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a b s t r a c t

Entropy stabilized oxides (ESOs) are a new class of stable hybrids and single phase metal

oxides made from multiple ions with material properties somewhere between the con-

stituent oxides, or occasionally entirely new properties. One of the limitations of ESOs is

their energy-intensive fabrication process, which has resulted in slow development and

scale-up of new ESOs. In this work, we present a novel energy-efficient ESO synthesis

method that uses the ability of carbonaceous materials to heat rapidly in response to radio

frequency (RF) fields in 1e200 MHz range. Using carbon fibers and graphene as RF sus-

ceptors, synthesis of (Mg0$2Co0$2Ni0$2Cu0$2Zn0.2)O is achieved through RF-initiated com-

bustion synthesis with heating rates of 203 �C/s at 20 W of input power. This method

reduces the formation time of ESOs to less than a minute, allowing for much more efficient

fabrication. The corresponding morphology and composition of the as-synthesized ESO-

carbon fiber and ESO-graphene were studied using extensive spectroscopy and charac-

terization. Additionally, single carbon fibers coated with ESO were tested for tensile

strength and modulus; little change in mechanical properties was observed as compared to

pristine fibers. This work opens an exciting frontier for the rapid synthesis of ESO-carbon

composites using RF heating as a non-contact, rapid, and efficient manufacturing process.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Entropy stabilized oxide (ESO) are an exciting class of ceramics

that differ from traditional oxides; these ceramics can contain

multiple cations distributed throughout the bulk while still

maintaining a single primary phase [1]. Researchers have

found rock salt ESOs with multiple cations binding to oxygen

[1,2] with transitions metals such as (Mg0$2Co0$2Ni0$2Cu0$2-

Zn0.2)O, (CoCrFeMnNi)3O4, etc. [1,3,4]. ESOs that are commonly

termed as high entropy oxides have garnered a significant

amount of interest as they have shown excellent properties in

energy storage [5], low electrical conductivity [6,7], low ther-

mal conductivity [8], dielectric [9,10], magnetic [11], optical

[12], catalytic [13] and mechanical [8,14] applications.

ESOs maintain a primary single-phase on the basis of

configurational entropy, where configurational entropy is a

measure of the entropy gained by the atomic mixing and

variation in the ESO composition. The primary limiting factor

in ESO stability is lattice strain; when multiple cations are

present in a lattice, the overall lattice must distort in order to

accommodate the atomic radii differences between the

different cation types. Therefore, the greater the differences in

atomic radii of the cations, the greater the resulting lattice

strain [15]. Another requirement for stability is that the cations

present in the ESO should have equal or similar oxidation

states to maximize the overall stability [1,16]. Interestingly, for

certain cation combinations, this configurational entropy is

able to overcome the lattice distortion introduced by the pres-

ence of multiple cations, resulting in a single-phase ESO [17].

A unique characteristic of ESOs is that their material

properties can be customized by adjusting their chemical

compositions. This can be achieved by adjusting ratios and

types of cation types [1,3,6]. By adjusting the chemistry of

ESOs, a wide range of tunability can be realized in electro-

magnetic [18e21], conductivity [22], thermal [23,24], and cat-

alytic [25e28] properties. The current manufacturing

processes of these oxides rely on the use of high-temperature

ovens or furnaces that are energy and time intensive [1e3,29].

As such, the expensive nature of synthesis hinders the mass

and rate of production, discovery, and scaling-up of these

novel materials. Recently, Mao et al. proposed a solution

combustion synthesis (SCS) of ESOs [30] that combines con-

stituent metal nitrates with a fuel such as urea or glycine. The

solution converts into a gel-like precursor as the water evap-

orates. When the gel reaches a temperature of ~180 �C, a self-

propagating combustion reaction occurs instantaneously,

bringing the mixture's temperature above the ESO synthesis

temperatures [31]. However, high-temperature oven-based

heating and SCS approach require significant energy input,

thus, limiting large-scale production since the rate of heating

bounds the method.

Recently, it was discovered that radio frequency (RF) fields

(1e200 MHz) could be used for volumetric heating of carbo-

naceous materials with minimal power inputs [32e34]. This

method can be used for out-of-oven rapid fabrication of ma-

terials through an energy-efficient, non-contact method of

heating [35e38]. An advantage of non-contact heating is that

the carbon additive can be either continuous or discrete.

