
Rowan University Rowan University 

Rowan Digital Works Rowan Digital Works 

Henry M. Rowan College of Engineering Faculty 
Scholarship Henry M. Rowan College of Engineering 

9-8-2023 

Evaluating Effect of Operating Speed on Crashes of Rural Two-Evaluating Effect of Operating Speed on Crashes of Rural Two-

Lane Highways Lane Highways 

Fahida Rahman 
Rowan University 

Xu Zhang 

Mei Chen 

Follow this and additional works at: https://rdw.rowan.edu/engineering_facpub 

 Part of the Civil and Environmental Engineering Commons 

Recommended Citation Recommended Citation 
Fahmida Rahman, Xu Zhang, Mei Chen, "Evaluating Effect of Operating Speed on Crashes of Rural Two-
Lane Highways", Journal of Advanced Transportation, vol. 2023, Article ID 2882951, 13 pages, 2023. 
https://doi.org/10.1155/2023/2882951 

This Article is brought to you for free and open access by the Henry M. Rowan College of Engineering at Rowan 
Digital Works. It has been accepted for inclusion in Henry M. Rowan College of Engineering Faculty Scholarship by 
an authorized administrator of Rowan Digital Works. 

https://rdw.rowan.edu/
https://rdw.rowan.edu/engineering_facpub
https://rdw.rowan.edu/engineering_facpub
https://rdw.rowan.edu/engineering
https://rdw.rowan.edu/engineering_facpub?utm_source=rdw.rowan.edu%2Fengineering_facpub%2F281&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/251?utm_source=rdw.rowan.edu%2Fengineering_facpub%2F281&utm_medium=PDF&utm_campaign=PDFCoverPages


Research Article
Evaluating Effect of Operating Speed on Crashes of Rural
Two-Lane Highways

Fahmida Rahman ,1 Xu Zhang ,2 and Mei Chen 3

1Department of Civil & Environmental Engineering, Rowan University, Glassboro, NJ 08028, USA
2Kentucky Transportation Center, 266 Raymond Bldg. Lexington, KY 40506, USA
3Department of Civil Engineering, University of Kentucky, Lexington, KY 40506, USA

Correspondence should be addressed to Fahmida Rahman; rahmanf@rowan.edu

Received 15 December 2022; Revised 13 July 2023; Accepted 9 September 2023; Published 16 October 2023

Academic Editor: Nirajan Shiwakoti

Copyright © 2023 Fahmida Rahman et al. Tis is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Crashes on a roadway are infuenced by various factors, including but not limited to road geometries, trafc volume, and
environmental conditions. Among these factors, trafc volume and segment length are commonly used to predict crashes.
Recently, the role of speed in crashes has been recognized as a signifcant factor, prompting its incorporation as a variable in crash
modeling. Nevertheless, previous research studies that examined speed-related factors are mostly concentrated on higher
functional class roads where speed data are abundant. Lack of actual speed data has limited the scope of such a study on rural two-
lane highways. Due to recent advancements in data collection methodologies, there has been a signifcant increase in the ac-
cessibility of speed data pertaining to these roads. Tis study aims to assess the signifcance of speed as a predictor of crashes on
rural two-lane highways, utilizing actual speed data. Te results of this study showed a negative correlation between speed and
crash frequency on rural two-lane roadways. In addition, it was observed that the impact of speed in the crash model becomes
more pronounced at higher operating speed conditions of these roads. Te aforementioned observation prompted us to consider
a categorizer based on speed and, afterwards, separating crash prediction models for various speed ranges. Tis approach ul-
timately resulted in enhanced accuracy in crash prediction. Based on our analysis, developing separate models at diferent speed
levels is recommended to better evaluate the safety performance of these roads under various conditions. Such models can also be
useful for transportation planners and policymakers to identify high-risk segments and allocate resources to improve the safety of
these roads.

1. Background

According to a study conducted in the United States, rural
two-lane highways account for a signifcant proportion,
specifcally 76% of the overall paved road mileages [1]. In
Kentucky, a substantial proportion of roadway crashes are
attributed to these specifc roadways. In particular, they are
responsible for forty percent of all crashes, forty-seven
percent of crashes that result in injuries, and sixty-six
percent of fatal crashes, occurring on roads maintained
by the state [2, 3]. Tere are various factors that lead to
roadway crashes, encompassing attributes such as roadway
geometric conditions, trafc volume, environmental

conditions, and speed characteristics. Of these factors, speed
is often cited as a primary cause of crashes [4].

Te traditional approach in the Highway Safety Manual
(HSM) incorporates annual average daily trafc (AADT)
and segment length as the base conditions for crash pre-
diction, which can be further adjusted for diferent road
geometric attributes [5]. Multiple studies have provided
empirical evidence supporting the relationship between
speed and trafc crashes [4, 6–11]. Furthermore, these
studies have recommended the incorporation of speed as
one of the variables in crash prediction models [11–17]. Te
speed considered in the analysis may represent either in-
dividual driver speed [4, 6, 7, 9, 10] or aggregated roadway
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speed, depending on the purpose of the analysis
[8, 11–13, 15]. However, such analyses are predominantly
carried out on routes with high levels of trafc, such as
interstates and arterials. Te examination of the correlation
between speed and safety on rural two-lane highways has
primarily been conducted within the framework of geo-
metric design consistency [18–22]. Geometric design con-
sistency refers to the uniformity and predictability of road
features, such as curves, slopes, and intersections, which can
afect driver behavior and safety. Especially, the 85th per-
centile speed serves as a metric for assessing design con-
sistency throughout diferent segments. Oftentimes, due to
limited available data, speed is calculated through models.

