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Abstract: The nation’s transportation systems are complex and are some of the highest valued and
largest public assets in the United States. As a result of repeated natural hazards and their significant
impact on transportation functionality and the socioeconomic health of communities, transportation
resilience has gained increasing attention in recent years. Previous studies on transportation resilience
have heavily emphasized network functionality during and/or following a scenario hazard event
by implicitly assuming that sufficient knowledge of structural capacity and environmental/service
conditions is available at the time of an extreme event. However, such assumptions often fail to
consider uncertainties that arise when an extreme hazard event occurs in the future. Thus, it is
essential to quantify and reduce uncertainties to better prepare for extreme events and accurately
assess transportation resilience. To this end, this paper proposes a dynamic Bayesian network-based
resilience assessment model for a large-scale roadway network that can explicitly quantify uncertain-
ties in all phases of the assessment and investigate the role of inspection and monitoring programs in
uncertainty reduction. Specifically, the significance of data reliability is investigated through a sensi-
tivity analysis, where various sets of data having different reliabilities are used in updating system
resilience. To evaluate the effectiveness of the model, a benchmark problem involving a highway
network in South Carolina, USA is utilized, showcasing the systematic quantification and reduction
of uncertainties in the proposed model. The benchmark problem result shows that incorporating
monitoring and inspection data on important variables could improve the accuracy of predicting the
seismic resilience of the network. It also suggests the need to consider equipment reliability when
designing monitoring and inspection programs. With the recent development of a wide range of mon-
itoring and inspection techniques, including nondestructive testing, health monitoring equipment,
satellite imagery, LiDAR, etc., these findings can be useful in assisting transportation managers in
identifying necessary equipment reliability levels and prioritizing inspection and monitoring efforts.

Keywords: uncertainty; earthquake; seismic risk assessment; resilience; transportation network;
Bayesian updating; information entropy; fragility

1. Introduction

Decisions aimed at ensuring the adequate performance and operational integrity of
transportation systems have strong implications for the health and economic wellbeing of
the communities that they serve. Since their disruptions would have detrimental effects on
the continuous flow of people, essential goods, and vehicles, and, in turn, economic security,
transportation systems are generally expected to maintain prescribed minimum levels of
service under normal and even disturbed conditions. Specifically, during and following
man-made and natural hazards (e.g., bomb blasts, explosions, earthquakes, hurricanes,
and wildfires), transportation systems play a key role in providing access to the affected
regions, enabling search and rescue, and transporting essential supplies [1].

Infrastructures 2023, 8, 128. https://doi.org/10.3390/infrastructures8090128 https://www.mdpi.com/journal/infrastructures

https://doi.org/10.3390/infrastructures8090128
https://doi.org/10.3390/infrastructures8090128
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/infrastructures
https://www.mdpi.com
https://orcid.org/0000-0003-2313-8371
https://doi.org/10.3390/infrastructures8090128
https://www.mdpi.com/journal/infrastructures
https://www.mdpi.com/article/10.3390/infrastructures8090128?type=check_update&version=2


Infrastructures 2023, 8, 128 2 of 22

Due to the frequent occurrences and grave consequences of natural disasters observed
in recent years, research pertaining to the resilience assessment of transportation systems
has received a great deal of attention. Resilience for an engineered system is generally
defined as its capacity to withstand, adapt to, and recover rapidly from disruptions to
ensure its performance and meet customer demand [2–7]. Since there has been no widely
accepted measure of resilience for transportation systems, researchers have proposed to
define and quantify such resilience in different manners. These metrics are generally
divided into topological metrics [8], attributes-based metrics [9], and performance-based
metrics [2]. However, many resilience metrics have focused on a snapshot of system
resilience after the realization of a specific scenario hazard event, ignoring uncertainties in
this scenario event as well as system resilience.

While uncertainty quantification and reduction in transportation resilience assessment
are essential to ensuring cost-effective resilience-enhancing strategies, many studies that
propose a new resilience metric or resilience-based decision framework do not investigate
the role of inspection/monitoring programs. One reason for this is that most metrics or
frameworks measure scenario-based static resilience assuming that, at the time of hazard
event occurrence, the full probabilistic descriptions of structural capacity and external load-
ings are known. However, there are substantial uncertainties in (a) the number and time
of hazard event occurrence, (b) structural capacity in the future, and (c) external/service
loadings especially when climate change affects the performance of an asset or when traffic
demands change significantly as a result of population growth and urbanization. In recent
years, transportation agencies have also realized the increasing uncertainties arising from
aging and deteriorating infrastructure, increasing complexity of networks, extreme events
from natural and man-made hazards, budgets and resources, and increasing operational
demands, among others. Failure to account for these factors and the associated uncer-
tainties may affect the agency’s capability to achieve its predefined goals and objectives.
Moreover, if a resilience-based decision framework extends to a specified period of time
and is intended to capture the time-dependent changes in structural performance and
resilience, inspection/monitoring programs are necessary to increase the reliability of our
prediction about structural capacity and/or external loadings in the future and, ultimately,
transportation-system resilience.

This paper proposes a dynamic Bayesian network (BN)-based seismic resilience assess-
ment model for a large-scale roadway network that can explicitly quantify uncertainties in
all phases of the assessment and investigate the role of inspection and monitoring programs
in uncertainty reduction. First, uncertainties in transportation-system capacity and demand
are identified and reduced through a dynamic BN based on measurement data collected
over time. Then, the updated system capacity and demand are incorporated into network
analysis to assess roadway resilience over time. Specifically, the role of measurement data
in reducing uncertainty is investigated through a sensitivity analysis, where various sets
of data having different reliability are used in updating system resilience. Finally, the
proposed model is demonstrated with a benchmark problem, a highway network in South
Carolina, to showcase how the model can systematically quantify and reduce uncertainties
in assessing the seismic resilience of the highway network.