Carbonaceous materials that interact with RF and heat

include carbon sheets, carbon fibers, carbon nanotubes, gra-

phene, and carbon black [32]. Interestingly, carbon-based

fillers can also be added to the oxides to improve the mate-

rial's charge transport, mechanical strength, and cyclability

[39,40].

This paper aims to explore the viability of utilizing a carbon

filler for faster andmore energy-efficient activation of solution

combustion synthesis. In this investigation, we show that RF

fields can be used for patterning ESOs on carbonaceous ma-

terials. Inside-to-outside rapid heating can be achieved using

RF fields to initiate SCS. Carbon fibers and graphene nano-

particles were used as carbonaceous susceptors for SCS of

(Mg0$2Co0$2Ni0$2Cu0$2Zn0.2)O ESOs. While RF heating is a non-

contact heating method, we also evaluate SCS using direct

current (DC) heating for patterning ESOs on carbon fibers. The

structure of the synthesized carbon-ESO composites is char-

acterized using various diffraction methods and studied for

mechanical properties. Our works establishes RF heating as a

novel non-contact and energy-efficient method for rapid

synthesis of ESO and ESO-composites.

2. Methods and characterization

This section is divided into two parts; the first part outlines the

synthesis and sample preparation for ESOs using RF and DC

heating, and the second section details the experimental

procedures carried out for sample characterization. Fig. 1

shows a detailed overview of the ESO synthesis initiated by

various carbonaceous materials, including Radio Frequency

heating and DC Heating.

2.1. Sample preparation

2.1.1. Precursor solution
A master batch of fuel-oxidizer precursor solution was made

and used for all experiments. Themetal nitrates are dissolved

in water in an equimolar fashion to create the precursor so-

lution. Glycine is then added to the solution in a molar ratio of

0.5:1 glycine to nitrate salts. The chemicals used in these ex-

periments were Magnesium Nitrate Hexahydrate (BeanTown,

98%), Cobalt (II) Nitrate Hexahydrate (Aldon Corporation,

�99%), Nickel Nitrate Hexahydrate (Aldon Corporation,�99%),

Copper (II) Nitrate Hemipentahydrate (BeanTown,�98%), Zinc

(II) Nitrate Hexahydrate (Avantor, �99%), and Glycine (Bean-

Town, �99%). The solution was then mixed via magnetic

stirrer for 1 h at room temperature, resulting in the salts and

glycine to be fully dissolved. In thismixture, glycine is the fuel,

and the nitrate salts are the oxidizer for the combustion

reaction.

2.1.2. Hot plate SCS of ESO
Once mixed, the precursor solution was transferred to a

separate beaker, which was then placed on a hot plate. The

hot plate temperature was set to 180 �C, and the solution was

left to heat up and boil off excess water. Eventually, the so-

lution's viscosity dramatically increased, followed quickly by

the combustion reaction initiated by the fuel-oxidizermixture

producing ESO.
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2.1.3. Synthesis of ESOs from radio frequency heating
Once the precursor solution was thoroughly mixed, the ESO

solution was transferred to a Petri dish containing the carbon

fiber (CF) tow of T700 (Toray, Japan) in submerged condition.

These experiments utilized 12K T700 carbon fiber tows, with

each fiber having a 7 mm nominal diameter. The system was

baked at 80 �C for 2 h to drive off excess water from the so-

lution then RF heating was carried out on this sample to get

ESOs on CFs. The RF heating system consists of a signal

generator (Rigol Inc., DSG815) and a 500 W amplifier (Prana

R&D, GN500D) that were used to supply RF power to the

applicator via a 50U coaxial cable. A FLIR infrared camera (FLIR

Systems Inc., A700)was used to record the temperature during

the reaction. A frequency of 144 MHz was used with 20 W of

input RF power for the synthesis of ESO. A more detailed

description of the RF setup can be found in Refs. [41,42].

2.1.4. Synthesis of ESOs from DC heating
Another more proven out-of-oven heating method of carbo-

naceous material is direct current (DC) joule heating, which

utilizes the electrical resistance of carbon to generate heat

[43,44]. However, this method requires physical contact,

making it challenging to achieve continuous processing [41].