In recent times, there has been a notable increase in the
availability of measured speed data, especially on higher
functional class roads. Tis has led to many studies ex-
amining the association between measured speed and
crash frequency relationship on these roads [23–34]. Some
studies observed that considering speed variables in crash
prediction models can lead to improved performance
when compared to traditional approaches [26]. One recent
study utilized measured speeds from Ohio and Wash-
ington while developing crash prediction models for
a wide range of roadways and found certain operating
speed-related measures to be signifcant when modeling
total crashes, fatal and injury crashes, and property
damage crashes [24]. Another study by Das et al. de-
veloped crash modifcation factors (CMFs) using several
speed metrics for evaluating the safety efectiveness of
a countermeasure specifc to speed. Tey considered
diferent levels of data aggregation in their analysis [25].
Further studies were carried out to examine how the speed
and crash relationship varies depending on the data ag-
gregation approach used [33, 34].

Certainly, previous literature has extensively investigated
the role of speed among the contributing factors of crash
occurrence. Tis highlights the importance of considering
speed when assessing the crashes of a particular location.
Nevertheless, the signifcance of speed is yet to be system-
atically explored in relation to crashes that occur on rural
two-lane highways, which are less traveled with limited
availability of speed data while constituting a signifcant
portion of the nation’s roadways. Neglecting the importance
of speed in rural two-lane crash studies may result in in-
correct decision-making during the selection of safety
countermeasures and roadway design processes. Tis, in
turn, can have a signifcant impact on the investment made
by the Department of Transportations (DOTs) in highway
projects aimed at reducing crashes.

Te objective of this study is to investigate the signif-
cance of speed in relation to crashes of rural two-lane
highways. To achieve this, the authors develop a model to
predict crashes on these roads. Tis model incorporates
speed as a factor, utilizing aggregated speed metrics at the
segment-level, including average speed and the 85th per-
centile speed. Te signifcance of speed is evaluated across
diferent speed ranges. Such analyses ofer insights into ways
to enhance the model’s performance. Te subsequent sec-
tions of the paper are structured in the following manner: In

Section 2, an overview of the data sources is provided.
Section 3 presents a zero-infated negative binomial model to
estimate the crash frequency as a function of AADT, length,
and speed. In Section 4, the performance of the model is
analyzed and ways to enhance its performance are discussed.
In Section 5, a summary of fndings and future research
direction concludes the paper.

2. Data Collection and Preparation

Te study particularly utilized rural two-lane highway
segments in Kentucky. Datasets on roadway, speed, and
crashes were collected for these roads. Te crash datasets
used in this study were obtained from the Kentucky State
Police collision database, covering the time frame from 2013
to 2017. In addition, the roadway geometry data and trafc
counts were collected from the Highway Information System
(HIS) maintained by the Kentucky Transportation Cabinet
(KYTC).Te crashes were further linked to the homogenous
segments of roads based on the attributes such as trafc
counts, functional classes, horizontal curves, shoulders, and
grades [35].

Following the study by Ng, crashes that occurred within
a distance of one hundred feet of intersections were classifed
as intersection crashes [22]. Tese crashes were excluded
from the dataset since it is more likely that they were caused
by a diferent combination of contributing factors. While
HSM recommends 250 ft for intersection-related crashes,
this value can be too restrictive for this study considering the
low-volume condition on most of the segments. Further-
more, as suggested by Hauer and Bamfo, we also excluded
the segments that were shorter than 0.1 miles [36].

Speed data fromGPS-based probes were collected for the
years 2015–2017. Tese data were obtained from a third-
party data vendor known as HERE Technologies [37]. Te
data were available in 5-minute epochs for each day and in
both directions of study segments, whenever probes were
observed. Tese speeds were referenced to the HERE road
network, which was then confated with the homogeneous
segments to create a spatial linkage among speed, roadway
attributes, and crash dataset. Details on the confation
process are documented by Zhang and Chen [38]. Sub-
sequently, a screening process was conducted to assess the
adequacy of the speed data, ensuring that only segments
containing enough data were included in the analysis. To
identify the minimum required sample size of the speed data
for each segment, this study used equation (1) by Li et al.
[39]. Such a method is commonly used to estimate a rea-
sonable sample size for collected trafc data to be within an
allowable error range by incorporating data dispersion
[39, 40]:

nmin �
Z × σ
ε

􏼒 􏼓
2
, (1)

where the value of Z is 1.96 for a 95% confdence interval, σ is
the standard deviation from the speed data, and the al-
lowable error value, ε, is used as 5 units.