2. Literature Review
2.1. Transportation Resilience Assessment

Due to the unprecedented nature of disasters and their massive consequences, the
resilience of a transportation system has been extensively studied in the literature on various
modes of transportation, such as waterways, roadways, airways, and railways. As this
paper develops a dynamic BN-based resilience assessment model for a large-scale roadway
network, this section places more emphasis on the literature review of the resilience of a
highway road network.

Many quantitative and qualitative methods have been developed in recent years to
assess roadway-network resilience. For example, Adams et al. [10] proposed a set of criteria
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to qualitatively evaluate resilience when a road system was subjected to disruptive weather
events. However, quantitative methods have been more prevalent in transportation engi-
neering because of their ability to be coupled with transportation simulation and to provide
a quantitative basis for effective decision-making. Quantitative transportation resilience
metrics can be measured by simulation models, data-driven models, optimization models,
or probabilistic models. Specifically, optimization models are useful for solving traffic-
assignment problems and for optimizing preparedness and recovery activities/resources.

Murray-Tuite [9] is considered one of the first attempts to specifically define and quan-
titatively assess resilience in the context of transportation systems [1]. Murray-Tuite [9]
stated that the use of multiple metrics and simulation techniques could provide a promis-
ing approach to addressing the complexity of resilience and defined ten dimensions of
transportation resilience. To measure transportation resilience, Murray-Tuite [9] evaluated
only four out of the ten dimensions, which were adaptability, safety, mobility, and recovery,
by using the traffic assignment simulation methodology DYNASMART-P. Ip and Wang [11]
utilized the weighted average number of reliable independent paths in the road network to
quantitatively measure the resilience of transportation networks. Cox et al. [12] provided
operational metrics to evaluate different aspects of transportation-system resilience (e.g.,
vulnerability, flexibility, and resource availability) under terrorist attacks. With an emphasis
on enhancing the resilience of a transportation network, Liao et al. [13] aimed to measure
and optimize transportation resilience under disasters. They considered three performance
measurements (i.e., coping capacity, robustness, and flexibility) in evaluating transportation
resilience.

To study network topological characteristics and their role in transportation resilience,
Zhang et al. [14] proposed an optimization-based framework that considered throughput
and connectivity in quantifying resilience and conducted numerical experiments on 17 dif-
ferent network structures by including preparedness and recovery activities. The results
provided a basis for characterizing highly resilient network topologies and identifying
network attributes that might lead to poorly performing systems. Ganin et al. [15] stated
that evaluating road networks based only on their operating state during normal conditions
resulted in little information about system performance under disrupted conditions. By
using observed data of annual delay per peak-period auto commuter, they developed an
urban roadway-efficiency model and used it to calculate resilience. They defined resilience
as a change in efficiency resulting from roadway disruptions and applied their model
to road transportation networks in 40 major US cities. The results showed that, under
disruptive conditions, the failure of network components ultimately led to the failure of
the entire network and suggested that it would be important to evaluate the significance of
network components in prioritizing network resilience improvement activities.

However, most of the previous studies on transportation resilience have focused on
the effect of a scenario hazard event on system performance in the immediate aftermath of
such an event and provided a snapshot of system resilience. While some existing studies
have considered uncertainties in this scenario event as well as system resistance [16,17],
uncertainties have not been explicitly characterized, tracked, or reduced in the process.
Moreover, the role of inspection/monitoring programs and data reliability in uncertainty
reduction has not yet been studied in existing transportation resilience literature.

2.2. Use of Bayesian Network in Transportation Risk and Resilience Assessment

In the process of resilience evaluation, there are substantial uncertainties involved as
much information is not available regarding disruptive events. Moreover, these events
occur sometime far in the future. Some recent studies have attempted to account for uncer-
tainties in transportation resilience assessment using various models, such as the Markov
chain [18,19], neural network [20], and diffusion graph convolutional network [21]. How-
ever, thus far, BN is one of the most widely adopted models for addressing uncertainties
due to its conceptual clarity, flexibility, and sequential learning capability. BN is a graphical
model that permits the design of stochastic relationships among a group of variables,
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thereby allowing a clear framework for incorporating new data into existing knowledge.
Moreover, due to its flexibility, BN can handle a wide range of data types, including discrete,
continuous, subjective, and mixed data. Additionally, BN inherently enables sequential
learning, which is suitable particularly when sequential data are involved.

John et al. [22] presented a resilience assessment approach that employed BN to model
various influencing variables in a seaport system. The study showed that the proposed
methodology could provide safety analysts with a useful tool to implement resilience-
enhancing strategies for maritime systems. Hosseini and Barker [23] offered a methodology
to quantify resilience as a function of absorptive, adaptive, and restorative capacities using
BNs. BN was used in their study to track and quantify uncertainty propagation and,
ultimately, improve resilience-enhancing decision-making. They applied their model to an
inland waterway network and demonstrated how sensitivity analyses could improve pre-
and post-disaster strategies for building system resilience. Castillo et al. [24] presented a
BN-based model for the probabilistic risk assessment of railway lines. In their model, they
attempted to reduce the complexity of the problem because railway lines in the real world
have variables as high as thousands or more. To achieve this goal, they divided the BN into
small parts such that the complexity of the problem would become linear in the number of
items and subnetworks. Additionally, the application of the backward inference process of
BN helped identify the causes when an accident occurred.

While transportation resilience is often dynamic due to the evolving nature of external
and internal factors affecting transportation performance, most of the abovementioned
studies have considered resilience as a static one and employed static BN. Kammouh
et al. [25] presented both static and dynamic BN frameworks to evaluate the resilience
of engineering systems. The dynamic BN extends the classical BN by adding a time
dimension. The proposed resilience framework was presented in the form of a mathematical
formulation that integrated the probability distributions of all variable states. The static BN
framework was applied to evaluate the resilience of the country of Brazil against natural
and manmade disasters, while the dynamic BN framework was used to evaluate the
resilience of a transportation system. Their study showed that the dynamic BN framework
performed better in dynamically modeling complex systems, even in cases where data
were scarce.

