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ABSTRACT The quality and richness of feature maps extracted by convolution neural networks (CNNs)
and vision Transformers (ViTs) directly relate to the robust model performance. In medical computer vision,
these information-rich features are crucial for detecting rare cases within large datasets. This work presents
the ‘‘Scopeformer,’’ a novel multi-CNN-ViT model for intracranial hemorrhage classification in computed
tomography (CT) images. The Scopeformer architecture is scalable and modular, which allows utilizing
various CNN architectures as the backbone with diversified output features and pre-training strategies.
We propose effective feature projection methods to reduce redundancies among CNN-generated features
and to control the input size of ViTs. Extensive experiments with various Scopeformer models show that the
model performance is proportional to the number of convolutional blocks employed in the feature extractor.
Using multiple strategies, including diversifying the pre-training paradigms for CNNs, different pre-training
datasets, and style transfer techniques, we demonstrate an overall improvement in the model performance at
various computational budgets. Later, we propose smaller compute-efficient Scopeformer versionswith three
different types of input and output ViT configurations. Efficient Scopeformers use four different pre-trained
CNN architectures as feature extractors to increase feature richness. Our best Efficient Scopeformer model
achieved an accuracy of 96.94% and a weighted logarithmic loss of 0.083 with an eight times reduction
in the number of trainable parameters compared to the base Scopeformer. Another version of the Efficient
Scopeformer model further reduced the parameter space by almost 17 times with negligible performance
reduction. In summary, our work showed that the hybrid architectures consisting of CNNs and ViTs might
provide the desired feature richness for developing accurate medical computer vision models.

INDEX TERMS Computed tomography (CT), intracranial hemorrhage, medical imaging, convolutional
neural networks, vision transformers, feature maps.

I. INTRODUCTION
Stroke is a general term that describes the disruption of blood
flow to the brain, resulting in the loss of one or more brain
functions. It is a debilitating and potentially fatal medical
condition [1], affecting millions of people worldwide [45],
[46]. According to theWorldHealth Organization [44], stroke
is the second leading cause of death globally and the third
leading cause of disability. In the United States alone, over

The associate editor coordinating the review of this manuscript and

approving it for publication was Massimo Cafaro .

795,000 people suffer from strokes each year, with amortality
rate of approximately 15% [44]. There are two main types
of stroke: ischemic stroke and hemorrhagic stroke. Ischemic
stroke is caused by a blockage or obstruction in a blood
vessel supplying the brain, leading to a lack of blood flow and
oxygen to the affected area. Hemorrhagic stroke, on the other
hand, occurs when there is bleeding in the brain, typically
from a ruptured blood vessel or an aneurysm.

Early detection and accurate classification of the type
of intracranial hemorrhages using head computed tomogra-
phy (CT) scans are crucial for patient prognosis and treatment
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[47], [48], [49]. Currently, the diagnosis of intracranial
hemorrhages relies heavily on the visual interpretation
of head CT scans by radiologists and neurologists. This
process can be time-consuming and subjective, leading to
inconsistencies in the diagnosis and treatment of patients.
Diagnosis methods require qualified physicians to manually
review and detect any indications of bleeding inside the
cranium or the existence of a lesion within the brain tissues.
This process may delay critical interventions, which can lead
to seriousmedical complications and extensive brain damage,
particularly within the first 24 hours [1], [2]. Moreover, the
need for expert medical professionals canmake it challenging
to diagnose intracranial hemorrhages in rural or remote
areas, where access to specialized medical professionals and
advanced imaging technologies is limited. This highlights
the importance of developing alternative methods to support
diagnosis in these underserved areas, which can mitigate the
risks associated with delayed or incorrect diagnoses.

In the past, several methods have been employed to
diagnose intracranial hemorrhages, with varying degrees of
success. Traditional approaches include a manual inspection
of CT scans by expert radiologists, using standardized
protocols and guidelines to identify hemorrhages [67], [68].
While these methods are effective, they can be labor-
intensive and depend significantly on the expertise and
availability of medical professionals. Recently, computer-
aided diagnosis (CAD) systems have been developed to
support radiologists in detecting intracranial hemorrhages.
These systems leverage image processing techniques like
segmentation, feature extraction, and pattern recognition to
automatically identify and classify hemorrhages in head
CT scans [69], [70]. While these approaches have yielded
encouraging results in enhancing the accuracy and efficiency
of intracranial hemorrhage diagnosis, they still necessitate
substantial involvement from expert radiologists to validate
the findings and make final diagnostic decisions. Despite
these advancements, there remains an urgent need for more
dependable, robust, and accessible diagnostic tools to address
the challenges faced in situations where specialized medical
professionals and advanced imaging technologies are scarce.
The development of alternative diagnostic methods to support
these underserved areas is crucial for minimizing the risks
associated with delayed or incorrect diagnoses.

Machine learning algorithms trained to autonomously
identify and classify brain hemorrhages can reduce the detec-
tion time, allowing quicker and more effective treatment.
These emerging computer vision algorithms offer faster and
more robust models that can triage patients and help expert
physicians and radiologist efficiently use their time [3], [4],
[5]. Therefore, developing accurate and efficient machine
learning models for intracranial hemorrhage detection is
crucial to improving patient outcomes and reducing the
burden on the healthcare system.

In recent years, Convolutional Neural Networks (CNNs)
and Vision Transformers (ViTs) have received significant
attention in the field of computer vision for their ability to
process and analyze large amounts of visual data. CNNs

utilize convolution operations and pooling layers to extract
discriminative and meaningful features from an image. These
features are then used to classify images or recognize objects.
On the other hand, ViTs incorporate self-attention mech-
anisms, borrowed from transformers in Natural Language
Processing (NLP), to dynamically weigh the importance
of each part of an image when making predictions. This
approach has proven effective in image classification and
object recognition tasks, demonstrating the potential of ViTs
to solve more complex computer vision problems.

