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ABSTRACT The expansion of explainable artificial intelligence as a field of research has generated
numerous methods of visualizing and understanding the black box of a machine learning model. Attribution
maps are commonly used to highlight the parts of the input image that influence the model to make a
specific decision. At the same time, numerous recent research papers in the fields of machine learning
and explainable artificial intelligence have demonstrated the essential role of robustness to natural noise
and adversarial attacks in determining the features learned by a model. This paper focuses on evaluating
methods of attribution mapping to find whether robust neural networks are more explainable, particularly
within the application of classification for medical imaging. However, there is no consensus on how to
evaluate attribution maps. To solve this, we propose a new explainability faithfulness metric, EvalAttAI, that
addresses the limitations of prior metrics. We evaluate various attribution methods on multiple datasets and
find that Bayesian deep neural networks using the Variational Density Propagation technique are consistently
more explainable when used with the best performing attribution method, the Vanilla Gradient. Our results
suggest that robust neural networks may not always be more explainable, despite producing more visually
plausible attribution maps.

INDEX TERMS Explainability, robustness, Bayesian neural networks, medical imaging.

I. INTRODUCTION
With the recent explosion of black box machine learning
models over the past few years, there has been a great demand
to explain how these models work so that users can under-
stand and trust the results [1], [2], [3]. This is especially
important in mission-critical and life-saving applications,
such as clinical diagnosis and medical decision-making [4],
[5], [6]. Explainable AI (XAI) seeks to give a user more trust

The associate editor coordinating the review of this manuscript and

approving it for publication was Wai-Keung Fung .

in the model explanation [7]. The problem is that we do not
know if we can trust the explanations either. In order for
XAI to be viable for real world applications there must be
trust, thus there have been many attempts to evaluate these
explanations [7], [8], [9], [10], [11], [12], [13].

These application areas also demand robust machine learn-
ing models that resist natural noise in the input data and
malicious or adversarial attacks [14], [15], [16]. In real-world
tasks, the data can often come with noise and artifacts that the
machine learning model might not have previously seen [17].
There might even be nefarious actors trying to confuse the
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FIGURE 1. Concept map illustrating the key components of the study explored in this paper, including methods, criteria, applications and
models. The map provides a visual breakdown of the relationships between these components.

model with adversarial examples [14], [18]. This requires that
models be built and trained to resist noise and attacks [15],
[19]. There are several approaches to building robust machine
learning models, including training on noisy datasets and
Bayesian models [6], [14], [15], [16], [17], [18]. The first
approach only focuses on model training and data processing,
while the second alters the neural network architecture and
introduces probability distribution functions over learnable
parameters [14]. Robust models have been shown to produce
more visually plausible explanations [9], [20]. However, the
quantitative evaluation of the faithfulness of these expla-
nations is a challenging task. There are many criteria for
evaluating explanations. In this paper, we propose a much
more direct approach (called EvalAttAI) that eliminates the
errors introduced by existing approaches to evaluating the
faithfulness of explanations. The contributions in this paper
are as follows:

• We develop a new method of evaluating the faithful-
ness of an attribution map, which is much different
from existing approaches and avoids the errors present
in current methods. Our proposed method is denoted
as Evaluating Attributions by Adding Incrementally
(EvalAttAI).

• We compare our method to the state-of-the-art in the
literature and show why ours is a more fair and accurate
measure of faithfulness of model explanations.

• We relate the concepts of faithfulness and robustness
by showing whether robust models produce more faith-
ful explanations when evaluated using our proposed
EvalAttAI method.

In Fig. 1, we provide an overview of the key components
of this study. This concept map includes all methods, datasets
and models used in our experiments. Most importantly, the
figure highlights the fact that the evaluation methods dis-
cussed in this paper measure the faithfulness of explanations
while also outlining the limitations of each approach.

The article is organized as follows. In Section II,
we provide definitions of various terms that are used in
the article and present various explainability faithfulness

evaluation methods, including our newly proposed, EvalAt-
tAI. Section III provides an overview of our methods and
simulation experiments. In Section IV, we present results
and discuss the same in Section V before concluding in
Section VI.

II. EXPLAINABILITY METRICS AND DEFINITIONS
To evaluate the explainability method defined for a machine
learning model, quantify its faithfulness, and link it to the
robustness of the machine learning model, we must under-
stand different concepts, terms, and metrics that are used
in the literature. This section provides an overview of these
important concepts.

A. ROBUSTNESS
A model is said to be robust if its performance shows little
decrease when the distribution of the test data is different
from that used during the training. Amodel can be robustified
(made more robust) by training it on a large variety of data
that includes various types of noisy and adversarial images.

This term is also used to describe the behavior of attribu-
tions. A robust attribution method should produce a similar
map for similar inputs to the model. This can be seen when
generating attributions with and without adversarial attacks
or imperceptible noise, since the image is similar, but a
non-robust method would return a vastly different attribution
map. It should also be noted that robustly trained models
produce more robust (and plausible) explanations [7], [20].

B. ATTRIBUTION MAPS
Explainability methods for image processing applications
creates a pixel-wise array of attribution scores that indicate
each feature’s (a pixel of the input image in most cases)
importance. This is known as an attribution map or an
explainability map [21].

C. SENSITIVITY
Sensitivity of an explanation method (i.e., attribution map
generation method, such as Vanilla Gradient) is defined to
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be how much an explainability map changes when small
perturbations are applied to the input of the model [22].
Attribution methods that produce explanations with large
sensitivity scores are likely to produce dramatically different
explanations when noise is introduced at the input of the
model. This means that, in general, robust models tend to
perform better than their non-robust counterparts when the
attribution map is evaluated for sensitivity [7]. Generally,
attribution methods with lower sensitivity produce more sim-
ilar and consistent results in the presence of imperceptible
noise than methods with higher sensitivity. More consistent
explanations may be beneficial in many applications, but it
does not reveal how important the pixels in the attribution
map actually are to the model [7]. This motivates the exami-
nation of other metrics for evaluating explainability methods.

D. PLAUSIBILITY
The first instinct is to visually examine an explainability
map to see whether the attribution makes sense to a human
observer [7], [22]. This is called plausibility [22], which
tells the users how visually convincing the explanation is
to a human. For example, an attribution map that has many
important pixels within the object of interest would be more
plausible than an explanation that focuses on features that
are irrelevant to a human. A plausibility metric has a subjec-
tive component, since humans define what are the important
features according to their own visual perception. There are
multiple methods which give a plausibility score correspond-
ing to the number of important pixels that fall within a human
drawn region containing the object [23], [24], [25]. It has
been shown that robust and adversarially trained models tend
to produce more plausible explanations [7], [9], [26], [27].
However, plausibility can bemisleading [7]. The explanations
that look more reasonable to a human might misrepresent
the features that the trained machine learning model uses for
its internal processing and decision-making. Therefore, it is
important to introduce more quantitative metrics that can help
us evaluate and understand the ‘‘goodness’’ or ‘‘faithfulness’’
of an explanation.