Te estimated minimum sample sizes for each segment
were compared with available speed data, and only the
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segments meeting the minimum sample sizes of speed data
were included in this study. Note that daytime speed data
from 6 am to 8 pm were used, as nighttime data could be
sparse in some rural areas. For each segment, we calculated
aggregated speed metrics, especially the average speed and
the 85th percentile speed, by utilizing the 5-minute epoch
speed data available during the daytime period of 2015–2017.
After all preprocesses, the fnal dataset contained 44,008
segments with 93,820 crashes recorded over a 5-year period
in both directions of the road. Te segments collectively
encompass 21,240 centerline miles of rural two-lane seg-
ments in Kentucky, as depicted in Figure 1.

3. Methodology

Tis section outlines the methodology employed in the
development of the model for predicting crashes of rural
two-lane highways in this study. Multiple models were
explored with separate speed measures to come up with the
most reasonable measure to properly explain how speed
afects the crashes on these roads.

3.1. Zero-Infated Negative Binomial Model. Since crashes
are infrequent, it is likely that a signifcant proportion of
instances in the dataset contain zero-observed crashes. Te
threshold for determining the percentage of zero obser-
vations that warrants the use of zero-infated (ZI) models
remains debatable [41–45]. Existing literature has
employed such models with zero observations ranging
from 11% to 62% [41–45]. In our dataset, approximately,
40% of rural two-lane segments had no observed crashes,
making it necessary to address the overdispersion issue
caused by excess zeros. To tackle this, we utilized the zero-
infated negative binomial (ZINB) model, a statistical
approach that has demonstrated a good statistical ft in
previous studies [46]. It is important to note that certain
studies argue against the use of zero-infated models,
claiming that the high percentage of zero-crash sites is not
due to inherently safe and unsafe sites but rather results
from specifc conditions such as a mix of low exposure,
high heterogeneity, and high-risk crash sites [47–49]. In
addition, issues such as short time or small spatial scales of
analysis, missing or misreported crash data, or omitted key
variables in the model are cited as potential factors con-
tributing to the high percentage of zero crashes [48].
However, there are studies that advocate for considering
ZI models for crash count modeling. Tese studies suggest

that ZI models do not make assumptions about roads
being inherently safe or unsafe but instead take into ac-
count the possibility of observing zero crashes [46, 50].
Furthermore, it is important to highlight that the main
goal of model selection is to determine a model that ef-
fectively fulflls the research objectives, rather than seeking
the ultimate “true” model [46]. Given the objectives of our
study as well as the long-time period and large spatial scale
of the data collected, the ZINB model is considered
a reasonable choice to efectively model crashes in
this study.

ZINB is formed by integrating a logit model and
a negative binomial (NB) model [51]. Te logit model is
associated with excess zero crash occurrences, whereas the
NB model generates the crash frequency in a segment, in-
cluding instances of zero crash occurrences, based on a bi-
nomial process. If we indicate the likelihood of a crash
frequency generated by the logit model as pi, then the
likelihood of the crash frequency produced by the NB model
can be represented as (1− pi). In ZINB, the parameter pi is
commonly estimated by employing a logistic regression
model that incorporates explanatory variables [52]. In this
study, we considered AADTand length of the segment (L) as
the independent variables in addition to the speed measure
(V), following existing practices [52, 53]. Here is the
equation showing the logistic regression model:

Ln
pi

1 − pi

􏼠 􏼡 � c0 + c1AADT + c2L + c3V. (2)

In equation (2), the term pi/1 − pi denotes the odds
associated with the crash frequency resulting from the logit
model. In particular, it represents the ratio between the
likelihood of the crash frequency from the logit model and
the likelihood of the crash frequency from the NB model.
Te equation also includes an intercept term, c0, along with
regression coefcients c1, c2, and c3. Te calculation of the
likelihood of the zero crash frequency from the logit model
can be adjusted as follows (equation (3)). A pi value that is
somewhat close to 1 indicates that segment i is unlikely to
experience any crashes and is hence considered as a safe
segment:

pi �
e

c0+c1AADT+c2L+c3V( )

1 + e
c0+c1AADT+c2L+c3V( )

. (3)

Now, the distribution of ZINB can be used to express the
likelihood of the crash frequency, Yi, on segment i [54]:

Pr Yi � 0( 􏼁 � pi + 1 − pi( 􏼁
1

1 + αμi

􏼠 􏼡

α−1

,

Pr Yi � yi( 􏼁 � 1 − pi( 􏼁
Γ α− 1

+ yi􏼐 􏼑

Γ 1 + yi( 􏼁 Γ α−1
􏼐 􏼑

αμi

1 + αμi

􏼠 􏼡

yi 1
1 + αμi

􏼠 􏼡

α−1

yi � 1, 2, 3, · · · · · · ,

(4)
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where Γ is the gamma function, α is the overdispersion
parameter estimated using equation (5), and μi refers to the
mean of the underlying distribution of NB, which can be
expressed as a function of the independent variables, as
shown in equation (6):

α �
Var Yi( 􏼁 − μi

μi
2 . (5)

Here, Var (Yi) is the variance of Yi, and μi is calculated
from the following equation:

μi � 1 − pi( 􏼁e
εi+β1AADT+β2L+β3V( ). (6)

Here, μi represents the expected crash frequency in 5 years.
Besides speed measures, we included AADTand length as the
independent variables, similar to previous studies
[19, 26, 27, 32, 55, 56].Te equation also includes an error term
εi that follows a gamma distribution, as well as regression
coefcients β1, β2, and β3, which are to be estimated.