Our proposed model combines multiple CNNs and a
multi-encoder ViT model to improve the accuracy and
efficiency of machine learning-based detection of intracranial
hemorrhages. The model’s hybrid architecture aims to inves-
tigate the dynamics of merging multiple ImageNet-pretrained
convolutional neural networks with a vision transformer
model. By doing so, we aim to develop a more generalizable
model that can reinforce intracranial hemorrhage detection
through the inclusion of multiple pretraining techniques and
datasets from varying large distributions relevant to the task
of hemorrhage detection.

Moreover, the inclusion of self-attention mechanisms
borrowed from transformers allows for the incorporation of
other medical imaging tasks, which facilitates the integration
of these models in larger treatment planning systems [50].
Our work, therefore, aims to develop a more scalable and
efficient machine learning model that can encompass large
datasets and extract generalizable patterns across multiple
applications, enabling the integration of these models into
larger clinical settings.

Overall, our research aims to provide an accurate and
efficient method for the early detection and diagnosis
of intracranial hemorrhages, ultimately improving patient
outcomes. By developing a more generalizable machine
learning model, our work also has the potential to impact
other medical imaging tasks, facilitating the development of
more scalable and efficient models for clinical applications.

The model, which we called Scopeformer, accommodates
(n) numbers of the CNNs dedicated to the extraction features,
and several stacked ViT encoders dedicated to differentially
extracting weights from the global feature map. These
weights represent inter-feature correlations learned by the
model as relevant for the hemorrhage classification problem.
The results show that the classification accuracy is propor-
tional to the number of CNNs used to extract the features
in the Scopeformer training, leading to higher computational
requirements. In this work, we present the Scopeformer
model and investigate selective feature engineering methods
to generate richer content for classification. We also address
the large trainable parameter space issue presented by
increasing the number of CNNs for feature extraction.
We employ dimensionality reduction techniques on the
convolution feature space to control the attention complexity
within the ViT encoders. Our experiments resulted in building
a scalable and efficient hybrid multi-convolution-based ViT
model (n-CNN-ViT) to solve the hemorrhage detection
problem. Our contributions can be summarized as:
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• Proposed a hybrid architecture called Scopeformer,
combining multiple CNNs and a multi-encoder ViT
model for intracranial hemorrhage detection in CT
images.

• Our proposed model leverages the ImageNet-pretrained
off-the-shelf CNNs to generate high-level features for
the vision transformer presented as tokens/patches.

• Results showed that the classification accuracy was
proportional to the number of CNNs used for feature
extraction, leading to higher computational require-
ments.

• Addressed the issue of large trainable parameter space
by employing dimensionality reduction techniques on
the convolution feature space to control the attention
complexity within the ViT encoders.

• Developed a scalable and efficient hybrid multi-
convolution-based ViT model for the hemorrhage
detection problem, resulting in improved classification
accuracy.

II. BACKGROUND AND LITERATURE REVIEW
A. RSNA INTRACRANIAL HEMORRHAGE DETECTION
In 2019, the Radiological Society of North America (RSNA)
provided a large number of brain CT scans of healthy
participants and patients with internal cerebral hemorrhage
of various types. RSNA held a machine learning challenge
to foster the development of autonomous algorithms for
multi-class hemorrhage classification [6]. The computerized
multi-label classifiers were designed to determine whether
there was cerebral bleeding in each 2-dimensional (2D) slice
of the input CT image and to give a probability vector with
six components relative to classification targets.

B. CONVOLUTION NEURAL NETWORKS (CNNs)
Until recently, in computer vision applications, convolutional
neural networks (CNNs) have been the de facto models
for extracting high-resolution features for downstream tasks,
e.g., classification [7], [8], [9], [10], [11], [12]. The official
top-ranking solutions for the RSNA challenge, posted on the
Kaggle online community platform, employed multi-stage
classification models incorporating convolution-based fea-
ture extraction stage [22]. Different stacking and arrange-
ments of convolutional layers yield different features.
These features are subject to implementation variations of
various configurations, such as the architecture structure,
the parameters governing the visual information flow, and
the depth of the model [26], [65], [66]. Several off-the-
shelf architectures were proposed based on broadening the
perceptual field, improving the feature extraction efficacy,
and reducing the trainable parameter space for faster and effi-
cient computation [18], [30], [31], [32], [33]. Increasing the
depth of the architecture better approximates the target and
provides improved feature representations due to the higher
non-linearity and the improved receptive field. Enhancements
were based on including and optimizing the design of
the convolution layers, activation functions, loss functions,
regularization methods, and optimization processes [27].

C. VISION TRANSFORMERS (ViTs)
Vision Transformers (ViTs) are increasingly being employed
in a wide range of computer vision identification appli-
cations [35], [36] and have proven successful in a mul-
titude of vision tasks such as the ImageNet classification
challenge [37]. The basic working component of ViTs
is the Transformer block [13], originally introduced by
Vaswani et al. [14] in the realm of the Natural language
process (NLP). The successful implementation of the Trans-
former model [14] applied to images, known as vision
Transformer or ViT, was a milestone in the computer
vision field [15]. Various successful implementations of the
ViT architecture in the medical field were proposed that
outperformed the standard convolution-based models by a
largemargin [16]. ViTmodel [15] divides a natural image into
equal 3-channel square patches. These patches are flattened
and represent uni-dimensional tokens. Each patch represents
local semantic information of the raw image, and the model
learns to extract patterns from their correlations. Finer
patches result in the extraction of higher local correlations
and improved semantics due to the large quadratic complexity
of the model. However, this complexity results in expensive
computations and large data requirements. It was shown that
such models only outperform standard CNNs in high data
regimes in either pre-training or training [15].

D. CONVOLUTION NEURAL NETWORKS AGAINST VISION
TRANSFORMERS
Convolutional Neural Networks (CNNs) and Vision Trans-
formers (ViT) are two models for image recognition
in computer vision, with different approaches to feature
extraction. CNNs use convolutional layers to learn local
patterns, resulting in a pyramid-like structure [23], while ViT
uses self-attention mechanisms to process global patterns,
resulting in a columnar structure [24]. CNNs handle image
scale through pooling layers and are faster andmorememory-
efficient, while ViT uses a linear projection followed by
self-attention to learn a fixed-size representation of the image,
making it more effective in learning global patterns and
flexible in terms of input size.