DC heating was used to pattern ESO on carbon fibers; the

preparation steps are discussed in detail next. A mixture of

precursor solution was transferred to a ceramic boat, and a CF

tow of T700 (Toray, Japan) was then submerged into the so-

lution ensuring good impregnation. The combustion boat was

baked at 80 �C for a period of 2 h to drive off excess water from

the solution. Next, conductive metal tape was applied to the

ends of the saturated CF tow for DC heating. A EPSCO GFL

Filtered DC Power Supply was used to provide DC power

(10e20 W) for heating the impregnated CF tow to initiate

combustion reaction. A FLIR infrared camera was used to re-

cord the temperature as a function of time.

2.2. Sample analysis

Themorphology, crystal structure, andmechanical properties

of Entropy stabilized oxide (ESO) and Entropy stabilized oxide

e Carbon fiber (ESO-CF) specimens were evaluated experi-

mentally. This section provides an overview of the experi-

mental methods.

2.2.1. X-ray diffraction (XRD)
Room-temperature X-ray diffraction (XRD) was conducted

using a Bruker D8 Discover (Germany) with 2q ranging from

10� to 100�, step size of 0.01�and a scan speed of 1 s/step. The

accelerating voltage and current were kept at 40 kV and

35 mA. These measurements were then normalized between

0 and 1 for ease of XRD shape comparison.

2.2.2. Scanning electron microscopy (SEM)
Samples were imaged using Thermofischer - Apreo S (USA)

coupled with an energy-dispersive X-ray spectrometer (EDS)

from Bruker X Flash (Germany). The atomic fractions were

determined from the elemental mapping of the sample ob-

tained from 5 different spots.

2.2.3. BET surface area
To study the surface area of the ESO-CF samples, BET surface

analysis was conducted and Brunauer-Emmett Teller (BET)

equation was used to calculate the surface area. Nitrogen

adsorption-desorption isotherms were obtained at �196 �C
using 3020 - Tristar II, Micromeritics, after degassing the

sample at 150 �C for 12 h.

Fig. 1 e ESO Synthesis process can be sub-divided into three steps: (a) mixing all the nitrates with DI water and glycine; (b)

impregnation or dispersion of carbonaceous materials with the solution; (c) synthesis and patterning ESO on carbonaceous

materials through DC and RF heating.
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2.2.4. Raman spectroscopy
The Raman spectra of the samples were analyzed using a

LabRAM HR800 Raman spectrometer from Horiba Jobin-Yvon

(Japan) equipped with an Olympus BX41 microscope having

an objective lens magnification of 50 � . A HeeNe laser source

of 632 nm laser with 1800 groves/mm grating was used in the

range of 200e2000 cm�1. The sampling period for each mea-

surement was 120 s. These spectra were then normalized

between 0 and 1 for ease of spectra shape comparison. In

samples containing carbon fiber, the intensity of the D-band

(~1350 cm1) was divided by the intensity of the G-band

(~1580 cm1) to determine the ID/IG defect ratios for the

analyzed carbon structures.

2.2.5. X-ray photoelectron spectroscopy (XPS)
All XPS analysis was conducted with a Kratos Axis-Ultra DLD

spectrometer with a monochromatized Al Ka X-ray and a low

energy electron flood gun for charge neutralization. The X-ray

spot size for these acquisitions was on the order of

700 � 300 mm. The analytical chamber pressure was main-

tained under 5 � 10�9 Torr during spectral acquisition. The

pass energy for the survey and detailed spectra (composition)

was 80 eV. For the high-resolution spectra, the pass energy

was 20 eV. The take-off angle (i.e., the angle between the

sample normal and the input axis of the energy analyzer) was

0 (0-degree take-off angle ~ 100 �A sampling depth). The Kratos

Vision2 software program was used to determine peak areas

and to calculate elemental compositions from peak areas.

CasaXPS was used to peak fit the high-resolution spectra. A

Shirley background was used for the high-resolution spectra,

and all binding energies were referenced to the CeC bonds at

285.0 eV.

2.2.6. Inductively coupled plasma mass spectrometry (ICP-
MS)
Samples underwent microwave-assisted (MARS 5, CEM Mat-

thews, NC) digestion prior to inductively coupled plasma e

mass spectrometry (ICP-MS) analysis for: Mg, Co, Ni, Cu, and

Znwith terbium (Tb) added as recovery internal standard. The

ICP-MS instrument (Agilent 7900-CE; Santa Clara, CA) has a

collision reaction cell, which was used in He mode to elimi-

nate polyatomic interferences (US EPA 6020A Rev1, 2007).