In summary, BN has been used extensively in the literature to assess the risk and
resilience of complex engineering systems due to its ability to represent conditional de-
pendencies between a set of variables. Specifically, the aspects of BN, like the forward
and backward propagation, have been highly successful in decision-making in the face of
uncertainty.

2.3. Summary

From the literature review, most of the studies on transportation resilience have thor-
oughly emphasized network functionality during or following a scenario hazard event
by implicitly assuming that sufficient knowledge of structural capacity and environmen-
tal/service conditions is available at the time of an extreme event. However, it is identified
that such knowledge often involves uncertainties and, thus, uncertainties should be quanti-
fied and properly managed to improve the accuracy of resilience assessment. Moreover,
only a few studies have considered the interdependencies between random variables in
the assessment model. One way of addressing this issue is to embed dynamic BN in the
resilience assessment model to quantify uncertainties in major random variables that may
affect the resilience capacities of transportation systems not only at the present time but
also in the future. Furthermore, it is important to include the effect of monitoring and
inspection activities throughout the lifecycle of transportation systems, aiming at reducing
uncertainties and improving the accuracy of resilience assessment. To address the research
gaps identified in this section, we propose a transportation resilience assessment model,
where dynamic BN and information entropy are used to quantify and reduce uncertainties
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in resilience-related random variables while formulating interdependencies between these
variables.

3. Methodology: Dynamic BN-Based Seismic Resilience Assessment Model

This section proposes a model that quantifies and reduces uncertainties along the
process of seismic resilience assessment through information entropy and dynamic BN.
Figure 1 shows the overall flowchart of the proposed dynamic BN-based seismic resilience
assessment of a highway network. As illustrated in Figure 1, the model begins by mea-
suring the time-dependent structural vulnerability of individual bridges exposed to cor-
rosion (Section 3.1) and linking this measure to post-earthquake traffic carrying capacity
(Section 3.2). Then, the performance of individual bridges is aggregated through network
analysis to evaluate the performance of the highway network in terms of total travel time
prior to and following a hazard event (Section 3.3). By incorporating time-dependent
restorative activities into the network analysis, the network seismic resilience is assessed
(Section 3.4). In the meantime, the probability density functions (PDFs) of bridge and
network functionalities are updated based on inspection and monitoring data over time
through dynamic BN (Section 3.5). Finally, information entropy is used to quantify uncer-
tainties in the seismic resilience index and to study the sensitivity of seismic resilience to
the reliability of inspection and monitoring data (Section 3.5).
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3.1. Time-Dependent Structural Reliability Assessment of Bridges Exposed to Corrosion

Bridges are one of the most critical elements in a transportation network; based on
past experiences (e.g., the 1994 Northridge earthquake, the 1995 Kobe earthquake, the 1999
Chi-Chi earthquake, the 2011 Tohoku earthquake, etc.), they are perceived as one of the
most vulnerable components that may experience significant structural damage in the
event of an earthquake [26–29]. While it is essential to consider other factors contributing
to the overall performance of transportation networks during earthquake events, such as
roadway and pavement damage, tunnel damage, landslides, etc., this study is specifically
focused on the analysis of the post-earthquake performance of individual bridges especially
when they are exposed to corrosion.

Bridges in coastal environments or cold climates are exposed to chloride-induced
corrosion, which is known to be a major cause of structural deterioration. As shown
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in Figure 2, a bridge slowly loses its capacity to resist extreme loading over time due
to corrosion and, therefore, has a higher probability of failure when being subjected to
earthquakes. Time-dependent reliability (i.e., the probability that the limit state of a bridge
will not be exceeded) is modeled by incorporating time-dependent deterioration in the
structural elements.
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For a reinforced concrete (RC) member, chloride accumulation profiles in concrete can
be modeled by using Fick’s second law [30–32]:

C(x, t) = Cs

(
1− er f

x
2
√

Dct

)
(1)

where C(x, t) = the chloride concentration at a distance x (m) from the surface at time t;
Cs = the chloride concentration at the surface (kg/m3); er f = the gaussian error function;
and Dc = the diffusion coefficient (m2/year). By setting C(x, t) equal to the critical chloride
concentration (Ccr), Equation (1) can be solved for t. Then, the corresponding corrosion
initiation time, Ti, is calculated by [33]:

Ti =
x2

4Dc

[
er f−1

(
Cs − Ccr

Cs

)]−2
(2)

Once corrosion initiates, the reinforcement diameter decreases over time and can be
mathematically expressed by a time-dependent function:

D(t) = D0 − rcorr(t− Ti) (3)

where D(t) = the reinforcement diameter at time t; D0 = the initial diameter of a reinforcing
rebar; and rcorr = the rate of corrosion. Consequently, the remaining cross-sectional area of
reinforcement can be estimated by the following expressions [34]:

A(t) =


nD2

0
π
4 f or t ≤ Ti

n
[
D(t)]2 π

4 f or Ti < t < Ti + Di/rcorr

0 f or t ≥ Ti +
Di

rcorr

(4)

in which n = the number of reinforcing rebars.
The failure probability of the bridge structure is computed, as expressed by Equation (5):

Pf (t) =
∫ ∞

0

(∫ s

0
fR,S(t)dr

)
ds (5)
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where Pf (t) = the failure probability of a component or system; and fR,S(t) = the joint proba-
bility distribution of resistance (R) and load (S) functions. Since structural deterioration due
to corrosion reduces the strength of a component or system over time, the time-dependent
failure probability will be estimated by accounting for the effects of corrosion deterioration
in the resistance model.