While CNNs [30], [39] integrate local information derived
from input images by combining multiple convolutional
operations, ViTs [15] learn patterns from spatial information
and non-local dependencies exploiting the encoder block’s
multi-head self-attention (MHSA) function [14]. These
patterns allow ViT models to gain increasingly rich global
context without manually constructing layer-wise local
characteristics. Applying attention to all pixels in an image
increases the impact of global feature correlations, which
allows the model to derive more relevant hidden patterns.
As shown in [35], stacking multiple ViT encoders tends to
increase the model performance, and with the appropriate
training methods, a model constructed of 12 blocks of ViT
encoders outperformed a ResNet model consisting of more
than 30 bottleneck convolutional blocks on the ImageNet
classification task [35]. However, it is shown that increasing
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the depth of ViTs via stacking Transformer blocks does
not necessarily increase model performance [19]. In fact,
ViT model performance plateaus and starts declining beyond
certain numbers of stacked encoders [19]. Zhou et al. [19]
identified an attention collapse issue and proposed a new
mechanism, termed Re-attention, that accounts for correla-
tions among the attention multi-heads. The proposed model
entitled DeepViT presented delayed plateauing behavior that
enables more block stacking to achieve higher performance.

E. ATTENTION-BASED CONVOLUTION NEURAL
NETWORKS
In recent years, there has been a growing interest in combin-
ing the strengths of convolutional neural networks (CNNs)
and self-attention mechanisms to improve various computer
vision tasks. The idea of merging these two powerful
techniques stems from the desire to leverage the local feature
extraction capabilities of CNNs and the long-range contex-
tual understanding provided by self-attention mechanisms.
Many studies have explored different ways to integrate
self-attention into CNN architectures for tasks such as
image classification [54], object detection [55], [56], video
processing [57], [58], unsupervised object discovery [59],
and unified text-vision tasks [60], [61]. Notably, this idea has
also been applied in the field of medical AI. For instance, [62]
proposed an attention-gated CNN that effectively integrated
attention mechanisms for better medical image segmentation.
Similarly, [63] developed a deep learning model combining
CNNs and self-attention for more accurate and interpretable
Alzheimer’s disease diagnosis. In the pursuit of developing
robust models with CNNs and the Vision Transformer (ViT),
it becomes crucial to recognize the importance of integrating
self-attention mechanisms into CNNs. The combination of
these techniques not only enhances the potential benefits of
the approach but also contributes to the evolving landscape
of computer vision and medical AI applications. The existing
studies, which demonstrate the successful fusion of CNN
features and self-attention mechanisms, provide valuable
insights and a strong foundation for future research in this
area.

F. SCOPEFORMER: N-CNN-ViT HYBRID ARCHITECTURE
In our previous publications [17], [64], we introduced the
Scopeformer, a hybrid architecture combining the strengths
of convolutional neural networks (CNNs) and a vision trans-
former. This architecture was designed to extract high-level
features from various inputs. The Scopeformer takes advan-
tage of the ability of CNNs to capture local patterns in
data and the ability of the vision transformer to capture
global dependencies and relationships between different parts
of the input. Combining these two architectures results
in an effective and efficient model capable of performing
complex feature extraction tasks. The introduction of the
Scopeformer represents a significant step forward in the
field and opens up new avenues for future research and
development.

G. STATE-OF-THE-ART TECHNIQUES FOR RSNA
HEMORRHAGE DETECTION
Several state-of-the-art solutions have been proposed for
2D-modeling on the RSNAdataset.Wang et al. [42] achieved
an average accuracy of 98.3% using an ensemble approach.
Other studies have proposed hybrid convolution models
that incorporate ensemble techniques and gradient boosting
methods. For example, Asif et al. [43] developed an architec-
ture namedRes-Inc-LGBM,which integrates ResNet101-V2,
Inception-V4, and LGBM models, resulting in an average
accuracy of 97.7%. Burduja et al. [7] reported a 96% accu-
racy on their 2D evaluation of the ResNeXt-101 32×8d and
LSTM-based model. Their method combines a convolutional
neural network with a long short-term memory network to
capture both spatial features and their sequential correlations
from the input data. It is worth noting that these state-of-
the-art techniques mainly rely on multi-stage classification
and model ensemble techniques. These methods are widely
employed in similar competitions to enhance classification
performance. However, these approaches do not leverage
self-attention mechanisms, which have been shown to be
effective in capturing global dependencies and relationships
between different parts of the input in Vision Transform-
ers (ViTs). To address this limitation, our proposed hybrid
architecture, the Scopeformer, combines the strengths of
convolutional neural networks (CNNs) and Vision Trans-
formers (ViTs) to capture both local and global features. The
Scopeformer has demonstrated comparable performances
compared to existing state-of-the-art techniques on the RSNA
dataset, achieving an average accuracy of 98.04%.

III. MATERIALS AND METHODS
This paper presents the Scopeformer, a hybrid multi-CNN
vision transformer model, and its improved version, the
Efficient Scopeformer. The model processes pseudo-RGB
CT scan images through CNNs and a vision transformer to
extract high-level features for classification. Our focus is to
improve performance and efficiency through modifications
to the architecture. The results of these modifications are
analyzed and presented in this paper.

A. SCOPEFORMER
We present our hybrid n-CNN-ViT model in Figure 1.
The model is composed of n number of CNN models
stacked to build the feature-extractor backbone. We refer
to the n-CNN-ViT model as ‘‘Scopeformer’’, derived from
the ‘‘Transformer’’ (-former) and the word ‘‘Scope-’’ for
the selective feature extraction backbone generated from
the convolution blocks with deep receptive fields. Notably,
Scopeformer leverages multiple pretrained CNNs to exploit
their inherent inductive biases, while significantly reducing
the input size for the ViT through concatenation of CNN
features.