2.2.7. Single fiber mechanical testing
Single fiber mechanical tests were performed to characterize

the tensile response of the pristine (commercially available

T700 carbon fiber, Toray Industries, Inc. Tokyo), and ESO

coated carbon fibers. The test protocol followed ASTM C1557-

20 standardized tensile test method for sample preparation,

mounting, and testing of single fiber specimens. A single fiber

was separated from the fiber bundle and mounted in a thin

paper tab using an epoxy adhesive. The epoxy was given

enough time to ensure it was completely cured. Full curing

was required to ensure no fiber pull-out occurred during the

tensile test. Fig. 2a shows a schematic of a single fiber sample

mounted in the paper tab. The mounting tab contains a lon-

gitudinal slot (created with a laser cutter) to maintain a fixed

gage length of 25mm. A laser diffractionmethod based on the

“Fraunhofer Single Slit Diffraction” principle was performed

in a dark room setup to measure the fiber cross-sectional area

(see Fig. 2b). The single fiber diameter (d) is calculated using

the following relation,

d ðmmÞ¼ 2� lðnmÞ � sðmÞ
df ðmmÞ (1)

where, l is the known laser wavelength, and s is the distance

between the screen and fiber. In this equation, the separation

between the first adjacent pair of minima is represented by df .

After inserting the paper tab in the load frame, the final stage

of the test preparation included carefully burning the thinnest

parts of the tab with a soldering iron at mid-gage length.

Tensile testing was conducted in an Instron load frame

equipped with a 10 N load cell (Fig. 2c).

The tensile load was applied at a constant displacement

rate of 1 mm/min until failure. A pneumatic gripping system

was used to verify the alignment of the fiber specimen with

the loading direction. Forty independent measurements were

performed for each specimen type.

3. Results and discussion

In this work, the ESO oxides [(Mg,Co,Ni,Cu,Zn)0$2O] were

synthesized using RF and DC heating, along with the more

traditional method of combustion synthesis (on a hot plate).

In the rapid fabrication of ESOs using RF fields and DC heat-

ing, the oxide precursor solution was patterned on the car-

bon fibers that acted as heat generators during the synthesis

process. The ESO synthesized using a hot plate was used as a

reference. In the hot plate synthesis method, the entire vol-

ume of the reactive mixture was uniformly preheated to the

solvent's boiling point, and consequently, the solution

mixture was maintained at 180 �C where the solvent evapo-

rates. In the final stage, a sudden increase in temperature

occurs due to the ignition of the fuel, which results in the

formation of ESO. In order to calculate the adiabatic tem-

perature generated during the combustion reaction and to

determine the equilibrium reactant products formed, the

reducing/oxidizing valences of the redox mixture are

considered. The overall redox reaction for the synthesis of

the ESO would be as shown in Eq. (2).

0.2 Co(NO3)2 þ 0.2 Cu(NO3)2 þ 0.2 Ni(NO3)2 þ 0.2 Zn(NO3)2-
þ 0.2 Mg(NO3)2 þ 1.54 C2H5NO2 þ (5/2) [4 e 1] O2 / (MgNiCo-

CuZn)O þ 34 CO2 þ (1 þ 0.754) N2 þ 3.754 H2O (2)

The adiabatic combustion temperature (Tad) is significant

as the ESO stabilizes into a single phase (MgNiCoCuZn)0$2O

oxide at a temperature of 848 �C for the fuel/oxidizer used in

this study (as shown in Supplementary Information). There-

fore, for the fuel/oxidizer ratio used in this study, an initial

temperature of ~150 �C is sufficient to initiate a combustion

reaction to generate a single-phase ESO. This concept was

exploited in synthesizing ESO using RF and DC heating. A

more detailed explanation has been summazied in the Sup-

plementary Information. The carbon source provided the

initial heating in the RF and DC synthesis method, which

triggered the secondary combustion reaction. The reactions

and temperatures were systematically monitored, and the

observations are compiled in this section.
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An infrared (IR) camera monitored ESO synthesis process