E. FAITHFULNESS AND FIDELITY
The faithfulness of an explanation is defined to be a measure
of how accurate the explanation (an attribution map in our
case) is to the model itself. An explanation that is very faithful
will show the user what is truly most important to the model.
In other words, faithfulness tells us the extent to which pixels
deemed to be important in the attribution map are actually
important to the model.

In many recent works, fidelity and faithfulness were con-
sidered synonymous [28], [29], [30]. We argue that fidelity
metrics are used to measure the faithfulness of the attribution
map (or the explanation). Many different techniques have
been proposed in the literature to measure the faithfulness or
fidelity [9], [11], [12], [13], [28], [29], [30], [31], [32], [33],

[34]. However, there is no current consensus on the best way
to evaluate faithfulness of attribution maps.

The Fidelity metric measures the correlation between the
pixel attribution scores and the drop in prediction or accuracy
scores when the pixel is altered or removed. This shows how
well the attribution map ranks the pixels by their impor-
tance. The most common implementations of fidelity metrics
involve replacing important pixels with another pixel value
(most often black or the image mean) [9], [11], [12], [13],
[33], [34]. This introduces error since the model has not
been trained to understand arbitrary pixels being introduced
in the input image. There have been attempts to rectify this
by retraining the model for possible changes in the pixels [8].
However, methods based on retraining introduce another type
of error, the explanation (attribution map) is no longer being
evaluated using the samemodel parameters (that is, the model
has been modified due to retraining). Later in this work,
we show that our proposed EvalAttAI eliminates the errors
present in these existing methods. The reason is linked to the
fact that EvalAttAI does not remove pixels, but rather perturbs
pixels to a small, almost imperceptible degree, maintaining
continuity.

F. MODEL ROBUSTNESS AND ATTRIBUTION
FAITHFULNESS, FIDELITY AND PLAUSIBILITY
Using faithfulness, fidelity and plausibility, we will seek to
shed more light on whether robust models are more explain-
able. As mentioned earlier, robust models have been shown
to be more plausible. However, there is no consensus on
whether the attribution maps of robust models are more
faithful or whether there is a standard approach to evaluating
faithfulness.

G. ATTRIBUTION EVALUATION METHODS
The most prominent faithfulness evaluation metrics currently
include Insertion [34] and Deletion [13], [33], [34]. These
methods are based on replacing pixels, and recently it was
reported that their results appear contradictory [9]. That is,
when Deletion performed well, Insertion did not and vice
versa.

1) DELETION
Deletion is the most widely used method of evaluating faith-
fulness of attributionmaps and hasmany variations [13], [33],
[34]. Deletion involves (1) incrementally removing pixels,
(2) replacing removed pixel spaces with an arbitrary value,
and (3) evaluating the resulting change in model predictions.
The order in which the pixels are chosen is based on attribu-
tion scores of these pixels. The faithfulness of the attribution
map is evaluated based on the change in the model predic-
tion. However, when replacing pixels with an arbitrary value,
an error is introduced. The replaced pixels create a sharp
contrast in the image, which the model was never trained to
process. There have been attempts to fix this by retraining
the model for each increment [8]. However, retraining intro-
duces new errors since the attributions are being evaluated
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FIGURE 2. Two different metrics (Insertion and Deletion) for assessing various attribution maps are presented. The variable t
indicates the percentage of pixels deleted/inserted, where t = 0 refers to zero pixels and t = 1 refers to all pixels. Removed pixels
are replaced by the per channel mean. (a) Deletion and (b) Insertion examples using Vanilla Gradient (VG) and random Gaussian
noise as the attribution maps.

on a newly trained model. EvalAttAI avoids this issue by
perturbing the pixels rather than removing them and replacing
with arbitrary values.

2) INSERTION
Insertion is another method of evaluating the faithfulness of
attribution maps. This method uses the same process as Dele-
tion, but starts with all pixels removed from the input image
and incrementally inserts the most important ones back. All
the issues that pertain to Deletion also apply to Insertion.
Evenworse, these two appear to produce contradictory results
showing that these methods may not be evaluating the same
thing, that is, the faithfulness of the attribution methods [9].

3) c-EVAL
The c-Eval approach [35] evaluates attribution maps by per-
turbing the most important pixels using an adversarial attack
to determine how this perturbation affects model predictions.
However, not all pixels in an adversarial attack have the
same impact on the output. Therefore, selecting only the
most important pixels to perturb is prone to error. More-
over, the adversarial attacks are designed to be applied to all
pixels in the image, so only applying these to some pixels
breaks the continuity. EvalAttAI ameliorates this by applying
the perturbation to all pixels. EvalAttAI also takes a much
more direct approach than c-Eval by perturbing the pixels
using attribution scores, rather than adversarial attacks that
are unrelated to the attribution maps and explanations being
evaluated.

H. EVALUATING ATTRIBUTIONS by ADDING
INCREMENTALLY (EvalAttAI)
Our novel metric for evaluating faithfulness is based on the
concept of unification between the explanation and input
image. By observing the decrease in accuracy resulting from

the explanation’s influence, we can assess its faithfulness.
All other faithfulness metrics discussed in this section seg-
ment the attributions, thereby breaking the continuity of
the explanations in the process. Instead of segmenting the
explanation, our approach unites a scaled attribution map
to the input image thereby maintaining continuity at every
iteration. In doing so, EvalAttAI emphasizes important pixels
and de-emphasizes unimportant pixels based on the impor-
tance scores that the model directly attributes to each feature.
Using our novel evaluation, a more accurate analysis of how
robustness relates to faithfulness can be achieved.

In this work, we focus on gradient-based explainability
methods to show the applicability of EvalAttAI. However,
EvalAttAI can be used for all other attribution generation
methods without any changes. In general, for gradient-based
methods, the attribution scores are calculated by taking the
gradient of the activation score (logit or soft-max class prob-
ability values) with respect to the input features via backprop-
agation [21]. Since we will be perturbing pixels to decrease
activation scores, it makes sense to look at gradient-based
methods. Moreover, gradient-based attribution methods are
derived directly from the loss function, which is used to
train the model. Thus, these methods can be considered
appropriate and effective for our proposed evaluation metric.
We consider that the Vanilla Gradient method of explainabil-
ity [36] will be the most faithful, since it directly leverages
the gradient of the trained model without any further modifi-
cation or changes [7].
In our experiments, we show that EvalAttAI can serve

as a reliable new metric to significantly improve user trust
in machine learning models. This is especially critical in
medical and clinical applications.

The novelites of EvalAttAI are as follows:
• Uniqueness: EvalAttAI defines and tests faithfulness in
a way that has not been done before.
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FIGURE 3. A schematic layout of the process of testing an attribution
map using the proposed Evaluating Attributions by Adding Incrementally
(EvalAttAI) method. The column labeled xs+1 depicts the modified input
image, and xs (s = 0) shows the clean image in the first row and the
modified image from the previous iteration on all subsequent rows. The
attribution map is indicated by a.