The Scopeformer model brings significant advancement in
ViTs and CNNs. The main difference between a Scopeformer
model and ViT resides in employing high-level features
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FIGURE 1. A schematic layout of the Scopeformer architecture is presented. The proposed model is composed of four main modules:
(1) Scopeformer Backbone, (2) patch extraction, (3) vision Transformer (ViT) encoder, and (4) classification head. A single input image is fed to
several CNN models to extract various features and construct feature maps. These feature maps are processed by the patch extraction module and
vectorized. The vectors form the input to the Transformer encoder, and the model output is taken from the classification module.

with more semantic information as input to the Transformer
encoder, as opposed to the originally proposed ViT model,
which inputs raw natural images in the form of small patches.
The Scopeformer model takes global convolutional feature
maps in the form of smaller but deeper patch sizes. The ViT
patch extraction method divides a natural image into patches
along the height and width, then flattens every patch and
joins all channels into a single 1-D token. Similarly, we pixel-
wise divide the feature map along the height and width of the
features into p × p patches, where p is the feature-patch size
(with p = 1 for all the experiments in this work).

Although we did not specifically test the model without
ViT encoders, removing the ViT pipeline reduces the problem
to standard settings where a set of CNNs are used to
detect hemorrhage [42], [43]. Our research focused on
exploring the potential benefits of combining the strengths
of both CNN and ViT architectures in a single model,
particularly leveraging the self-attention mechanisms of the
ViT encoders to capture inter-feature correlations relevant for
the hemorrhage classification problem.

The input to the model consists of a tensor with a
dimension of H × W × C , where H represents the height,
W represents the width, and C is the number of concatenated
channels derived from the RSNA DICOM files. The model
executes a concurrent forward pass of the input images
through different CNN architectures and stores the output
features f . These features are concatenated along the channel
axis. The resultant global feature map has a dimension of h
× w× c, where h represents the features height, w represents
the features width, and c is the total number of features with
c = n × f .

FIGURE 2. Style transfer method applied on ImageNet dataset.
(a) Content image, (b) Style image, and (c) Output image.

The first Scopeformer architecture uses Xception CNNs
[18] and several ViT layers. The Xception model comprises
several Inception modules composed of depth-wise and
point-wise convolutions. In our Scopeformer model, we stack
(n) differently pre-trained Xception models [18] in the
feature extraction backbone and freeze updates on their
weights during training. We use the last inception layers
embedded within the Xception models as feature generators.
The ImageNet pre-trainedXceptionCNNs, present high-level
features to the ViT block. To this end, we consider that the
primary role of the ViT block is to extract correlations from
depth-wise patches. The global feature map can be generated
using one or more Xception blocks stacked in the same
Scopeformer as depicted in Fig. 1. Our initial experiments
consider stacking raw features from CNN blocks without any
further processing.

In our formulation, we tend to diversify the pre-training
methods of every Xception CNN. This allows for generating
different features specific to each architecture. In the first
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phase of model training, we load the ImageNet pre-trained
weights in all CNNs using Keras API [40]. In the second
phase of training, Xception CNNs are trained to perform
different classification tasks, including the RSNA hemor-
rhage dataset to perform classification. We used hard data
augmentation on one of the CNNs and soft data augmentation
on the others. We applied style transfer [38] on the ImageNet
dataset to induce a grayscale brain-like image shape bias
as depicted in Fig. 2. The output dataset was used to
pre-train the third CNN. In our experiments, we tested
several combinations of the pre-trained CNNs within the
Scopeformer architecture.

B. EFFICIENT SCOPEFORMER
After extensively testing the Scopeformer model, we for-
mulated and included several innovations in the feature
extractor CNNs and the ViT blocks. We define four
modules as presented in Fig. 1. The first module is the
Scopeformer Backbone and represents the stack of multiple
CNNs contributing to the global feature map. The second
module is designed for patch extraction (from the CNN
features) to generate ViT tokens. The third module consists
of the ViT pipeline. Finally, the fourth module represents
the classification head. We discuss these modules in the
following sections.

1) MODULE 1: SCOPEFORMER BACKBONE
Efficient Scopeformer uses a variety of CNNs to build
the feature extraction block. The backbone CNNs include
ImageNet-pre-trained ResNet 152 V2 [30], EfficientNet
B5 [31], DenseNet 201 [32], and Xception [18]. The features
generated by each CNN are concatenated along the channel
axis to form a global feature map. However, constructing
such a feature map requires that the individual feature maps
generated by each CNN have identical height and width.
We propose augmenting each CNN with a single trainable
1 × 1 convolutional layer that projects the features to an
appropriate space. The input to the Efficient Scopeformer
consists of a tensor with a dimension of H × W × 3, where
H represents the height, W represents the width, and 3 is
the number of channels. The image is concurrently fed to
four CNNs to generate high-level feature maps. The channel
dimension of all four feature maps will be reduced using
1 × 1 convolution layer to 8 × 8 ×

d
4 , where d is the size

of the global feature map.

2) MODULE 2: PATCH EXTRACTION
The input dimension of the second module depends on the
size of the global feature map set by the first module. In our
experiments, the resultant global feature map is a 3D tensor
with a shape of 8 × 8 × d . The patch extraction module
splits the features across the height and width channel-wise
and extracts N =

8×8
p2

d-dimensional vectors. We set the
patch size to 1 × 1 and get N = 64 tokens representing
one local pixel position of features across all the d features.
The dimension d is controlled by the projection method used

FIGURE 3. ViT Scopeformer configurations. (Left) Baseline Scopeformer
Configuration: The first configuration is a ViT block with an input of
vectorized patches extracted from the CNNs features. (Center) Deep
Scopeformer TR Configuration: The second configuration introduces a
transpose layer to transform the channel-wise patches into feature-wise
patches. (Right) Efficient Scopeformer Configuration: The third
configuration dismisses the token class and uses all the feature tokens as
input. The output of the third block will be transposed to retrieve back
the dimension of the CNN features, which we feed to the classification
module.

in the previous module and represents a bottleneck of the
architecture. Every patch contains semantic information on
the local pixel position across all the generated features from
the four CNNs. The resultant sequence of flattened patches
Xp ∈ R64×d is then used as the input set for the ViT block.