3.2.Variable Selection. By utilizing the 5-minute epoch speed
data collected over a span of 3 years during the daytime,
several speed metrics were computed for each direction of the
segments. Tese include average speed (Vavg), the 85th per-
centile speed (V85), the diference between average speed and
speed limit (Vavg − Vsl), and the diference between the 85th

percentile speed and speed limit (V85 − Vsl).Temetrics were
aggregated from both directions of a segment; and crashes
were summed up. Te ZINB model was utilized to examine
each of the speed variables, together with AADT and length,
as provided in equation (7) However, it should be noted that
the model did not include geometric attributes such as lane
width and shoulder width, as these variables indicated a high
correlation with AADT based on the Pearson correlation
coefcient:

μ � e
ε
.AADTβ1 . L

β2 . e
β3 V

. (7)

In equation (7), we applied a natural logarithm trans-
formation to AADT and L, as they exhibited a skewed
distribution. No transformations were considered necessary
for the speed measures due to their normal distribution.

Table 1 displays the descriptive information for the
independent variables (i.e., AADT, length, and speed met-
rics) and the dependent variable, which is the crash fre-
quency observed over a period of 5 years, considered in this
study. It is noteworthy to mention that the dataset includes
segments with low average speeds, which can be attributed to
highly restrictive geometric conditions, such as narrow lanes
and sharp curvature. Furthermore, the study data contain 14
segments with very low-speed limits, such as 10mph, pri-
marily located in mountainous areas. Moreover, many study
segments exhibited average speeds or the 85th percentile
speeds well below the default speed limit of 55mph for rural
two-lane roads in Kentucky. Tis is largely due to the
limiting geometrics of these roads.

To assess the relative performance of models employing
alternative speedmetrics, we utilized the Akaike information
criterion (AIC) and Bayesian information criteria (BIC),
which were computed using equations (8) and (9),
respectively:

AIC � −2 logQ + 2K, (8)

and

BIC � −2LogQ +(ln(i))K, (9)

where Q represents the maximized likelihood function for
the model, K denotes the number of parameters included in
the model, and i is the total number of observations.
According to previous research, models with lower values of
AIC and BIC are considered to be more favorable [57].

To evaluate the prediction accuracy of the models, we
examined various metrics of goodness-of-ft using data that
were not previously observed by the model. Tese metrics
include the root mean squared error (RMSE), mean absolute
percentage error (MAPE), mean absolute deviation (MAD),
and generalized R2 value. RMSE is calculated by taking the
square root of the mean squared error (MSE), which is
obtained by averaging the squared errors of predicted crash
frequencies across all segments. MAPE calculates the ab-
solute error by comparing it to the actual crash frequency
while excluding segments with no crash [58]. MAD quan-
tifes the average absolute diference between the predicted
crash frequency by themodel and the actual crash frequency.

Figure 1: Map of study segments.
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Generalized R2 is derived from the likelihood function Q,
wherein an upper limit of 1 is applied to the scale. Tis
approach ofers a simplifed version of the traditional R2

metric, eliminating the need for assumptions regarding the
distribution of the dependent variable, such as a normal
distribution. Generalized R2 is estimated with the following
equation:

R
2

� 1 − exp −
2
i
LogQ(􏽢β) − LogQ(0)􏽮 􏽯􏼔 􏼕, (10)

where LogQ(􏽢β) and LogQ(0) indicate the log-likelihoods of
the ftted and null models with only the intercept,
respectively.

We evaluated fve models presented below with rural
two-lane segments in this study. Te conventional model
form, which consists of only AADT and length of the
segment, was used as a benchmark for evaluating the per-
formance of other models, each of which contained at least
one of the speed metrics.Te goal was to assess the impact of
incorporating speed as a variable in the crash prediction
model and determine the extent to which it improved the
accuracy of predictions:

(1) AADT and length-only model
(2) AADT, length, and Vavg-based model
(3) AADT, length, and V85-based model
(4) AADT, length, and (Vavg − Vsl)-based model
(5) AADT, length, and (V85 − Vsp)-based model

For model development, we utilized 75% of the dataset
for training and the remaining 25% for testing the model.
Table 2 provides a summary of all the tested models, in-
cluding coefcients, AIC, BIC, generalized R2, RMSE,
MAPE, andMAD values. It is interesting to note that models
that include speed metrics tend to match the data better than
the conventional model, as evidenced by lower values of AIC
and BIC. In addition, each model shows that all of the speed
metrics are signifcant at a signifcance level of 5%. Among
all the models, the one utilizing the 85th percentile speed
appears to exhibit the least amount of error, closely followed
by the average speed model. Given that the 85th percentile
speed is frequently employed in highway planning to
evaluate safety [57], it is plausible that this model would be
more appropriate for such purposes. However, it is necessary
to collect a substantial amount of data to achieve an accurate
estimate of the 85th percentile speed. Since average speed

provides a better representation of actual operating condi-
tions, the model with AADT, length, and average speed, as
shown in equation (11), was ultimately selected for further
analysis.