FIGURE 4. A visualization of each evaluation method is shown. Each
image is formatted as depicted before being input into the neural
network. Deletion incrementally removes and replaces pixels from the
original image, and Insertion adds the original pixels back from a pixel
removed image. EvalAttAI takes an entirely different approach by shifting
pixel values according to the importance scores on the attribution map.

• Continuity: EvalAttAI integrates all pixels in the expla-
nation into the input image, maintaining continuity at
every iteration. In contrast, other methods explored in
this paper break continuity by altering some pixels, but
not all, at each iteration.

• No arbitrary parameters: EvalAttAI eliminates errors
present in Deletion and Insertion by not removing and
replacing pixels with arbitrary values.

• Consistent evaluation: EvalAttAI evaluates all itera-
tions on the same model weights, unlike ROAR which
retrains the model each time, making each iteration an
evaluation of an entirely different trained model.

• Intelligent targeting: EvalAttAI emphasizes and
de-emphasizes important and unimportant pixels,
respectively. It utilizes the model explanations them-
selves to intelligently weigh important (high scoring)
pixels to evaluate the change in accuracy.

III. METHODS AND EXPERIMENTS
This section describes the models, datasets and experimental
protocol used in our study.

A. MODELS AND DATASETS
There are three models considered in our study. The first two
are ResNet18 [37] with different training scenarios. (1) The
standardly trained ResNet18 uses a dataset with no modi-
fications to the training data. (2) For the robustly trained
ResNet18, randomGaussian noise is added to each input with
a signal-to-noise ratio (SNR) of 5 dB. (3) The third model
is a standardly trained Bayesian deep neural network, based
on Variational Density Propagation (VDP-CNN) [14], [16],
[17]. This model follows the same architecture as ResNet18,
but propagates both the mean and the covariance of the proba-
bility distribution function defined over the model parameters
through each layer of the model.

All threemodels were trained on the CIFAR10 dataset [38].
The ResNet18 standard model was trained until it achieved
an 84% validation accuracy. The robustly trained ResNet18
model achieved a validation accuracy of 70%. The
VDP-CNN was trained on CIFAR10 to achieve a validation
accuracy of 68%.

The EvalAttAI method was also evaluated on three med-
ical imaging datasets, which are part of MedMNIST. The
dataset included PathMNIST, DermaMNIST, and BloodM-
NIST [39], [40]. All three are multi-class prediction datasets
consisting of 9, 7, and 8 labels for PathMNIST, DermaM-
NIST, and BloodMNIST, respectively. The datasets consist
of images that are classified to aid in the diagnosis of colon,
skin and blood cancers. The images from the datasets used
all 3 color channels. This was chosen because the ResNet
architecture is designed to classify colored image data.

The standard trained ResNet18 model was trained on
PathMNIST to 85%, DermaMNIST to 73% and Blood-
MNIST to 92% validation accuracy. The robustly trained
ResNet18 was trained on PathMNIST to 86%, DermaMNIST
to 73% and BloodMNIST to 93% validation accuracy. Lastly,
the VDP model was trained on PathMNIST, DermaMNIST
and BloodMNIST to get 76%, 72%, and 84% validation
accuracies, respectively.

We evaluated six attribution methods on each model
including (1) Vanilla Gradient [36], (2) Grad x Image [21],
(3) Guided Backprop [41], (4) Integrated Gradients [42],
(5) SmoothGrad [43] and (6) GradCAM [44]. For the Grad-
CAM method, we selected the first convolution layer. This
means that the gradient was backpropogated to the first
layer before performing global average pooling, linear com-
bination and ReLU, resulting in the GradCAM attribution
map. Attribution maps were generated using the Captum
library [45], [46], along with built-in PyTorch functions.

B. DELETION AND INSERTION METHODS
The Deletion metric evaluates how much the accuracy
changes when important pixels are removed from the input
image [13], [33], [34]. Pixels can be replaced with various
values, but are often replaced with the image mean. The pixel
importance is determined by the magnitude of the attribution
scores on the map being evaluated. One starts with a clean
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FIGURE 5. Evaluating faithfulness of multiple different explainability attribution methods using Deletion and Insertion metrics. Each attribution
method was evaluated using 5000 CIFAR10 images with three trained models. The top, middle, and bottom rows depict the standard trained ResNet-18
model, robustly-trained ResNet-18 (Robust-ResNet), and a Bayesian CNN trained using the VDP method respectively. The black line in all sub-figures
show the behavior of the model when pixel are randomly deleted/inserted. The 95% confidence interval is shown in each sub-figure using error bars.
(Left) Deletion. (Center left) Insertion. (Center right) Deletion after normalization (abbreviated as Norm) with random baseline. (Right) Insertion after
normalization with random baseline. A method is considered to be performing well on the Deletion method if the accuracy drops significantly more
than random. Inversely, a method that is performing well on the Insertion metric will show the accuracy increase more than random.

image and incrementally removes pixels starting at the high-
est attribution score. The attributionmaps are considered to be
performing well if the accuracy drops significantly faster than
the random baseline, which implies a smaller area under the
curve (AUC). In our opinion, the AUC satisfactorily captures
how well each method is performing overall by accounting
for the performance over all increments using a single score.
The random baseline consists of random Gaussian noise that
is tested in place of an attribution map. The process of Dele-
tion can be seen visually in Figs. 2a and 4.

The Deletion experiment begins with a clean image. Then,
starting from the most important according to attribution
score, the pixels are removed in 5% increments. The first
increment 0% evaluates the accuracy of the image with
no pixels removed (i.e., the clean image). The next incre-
ment finds the accuracy with 5% of the pixels in the image
removed. This is continued until 45% (almost half) of the
pixels in the image are removed. The pixels are replaced with
the mean of each color channel, respectively.

Insertion [34] uses the same premise as Deletion. The
difference is that one starts with a blank image consisting

of all removed pixels, and incrementally introduces the
most important pixels. The more significantly the accuracy
increases compared to the random baseline, the better the
attribution map is performing with Insertion. The Deletion
and Insertion metrics may introduce error, since the models
are not trained to be able to interpret missing and replaced
pixels. In fact, the values that are chosen to replace the pixels
can drastically alter the model accuracy in unintended ways.
Insertion is depicted visually in Figs. 2b and 4.

For Insertion, we begin at 0% with an image where all
pixels are replaced by the per channel mean of the dataset.
We then introduce pixels in 5% increments until 45% of the
image is restored. The entire image can be restored, but the
most meaningful change in accuracy occurs at the beginning
of the replacement with the most important pixels.