In this paper, we adopt the parameterized seismic fragility model proposed by
Ghosh [35] to assess the time-dependent failure probability of a bridge. It is because
(a) this model can reduce substantial computation burden by replacing a large number of
nonlinear dynamic analyses of complete finite element models with a surrogate model [36];
(b) it can capture time-dependent deterioration in the structural elements; and (c) it can
incorporate new observed data obtained from field-measurement instrumentation and
update the failure probability of the bridge. The parameterized fragility curve equation is
generally expressed by [36]:

Psys|im,x1,x2, ..., xm = P
[
binsys, i = 1

∣∣im, x1, x2, . . . , xm
]
=

eθsys,0+θsys,imim+∑m
j=1 θsys, j xj

1 + eθsys,0+θsys,im+∑m
j=1 θsys,jxj

(6)

in which Psys|im,x1,x2, ..., xm = the conditional probability of system-level failure; im = the
intensity of ground motions; x = the set of m critical parameters affecting the seismic
performance of the deteriorating bridge; bin = the binary vector indicating either system
survival (bin = 0) or system failure (bin = 1); and θ = the set of logistic regression coefficients.
To reduce uncertainties involved in the structural deterioration process, the deterioration
parameters (e.g., Cs, Dc, and rcorr) can be monitored through field instrumentation and
used to update the input vector x through BN. Ultimately, the updated input vectors are
incorporated into the parameterized fragility curve to update the probability of failure.
This procedure will be illustrated in more detail in Section 3.5.

3.2. Post-Earthquake Traffic Flow Capacity Assessment of Highway Bridges

Following an earthquake event, a bridge can be fully operational or can carry only
some portion of the traffic load that can be safely carried by an intact bridge. Truck weight
and speed restrictions or lane closures can be implemented to reduce the traffic load that
needs to be carried by a damaged bridge. To assess the post-earthquake functionality of a
bridge, in this subsection, we adopt a methodology for linking the post-earthquake relia-
bility index of a bridge to the resulting traffic flow capacity by adjusting the mean values
of live load in a reliability calculation [37]. Using this relationship, the post-earthquake
reliability index obtained from Section 3.1 can be used to find the associated allowable
traffic flow capacity.

In Section 3.1, the probability of failure of an individual bridge given a specific ground-
motion intensity can be calculated by Equation (6). Then, the reliability index, β, of a bridge
structure is calculated by:

β = Φ−1
(

1− p f

)
(7)

where Φ−1(·) = the inverse of the cumulative distribution function of a standard normal
random variable; and p f = the probability of failure of the bridge. The relationship between
β and traffic flow capacity is developed based on the working-backward method [37]. The
detailed procedure for developing the relationship between the post-earthquake reliability
index and traffic carrying capacity can be found in Ghasemi and Lee [37].

3.3. Network Analysis: A Highway Network Involving Multiple Bridges

Network analysis is a computational framework used to evaluate network-level perfor-
mance by accounting for the interactions between various components. The performance
of a network can be evaluated in terms of total travel time. Conventional connectivity often
accounts only for two binary states of a link (full capacity or complete failure), which may
mislead the actual performance of the network. On the other hand, travel time and costs
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can consider different levels of link capacities and incorporate dynamic traffic demand over
time. Thus, travel time and cost are useful measures to determine network performance
under traffic flow variation [38] and to be used in a cost–benefit analysis to determine the
effectiveness of institutional investments in maintenance and repair activities in improving
the resilience of a road network.

In this paper, we assess highway-network performance using the CUBE voyager soft-
ware program which enables macroscopic traffic simulation. It is a transportation planning
software commonly used in evaluating the performance of transportation networks, an-
alyzing travel demand, and estimating travel time. This program requires network GIS
data, the traffic capacity and demand at each link, and origin–destination (O-D) pairs as
major input data. During normal operations, the performance of the highway network
is assessed by the aggregated travel time of the fastest routes between all O-D pairs. Fol-
lowing an earthquake event, post-earthquake link capacities obtained from Section 3.2 are
incorporated into the network analysis to determine the fastest routes between the same set
of O-D pairs. The performance of the highway network is assessed at every time interval
whenever new information on major random variables becomes available.

3.4. Seismic Resilience Assessment of a Highway Network

This subsection illustrates the procedure for assessing the seismic resilience of a
highway network. Although there is no single agreed upon indicator for measuring
resilience, loss of resilience, Rloss, with respect to a specific earthquake event, has been
widely used as a resilience indicator over the past two decades [2]. As shown in Figure 3,
the loss of resilience can be measured by the area above the post-earthquake recovery
trajectories and accounts for both the expected degradation in quality and the recovery
time. It is mathematically expressed by:

Rloss =
∫ t1

t0

[100−Q(t)]dt (8)

where t0 = the time of occurrence of an earthquake event; t1 = the time when a
bridge/network is completely repaired; and Q(t) = the time-dependent quality (or perfor-
mance) of the structure. To improve the seismic resilience of the structure, Rloss should be
reduced.
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A similar formulation is adopted in this study. The seismic resilience of a highway net-
work is measured by the normalized area under the post-earthquake recovery trajectories
and can be expressed as:

R =
1

t1 − t0

∫ t1

t0

Q(t)dt (9)
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Contrary to Rloss, a higher value of R indicates a more seismically resilient network.
In this paper, network performance is expressed as a function of total travel time as
follows [39]:

Q(t) = 100− 100
(

TTT(t)− TTT0

TTT0

)
(10)

where TTT(t) = the total travel time at time t; and TTT0 = the total travel time in the base
model (measured without any disaster event).

To capture both the time-dependent nature of resilience and uncertainty propagation,
network resilience is assessed at every time step (e.g., 2 years) over a specified time
period (e.g., 50 years) by assuming that a highway network is subjected to the same
scenario earthquake event. Network resilience is expected to change due to time-dependent
bridge reliability and traffic demand. However, due to substantial uncertainties in seismic
resilience assessment, the estimated network resilience could be different from true network
resilience. Thus, inspection and monitoring activities are performed continuously over
time and their measurement results are incorporated in updating the stochastic models of
bridge fragility and link traffic demand through dynamic BN. Using the updated models,
network resilience is estimated at every time step and is compared with the one estimated
based only on prior information to investigate the role of inspection/monitoring programs
in reducing uncertainties in seismic resilience assessment.