by RF and DC heating, and the thermal profile generated is

shown in Fig. 3. Excess water evaporates during the first

20e30 s for both RF and DC synthesis, transitioning the cation

solution to a blue-colored gel. This is the state where all pre-

cursor ions become well-packed on the surface of carbona-

ceous heat susceptors while the water evaporates from the

system. As shown in Fig. 3a for RF-initiated ESO synthesis, a

short spike reaching up to 700 �C at 35 s and rapid ESO for-

mation are observed in the next 5 s. For the DC heated

specimens (Fig. 3b), the global temperatures reach 300e350 �C
during the combustion reaction; continuous ESO formation is

seen during this time. The heating rates during the combus-

tion step are 203 �C/s for RF heating and 73 �C/s for DC heating,

therefore RF synthesis of ESO requires much less time as

compared to DC heating. Fig. 3 shows that during RF heating,

the combustion of precursor requires a fraction of time

compared to DC heating and happens more uniformly. Addi-

tionally, we experimented with graphene-embedded precur-

sor and found that non-contact RF heating can successfully be

Fig. 3 e Thermal profile recorded by the FLIR camera during the ESO synthesis using (a) RF fields and (b) DC heating.

Fig. 2 e (a) Schematic of a single fiber in a mounting tab. (b) The fiber diameter is measured by laser diffraction method. (c)

The sample is loaded under a tensile load.
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used to synthesize ESO. The synthesized powder using CF and

graphene as heat susceptors was analyzed using imaging and

elemental analysis to confirm the formation of ESOs.

During the synthesis, visual recordings were also carried

out to complement the thermal imaging captured by the IR

camera; these can be seen in Supplementary Information (SI

videos 1 and 2). Snapshots for these videos at different in-

tervals are shown in Fig. 4 for RF and DC heating synthesis of

ESO-CF. The advantage of RF heating over DC heating is its

non-contact heating interaction with CF samples. As the re-

action progresses (Fig. 4aec), a flaky coating of ESO can be

seen forming on the fibers. Similarly, as seen in Fig. 4def, ESO

forms on the CF during theDCheating process. Interestingly, a

combustion front is seen close to the electrodes for DC-heated

specimens, and the reaction propagates from both ends of the

electrodes toward the center (SI video 2).

Supplementary video related to this article can be found at

https://doi.org/10.1016/j.jmrt.2023.03.060

SEM images of carbon fibers show continual ESO coating

(Fig. 5) and uniform metal cation distribution (Fig. 6). Visual

inspection of ESO-CF samples shows that ESO-CF synthesized

through RF heating has a much uniform and thicker coating

than ESO-CF synthesized through DC heating. Fig. 6 shows the

SEM-EDS for ESO-CF synthesized by RF heating and found that

all metal ions were uniformly distributed in the ESO phase,

Fig. 4 e Thermal and corresponding visual image of ESO synthesis on carbon fibers during the last 20 s of the reaction

initiated by (aec) the non-contact RF and (def) DC heating methods.

Fig. 5 e SEM image of the carbon fiber and ESO-coated carbon fiber synthesized through DC and RF heating.
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confirming a uniformcoating. This uniform coating of ESOs on

CFs suggests that RF heating facilitates the packing of the ionic

precursors in a controlled manner during the slow evapora-

tion stage that took 30 s (Fig. 3). SEM-EDS of CF-ESO synthe-

sized from DC heating are shown in Figure SI 1, and the cation

distribution is less uniform compared to RF-synthesized CF-

ESOs. During the combustion synthesis using RF and DC

heating, the gel that converts to ESO crystals bridges multiple

CFs; these microscopic phenomena result in ceramic bridges

between fibers observed in SEM images.

Additionally, ESOs were synthesized by incorporating

varying concentrations of graphene particles from 0.1-1 wt%

in the precursor. While DC heating synthesis of such slurry

requires a percolated network, this is particularly not impor-

tant for RF heating-driven ESO synthesis; RF heating can be

achieved at much lower concentrations of nanofillers [32].

Interestingly, a porous structure evolves from RF synthesis of

ESO-graphene, as shown in Fig. 7. These particles were

examined using SEM, and it was observed that ESOs covered

the graphene nanoparticles completely. This suggests that

Fig. 6 e Top left image panel shows the SEM image of CF coated with ESO from RF heating method. EDS readings show the

distribution of five cations in the ESO patterned on CFs: Mg, Co, Ni, Cu, and Zn, along with oxygen and carbon from fibers.