C. EvalAttAI
Our metric overcomes The limitations of the other faithful-
ness metrics by (1) being continuous over all iterations and
(2) intelligently targeting pixels based on the explanations
themselves. Our method of evaluating the faithfulness of
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FIGURE 6. Area under the curve (AUC) calculated using normalized
accuracy curves (from Figs. 5c, 5d, 5g, 5h, 5k and 5l) for various models
and attribution methods are presented. The models include a non-robust
model (ResNet), a robustly-trained model (Robust-ResNet), and a
Bayesian robust model (VDP-CNN). For the Deletion metric, lower values
means the evaluation method and model are more explainable. For the
Insertion metric, higher scores are better. The 95% confidence interval is
shown in each sub-figure.

attributions takes a much different approach than Deletion
and Insertion by not removing pixels at all and maintaining
continuity of the explanation. Our approach is to perturb pix-
els proportionally to the pixel scores of the attribution map.
This is done by joining a scaled down attributionmap together
with the original input image and then passing the new image
through the machine learning model. The faithfulness of each
attribution method is assessed by comparing the accuracy of
the trained model before and after adding the perturbations
generated using attribution scores.

We can see how EvalAttAI looks visually in comparison
to Deletion and Insertion in Fig. 4. We expect that the more
faithful the attribution method is, the more the accuracy will
decrease after the perturbation. This implies that the maps
which cause the steepest drop in accuracy are considered
the most faithful. This is because highly faithful attribution
maps will identify and perturb the most important pixels

first, which is verified by the significant drop in the model
accuracy. However, if unimportant pixels are perturbed, then
the accuracy will not drop as much, perhaps not at all.
This will indicate that the attribution map produced by the
explainability method is less faithful. The experiments that
we performed also evaluate a baseline map, which consists of
random Gaussian noise with a standard deviation of 0.25 and
a mean of 0.

The EvalAttAI method is described in Eq. 1. In our exper-
iments, the attribution map (a) is multiplied by a scaling
variable epsilon (ε), which we set to 0.1, resulting in a scaled
down attribution map. The variable ε functions like a learning
rate, allowing for control over the step size of each iteration.
Although ε can be assigned any positive value, we discovered
that values close to zero work best. Starting with an image
(xs), we add the scaled attribution, resulting in the modi-
fied image (xs+1). This is done in an iterative fashion until
the desired number of steps (s) are completed. The process
always begins at s = 0 with the clean image (x0). Figure 3
and Eq. 1 describe the process, which is repeated until the
desired number of steps (s) are completed.

xs+1 = xs + ε ∗ a (1)

EvalAttAI maintains continuity of the explanations over
all iterations and intelligently targets pixels based on the
importance scores attributed to them. The most important
pixels according to the attribution map will be perturbed the
most. At the same time, the least important pixels, which
have attribution scores closest to 0, will not significantly alter
the corresponding pixels on the input image. This method
avoids the error introduced by Deletion and Insertion, which
breaks continuity due to pixels being entirely removed and
replaced. Our method can also be tuned using ε so that pixels
are altered in even smaller increments. The EvalAttAImethod
can be thought of as amore continuous approach to evaluating
faithfulness.

IV. RESULTS
In this section, we present results to show how well various
attribution evaluation methods including EvalAttAI perform.
In order to ensure a fair comparison, we normalize the
recorded output accuracy such that the random line (baseline
method) is always equal to one. Any time that normalization
is discussed in this paper, it is being used to explain how the
results were formatted after they were collected. For instance,
in Figs. 5, 6, 7 and 8, we show the results before and after
normalization of the data such that we can use the random
line as a baseline across all models.

A. DELETION AND INSERTION
The goal of this first experiment is to quantify the behav-
ior of Deletion and Insertion metrics for evaluating var-
ious types of attribution methods using three different
types of trained models (ResNet, Robust-ResNet, and VDP-
CNN). These models represent a non-robust model (ResNet),
a robustly-trained model (Robust-ResNet), and a Bayesian
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FIGURE 7. Results of the EvalAttAI metric tested using CIFAR10 and PathMNIST on three models, ResNet18, Robust-ResNet18 and VDP-CNN. The y-axis
of all sub-figures shows average accuracy as attributions are added to the input image, which is captured by the x-axis. Lower accuracy values represent
that the attribution method is faithful, and the metric is meant to capture this aspect. The 95% confidence interval is shown in each plot using error
bars. (a)-(c) and (g)-(i) Non-normalized accuracy. (d)-(f) and (j)-(l) Normalized accuracy using random as the baseline.

model trained using the VDP technique (VDP-CNN). The
test accuracy and normalized test accuracy are presented
in Fig. 5. The AUC of normalized test accuracy are pre-
sented in Fig. 6. The error bars represent the 95% confidence

interval in both figures. We also performed p-value calcula-
tions for these results and determined that all had a p-value
of less than 0.0001, indicating that the results are statistically
significant.
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FIGURE 8. Results of the EvalAttAI metric tested using DermaMNIST and BloodMNIST on three models, ResNet18, Robust-ResNet18 and VDP-CNN. The
y-axis of all sub-figures shows average accuracy as attributions are added to the input image, which is captured by the x-axis. Lower accuracy values
correspond to the attribution method being more faithful. The 95% confidence interval is shown in each plot using error bars. (a)-(c) and
(g)-(i) Non-normalized accuracy. (d)-(f) and (j)-(l) Normalized accuracy using random as the baseline.

The results for the Deletion metric as presented in
Fig. 5 ((a) and (c)) show each of the methods performing
better than randomly removing pixels. We see this most
clearly in Fig. 6a where AUC is presented. The one exception

to that is GradCAM, which performs worse (with statistical
significance) than random. However, when we look at the
Insertion results in Fig. 5 ((b) and (d)) and Fig. 6b, we see
that GradCAM is the onlymethod which performs better than
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FIGURE 9. Faithfulness results for EvalAttAI evaluation. Bar plots of the area under the curve (AUC) for the normalized CIFAR10, PathMNIST,
DermaMNIST and BloodMNIST data (from MedMNIST dataset [39], [40]) results shown in Figs. 7 and 8. Both subfigures include the 95% confidence
interval. The lower the bar, the more faithful the explanations.

random (with statistical significance). In fact, when ranking
the performance of the methods, we find that both metrics
show contradictory behavior. Various attribution methods
are ranked according to their performance and presented in
Table 1. This table clearly shows that the methods that are
ranked best by the Deletion metric may be the worst when
evaluated using the Insertion metric and vice versa.

When further examining the results of Table 1, it should
be noted that the peculiar behavior of GradCAM is likely
because the method generates an attribution map of the same
resolution as the convolutional layer that it is visualizing,
which is then scaled up to the size of the input image.
We utilized the unmodified GradCAM maps, although it is
a widespread practice in research to apply a blur effect to the
image, resulting in a more refined map. To keep the analysis
fair and since we did not apply blur to any other attributions,
we did not apply blur to GradCAM. Another likely reason for
this method’s behavior is that unlike all other methods tested
in this paper, GradCAM does not backpropagate all the way
to the input when generating its attributions, resulting in a
significant loss of information from the early layers of the

model. However, all other attribution methods tested in this
paper do backpropogate all the way back to the input.