3.5. Uncertainty Quantification and Propagation in Resilience Assessment

This subsection illustrates the procedure for quantifying uncertainties and tracking
their propagation from individual stochastic models to overall resilience assessment. There
are two types of uncertainties—aleatory and epistemic. Aleatory uncertainties are defined
as randomness or the inherent variability of a physical phenomenon and, thus, are es-
sentially irreducible. For example, wind speeds at a site are typically characterized by
Weibull distribution. Additional sampling will not change its coefficient of variation in
any significant way. On the other hand, epistemic uncertainties are knowledge based and
generally can be reduced with additional knowledge. Additional knowledge comes at a
price and there is a trade-off between cost and uncertainty reduction. Thus, in this study,
epistemic uncertainties are reduced by incorporating additional information obtained from
inspection and field instrumentation through BN.

BN has been widely applied in the field of reliability and resilience assessment due to
its ability to update prior knowledge based on newly observed data. BN is a reliable tool
that accounts for the influence of uncertainty and variability to predict model outcomes for
a complex system. In Bayes’ Theorem, initial knowledge of a parameter (θ) is encoded in a
prior PDF, f (θ). After incorporating observed data (d), a posterior PDF of the parameter,
f (θ|d), is calculated by:

f (θ|d) = f (d|θ) f (θ)
f (d)

(11)

where f (d|θ) = the likelihood function that quantifies the likelihood of observing this data
given θ; and f (d) = the marginal probability of the data. As such, the posterior PDF of the
parameter is obtained by updating the prior PDF in light of the observed data and is more
informative than the prior one.

As shown in Figure 4, major random variables related to corrosion, seismic hazards,
and traffic demands can be monitored. Additional nodes can be introduced into the existing
Bayesian network (i.e., Figure 4) to account for other random variables and uncertain factors
that could potentially affect network performance. In the proposed resilience assessment
framework, the parameterized fragility curve equations (c.f., Equation (6)) of individual
bridges are continually updated based on field instrumentation data, while traffic-count
data, such as annual average daily traffic (AADT) data, are incorporated to update the prior
PDF of traffic demand on each link. BN can be used to develop a series of probabilistic
graphical models aimed at identifying the relative contributions of uncertainties at each
stage to uncertainties in the overall resilience.
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Information entropy is used to quantify uncertainties in the PDFs of random variables
in resilience assessment. Specifically, in this paper, information entropy is used to quantita-
tively assess the effect of data reliability (or accuracy) on the reduction of uncertainties. In
classical physics, entropy is a measure of the quantity of energy that is no longer available
to do physical work. Shannon [40] extended the entropy concept to information theory to
quantify the amount of information as follows:

I(xi) = −log(pi) (12)

where I(·) = the amount of information; X = the random variable; and P = the probability
distribution of X. The value I(·) indicates how much information there is in a random
variable X. For example, an event having a lower probability has more information
than common events and, thus, has a higher value of I. On the other hand, there is no
information content in a certain or deterministic event. The information entropy, which is
also called Shannon entropy, is the expected amount of information in a random variable
and is calculated by the following equation [41]:

H(x) = E[I(X)] (13)

The information entropy for a discrete random variable X is expressed by:

H(x) = ∑n
i=1 pi I(xi) = −∑n

i=1 pilog(pi) (14)

Similarly, the information entropy for a continuous random variable X is defined as:

H(x) = −
∫

f (x)log( f (x))dx (15)

4. Benchmark Problem: A Highway Network in South Carolina, USA
4.1. Overview

In this section, the proposed seismic resilience assessment model is illustrated with a
highway network in South Carolina (see Figure 5) which is similar to and was previously
used as a case study by Rokneddin et al. [42]. This network is selected as a benchmark
problem in this study because the surrogate seismic fragility curves of various types of
bridges located in the network are available [35], which allows us not to develop the
surrogate models on our own through extensive structural analyses. As indicated by
Rokneddin et al. [42], the network consists of bridges that are vulnerable to earthquake
activity due to a lack of seismic design and retrofit. The bridges in the network are also
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potentially exposed to marine chloride due to their proximity to the Atlantic Ocean, as
shown in Figure 5, which makes these bridges more vulnerable to earthquakes over time.
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For the purpose of illustration, a scenario-based approach is taken in this paper
to quantify and reduce uncertainties along the process of seismic resilience assessment
through information entropy and dynamic BN. It should be noted that uncertainties in
earthquake hazard intensity, location, frequency, and timing can be quantified by following
the same procedure that will be introduced for other random variables (chloride concen-
tration and traffic demand) in the remaining section. Earthquake-related uncertainties are
not considered in this benchmark problem because (a) these uncertainties are more like
irreducible aleatory uncertainties and (b) probabilistic seismic hazard analysis may require
additional computational burden. The scenario earthquake event considered is the 1886
Charleston earthquake, one of the most damaging earthquakes in the Eastern United States.
Its estimated moment magnitude was 6.9–7.3 Mw, and over 2000 buildings were damaged.

Information about the bridges in the network is obtained from the national bridge
inventory database. Based on the number of spans, major construction materials, and types
of design/construction, the bridges are categorized into five different classes. The bridges
are further classified based on their proximity to the ocean: marine splash zone for the
bridges within 10 m from the coastline and marine atmospheric zone for the bridges outside
the splash zone. Each category of bridges possesses unique surrogate seismic fragility
curves to account for the influence of corrosion on the bridge’s ability to withstand seismic
forces over time.

4.2. Dynamic Bayesian Updating with Field-Measurement Data

To examine the role of investigating and monitoring major random variables (specif-
ically surface chloride concentration and traffic demand) in resilience assessment, this
study considers three cases: (a) Case A: the baseline case where transportation resilience
is measured based on the prior probability distributions of random variables, which is
consistent with most existing studies introduced in the literature review; (b) Case B: true
transportation resilience, which is never known in the real world; and (3) Case C: the case
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where transportation resilience is measured based on the updated posterior probability
distributions of random variables. Figure 6 illustrates the dynamic BN embedded in the
proposed seismic resilience assessment, which represents Case C. More specifically, in Case
C, it is assumed that two random variables that change over time—surface chloride con-
centration and traffic demand—are monitored and that their prior probability distributions
are updated over time through dynamic BN.