μ � e
− 4.09

.AADT0.89
.L

1.02
.e

− 0.01V
. (11)

4. Integration of Speed for Better Performance

We have observed that speed is certainly a signifcant
contributor to crashes. In this section, we discuss how speed
and other independent variables are correlated with crashes
using the average speed-based model shown in equation
(11). We also evaluated how well the model fts the data,
which further helped us adopt a refned approach of in-
corporating speed and ultimately improving model
performance.

In equation (11), it is observed that both AADT and
length exhibit a signifcant positive association with the
crash frequency, as anticipated. Te model also reveals
a negative correlation between average speed and crash
frequency, which suggests that more crashes tend to take
place at lower speeds. Tis observation aligns with a recent
investigation conducted by Dutta and Fontaine, which
specifcally examined interstates [26]. Te negative re-
lationship can also be noticed throughmarginal model plots,
which illustrate how responses align with an independent
variable while setting all other variables constant at their
average values [59]. Te obtained marginal model plots in
Figure 2 illustrate that segments with lower average speeds
tend to have a higher crash frequency, while the crash
frequency increases with AADT and length.

We further justifed the negative relationship between
the average speed and crash frequency by normalizing the
crash data in proportion to the vehicle miles traveled (VMT),
utilizing AADT and length. A clear decreasing trend was
noticed on the normalized crash frequency with a higher
average speed. To be more specifc, when other factors, such
as AADT and length, remain constant, the crash frequency
in the region with a higher average speed is actually lower,
despite the fact that the total crash frequency may be higher
due to high trafc volume.

Further analysis of the performance of the model was
carried out utilizing cumulative residual (CURE) plots. Te
construction of CURE plots followed the methodology

Table 1: Descriptive information of the study segments.

Variables Unit
Statistics

Min. Max. Mean Standard deviation
AADT Vehicles 2 19619 1456 1895
Segment length (L) Mile 0.10 2.97 0.48 0.30
Average speed (Vavg) mph 5.36 69.67 38.94 10.37
Speed limit (Vsl) mph 10 55
Te 85th percentile speed (V85) mph 9.10 70 47.90 8.77
Diference between average speed and speed limit (Vavg − Vsl) mph −49.64 20.66 −14.07 10.98
Diference between the 85th percentile speed and speed limit (V85 − Vsl) mph −45.87 32.78 −5.11 9.41
Crash frequency in 5 years 0 173 2 4

Journal of Advanced Transportation 5



outlined by Hauer and Bamfo [36]. Tese plots display the
cumulative residual, which represents the diference between
the observed crash frequency and the predicted crash fre-
quency derived from the model. Te independent variables
are ordered in ascending order in the plot. Te purpose of
such a plot was to get a visual representation of how well the
model matched the dataset. An acceptable cumulative re-
sidual curve is defned as one that remains within a range of
two standard deviations (±2σ) [23].

Figure 3 presents the CURE plots for the three independent
variables employed in the average speed-basedmodel. Evidently,
the model exhibits inadequate ft to the data as a substantial
proportion of the CURE extends beyond the ± 2σ limit,
considering all independent variables. Furthermore, it is ap-
parent that the model consistently overestimates or un-
derestimates the crash frequencywhere the speed andAADTare
higher. Te average speed plot shows that the model constantly
overestimates or underestimates at three speed intervals, de-
viating from the expected ranges. Tese observations prompted
us to explore a diferent approach, outlined in the following
section, which involved utilizing speed as a categorizer.

4.1. Speed as a Categorizer for Model Development. In this
section, we attempted to investigate the most efective means
by which speed can be incorporated into crash models.
Based on Figure 3, it is clear that the current model exhibits
a steady tendency to overestimate the crash frequency as the
average speed increases up to approximately 30mph. Sub-
sequently, there is a shift towards underestimation until the
average speed reaches roughly 50mph. After this point, the
model goes back to overestimating the crash frequency.

Considering these transitions in the CURE plot in terms
of average speed, the study dataset was divided into three
speed ranges based on average speed, and three distinct
models were developed. Te three speed ranges were cate-
gorized as follows: low speed, which encompassed speeds
below 30mph, medium speed, which included speeds
ranging from 30mph to 50mph, and high speed, which
referred to speeds over 50mph. Te respective proportions
of total segments were approximately 21%, 61%, and 18%.

For each individual speed range, we developed crash pre-
diction models with the ZINB form. Similar to the overall
model, 75% of the segments within each speed range were
used to train the model, and the remaining 25% were used
for testing after model calibration. Te infuence of speed
was analyzed across all speed levels. In the next subsections,
we explain the importance of including speed as the variable
in the model, in addition to how the crash frequency is
afected by speed in diferent speed ranges.