B. EvalAttAI
The goal of this second experiment is two-fold. The first is
to test the consistency and validity of the proposed EvalAt-
tAI method. The second is to test whether the proposed
methods capture the relationship between the faithfulness
of the attribution method and the robustness of the model.
All results with the EvalAttAI approach are presented in
Figs. 7, 8 and 9.

In Figs. 7 and 8, we note the slope of the accuracy drop for
each attribution method. The attribution methods that cause
the steepest drop, and therefore lowest AUC, are deemed to be
the most faithful. The best performing methods can be clearly
identified when looking at Fig. 9. We can see that the Vanilla
Gradient and SmoothGrad are the only two that consistently
perform better than random baseline, with statistical signifi-
cance across all models. Other attribution methods, including
Grad x Image, Guided Backprop, Integrated Gradients, and
GradCAM do not perform well as compared to the random

VOLUME 11, 2023 82565



I. E. Nielsen et al.: EvalAttAI: A Holistic Approach to Evaluating Attribution Maps

TABLE 1. Rankings of various attribution methods for faithfulness
evaluation based on AUC using CIFAR10 dataset and three different
models.

baseline. We also observe that EvalAttAI produces consistent
results for each attribution method across all models in most
of the cases. We also calculated the p-values for all EvalAttAI
results and determined that p < 0.0001 for all the results.

V. DISCUSSION
We aimed to answer whether robust neural networks were
more explainable, considering the potential usefulness of
robust models and their visual explanations in medical imag-
ing [7]. However, the question is difficult to answer due to
three interrelated phenomena that need consideration. The
first one is the robustness of the machine learning models,
which is difficult to define and quantify [14], [16], [17],
[18]. The second deals with various explainability methods
and their internal complexities [7]. The third is related to
metrics or measures employed to evaluate the plausibility and
faithfulness of these explainability methods that try to explain
the behavior of neural networks [7]. These three aspects of
explainability research in deep neural networks are intimately
intertwined. It may be challenging to disentangle these three
(i.e., the robustness of models, internal dynamics of explain-
ability methods, and metrics to evaluate this relationship) to
understand the underlying relationship between robustness
and explainability.

We started by limiting ourselves to two types of robust
neural networks, (1) ResNet models trained using noisy
datasets and (2) Bayesian deep neural networks trained using
VDP technique. We acknowledge that the robustness of deep
neural networks can be defined in many different ways, and
consequently, many types of robust models can be built.
However, we argue that these two methods represent a large
class of robust models [6], [14], [15], [16], [17], [47]. On the
other hand, for the explainability methods, we restricted
ourselves to well-known gradient-based methods that are
routinely used in image applications [7]. There are many
different approaches to building explanations for elucidating
the behavior of deep neural networks on test datasets. How-
ever, gradient-based methods represent a significantly large
class of explainability methods. Finally, we wanted to use
Insertion and Deletion metrics to evaluate the ‘‘goodness’’ or
faithfulness of various attribution methods and quantify the
explainability of robust neural networks. However, given the
contradictory results produced by these two metrics due to
their inherent nature, we proposed a new metric, EvalAttAI,
to evaluate attribution methods.

Recently, Nourelahi et al. analyzed the faithfulness of var-
ious attribution methods for robust and non-robust CNNs [9].
The authors used Deletion and Insertion metrics for the
evaluation of faithfulness. The faithfulness results appear to
show methods and models which perform best on Deletion,
perform the worst on Insertion, and vice versa [9]. We get
similar results. Based on the working principles of these
metrics (refer to Fig. 2), the logical conclusion would be that
both methods might quantify different things in an attribution
method. Perhaps, Insertion and Deletion may not be cap-
turing any helpful information, as evident in Figs. 5 and 6.
The contradictory findings for Deletion and Insertion are
likely the result of an error introduced by removing and
replacing the pixels, since the machine learning model is
not trained on image data containing modified features (con-
sidering each pixel as a feature). We argue that given such
a discrepancy, Deletion and Insertion may not be reliable
metrics for evaluating faithfulness. The proposed EvalAttAI
introduces perturbations smoothly and continuously, thus,
avoiding abrupt changes in feature (pixel) values. These
continuous and smooth changes are controlled using the ε

parameter as defined in Eq. 1.
A summary of our results is presented in Fig. 9 which com-

pares three models (ResNet, Robust-ResNet, and Bayesian
VDP-CNN) for four datasets (three of medical images and
one of natural images), six attribution methods and a random
baseline. In all sub-figures, the y-axes present AUC num-
bers calculated using test accuracy values for the proposed
EvalAttAI metric and error bars represent 95% confidence
interval.We do not observe any significant trend showing that
any model (among ResNet, Robust-ResNet, or VDP-CNN)
is more explainable than others across all tested attribution
methods and datasets. For some attribution methods, robust
models are more explainable, but not for others. On the
other hand, we note that the Vanilla Gradient (orange color
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bars) and SmoothGrad (blue color bars) consistently perform
better than all other attribution methods. Amongst these two
attribution methods, we note that Bayesian neural networks
(VDP-CNN) are more explainable. Based on these results,
we can conclude that Bayesian CNNs (trained using the
VDP technique [14]) are more explainable than the standard
and robustly trained neural networks when attributions are
generated using Vanilla Gradient.

We also observed that the Vanilla Gradient consistently
performed better than all other methods on our evaluation
metric.We argue that this is expected since this methodworks
directly on the neural network without any alterations or
modifications.

These findings expand upon the best practices presented
in our previous work [7], where we discussed considerations
for the researchers when choosing an attribution method.
We also discussed how robustness could play a significant
role in generating plausible-looking explanations that may
not be faithful. Based on this work, we suggest that theVanilla
Gradient should be used as the primary method of generat-
ing attributions. Instead of developing new ways to create
visually appealing explanations using various operations, the
community should focus on improving the robustness of the
machine learning models using Bayesian approaches or other
training methods.

VI. CONCLUSION
In this work, we introduce a new metric for testing the
faithfulness of attribution methods while showing the incon-
sistency and unreliability of the current state-of-the-art
approaches. Our experiments are performed on both natu-
ral and medical image datasets. Our proposed faithfulness
evaluation metric, EvalAttAI, shows consistent results. Our
evaluation found that the Vanilla Gradient and SmoothGrad
performed consistently better than all other attribution meth-
ods. Explanations from more complex attribution methods
might appear convincing, but they should be approached with
caution. In many instances, these methods are not faithful
and can create a false sense of confidence in the model’s
predictions. Considering the limitations of current attribu-
tion methods, a meaningful future direction for the machine
learning community to prioritize would be the development
of models that are not only inherently explainable but also
accurate, robust, efficient, scalable and versatile to improve
interpretability, rather than creating more post-hoc attribution
methods.