3) MODULE 3: SCOPEFORMER ViT
We evaluated three different ViT configurations for the
proposed architecture as depicted in Figure 3. These configu-
rations include (1) Deep Scopeformer, (2) deep Scopeformer
TR (Transpose), and (3) Efficient Scopeformer.

a: BASELINE SCOPEFORMER CONFIGURATION
In this configuration, we feed a set of vectors generated by
the patch extraction layer to ViT encoders. We used trainable
position encoding vectors coupled with vectorized patches
and a trainable class (CLS) token. The dimension of the input
to the ViT encoder block is Y ∈ RN×d+1. We used two
self-attention variants. The first one is referred to as multi-
head self-attention (MHSA) [15] and the second variant as
the multi-head re-attention (MHRA) [19]. The key difference
resides in the introduction of a trainable transformation
matrix. These variants are given by:

MHSA(Q,K ,V ) = Softmax
(
QKT
√
dk

)
V , (1)

MHRA(Q,K ,V ) = Norm
(
MT

(
Softmax

(
QKT
√
dk

)))
V ,

(2)

where M ∈ Rh×h is a learnable transformation matrix, and h
is the number of self-attention heads.

b: DEEP SCOPEFORMER TR CONFIGURATION
The second Scopeformer ViT configuration applies a trans-
pose operation to the set of vectors produced by the patch
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extraction layer. The output of the transpose layer is summed
up with the position-encoded vectors and concatenated with
the CLS token. The dimension of the resultant set of vectors
is YT ∈ Rd×N+1. We used only the MHRA self-attention
variant (Eq. 2) in our experiments.

c: EFFICIENT SCOPEFORMER CONFIGURATION
The third Scopeformer module discards the CLS notion
used in previous configurations. In these settings, we use
all the features generated by ViT encoders for classification.
As such, the dimension of the input and output of ViT
encoders remain identical and equal to YT ∈ Rd×N . We use
a Transpose and Reshape layer at the ViT output to get
the appropriate dimension for the feature map. We use the
MHRA self-attention variant to compute self-attention.

4) MODULE 4: CLASSIFICATION MODULE
The classification module in baseline and the deep Scope-
former TR configurations receives a single CLS token. The
output of this token is turned into a prediction using a
multi-layer perceptron (MLP) with a sigmoid activation func-
tion and a single hidden layer. In the efficient Scopeformer
configuration, the classification module receives a set of
reshaped features xt ∈ R8×8×d . The classification module
applies a 2D average pooling layer, followed by a flattened
layer. Finally, the class inference is made via a dense layer
with a sigmoid activation function.

C. DATASET
The RSNA dataset was collected by Adam et al. [6] from
multiple scanner types used in different institutions world-
wide. The dataset is considered the current largest dataset
publicly available, aimed to capture complex real-world
details of the hemorrhage subtypes. The dataset was publicly
released in the 2019 Intracranial Hemorrhage (ICH) detection
challenge hosted by the Kaggle platform. The dataset con-
tains 870,301 annotated 16-bit grayscale computer tomogra-
phy (CT) scans saved in the DICOM format, annotated with
five types of hemorrhage. Trained physicians categorized
each CT slice with one or more types of a brain hemorrhage.
Five different forms of hemorrhages are to be identified
in this competition, with an additional class representing
the presence of any hemorrhage type in the provided
slice. These classes were labeled as Epidural hemorrhage
(EDH), Intraparenchymal hemorrhage (IPH), Intraventricular
hemorrhage (IVH), subarachnoid hemorrhage (SAH), and
Subdural hemorrhage (SDH).

D. PRE-PROCESSING
In this study, we utilized the standardized Hounsfield unit
(HU) windowing technique to enhance the contrast of the CT
scans and isolate regions of interest. Individual images consist
of pixels that have a range of 0 to 216 with a resolution of
2562, with HU values indicative of the density of the scanned
matter [7], [21]. To ensure standardization of the HU ranges
across the dataset, we used the Hounsfield ranges provided

FIGURE 4. Hounsfield unit CT slice conversion and the corresponding
stacked 3-channel image.

TABLE 1. Various design configurations of Scopeformer -
hyperparameters and learnable parameters.

in the metadata of the RSNA CT scan DICOM files during
registration of the scans [25].
In our pipeline, we used three HU windows as channels

in the input of the Scopeformer model, as depicted in
Fig. 4. Specifically, we applied brain windowing with HU
values ranging between 40 and 80, subdural windowing with
HU values ranging between 80 and 200, and soft tissue
windowing with HU values ranging between 40 and 380 [7].
These windowing techniques have been shown to be effective
in enhancing the visualization of intracranial hemorrhages in
CT scans [51], [52], [53].

To further standardize the input images, we rescaled the
HU values between the minimum and maximum values of
the respective HU window. This rescaling step ensures that
the HU values are normalized and consistent across the
input images, facilitating the training of the machine learning
model.
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E. DESIGN CONFIGURATIONS AND EXPERIMENTS
Details about the various Scopeformer hyperparameter
configurations and architectures are presented in Table 1.
We present the different proposed Scopeformer variations
and details about the number of convolution models used
in the feature extraction backbone, the number of ViT
layers, the global feature map size, the MLP dimension
and the number of heads in each ViT block, and the
total number of trainable parameters. We compare our
Efficient Scopeformer implementation to our initial model
implementation and propose lower trainable parameter space
given the configuration hyperparameters. Our experiments
comprise four main parts.