4.1.1. Low-Speed Roads. Te dataset for low-speed roads had
9,371 individual segments, all of which had an average speed
of less than 30mph. Tese segments had a total of 8,158
crashes in 5 years. Of the three independent variables
considered, AADT and length exhibited statistical signif-
cance (p value <0.0001) at a signifcance level of 5%.
However, the average speed was found to be insignifcant
and, therefore, not included in the model. Te fnal model
specifcation is presented in Table 3.

Quantifying the variables is one method for determining
the relative signifcance of each independent variable in the
model. Equation (12) provides a method for quantifying the
signifcance of an independent variable:

Variable importance �
Var(E(y/X))

Var(y)
. (12)

Here, the variance of the crash frequency, y, and given
independent variable, X, denoted as Var(E(y/X)), is cal-
culated by taking into account the predicted crash frequency,
y, in relation to the conditional distribution of the variables
under consideration.Te variance is subsequently calculated
throughout the probability distribution of variable X.
Var(y) is calculated as the variance of y. Based on the
results, the relative importance of AADTand length on low-
speed roads is 68% and 32%, respectively.

4.1.2. Medium-Speed Roads. Within the medium-speed
group, a total of 27,075 distinct segments were identifed,
each characterized by an average speed ranging from 30 to

Table 2: Model parameter estimates and goodness-of-ft.

Variables
Traditional model

Speed-based models
Va V85 Va − Vsp V85 − Vsp

Coefcient Std.
Error Coefcient Std.

Error Coefcient Std.
Error Coefcient Std.

Error Coefcient Std.
Error

Intercept (ε) −4.18 0.042 −4.09 0.041 −3.69 0.046 −4.62 0.059 −4.52 0.050
Ln (AADT) 0.81 0.006 0.89 0.007 0.88 0.007 0.86 0.008 0.85 0.007
Ln (L) 0.98 0.010 1.02 0.010 1.03 0.010 0.99 0.010 0.99 0.010
V −0.01 0.001 −0.02 0.001 −0.01 0.001 −0.01 0.001
AIC 106960 106617 106487 106850 106803
BIC 107002 106668 106538 106901 106853
R2 0.446 0.452 0.454 0.448 0.449
RMSE 3.71 3.66 3.65 3.70 3.70
MAPE (%) 68.48 66.86 66.78 67.98 68.08
MAD 1.61 1.59 1.58 1.61 1.61
∗Note: p value <0.0001 for all the variables.
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50mph.Tis category had a total of 58,104 crashes in 5 years.
Based on the calibrated model, all three variables, i.e.,
AADT, length, and average speed, exhibited statistical sig-
nifcance (p value <0.0001) at a signifcance level of 5%. For
comparison purposes, a traditional model with only AADT
and length was also ftted with the same dataset. Table 4
presents the specifcations and performance of the two
models.

While the statistical signifcance of average speed is ob-
served within themedium-speed group, its relative importance
is only about 1%. In contrast, AADTand L exhibit signifcantly
higher levels of importance, accounting for 59% and 40%,
respectively. It would appear that the infuence of speed is quite
insignifcant for this group, which is supported by themarginal
model plots in Figure 4. Based on the fgure, the line remains
relatively fat, suggesting that there is no signifcant change in
the crash frequencywith average speed. However, the plot does
indicate that other factors are playing an important role in
infuencing the crash frequency. Based on this fnding, it
appears that taking the average speed out of the model does
not change the accuracy of the model very much.

Based on the above fnding, we proceeded with the
conventional model form and developed CURE plots for
AADT and length, as illustrated in Figure 5. Te plots in-
dicate the possibility of further partitioning the data to
enhance the accuracy of the model. Clearly, the plot suggests
that there is a noticeable pattern of consistently under-
predicting values, which then shifts to consistently over-
predicting values when Ln (AADT) reaches a value of
approximately 8, which corresponds to an AADT value of
around 3000. Te medium-speed dataset was further sep-
arated into low-volume and high-volume subsets using this
value as a cutof.

In order to assess the potential improvement in pre-
diction accuracy, we conducted calibration and testing on
two separate submodels: one developed for low-volume
roads and another for high-volume roads. Te purpose
was to determine if incorporating AADT as an additional
categorizer could enhance the predictive capabilities of the
models. Te ZINB formulation was utilized in both sub-
models, and AADTand length were used as the independent
variables. Table 5 shows the specifcations and prediction
performance of these models. We then combined the pre-
dicted crash frequency from the two submodels to compare
their overall performance with that of the single model.

From the table, it can be observed that the performance of
the two submodels, when combined, shows a marginal
improvement compared to the performance of the single
model. Furthermore, Figure 6 shows that the corresponding
CURE plots for both submodels ft better, demonstrating the
efectiveness of considering AADT as an additional cate-
gorizer for medium-speed roads.

4.1.3. High-Speed Roads. High-speed roads included a total
of 7,561 segments, each of which had an average speed of
higher than 50mph. Tese segments had a total of 27,648
crashes in 5 years. Upon calibration, it is evident that average
speed is statistically signifcant (p value <0.0001) for crashes
on high-speed roads. As expected, AADTand length are also
signifcant. Table 6 shows variable coefcients and error
metrics for the speed-based model. Te estimated coefcient
of average speed indicates a negative correlation between the
crash frequency and speed of these roads. Further in-
vestigation revealed that these roads are characterized by
high geometric standards. Compared to low and medium-
speed roads, lanes and shoulders are wider with the presence
of straighter sections. Within this particular category, the
model gives 8% weight to average speed, while AADT and
length account for 52% and 40%, respectively. Tis indicates
that, as compared to its efect on other roads, speed has
a greater impact on crash predictions on high-speed roads.