We could not find compelling evidence that all robust
models are more explainable across the board. However, our
experiments consistently show that Bayesian CNNs (trained
using the VDP framework) were more explainable than all
other models when used with the best performing attribution
method (Vanilla Gradient). For this reason, we recommend
that future research be focused on creating models with
more robust architecture and training methods, rather than
developing more complex post-hoc methods of generating
attributions.

REFERENCES
[1] R. Confalonieri, L. Coba, B. Wagner, and T. R. Besold, ‘‘A historical

perspective of explainable artificial intelligence,’’ WIREs Data Mining
Knowl. Discovery, vol. 11, no. 1, p. e1391, 2021.

[2] D. Minh, H. X. Wang, Y. F. Li, and T. N. Nguyen, ‘‘Explainable artificial
intelligence: A comprehensive review,’’ Artif. Intell. Rev., vol. 55, no. 5,
pp. 3503–3568, Jun. 2022.

[3] J. R. Epifano, R. P. Ramachandran, S. Patel, and G. Rasool, ‘‘Towards an
explainable mortality prediction model,’’ in Proc. IEEE 30th Int. Workshop
Mach. Learn. Signal Process. (MLSP), Sep. 2020, pp. 1–6.

[4] Y. Zhang, Y. Weng, and J. Lund, ‘‘Applications of explainable artificial
intelligence in diagnosis and surgery,’’ Diagnostics, vol. 12, no. 2, p. 237,
Jan. 2022.

[5] B. H.M. van der Velden, H. J. Kuijf, K. G. A. Gilhuijs, andM.A. Viergever,
‘‘Explainable artificial intelligence (XAI) in deep learning-based medical
image analysis,’’Med. Image Anal., vol. 79, Jul. 2022, Art. no. 102470.

[6] S. Ahmed, D. Dera, S. U. Hassan, N. Bouaynaya, and G. Rasool, ‘‘Failure
detection in deep neural networks for medical imaging,’’ Frontiers Med.
Technol., vol. 4, Jul. 2022, Art. no. 919046.

[7] I. E. Nielsen, D. Dera, G. Rasool, R. P. Ramachandran, and
N. C. Bouaynaya, ‘‘Robust explainability: A tutorial on gradient-based
attribution methods for deep neural networks,’’ IEEE Signal Process.
Mag., vol. 39, no. 4, pp. 73–84, Jul. 2022.

[8] S. Hooker, D. Erhan, P.-J. Kindermans, and B. Kim, ‘‘A benchmark
for interpretability methods in deep neural networks,’’ in Proc. 33rd
Int. Conf. Neural Inf. Process. Syst. (NIPS), H. Wallach, H. Larochelle,
A. Beygelzimer, F. d’Alché-Buc, E. Fox, and R. Garnett, Eds. Red Hook,
NY, USA: Curran Associates, 2019, pp. 9737–9748. [Online]. Available:
https://proceedings.neurips.cc/paper/2019/file/fe4b8556000d0f0cae99
daa5c5c5a410-Paper.pdf

[9] M. Nourelahi, L. Kotthoff, P. Chen, and A. Nguyen, ‘‘How explainable are
adversarially-robust CNNs?’’ 2022, arXiv:2205.13042.

[10] A. Mamalakis, E. A. Barnes, and I. Ebert-Uphoff, ‘‘Investigating the
fidelity of explainable artificial intelligence methods for applications
of convolutional neural networks in geoscience,’’ Artif. Intell. Earth
Syst., vol. 1, no. 4, 2022, Art. no. e220012. [Online]. Available:
https://journals.ametsoc.org/view/journals/aies/1/4/AIES-D-22-
0012.1.xml

[11] N. Hama, M. Mase, and A. B. Owen, ‘‘Deletion and insertion tests in
regression models,’’ 2022, arXiv:2205.12423.

[12] J. Zhou, A. H. Gandomi, F. Chen, and A. Holzinger, ‘‘Evaluating the qual-
ity of machine learning explanations: A survey on methods and metrics,’’
Electronics, vol. 10, no. 5, p. 593, Mar. 2021.

[13] H. Phan and A. Nguyen, ‘‘DeepFace-EMD: Re-ranking using patch-wise
earth mover’s distance improves out-of-distribution face identification,’’ in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2022,
pp. 20227–20237.

[14] D. Dera, N. C. Bouaynaya, G. Rasool, R. Shterenberg, and
H. M. Fathallah-Shaykh, ‘‘PremiUm-CNN: Propagating uncertainty
towards robust convolutional neural networks,’’ IEEE Trans. Signal
Process., vol. 69, pp. 4669–4684, 2021.

[15] G. Carannante, D. Dera, N. C. Bouaynaya, H. M. Fathallah-Shaykh,
and G. Rasool, ‘‘SUPER-Net: Trustworthy medical image segmenta-
tion with uncertainty propagation in encoder-decoder networks,’’ 2021,
arXiv:2111.05978.

[16] D. Dera, G. Rasool, and N. Bouaynaya, ‘‘Extended variational inference
for propagating uncertainty in convolutional neural networks,’’ in Proc.
IEEE 29th Int. WorkshopMach. Learn. Signal Process. (MLSP), Oct. 2019,
pp. 1–6.

[17] D. Dera, G. Rasool, N. C. Bouaynaya, A. Eichen, S. Shanko, J. Cammerata,
and S. Arnold, ‘‘Bayes-SAR net: Robust SAR image classification with
uncertainty estimation using Bayesian convolutional neural network,’’ in
Proc. IEEE Int. Radar Conf. (RADAR), Apr. 2020, pp. 362–367.

[18] A. Waqas, H. Farooq, N. C. Bouaynaya, and G. Rasool, ‘‘Exploring robust
architectures for deep artificial neural networks,’’ Commun. Eng., vol. 1,
no. 1, p. 46, Dec. 2022.

[19] A. Waqas, D. Dera, G. Rasool, N. C. Bouaynaya, and H. M. Fathallah-
Shaykh, ‘‘Brain tumor segmentation and surveillance with deep artificial
neural networks,’’ in Deep Learning for Biomedical Data Analysis: Tech-
niques, Approaches, and Applications. Springer, 2021, pp. 311–350.

[20] D. Tsipras, S. Santurkar, L. Engstrom, A. Turner, and A. Madry,
‘‘Robustness may be at odds with accuracy,’’ in Proc. Int. Conf. Learn.
Represent., 2019, pp. 6–9. [Online]. Available: https://openreview.net/
forum?id=SyxAb30cY7

VOLUME 11, 2023 82567



I. E. Nielsen et al.: EvalAttAI: A Holistic Approach to Evaluating Attribution Maps

[21] M. Ancona, E. Ceolini, C. Öztireli, andM. Gross, ‘‘Gradient-based attribu-
tion methods,’’ in Explainable AI: Interpreting, Explaining and Visualizing
Deep Learning, W. Samek, G. Montavon, A. Vedaldi, L. K. Hansen, and
K.-R. Müller, Eds. Cham, Switzerland: Springer, 2019, pp. 169–191, doi:
10.1007/978-3-030-28954-6_9.