Fig. 7 e ESO fabricated by RF heating with 0.1 wt% graphene and 1 wt% graphene.
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high surface area carbonaceous nanomaterials bind effec-

tively with ESOs in the presence of RF heating due to volu-

metric heating. The average diameter of these macropores

was measured to be 1.8 ± 0.5 mm using ImageJ analysis soft-

ware on the SEM images. However, it should be noted that

pores with larger diameters contribute little to the specific

surface area.

The surface area of the fabricated ESOs using different

methods was measured using BET. The specific surface area

increases when ESOs are synthesized on carbon fibers by DC

and RF heating combustion syntheses. However, it remains

below the specific surface area of hot-plate ESO synthesis

without carbon fibers (Table 1). It was observed that the ESO-

CF produced with DC heating resulted in a higher specific

surface area than when produced by RF heating. The differ-

ence in surface area between the DC and RF synthesized could

be explained by the adhesion of the ESO particles on fiber

surfaces. The SEM analysis (Fig. 5) shows that the RF-

synthesized ESO-CF fibers had a thicker and more uniform

coating on the fibers compared to the DC-synthesized fibers.

This results in higher mass per unit length for ESO-CF syn-

thesized by RF heating, lowering the specific surface area

compared to DC-synthesized ESO-CF. In contrast, the ESO

particles adhered to the DC synthesized ESO-CF fibers are

non-uniform and randomly arranged on the CF surface. The

latter, contributes to the increase in specific surface area. The

low surface area of the synthesized ESO and ESO-CF com-

posites exemplifies that the particles are notmesoporous. The

BET surface area measurement method is only sensitive to

mesoporous particles with a pore size of 2e50 nm.

The crystal structure and phase purity of the synthesized

particles were studied using X-ray diffraction. The formation

of ESOs from different synthesis routes was confirmed by XRD

analysis. XRD patterns in Fig. 8 shows no evidence of the

presence of secondary phases and virtually identical primary

phase crystal structures for ESOs synthesized using DC and RF

heating with respect to traditional SCS hot plate heating. The

ESO synthesized using both DC and RF heating of carbon fiber

contained the same diffraction angle peaks as ESO synthe-

sized with traditional SCS hot plate heating. The peaks at

2q z 36� & 42� correspond to the (111) and (200) planes of the

rock-salt crystal structure. Also, all the patterns exhibit one

significant peak at 2q z 25e28�, generally corresponding to

the (200) plane diffraction of graphite crystalline structure [45].

The other noticeable phenomenon is the peak broadening of

the XRD peaks which indictaes that the ESO formed are nano

crystalline. The crystallite size was calculated using the

Williamson-Hall plot and was estimated to be 35 ± 11 nm for

the ESO sample, and 24 ± 9 nm and 26 ± 9 nm for the ESO-CF

samples synthesized through DC and RF heating, respectively.

From the crystallite size calculation, we observe that the ESO

coating on the CF fibers is indeed nanosized which remains

unaffected by the synthesis method.

Raman spectroscopy was employed to study the structure

of the synthesized ESOs (Fig. 9a). It was observed that the ESO-

CF samples had the same intensity peak near 550 cm�1 as the

hot-plate ESO (Fig. 9a), indicating that the DC and RF based

heating methods resulted in similar crystal growth to hot-

plate heating for SCS. D and G bands were also visible in

both the DC and RF ESO-CF samples. The ID/IG defect ratio

(Figure SI 2) reduced as a consequence of heating and ESO

coating compared to uncoated CF specimens (1.166), more so

for the DC specimen (1.016) than the RF specimen (1.133).

Though the bonding characteristic and the defect chemistry

were understood using Raman spectroscopy, the stoichiom-

etry of the synthesized ESO needs to bemeasured. For this, the

oxidation state of each element was measured using XPS.