In the first set of experiments, we evaluate the size effect
of various variants of Scopeformer on the classification
accuracy, where four variants are evaluated; small (S), base
(B), medium (M), and large (L). We keep the number of ViT
layers fixed (equals 8) and increase the complexity of the
model by configuring theMLP size residing in the ViT blocks
for S, B, and M variants and increasing the feature size for
the L variant. The number of trainable parameters drastically
increases from the smallest (S) to the largest (L) variants.

In the second set of experiments, we investigate the
effect of the number of ViT encoder blocks on the model
performance. Based on preliminary results conducted in
the first set of experiments, we conduct our ablation study
on the large Scopeformer variant (L) with a feature size
of 1024 and an MLP dimension of 4096. We consider
three experiments where we gradually stack in an end-
to-end fashion 4, 8, and 16 ViT encoders, forming three
models named Scopeformer (L)/4, Scopeformer (L)/8, and
Scopeformer (L)/16, respectively. Given the largest model
parameters reside within the ViT architecture, the total
number of trainable parameters is linearly scaled to the
number of ViT blocks we use.

The third set of experiments examines the transition from
the originally proposed ViT model [15] to a different version
called DeepViT [19].We test this configuration on the highest
performing model from the previous two sets of experiments;
Scopeformer (L)/8 with a global feature map size of 1024,
8 layers of ViT encoders, and an MLP dimension of 4096.
The model version, entitled Deep Scopeformer (L)/8, has a
slightly higher number of trainable parameters.

The final experiment introduces three different ViT
configurations to our Scopeformer architecture as depicted
in Figure 6. We add these configurations to the highest-
performing model from the previous three parts of the
study; Deep Scopeformer (L)/8 with a global feature map
size of 1024, 8 layers of ViT encoders, and an MLP
dimension of 4096. We introduce and compare a set of three
Scopeformer configurations, as presented in section 2.2.3;
Baseline Scopeformer configuration, Deep Scopeformer-TR
configuration, and Efficient Scopeformer configuration.

F. PRE-TRAINING EFFICIENT SCOPEFORMER
In all the experiments, we initially pre-trained the Scope-
former model using the ImageNet-1k dataset [20]. Later,

we train all models using the RSNA dataset [6]. In the
first module (convolutional backbone), we freeze ≈ 70%
of the layer weights in each CNN and keep top ≈ 30%
trainable along with the newly introduced 1× 1 convolution
layer. In our last experiment using the Efficient Scopeformer
model, we pre-trained the backbone neural network on the
RSNA dataset for hemorrhage classification for 150 epochs
on top of the defaulted pre-training on ImageNet-1k. In this
experiment, denoted as Efficient Scopeformer (p), we freeze
weights of the feature extraction block during training.

G. THE LOSS FUNCTION
Following guidelines from the RSNA Intracranial Haem-
orrhage Challenge (ICH), we adopted a weighted version
of the multi-label logarithmic loss function for our model
training. The weighting was introduced to amplify the
importance of classifying the first class representing all types
of hemorrhages, with a coefficient of 2, at the expense of
the rest of the classes, which have coefficients of 1. The
evaluation of the loss value with respect to a single instance
represents the weighted average over all the binary losses
computed on each class individually. The ICH represents a
multi-label classification problem, i.e., the input image can be
classified into multiple classes, using binary labeling for each
class to indicate its presence or absence. In our formulation,
we applied multi-label hot encoding on the dataset to assign a
binary value on each class for every CT slice. Themulti-label
logarithmic loss function is defined as follows:

Lmulti-BCE (y, ỹ)

= −

6∑
n=1

αn(yn log ỹn + (1 − yn) log (1 − ỹn)), (3)

where αn represents the coefficient of the target classes, yn
represents the ground-truth of each class n, and ỹn is the
corresponding predicted probabilities.

H. EVALUATION METRICS
The official model evaluation metric in the RSNA IHC was
the weighted accuracy. We evaluate the overall performance
of the models based on three metrics, (1) the classification
accuracy on the RSNA dataset, (2) the visual evaluation of
the global feature richness of the embedding layer generated
by the convolution backbone, and (3) the ratio of the model
size function to the total number of trainable parameters.

IV. RESULTS AND DISCUSSION
A. THE EFFECT OF BACKBONE NEURAL NETWORK
MODEL SIZE AND PRETRAINING TECHNIQUES
We gradually stack n various pre-trained Xception models
in the feature extraction backbone. We freeze all these
architectures in the backbone to prevent updates on their
weights during training. We pre-trained the CNN models
on diversified pre-training schemes, including ImageNet-1k
natural image dataset (I) and the generated style transfer-base
dataset (S). Table 2 compares different models and the cor-
responding performances on the hemorrhage classification
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TABLE 2. Classification performance of ViT-based models on the RSNA
validation dataset. (I) represents pre-training on ImageNet. (S) represents
pre-training on ImageNet with style transfer images.

task. While the ViT component in the n-CNN-ViT models
were trained on the convolution features generated by the
convolution backbone, the ViT model was trained on the
raw images dataset. The input dimension of the ViT block
represents the full-resolution image or the set of features
before splitting into patches. Results show that extracting
features using convolution models to train the ViT model
is a better alternative to the raw dataset. The Scopeformer
model exploits the pre-training for generating high-level
features useful for the ViT architecture. The use of CNNs
leverages the need for high data regimes since the ViT model
is used to fit these high-level features and extract semantic
correlations instead of learning the spatial features in training.
Furthermore, results show that the classification accuracy
is proportional to the number of CNN models used in the
Scopeformer training, i.e., as we stack feature extraction
architectures in the backbone of the model, we get higher
performances on hemorrhage classification. We further boost
these performances by selectively varying the pre-training
methods for each CNN architecture. We hypothesize that
increasing the feature map size in the ViT input allows
for increased semantic correlation extractions by the ViT
block. Furthermore, diversifying the inductive biases derived
from differently pre-trained CNN architectures may lead to
a different set of feature maps, which contributes to a richer
feature map and leads to observed improved performances.