[22] M. Nauta, J. Trienes, S. Pathak, E. Nguyen, M. Peters, Y. Schmitt,
J. Schlötterer, M. van Keulen, and C. Seifert, ‘‘From anecdotal evidence
to quantitative evaluation methods: A systematic review on evaluating
explainable AI,’’ 2022, arXiv:2201.08164.

[23] J. Zhang, S. A. Bargal, Z. Lin, J. Brandt, X. Shen, and S. Sclaroff,
‘‘Top-down neural attention by excitation backprop,’’ Int. J. Comput. Vis.,
vol. 126, no. 10, pp. 1084–1102, Oct. 2018.

[24] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba, ‘‘Learning
deep features for discriminative localization,’’ in Proc. IEEE Conf. Com-
put. Vis. Pattern Recognit. (CVPR), Jun. 2016, pp. 2921–2929.

[25] L. Raatikainen and E. Rahtu, ‘‘The weighting game: Evaluating quality of
explainability methods,’’ 2022, arXiv:2208.06175.

[26] T. Zhang and Z. Zhu, ‘‘Interpreting adversarially trained convolutional
neural networks,’’ in Proc. 36th Int. Conf. Mach. Learn., in Proceed-
ings of Machine Learning Research, K. Chaudhuri and R. Salakhutdi-
nov, Eds., vol. 97, Jun. 2019, pp. 7502–7511. https://proceedings.mlr.
press/v97/zhang19s.html

[27] P. Chalasani, J. Chen, A. R. Chowdhury, X. Wu, and S. Jha, ‘‘Concise
explanations of neural networks using adversarial training,’’ in Proc. 37th
Int. Conf. Mach. Learn., in Proceedings of Machine Learning Research,
vol. 119, H. Daumé III and A. Singh, Eds., Jul. 2020, pp. 1383–1391.
[Online]. Available: https://proceedings.mlr.press/v119/chalasani20a.html

[28] A. F. Markus, J. A. Kors, and P. R. Rijnbeek, ‘‘The role of explainability in
creating trustworthy artificial intelligence for health care: A comprehen-
sive survey of the terminology, design choices, and evaluation strategies,’’
J. Biomed. Informat., vol. 113, Jan. 2021, Art. no. 103655.

[29] A.-P. Nguyen and M. R. Martínez, ‘‘On quantitative aspects of model
interpretability,’’ 2020, arXiv:2007.07584.

[30] M. Velmurugan, C. Ouyang, C. Moreira, and R. Sindhgatta, ‘‘Evaluat-
ing fidelity of explainable methods for predictive process analytics,’’ in
Intelligent Information Systems, S. Nurcan and A. Korthaus, Eds. Cham,
Switzerland: Springer, 2021, pp. 64–72.

[31] C.-K. Yeh, C.-Y. Hsieh, A. Suggala, D. I. Inouye, and P. K. Ravikumar,
‘‘On the (in)fidelity and sensitivity of explanations,’’ in Proc. Adv. Neural
Inf. Process. Syst., vol. 32, H. Wallach, H. Larochelle, A. Beygelzimer,
F. d’Alché-Buc, E. Fox, and R. Garnett, Eds. Red Hook, NY, USA:
Curran Associates, 2019. [Online]. Available: https://proceedings.neurips.
cc/paper/2019/file/a7471fdc77b3435276507cc8f2dc2569-Paper.pdf

[32] Y. Ge, S. Liu, Z. Li, S. Xu, S. Geng, Y. Li, J. Tan, F. Sun, and Y. Zhang,
‘‘Counterfactual evaluation for explainable AI,’’ 2021, arXiv:2109.01962.

[33] V. Petsiuk, A. Das, and K. Saenko, ‘‘RISE: Randomized input sampling
for explanation of black-box models,’’ 2018, arXiv:1806.07421.

[34] W. Samek, A. Binder, G. Montavon, S. Lapuschkin, and K.-R. Müller,
‘‘Evaluating the visualization of what a deep neural network has learned,’’
IEEE Trans. Neural Netw. Learn. Syst., vol. 28, no. 11, pp. 2660–2673,
Nov. 2017.

[35] M. N. Vu, T. D. Nguyen, N. Phan, R. Gera, and M. T. Thai, ‘‘C-eval:
A unified metric to evaluate feature-based explanations via perturbation,’’
in Proc. IEEE Int. Conf. Big Data (Big Data), Dec. 2021, pp. 927–937.

[36] K. Simonyan, A. Vedaldi, and A. Zisserman, ‘‘Deep inside convolutional
networks: Visualising image classification models and saliency maps,’’ in
Proc. Int. Conf. Learn. Represent. (ICLR), 2014, pp. 1–8.

[37] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for image
recognition,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2016, pp. 770–778.

[38] A. Krizhevsky, ‘‘Learning multiple layers of features from tiny images,’’
M.S. thesis, Dept. Comput. Sci., Univ. Toronto, Toronto, ON, Canada,
2009.

[39] J. Yang, R. Shi, and B. Ni, ‘‘MedMNIST classification decathlon:
A lightweight AutoML benchmark for medical image analysis,’’
in Proc. IEEE 18th Int. Symp. Biomed. Imag. (ISBI), Apr. 2021,
pp. 191–195.

[40] J. Yang, R. Shi, D. Wei, Z. Liu, L. Zhao, B. Ke, H. Pfister, and B. Ni,
‘‘MedMNIST v2—A large-scale lightweight benchmark for 2D and 3D
biomedical image classification,’’ Sci. Data, vol. 10, no. 1, p. 41, Jan. 2023.

[41] J. Springenberg, A. Dosovitskiy, T. Brox, and M. Riedmiller, ‘‘Striving
for simplicity: The all convolutional net,’’ in Proc. ICLR, 2015,
pp. 7–14. [Online]. Available: http://lmb.informatik.uni-freiburg.de/
Publications/2015/DB15a

[42] M. Sundararajan, A. Taly, and Q. Yan, ‘‘Axiomatic attribution for deep
networks,’’ in Proc. Int. Conf. Mach. Learn., 2017, pp. 3319–3328.

[43] D. Smilkov, N. Thorat, B. Kim, F. Viégas, and M. Wattenberg, ‘‘Smooth-
Grad: Removing noise by adding noise,’’ 2017, arXiv:1706.03825.

[44] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and
D. Batra, ‘‘Grad-CAM: Visual explanations from deep networks via
gradient-based localization,’’ in Proc. IEEE Int. Conf. Comput. Vis.
(ICCV), Oct. 2017, pp. 618–626.

[45] N. Kokhlikyan, V.Miglani, M.Martin, E.Wang, B. Alsallakh, J. Reynolds,
A. Melnikov, N. Kliushkina, C. Araya, S. Yan, and O. Reblitz-Richardson,
‘‘Captum: A unified and generic model interpretability library for
PyTorch,’’ 2020, arXiv:2009.07896.