Infrastructures 2023, 8, 128 12 of 22 
 

study considers three cases: (a) Case A: the baseline case where transportation resilience 
is measured based on the prior probability distributions of random variables, which is 
consistent with most existing studies introduced in the literature review; (b) Case B: true 
transportation resilience, which is never known in the real world; and (3) Case C: the case 
where transportation resilience is measured based on the updated posterior probability 
distributions of random variables. Figure 6 illustrates the dynamic BN embedded in the 
proposed seismic resilience assessment, which represents Case C. More specifically, in 
Case C, it is assumed that two random variables that change over time—surface chloride 
concentration and traffic demand—are monitored and that their prior probability distri-
butions are updated over time through dynamic BN.  

 
Figure 6. Dynamic Bayesian network embedded in seismic resilience assessment. 

Input vector (𝒙) and logistic regression coefficients (𝜽) of the parameterized fragility 
curve equation (i.e., Equation (6)) vary depending on the class of bridge and the provision 
of seismic detailing. Among them, the area of rebar is one of the key parameters and is 
included in the fragility curves of all bridge classes regardless of its seismic detailing. As 
described in Section 3.1, surface chloride corrosion may induce a reduction in the area of 
rebar and ultimately affects time-dependent failure probabilities of bridges, which affects 
both bridge and link capacities (Section 3.2). Therefore, monitoring data on surface chlo-
ride corrosion at all bridge locations over time may improve our understanding of time-
dependent bridge and network capacity. On the other hand, traffic demand at each high-
way link also changes over time due to population changes [17], land-use conditions [43], 
infrastructure development, intelligent transport system [44], and policies related to traf-
fic-control technologies (e.g., ramp metering, road pricing, route guidance, and variable 
speed limits) [45]. Thus, monitoring and updating traffic demand over time may improve 
the accuracy of network performance assessment. By combining these two time-

Figure 6. Dynamic Bayesian network embedded in seismic resilience assessment.



Infrastructures 2023, 8, 128 13 of 22

Input vector (x) and logistic regression coefficients (θ) of the parameterized fragility
curve equation (i.e., Equation (6)) vary depending on the class of bridge and the provision
of seismic detailing. Among them, the area of rebar is one of the key parameters and
is included in the fragility curves of all bridge classes regardless of its seismic detailing.
As described in Section 3.1, surface chloride corrosion may induce a reduction in the
area of rebar and ultimately affects time-dependent failure probabilities of bridges, which
affects both bridge and link capacities (Section 3.2). Therefore, monitoring data on surface
chloride corrosion at all bridge locations over time may improve our understanding of time-
dependent bridge and network capacity. On the other hand, traffic demand at each highway
link also changes over time due to population changes [17], land-use conditions [43],
infrastructure development, intelligent transport system [44], and policies related to traffic-
control technologies (e.g., ramp metering, road pricing, route guidance, and variable speed
limits) [45]. Thus, monitoring and updating traffic demand over time may improve the
accuracy of network performance assessment. By combining these two time-dependent
random variables for all the links in the network, network performance is assessed and
updated at every time step.

For Case A, the prior probability distributions of surface chloride concentration for
bridges vary depending on bridge location and construction year. Prior knowledge suggests
that the surface chloride concentration is lognormally distributed with the mean values
adopted from Ghosh [35] and a coefficient of variation of 0.5. While these prior distributions
consider randomness in Cs, they cannot capture the time-dependent characteristics of
chloride concentration as many static resilience assessment studies do. Due to epistemic
uncertainties, true time-dependent chloride concentrations on the surface (i.e., Case B) are
never known in the real world. Thus, in this study, we generate synthetic true Cs values by
randomly sampling its initial value from the prior distributions and applying Equation (16)
to generate time-dependent Cs over a 50 year period [46].

Cs,t(t) = C0 + αln(t) (16)

where C0 = the surface chloride concentration at the beginning and α = the constant value
of 0.6856. The procedure described above, however, does not account for spatial correlation
in the surface chloride concentrations between adjacent locations, which has been identified
as one of the factors that may affect the accuracy of time-dependent bridge functionality
estimation. To generate spatially correlated chloride concentration values, the Kriging
spatial interpolation technique is used. According to the exponential variogram for surface
chloride concentration provided by Ghosh [35], the “range” is 8 km, where semivariance
reaches a plateau and observations are no longer spatially correlated. Therefore, we first
divide the entire case-study region into 8 km× 8 km cells and randomly generate the initial
surface chloride concentration at the centroid of each cell. It is because the distance between
two centroids is equal to the “range” and initial chloride concentrations at these centroids
are not spatially correlated and can be randomly generated from the prior distributions.
Then, the Kriging technique is used to calculate Cs,t(t) at the locations between the centroids,
as illustrated in Figure 7. In the next time step, Equation (16) is applied to generate surface
chloride concentration only at the centroids and, then, the Kriging technique is used to
generate spatially correlated values over the network. This procedure is repeated until the
end of a 50 year time period. The time-dependent surface chloride concentration values are
used to update the area of rebar at each bridge location (See Equations (3) and (4)), which
are subsequently used as an input to the time-dependent fragility curve.
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For Case C, the surface chloride concentration values are monitored over time and
Bayesian updating is employed to update the probability distributions of Cs and the time-
dependent fragility curves. In this study, synthetic measurement data are generated. These
plausible measurement-data realizations are generated by combining the true value with a
random error term as follows:

Cs,m(t) = Cs,t(t) + εe (17)

where Cs,m(t) = the time series measurement data; Cs,t(t) = the true values or ideal data;
and εe = the measurement error reflecting our confidence in the measurement data. Given
that the true data will never be known exactly, the measurement data can be used to better
represent the true states of surface chloride concentrations. In this study, the PDFs of
surface chloride concentration PCs(Cs, t) at all bridge locations are updated based on the
synthetic measurement data through dynamic BN. Subsequently, the posterior PDFs of
PCs(Cs, t) are used to update the time-dependent fragility functions.