B. THE EFFECT OF SCOPEFORMER SIZE
Tables 3 and 4 show the results of experiments performed
with different variants of the Scopeformer model. Table 4
depicts different results obtained on individual classes of
the S, B, and M models. We propose four sizes of the
Scopeformer model, S, B, M, and L, with a reduced
number of trainable parameters compared to our initial
implementation of the Scopeformer model involving several
Xception-based CNNs. The key component to the parameter
reductions is linked to the trainable 1 × 1 convolutional
layer placed after each convolution architecture in the feature
extraction backbone before concatenation. In this experiment,
we gradually increase the model complexity of S, B, and M
variants by varying the MLP dimension and the number of

TABLE 3. Performance of the different Scopeformer variants.

self-attention heads within the ViT module as depicted in
table 1.

In table 3, we note that the base model outperforms the
small and medium variants. However, in Table 4, we observe
that the Base model performs better on IPH, IVH, and SAH
classes, whereas the Small model shows higher accuracy for
epidural, SDH, and all classes. Based on these observations,
we hypothesize that the improved performance observed on
higher MLP dimensions indicates the ability of the model to
encompass a larger amount of information and extract useful
semantics for classification. However, the model shows signs
of overfitting when the MLP dimension reaches 5120. Based
on these results, we build our large Scopeformer (L)/8 model
by adopting the configuration of the base variant with a
global feature dimension d = 1024. The feature size
increment resulted in a proportional increment of the model
trainable parameters. The large model (L)/8 performed the
best among the proposed variants. The improved performance
observed on larger ViT sizes while increasing the input
feature embedding space indicates richer information brought
by these added features, where the model extracted useful
semantics for classification. Increasing the feature space
improved some of the classes at the expense of others,
as evident from Table 4.

C. THE EFFECT OF NUMBER OF ViT ENCODERS
We evaluate the effect of the number of ViT encoders on
the Scopeformer (L)/8 model using 4, 8, and 16 encoders.
As presented in Table 1 and Table 3, the number of
parameters scales linearly with the number of encoders.
We note that using 8 ViT encoders yields better results than
a shallower model with 4 ViT encoders. However, a deeper
model with 16 ViT encoders drastically reduces the model
performance. We conclude that increasing the depth of the
ViT model does not scale linearly and that there is a critical
number of ViT encoders where themodel performs optimally.

In Figure 5, we plot the cosine similarity between the fea-
tures generated by each ViT encoder and the last layer of the
model. We observe that similarities across features generated
by eachViT encoder rapidly increase for all proposedmodels.
These similarities further increase in models with higher
numbers of ViT encoders. We believe that the increased
similarities among the features of the Scopeformer(L)/16
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FIGURE 5. Cosine similarity of the ViT encoder feature maps with respect to the last encoder feature map. We observe the increased similarities
across ViT encoder features function to the depth of Scopeformer models.

model may have contributed to the performance decline
observed in Table 3. Similarly, reduced similarities among
ViT features observed on Scopeformer(L)/4 may explain
the observed sub-optimal performance. From these results,
we conclude that the cosine similarity can be a good metric
for model performance, as reduced or increased similarities
may indicate sub-optimal performances of the Scopeformer
model. Shallow models presenting reduced similarities may
hint at higher performances by stacking more ViT layers,
whereas deeper models may require additional data to reduce
similarities across ViT features to perform optimally. The
results also suggest that there is an optimum number of ViT
encoders for the Scopeformer model based on the complexity
of the dataset and the effectiveness of the convolution
backbone networks.

D. THE EFFECT OF TWO DIFFERENT SELF-ATTENTION
VARIANTS
TheDeep Scopeformer (L)/8 builds on the Scopeformer (L)/8
model by replacing the MHSA layer with an MHRA layer.
The additional trainable matrices M add an insignificant
number of parameters to the Scopeformer (L)/8 model.
In Figure 5 (b), we note substantial dissimilarities among ViT
encoders’ features for the Deep Scopeformer (L)/8 model.
The result may imply an increased feature richness acquired
by the model from the additional inter-correlations of the
MHRA heads. This configuration resulted in an accuracy
improvement by +1.11% as shown in Table 5.

E. ViT SCOPEFORMER CONFIGURATIONS
We address the self-attention computational complexity
problem by introducing a transpose layer before the ViT
module. The attention weights matrix in Deep Scopeformer
(L)/8 has a dimension of 10242. In the second and third

ViT configurations, the attention weights matrices have
dimensions of 652 and 642, respectively. The use of the
transpose layer has substantially contributed to the reduction
of the number of trainable parameters as indicated in
Table 1. This is due to the MHRA quadratic reduction
in computation complexity. Additionally, transposing the
input sequence effectively preserved the feature content
retrieved by the feature extractor module and conserved the
classification performance. Table 5 shows the performance
of the three proposed configurations. The proposed Efficient
Scopeformer variant performed relatively better than the
Deep Scopeformer (L)/8 for a lower trainable parameter
space. We speculate that the role of the ViT module in
this configuration is to improve the global feature map
that was previously optimized by the convolution backbone.
The global feature map improvement resides in using
attention computations to generate new features characterized
by inter-correlations among all features generated by the
convolution networks.

Our Efficient Transformer module improved the global
features map correlations and contributed to better perfor-
mance. We note that for the model Efficient Scopeformer
(P) pre-training the convolution block on the target dataset
and freezing the entire block during training produces
better performance than end-to-end training with around
30% trainable parameters of the Efficient Scopeformer’s
convolution block. We argue that backbone CNNs and
ViTs present different dynamics that require different model
training settings.

1) GLOBAL AND ViT FEATURE MAPS
Figures 6, 7 and 8 present convolution features gener-
ated by three Scopeformer architectures for an epidural
example; Scopeformer (L)/8, Deep Scopeformer (L)/8, and
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FIGURE 6. Feature maps visualization of an epidural type hemorrhage example for the model Scopeformer (L)/8. These
features represent intermediate internal representations that the model may find useful and use in its own learning and
decision-making. These features may not be directly interpretable to the human visual system.