The stability of ESOs synthesized by these two methods

was also confirmed by the electronic structures of ions from

XPS analysis. The presence of carbon, oxygen, and nitrogen

can be seen for all specimens analyzed, along with þ2 oxida-

tion state characteristic peaks for Co, Ni, Zn, Cu, Mg (Fig. 8b

and Table SI2); the presence of these cations is also verified

from their EDS mapping. Note that after the ESO coating, the

oxygen content increases significantly. The increased oxygen

content indicates the presence of stable ESO crystals. The

electronic states þ2 for Mg and Ni are observed with highly

stable packing structures showing oxides with octahedron

surroundings, these can be seen from XPS analysis in Fig. 9b

with peaks at ~48 eV and 853 eV for Mg and Ni, respectively.

The formation of nanocrystals suggests that the ions like Cu

and Co have more stable ionic state oxides, which is also

confirmed by the peaks at 932 eV and 778 eV, respectively [46].

XPS and SEM-EDS provides surface composition analysis,

these techniques are not able to capture the weight compo-

sitions. Therefore, we carried out ICP-MS to measure the

weight compositions. We found that the average weight

composition of Mg, Co, Ni, Cu, Zn, and C are 2.8%, 7.2%, 7.1%,

Table 1 e BET surface area results for ESO, carbon fibers,
ESO-CF prepared by DC and RF heating.

Sample Surface Area [m2/g]

ESO 32

Carbon Fiber 1

ESO-CF: RF Heating 4

ESO-CF: DC Heating 10

Fig. 8 e XRD patterns of ESO-CF synthesized using RF and

DC heating, ESO synthesized by hot-plate combustion

synthesis, and as received carbon fibers.
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7.6%, 7.6%, and 67.9%, respectively. Detailed results are tabu-

lated in Supplementary Information SI Table 2.

Finally, the mechanical performances of pristine and ESO-

CF were investigated using the aforementioned single fiber

test procedure. Specimens that failed near the grippers were

discarded from strength and modulus measurements. As

shown in Fig. 10a, an average tensile strength of 2.8 GPa was

measured for pristine CFs, whereas the strength decreased

slightly to an average value of 2.6 GPa for ESO CFs. The tensile

moduli of the two conditions were also determined as

180.8 GPa and 173.2 GPa for pristine and ESO CFs, respectively

(Fig. 10b). A decrease in the tensile strength and modulus of

less than 7% and 4.2%, respectively, were observed in the ESO

fibers. This slight drop in fiber modulus and strength can be

attributed to the rapid high-temperature synthesis of ESOs on

CF surfaces, possibly leading to the development of residual

stresses in the material.

4. Conclusion

For the first time, a new method for producing ESO-carbon

composites has been demonstrated using out-of-oven elec-

tromagnetic heating using radio frequencies in the range of

1e200 MHz at low input power (less than 25 W). ESOs were

synthesized using RF and DC heating of carbonaceous mate-

rials responding to electromagnetic fields and direct current.

ESO was synthesized and deposited on the CFs. Heating rates

Fig. 9 e Results of (a) Raman spectroscopy and (b) XPS characterization of ESO-CF specimens synthesized by RF and DC

heating.

Fig. 10 e (a) Tensile strength, and (b) tensile modulus of pristine and ESO coated carbon fibers.
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of 203 �C/s are achieved from the combustion synthesis of

ESO-CFs with only 20 W input powers. The inside-to-outside

nature of the RF heating produced ESO-CF composite with a

uniform coating without using energy-expensive large ovens

in less than a minute. Apart from rapid manufacturing and

energy efficiency, this provides an excellent opportunity for

synthesizing multifunctional materials where ESO-CF can be

used for structural and energy storage applications. Using RF

heating, ESO-graphene nanocomposites were also synthe-

sized with varying nanofiller concentrations. The non-contact

nature of RF heating makes RF-synthesis of ESO-graphene

more desirable as compared to DC heating, which requires

direct contact with ESO-graphene slurry. Characterization of

ESOs synthesized by RF heating closely resembles conven-

tionally synthesized ESOs. Both carbonaceous materials (CFs

and graphene) bind well with ESOs during RF heating; there-

fore, depending on the size and shape of nanomaterials, RF

parameters, various architectures of ESO ceramic morphol-

ogies can be generated for targeted applications. Mechanical

testing of single fibers in a pristine state and ESO-coated show

a minimal drop in tensile modulus and strength. For future

studies, machine learning [47,48] can be used to develop effi-

cient RF heating protocols for ESO synthesis using various

carbonaceous fillers.
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