Similarly, we generate synthetic values of traffic demand for the three cases. The
annual average daily traffic (AADT) data obtained from the South Carolina Department
of Transportation (SCDOT) are used to predict the theoretical traffic demands over the
next 50 years. SCDOT provides AADT data that have been collected from sensors placed
on the road network in the past 17 years. This study specifically uses an autoregressive
integrated moving average (ARIMA) model in generating the theoretical values of traffic
demands because ARIMA models can (a) capture the seasonality and long-term trends that
the AADT data exhibit and (b) provide accurate forecasts for both short- and medium-term
AADT predictions. In this study, the R software is used in fitting and forecasting the traffic
demand. After generating the theoretical (simulated) values of traffic demand using the
ARIMA model, the synthetic true values and synthetic measurement data are generated
based on the following equations, respectively:

yt(x) = ya(x, θ) + εa (18)

ym(x) = yt(x) + εobs (19)

where x = the set of independent variables; yt(x) = the synthetic true values of traffic
demand; θ = the set of model parameters; ya(x, θ) = the outputs of the ARIMA model, that
are the theoretical values of traffic demand; εa = the modeling error; ym(x) = the synthetic
measurement data on traffic demand; and εobs = the measurement error which is usually
modeled as a Gaussian random variable. In general, the measurement error is smaller than
the modeling error. To clarify, the theoretical values, ya(x, θ), are used for traffic demand in
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Case A, the synthetic true values, yt(x), are used in Case B, and the synthetic measurement
data, ym(x), are used in Case C.

The reliability of the data obtained from Inspection or monitoring programs Is crucial
for an accurate performance and resilience assessment of transportation systems. Inaccurate
data can lead to an incorrect assessment, which can have serious consequences for the safety
and reliability of the transportation system. Therefore, in this study, a sensitivity analysis is
performed to evaluate how data reliability affects the accuracy of the estimation of system
performance and resilience. By doing so, it is possible to determine the level of confidence
in the resilience assessment results and make informed decisions about maintenance and
repair strategies. In this study, a range of equipment with different accuracies is considered.
To simplify the modeling procedure, the coefficient of variation of the modeling error term
(εobs in Equation (19)) is chosen as the representative metric, which ranges from 0.05 to 0.3
in increments of 0.05. This range represents the variability in the accuracy of the equipment
being used.

4.3. Network Analysis and Seismic Resilience Assessment

To perform a network analysis, we first determine the capacities and demands of
all the links in the network. Conditioned on the 1886 Charleston earthquake, a ground
motion intensity map in the study region is generated through Open-Source Seismic Hazard
Analysis (OpenSHA) [47]. While a set of ground motion intensity maps should be generated
for the scenario earthquake to account for uncertainties, only the median values of ground
motion intensities are used in this paper for the purpose of simplification. Figure 8 shows
the ground motion intensity map generated through OpenSHA. By combining the ground
motion intensity at every bridge location with the corresponding seismic fragility curves,
we can find the failure probabilities of all the bridges. This process is coupled with ArcGIS
and data on bridges and highway segments. If any form of retrofit or rehabilitation has been
implemented on a bridge prior to an earthquake event, the enhanced structural capacity
resulting from these interventions can be incorporated into the fragility curve. It should
be noted that these failure probabilities are updated over time because time-dependent
fragility curves are updated based on the measurement data.
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The updated probability of failure of each bridge, that is the result of the parameterized
fragility function, is converted into the reliability index (β). Ghasemi and Lee [37] proposed
a reliability-based indicator for assessing the expected post-earthquake traffic flow capacity
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of a highway bridge. The relationship between the reliability index and the post-earthquake
traffic carrying capacity (TCC) is shown in the following equation [37]:

TCC = 0.2432e0.3548β (20)

This study assumes that bridges play a key role in determining transportation-network
performance and that the bridges on the same link can be modeled as a series system. At
every time step, the reliability indices of all bridges are updated based on the measurement
data and are converted into their post-earthquake traffic-carrying capacities and the associ-
ated link capacities. The link capacities are used as inputs to the CUBE voyager software
program to measure network performance. In addition, the updated traffic demands for all
links are also incorporated into the network analysis so that both updated link capacity
and link demand affect the performance of the network.

The network performance Is measured by the total travel time, TTT(t). After the
50 year performance profile of the network is obtained, the time-dependent resilience of
the case-study network is calculated using Equation (9). Finally, the information entropy of
each node in the Bayesian network is calculated, and their sum gives the total information
entropy of the system.

5. Results and Discussion

To estimate the bridges’ failure probabilities, the parameterized fragility curve equa-
tions are utilized in this study. Figure 9a shows the fragility curves of a specific bridge
for different years under Case C. The fragility curves are updated over time due to the
reassessed posterior PDFs of chloride concentration values obtained through dynamic BN.
This figure shows how the probability of failure increases with time due to the effect of
corrosion-induced deterioration.
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Figure 9b compares the fragility curves of a bridge for Cases A, B, and C at Year 50.
This comparison allows for an assessment of the accuracy of the theoretical (Case A) and
updated (Case C) values compared to the true values (Case B). The results demonstrate the
significance of monitoring and inspection programs in improving the accuracy of bridge
fragility assessments. As expected, the updated fragility curve based on field-measurement
data is much closer to the true fragility curve, which indicates that the proposed dynamic
BN method can estimate bridge-failure probability in a more accurate manner compared
to using only prior theoretical information. Given that the true fragility curve is never
known in the real world, the proposed dynamic BN model offers a reliable and practical
way to improve our knowledge about major deterioration-related random variables and,
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ultimately, enhance our prediction about bridge-failure probability. Similar observations
can be found in the comparison of traffic demands between Cases A, B, and C.