In addition, the traditional model was developed and is
included in Table 6 for comparison purposes. It should come
as no surprise that integrating speed in the crash frequency
prediction model results in an enhanced performance over
the traditional approach. Te inclusion of average speed in
the model leads to improved performance measures, as
displayed in the table.

Further evaluation of CURE plots for the speed-based
model showed that overprediction occurs after an AADTof
nearly 5,000. However, due to the relatively small number of
samples available in the high-speed range, we decided not to
further subdivide the dataset on the basis of AADT. As more
data become accessible in subsequent periods, it will be
possible to reexamine this analysis.

4.2.Overall PerformanceResult. We evaluated the combined
performance of the models that were based on speed and
AADTcategorizers with the performance of the initial model
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Figure 2: Marginal model plots for the average speed-based model.
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in equation (11). Te goal was to illustrate how utilizing
separate models using speed and volume enhances the
overall accuracy of crash prediction for rural two-lane
roadways. To achieve this, all of the predictions made by
the low-speed, medium-speed, and high-speed road models,
which are based on speed and AADT, were aggregated.
Subsequently, error metrics were computed to assess pre-
diction accuracy. Te performance of the combined model
was also compared to that of the conventional model (Ta-
ble 7), which incorporates only AADT and length variables.
Table 7 demonstrates that when speed is utilized as a cate-
gorizer, and the model is then subdivided based on AADT
within the medium-speed group, there is a notable reduction
in the prediction error of up to 11.3%.

To further evaluate the performance of our models across
diferent crash ranges, Figure 7 displays the confusion ma-
trices for both the single average speed-based model (left) and
the combined models (right). Tese matrices depict the ac-
curacy of predictions for each range, with the diagonal line
showing the percentage of correct predictions. Although both
models perform similarly in terms of accurately predicting
crashes, the combined models exhibit fewer predictions that
deviate signifcantly from the actual values. For instance, the
combined models predict only 0.14% and 0.62% of locations
with zero and 1–3 crashes, respectively, to have more than 10
crashes, as opposed to 0.27% and 1.5% predicted by the single
model. Moreover, for locations withmore than 10 crashes, the
combined models mistakenly predict only 6.7% to have 1–3
crashes, whereas the single model erroneously predicts 8.1%
to have 1–3 crashes. Tese fndings demonstrate the

advantage of the combined models over the single model in
practical applications that aim to identify high-risk segments
and inform improvement decisions.

Overall, the fndings of this study indicated that the
performance of the crash prediction model for rural two-
lane roadways can be improved. Tis improvement was
accomplished by using the actual dataset to estimate speed
metrics and by taking speed and AADTinto consideration as
the categorizers.

5. Discussion and Summary

Te objective of this study was to examine how speed
contributes to the crashes of rural two-lane highways. Tis
was achieved by integrating measured speed data into the
crash prediction model. We examined the impact of four
distinct speed metrics on crashes. Te fndings revealed that
all four speed metrics exhibited statistical signifcance in
their respective models. Subsequently, we opted to conduct
a more comprehensive examination of average speed in
conjunction with AADT and segment length, as average
speed more accurately depicts the prevailing operating
conditions encountered by drivers on these roadways.

Upon conducting a more thorough investigation, it was
discovered that there exists a negative correlation between
the average speed and frequency of crashes on rural two-lane
roadways.

Tis negative correlation aligns with prior research
fndings that crashes tend to occur less when average speed is
higher [8, 26, 30, 60, 61]. One possible justifcation for this
observed relationship is that rural two-lane highways with
higher speeds are typically the primary routes in the area,
often with improved geometric characteristics [30].

In addition, it was revealed that the importance of speed
crash prediction seems to increase with speed. Tis obser-
vation prompted us to categorize the entire dataset based on
speed into three subsets: below 30mph, between 30mph and
50mph, and above 50mph. Te analysis showed that speed
was not signifcant for roads in the low-speed category but
was signifcant for roads in both medium- and high-speed
categories. While the efect of speed on crash prediction was
shown to be statistically signifcant within the medium-
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Figure 3: CURE plots for the model based on average speed.

Table 3: Model specifcation for low-speed roads.

Coefcient Std. error 95% CI
Intercept (ε) −4.95 0.107 (-5.16, −4.74)
Ln (AADT) 0.93 0.019 (0.89, 0.97)
Ln (L) 0.92 0.033 (0.85, 0.98)
Model form μ � e− 4.95.AADT0.93. L0.92

MAPE 59.79%
RMSE 1.64
MAD 0.86
∗Note: p value <0.0001 for all the variables.

