in therapeutic responses 
of patients. TGS mice with an intact immune system exhibit 
onset and progression of melanoma similar as described for 
human melanoma patients (Eddy et al. 2023).

Activation of GPER via LNS8801 was shown to decrease 
cell proliferation and increase cell differentiation in melano-
cytes, similar to activation of GPER via the hormone estrogen. 

Previous research has shown that individuals with higher levels 
of estrogen have a better prognosis when diagnosed with mel-
anoma than those with lower levels (White 1959). It is known 
that LNS8801 does not activate the classical estrogen receptors 
thus it could be a viable option for the treatment of melanoma in 
both males and females without any of the side effects associated 
with the activation of the classical estrogen receptors. Our re-
sults showed that in both male and female TGS mice, treatment 
with LNS8801 led to a reduction in UVB-induced increase in 
tumor burden.

Earlier studies suggest that activation of GPER promotes cell 
differentiation as evident by the upregulated melanocytic differ-
entiation markers. Our assessment of differentiation markers by 
western immunoblots of tissue protein lysates did not show sta-
tistically significant changes in melanocytic specific markers, 
MITF and Sox10. c-Myc, a transcription marker that antagonizes 
differentiation and promotes cell proliferation and survival, 
showed contrasting results in females as reported earlier, while 
in males a reduction in c-Myc levels was detected. Evaluation 
of two immunomodulatory cytokines, IL-10 and IFN-γ, showed 
that in TGS male mice UVB did not appear to be the critical 
player responsible for the IL-10 levels. However, elevated cir-
culating IFN-γ levels were detected in both UVB-exposed and 
LNS8801-treated male and female TGS mice. It is possible fe-
males may have a more favorable prognosis than males for 
treatment with LNS8801 since they have higher basal levels of 
estrogen in their body so they would already have higher GPER 
activation before treatment with LNS8801. Further experiments 
will need to be performed to see if any other anti-tumorigenic 
and inflammatory cytokines are altered due to treatment with 
LNS8801, along with examination of other melanocyte differ-
entiation markers to detect any potential protective effect in 
our mouse model. Additional studies are needed to determine 
how UVB irradiation and sex are modulating the activities of 
LNS8801 and what the mechanisms may be.
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