TABLE 4. Model performance on individual target classes.

Efficient Scopeformer. We observed high variability of the
features generated by each CNN architecture. Furthermore,
we observe that there is no apparent similarity among the
features generated by different CNNs for all Scopeformer
variants. Subsequently, the resultant global feature map
has low redundancy and higher feature richness. However,

TABLE 5. Model performance for different Scopeformer modalities.

among these models, we note that the DenseNet model
showed the highest feature redundancy across the observed
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FIGURE 7. Feature maps visualization of an epidural type hemorrhage example for Deep Scopeformer (L)/8. These features represent intermediate
internal representations that the model may find useful and use in its own learning and decision-making. These features may not be directly
interpretable to the human visual system.

features. Therefore, we conducted an ablation study on
the Deep Scopeformer TR, which resulted in removing the
DenseNet201 model from the Efficient Scopeformer model
backbone.

2) ATTENTION PATTERNS VISUALIZATIONS
Figure 9 shows the attention patterns visualizations of
the 16 MHRA heads concerning the first and last ViT
encoders. In the first ViT layer, we observe that the model
extracts high correlations among features derived from
every CNN architecture. This observation suggests the high
similarities among the input features of every CNN model.

Each head learns different correlation patterns among the
set of features. However, deeper into the model, we observe
that the model learns to extract global correlation patterns
across all the CNN features. The generated set of features
adds information about the relevance of every feature to the
rest of the features, which contributes towards the observed
higher performance.

F. OVERVIEW OF SCOPEFORMER POTENTIAL AND
EFFECTIVENESS
Our original investigation aimed to demonstrate the feasi-
bility and effectiveness of the CNN + ViT architecture in
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FIGURE 8. Feature maps visualization of an epidural type hemorrhage example. Efficient Scopeformer.

various configurations, focusing on the potential benefits
in accuracy, generalization, and robustness. The results of
our experiments showed that the Scopeformer model was
competitive and had the potential to achieve comparable
or even better performance than state-of-the-art methods.
In this work, we concentrated on improving the model and
exploring different configurations in an experimental study
rather than strictly comparing it with existingmethods. As our
proposed Scopeformer model presented a novel approach
that combined multiple CNNs and a ViT model in a unique
architecture, a direct comparisonwith existingmethodsmight
not have fully captured the essence of our contribution. Our
primary goal was to pave the way for higher data regimes
and multi-disciplinary medical AI applications within a
single model, such as hemorrhage detection, organ-at-risk

identification, and tumor detection, all residing in the brain
and utilizing different types of imagery like CT, PET, and
MRI.

In selecting the specific CNN models used in our study,
we were guided by several factors. We conducted ablation
studies to analyze the impact of different CNN architectures
on the overall performance of our model. By including a
variety of CNN models, we aimed to investigate how each
model contributed to the results. We also ensured that the
output dimensions of the selected CNNmodels were uniform,
specifically 8×8, for building the Efficient Scopeformer. This
uniformity allowed us to concatenate the features easily and
effectively. Furthermore, the Xception model was chosen to
initiate our study with preliminary results using multiple off-
the-shelf CNN architectures. We initially used the Xception
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FIGURE 9. Attention pattern visualization of the Efficient Scopeformer
model. The first and second rows represent the 16 attention heads of the
first encoder layer. The third and fourth rows represent the 16 attention
heads of the last encoder layer. Each attention map has a dimension of
384 × 384.

model by itself to highlight the effect of pretraining different
CNNs without changing the architecture. It also served as a
reference point for comparison with the other models used
in our study. This approach allowed us to investigate the
effectiveness of different CNN architectures and their impact
on the overall performance of the hybrid model.

We also considered the time complexity of our pro-
posed methodology, particularly when comparing the hybrid
CNN-ViT model with a standalone ViT model applied
directly on raw images. The forward pass of one or multiple
CNNs, with frozen weights, has a time complexity in the
order of milliseconds. If the feature space of the CNNs
is similar to the image patches input to the ViT model,
the computational complexity will be roughly the same in
both cases. In our preliminary experiments, we verified
this by testing our model with roughly identical input
sizes to the ViT in both cases (with and without the
CNNs) and found no significant issues with computation.
Regarding the convergence time, it may vary between the
models, but it is essential to note that training ViTs on raw
images can be time-consuming. In our study, we focused on
training the model on features and maintaining the training
time within the acceptable range, comparable to that of
training ViTs on raw images. Additionally, our model was
designed to be efficient in terms of the number of trainable
parameters, which significantly reduced the time complexity.
Our main goal was to improve the model’s ability to learn
from the features and their intra and inter correlations,
as opposed to learning from raw images, which enabled
enhancing generalizability and potential use in multi-domain
medical AI fields. Moving forward, we will continue to
refine the Scopeformer architecture and investigate additional
applications within the medical AI field.

V. CONCLUSION
We proposed a set of convolutional-based ViT models
called Scopeformer to address the challenging problem
of classifying types of hemorrhage in brain CT scans.
We defined a range of model architectures for both CNNs
and ViTs. We explored the effect of using multiple off-the-
shelf CNN models on the global feature richness of the
architecture and investigated a feature projection method to
reduce the large redundant feature space into a lower and

more efficient one. We conducted a parametric optimization
study to evaluate the size effects on model performance
and efficiency. We implemented three ViT configurations
to evaluate the re-attention module within the Scopeformer
model and the channel-wise versus feature-wise patch
extraction of the global feature map. Results show increased
richness of the features due to different CNN architectures.
The re-attention module increased dissimilarities of ViT
features resulting in improved performances and allow-
ing deeper models. With our proposed feature-wise patch
extraction method, the model size was reduced 17 times
with comparable performance. Our Efficient Transformer
module improved the global features map correlations and
contributed to better performance. Furthermore, we observed
that pre-training the convolution block on the target dataset
and freezing the whole block during training produces
better results than end-to-end training with 30% trainable
parameters of the Efficient Scopeformer’s convolution block.
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