8 Journal of Advanced Transportation



speed group, its overall infuence was not particularly
pronounced. In contrast, speed had a greater impact on
crashes occurring on high-speed roads. According to the
study dataset, high-speed roads exhibited better geometric

characteristics (such as wider lanes and shoulders) than low-
and medium-speed roads. Tis observation implies that
speed can serve as an indicator of the geometric condition of
rural two-lane highways.

Table 4: Comparison of models for medium-speed roads.

Traditional model Speed-based model
Coefcient Std. error 95% CI Coefcient Std. error 95% CI

Intercept (ε) −4.58 0.057 (−4.69, −4.47) −4.32 0.067 (−4.46, −4.19)
Ln (AADT) 0.88 0.008 (0.87, 0.90) 0.91 0.009 (0.89, 0.92)
Ln (L) 1.06 0.013 (1.03, 1.08) 1.07 0.013 (1.05, 1.09)
Average speed _ −0.01 0.001 (−0.01, −0.007)
Model form μ � e− 4.58.AADT0.88. L1.06 μ � e− 4.32.AADT0.91. L1.07. e− 0.01Va

MAPE 61.04% 60.89%
RMSE 2.85 2.84
MAD 1.52 1.52
∗Note: p value <0.0001 for all the variables.
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Table 5: Models based on AADT categorizer and performance comparison.

Models tested for medium-speed roads
No of

segments for
training

No of
segments for

testing
MAPE (%) RMSE MAD

Low-volume submodel (μ � e− 4.99.AADT0.95. L1.07) 18,342 6,114 60.81 2.29 1.31
High-volume submodel (μ � e− 3.31.AADT0.72. L0.99) 1,964 654 80.26 5.00 3.18
Two submodels combined 20,307 6,768 63.03 2.73 1.50
Single model 20,307 6,768 61.04 2.85 1.52
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Figure 6: CURE plots of the models with an AADT categorizer. (a) Low-volume roads. (b) High-volume roads.

Table 6: Comparison of models for high-speed roads.

Traditional model Speed-based model
Coefcient Std. error 95% CI Coefcient Std. error 95% CI

Intercept (ε) −2.96 0.136 (−3.23, −2.69) 1.12 0.255 (0.62, 1.62)
Ln (AADT) 0.62 0.017 (0.59, 0.65) 0.73 0.018 (0.69, 0.77)
Ln (L) 0.96 0.019 (0.92, 0.99) 0.98 0.019 (0.95, 1.03)
Average speed — −0.09 0.005 (−0.10, −0.08)
Model form μ � e− 2.96.AADT0.62. L0.96 μ � e1.12.AADT0.73. L0.98. e− 0.09Vavg

MAPE 75.23% 71.06%
RMSE 7.23 7.16
MAD 2.51 2.39
∗Note: p value <0.0001 for all the variables.
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Furthermore, our study has revealed that incorporating
an additional categorizer based on AADT in conjunction
with speed and developing submodels under each speed
group leads to improved predictions compared to a single
model. While developing models for predicting crashes of
rural two-lane highways, it is important to consider both
speed and AADTas categorizers, provided that the available
data are sufcient for separate models.

Overall, the fndings of this study suggest that the
efect of speed in predicting crash frequency can difer
based on the speed ranges of rural two-lane highway
sections. Such an analysis of speed on rural two-lane
highways can provide valuable insights into the geo-
metric and operational features of the roadway. Tis in-
formation can be efectively utilized to assess the safety
performance of these highways under diferent circum-
stances. Consequently, appropriate countermeasures can
be implemented to improve safety on these roads.
Moreover, the developed submodels can be a valuable tool
for transportation planners and policymakers to locate
high-risk segments and allocate budgets to improve safety
on those roads.

Currently, the sample size for roadways with higher
operating speeds is relatively limited. We will continue to
collect data on these roads to further test the performance
of the model. In addition, better speed data coverage on
rural low-volume roads is necessary to have a reliable
estimate of the 85th percentile speed for assessing safety

from a design consistency perspective. To further un-
derstand the role of speed specifc to rural two-lane
highways, it would be interesting to incorporate addi-
tional geometric variables and possibly crash severity into
the model. Furthermore, in light of the concerns raised
regarding the ZINB model, it is important to explore al-
ternative statistical approaches that can handle the issue of
excess zeros, such as the random parameters negative bi-
nomial, random parameters negative binomial-generalized
exponential, random parameters negative binomial-
Lindley, and extreme value models [47–49]. In addition,
considering more advanced techniques, such as machine
models, could potentially enhance the overall performance
and predictive capability of the model.

Data Availability

Te crash data used in this study are available at Kentucky
State Police (https://crashinformationky.org/). Road attri-
butes are available at Highway Information System (https://
transportation.ky.gov/Planning/Pages/HIS-Extracts.aspx).
Lastly, HERE speed data are proprietary and would not be
made available due to the restriction of data use agreement.
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Table 7: Performance comparisons.

MAPE (%) RMSE MAD
Traditional model 68.48 3.71 1.61
Single average speed-based model 66.86 3.66 1.59
Combined models with speed and AADT as categorizers 64.49 3.29 1.50
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Figure 7: Confusion matrix to compare performances between single and combined models: (a) single average speed-based model; (b) combined
models.
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