[46] N. Kokhlikyan, V. Miglani, M. Martin, E. Wang, J. Reynolds,
A. Melnikov, N. Lunova, and O. Reblitz-Richardson, ‘‘Pytorch Captum,’’
GitHub Repository, Captum Developed Meta Open Source, Menlo
Park, CA, USA, Tech. Rep., Captum v0.6.0 Release, 2019. [Online].
Available: https://github.com/pytorch/captum and https://arxiv.org/pdf/
2009.07896.pdf

[47] G. Carannante, D. Dera, G. Rasool, and N. C. Bouaynaya, ‘‘Self-
compression in Bayesian neural networks,’’ in Proc. IEEE 30th Int.
Workshop Mach. Learn. Signal Process. (MLSP), Sep. 2020, pp. 1–6.

IAN E. NIELSEN received the B.S. degree (cum
laude) in electrical and computer engineering from
Rowan University, in 2020, where he is currently
pursuing the Ph.D. degree in electrical and com-
puter engineering. He is a Research Assistant and
a Teaching Assistant. His current research was
focused on robust machine learning and how it
relates to explainable artificial intelligence. His
work mainly focuses on computer vision and can-
cer diagnosis tasks. He conducts research as a

part of the Rowan’s Artificial Intelligence Laboratory (RAIL). He currently
coordinates a group of 19 undergraduate student researchers alongside.
He through the Rowan University Engineering Clinic Program. Since the
start of his graduate education, he has taught machine learning using PyTorch
and Python to dozens of students through this program. His tutorial on robust
explainability was recently published in IEEE Signal Processing Magazine.
He was a recipient of the GAANN Teaching Fellowship under the U.S.
Department of Education, as of January 2021.

RAVI P. RAMACHANDRAN (Senior Mem-
ber, IEEE) received the B.Eng. degree (Hons.)
from Concordia University, in 1984, and the
M.Eng. and Ph.D. degrees from McGill Univer-
sity, in 1986 and 1990, respectively. From October
1990 to December 1992, he was with the Speech
Research Department, AT&T Bell Laboratories.
From January 1993 to August 1997, he was a
Research Assistant Professor with Rutgers Univer-
sity. He was also a Senior Speech Scientist with

T-Netix, from July 1996 to August 1997. Since September 1997, he has
been with the Department of Electrical and Computer Engineering, Rowan
University, where he has been a Professor, since September 2006. He was a
Consultant with T-Netix, Avenir Inc., Motorola, and FocalCool. His research
interests are in digital signal processing, speech processing, biometrics,
pattern recognition, machine learning, and filter design. Since May 2002,
he has been on the Digital Signal Processing Technical Committee for the
IEEE Circuits and Systems Society. Since May 2012, he has been on the
Education and Outreach Technical Committee for the IEEE Circuits and
Systems Society. From September 2002 to September 2005, he was an
Associate Editor for the IEEE Transactions on Speech and Audio Processing
and was on the Speech Technical Committee for the IEEE Signal Processing
Society. From September 2000 to December 2015, he was on the Editorial
Board of the IEEE Circuits and Systems Magazine. He is currently an
Associate Editor of Circuits, Systems and Signal Processing journal.

82568 VOLUME 11, 2023

http://dx.doi.org/10.1007/978-3-030-28954-6_9


I. E. Nielsen et al.: EvalAttAI: A Holistic Approach to Evaluating Attribution Maps

NIDHAL BOUAYNAYA (Member, IEEE) received
the Ph.D. degree in electrical and computer engi-
neering (ECE) and the M.S. degree in pure mathe-
matics from the University of Illinois at Chicago.

She is a Professor of ECE and the Director
of the Rowan’s Artificial Intelligence Laboratory
(RAIL). She is currently the Associate Dean of
Research and Graduate Studies with the Henry
M. Rowan College of Engineering. Previously,
she was a Faculty Member with the University

of Arkansas at Little Rock. She has coauthored more than 100 refereed
journal articles, book chapters, and conference proceedings, such as IEEE
TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, IEEE SIGNAL

PROCESSINGLETTERS, IEEE Signal ProcessingMagazine, andPLOSMedicine.
Her research interests are in big data analytics, machine learning, artificial
intelligence, and mathematical optimization.

Dr. Bouaynaya won numerous best paper awards, the most recent was
at the 2019 IEEE International Workshop on Machine Learning for Signal
Processing. She is also the winner of the top algorithm at the 2016 Multino-
mial Brain Tumor Segmentation Challenge (BRATS). She has been honored
with numerous research and teaching awards, including the Rowan Research
Achievement Award, in 2017, and the University of Arkansas at Little
Rock Faculty Excellence Award in research. Her research was primarily
funded by the National Science Foundation (NSF CCF, NSF ACI, NSF
DUE, NSF I-Corps, NSF ECCS, NSF OAC, and NSF HRD), the National
Institutes of Health (NIH), the U.S. Department of Education (USED), the
New Jersey Department of Transportation (NJ DoT), the U.S. Department of
Agriculture (USDA), the Federal Aviation Administration (FAA), Lockheed
Martin Inc., and other industry. She is also interested in entrepreneurial
endeavors. In 2017, she co-founded and is the Chief Executive Officer (CEO)
of MRIMATH, LLC, a start-up company that uses artificial intelligence to
improve patient oncology outcomes and treatment response. MRIMath is
funded by the NIH SBIR Program.

HASSAN M. FATHALLAH-SHAYKH, photograph and biography not
available at the time of publication.

GHULAM RASOOL (Member, IEEE) received
the B.S. degree in mechanical engineering from
the National University of Sciences and Tech-
nology (NUST), Pakistan, in 2000, the M.S.
degree in computer engineering from the Cen-
ter for Advanced Studies in Engineering (CASE),
Pakistan, in 2010, and the Ph.D. degree in systems
engineering from the University of Arkansas at
Little Rock, in 2014. He was a Postdoctoral Fellow
with the Rehabilitation Institute of Chicago and

Northwestern University, from 2014 to 2016. Before joining Moffitt, he was
an Assistant Professor with the Department of Electrical and Computer Engi-
neering, Rowan University. He is an Assistant Member with the Department
of Machine Learning, H. Lee Moffitt Cancer Center and the Research Insti-
tute, Tampa, FL, USA. His current research focuses on building trustworthy
multimodal machine learning and artificial intelligence model for cancer
diagnosis, treatment planning, and risk assessment. His research efforts are
currently funded by two National Science Foundation (NSF) awards. His
research was supported by the National Institute of Health (NIH), the U.S.
Department of Education, NSF, the New Jersey Health Foundation (NJHF),
Google, NVIDIA, and LockheedMartin, Inc. His work on Bayesian machine
learning won the Best Student Award at the 2019 IEEE Machine Learning
for Signal Processing Workshop.

VOLUME 11, 2023 82569


	EvalAttAI: A Holistic Approach to Evaluating Attribution Maps in Robust and Non-Robust Models
	Recommended Citation

	tmp.1709569230.pdf.ToIM4