To estimate the total travel time for the case-study network, while incorporating
time-dependent link capacity and demands, CUBE simulates the movement of vehicles
and traffic flow through the network over time by taking into account factors such as
congestion, signal timing, and speed limits. The total travel time obtained from the CUBE
simulation is incorporated into Equation (10) to evaluate the performance of the case-
study network. Figure 10 shows a time-dependent seismic resilience index calculated from
Equation (9) following the scenario earthquake event. Overall, the seismic resilience index
decreases over time mainly due to bridge deterioration and increased traffic demands.
Another finding is that as time increases, the degree of overestimation of network seismic
resilience by Case A increases. Conversely, Case C maintains a consistent and accurate
estimate of network seismic resilience, even in the distant future. This also highlights the
significance of monitoring and inspection programs in reducing uncertainties. However,
it should be noted that there is some deviation between Cases B and C, which can be
attributed to measurement errors. Such errors may occur due to various factors such as
equipment limitations, human error, etc. These errors can affect the accuracy of the data
and consequently impact the estimation of total travel time, network performance, and
seismic resilience.
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Figure 10. Time-dependent resilience index of the network following the scenario earthquake event:
comparison of three cases.

To investigate how the reliability of monitoring and inspection equipment can impact
the accuracy of the seismic resilience assessment results for the case-study network over
time, a sensitivity analysis is performed. A range of equipment with different levels of
reliability is included in the sensitivity analysis, with a coefficient of variation (CoV) values
of the measurement-error term ranging from 0.05 to 0.3. More specifically, the CoV of εe
in Equation (17) and the CoV of εobs in Equation (19) vary for chloride concentration and
traffic demand, respectively. In the case where the CoV is 0, Case C becomes identical
to the true case (i.e., Case B). Figure 11 shows the sensitivity analysis results of network
seismic resilience to the reliability of monitoring equipment. The figure compares the 95%
confidence intervals of the seismic resilience index for the equipment with the highest
reliability (i.e., CoV of 0.05) and the lowest reliability (i.e., CoV of 0.3). The outcomes of Case
B lie between the 95% confidence intervals of both types of equipment, with the exception
of the 30 year mark. As this deviation is primarily due to the limited number of simulations,
it is expected that the outcomes of B consistently fall within the confidence intervals of
both cases with a larger number of simulations. As expected, the equipment with higher
reliability is more accurate in predicting the true seismic resilience index. Thus, by utilizing
high-reliability monitoring equipment, transportation managers can obtain more accurate
and reliable resilience assessment results, make better informed decisions, and take effective
necessary actions to improve the overall seismic resilience of the transportation network.
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The sensitivity analysis results can further be used to determine the level of monitoring
equipment reliability that is required to achieve the desired level of accuracy in the seismic
resilience assessment.
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To quantify uncertainties along the process of the seismic resilience assessment, in-
formation entropy values for the two types of monitoring equipment with different levels
of reliability (i.e., CoV of 0.05 and CoV of 0.3) are calculated using Equation (15). The
results are then used to create Figures 12 and 13. Figure 12a,b depict geographic maps
of information entropy for bridge-failure probability at Year 50 when using higher relia-
bility equipment (CoV of 0.05) and lower reliability equipment (CoV of 0.3), respectively.
Each bridge has a unique information entropy value, which reflects different amounts of
randomness or uncertainty. It is found that when lower reliability equipment is used, the
information entropy values for the bridge-failure probability are higher, indicating a greater
degree of uncertainty. Similar observations can be found in Figure 13, which compares
information entropy values for traffic demand at Year 50 when it is monitored through
higher reliability equipment (CoV of 0.05) and lower reliability equipment (CoV of 0.3).
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Finally, the information entropy of the seismic resilience index is calculated. Due to the
higher values of information entropy for the bridge-failure probability and traffic demand,
the information entropy for the seismic resilience index is 21% higher at Year 50 when
lower reliability equipment is used, compared to higher reliability equipment.

Figure 14 presents a percentage increase in information entropy with respect to the
baseline value (i.e., Year 10 value) over time. This increase in information entropy over time
for both cases suggests an increase in the amount of uncertainty in the process. This is an
important finding because it highlights the need to carefully consider the reliability of the
monitoring equipment used in the seismic resilience assessment to ensure accurate results.
Additionally, the slower increase in information entropy over time when using higher
reliability equipment indicates that epistemic uncertainty decreases more quickly over time,
making it an attractive option for a long-term seismic resilience assessment. The practical
applications of these findings include informing decisions about the selection of monitoring
equipment for the seismic resilience assessment, as well as providing a framework for
assessing uncertainties in the process. This information can be used to identify areas that
require further investigation or intervention to improve the resilience of the transportation
network in earthquake-prone regions.
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6. Summary and Conclusions

This paper presented a dynamic BN-based resilience assessment model for a large-
scale transportation network that can explicitly quantify uncertainties in all phases of the
assessment and investigate the role of inspection and monitoring programs in uncertainty
reduction. First, uncertainties in the transportation-network capacity and demand were
identified and reduced through a dynamic BN based on measurement data collected over
time. Subsequently, the updated link capacity and demand were incorporated into the
network analysis to update the seismic resilience index over time. The proposed model was
then tested on a benchmark problem, a highway network in South Carolina, to demonstrate
how the model could systematically quantify and reduce uncertainties when assessing the
seismic resilience of the network. To further examine the significance of the measurement
data in improving the accuracy of the prediction of the seismic resilience index, a sensitivity
analysis was performed using different sets of data with varying reliabilities.

The benchmark problem results showed that incorporating monitoring and inspection
data on important variables such as chloride concentration and traffic demands could
improve predicting the seismic resilience of the network. It also suggested the need to
consider equipment reliability when designing monitoring and inspection programs. These
findings can assist transportation managers and policymakers in identifying necessary
equipment reliability levels and prioritizing inspection and monitoring efforts. The impact
of this paper is significant as it provides decisionmakers with the tools to better manage
transportation-system resilience in the face of natural hazards and uncertainty. The results
can be used to determine which monitoring/inspection techniques to prioritize, evaluate
the effectiveness of current techniques, and perform cost–benefit analyses for optimal
resource allocation.
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