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Technical Note

Characterization of Operational Vibrations of Steel-Girder
Highway Bridges via LiDAR
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1 Department of Civil and Environmental Engineering 1, Rowan University, Glassboro, NJ 08028, USA
2 Department of Civil and Environmental Engineering, Rutgers University, Piscataway, NJ 08854, USA
* Correspondence: franklin.moon@rutgers.edu

Abstract: This research is motivated by the need for rapidly deployable technologies such as wireless,
non-contact or remote sensing for evaluating bridges under operating conditions to minimize the
data collection time, avoid the disruption of traffic and increase the inspector’s safety. The objective
established for this research is to explore the use of remote sensing (e.g., Light Detection and Ranging
(LiDAR)) for characterizing the structural vibration of bridges to support and improve bridge
assessment practices. To satisfy this objective, a field study was performed on a 12-span steel stringer
bridge in the Philadelphia region. This structure was subjected to extensive LiDAR scanning and
conventional vibration data collection through the use of accelerometers for validation purposes. The
analysis of the data collected in the field revealed LiDAR’s capability for detecting the structure’s
vibration. The field data displayed an error for LiDAR vs. accelerometers of between 1.9 and
10 percent. Additionally, numerical modeling was performed on MATLAB to allow for a better
understanding of the interaction between the scanner and the structure. The numerical model
presents a vibrating plate to represent a simply supported single-span bridge and a terrestrial LiDAR
sensor located under the plate which scans while it is vibrating constantly without attenuation.
Finally, a set of recommendations were established for the use of LiDAR scanning to evaluate the
structure’s frequency of vibration.

Keywords: structural vibration; LiDAR; point cloud; remote sensing; bridge engineering

1. Introduction

According to the American Society of Civil Engineers’ (ASCE) Infrastructure Report
Card [1], close to 42% of all bridges in the United States are at least 50 years old (even
though they were designed for a 50-year service life); 7.5% are structurally deficient, which
indicates that they are very close to the end of their life-cycle unless significant interventions
are undertaken. Although progress is being made to reduce the number of structurally
deficient bridges (as evidenced by a 2.5% decrease in four years), whether or not this
progress can be maintained or accelerated remains an open question. Given the sheer
number of bridges older than 50 years, as well as the ones approaching this age, it is
clear that we cannot simply hope to build ourselves out of this challenge by the wholesale
replacement of all old and deficient bridges. Rather, there is a need to develop rapid and
efficient diagnosis, prognosis and repair techniques to safely and cost-effectively extend
the life-cycle of our current bridge stock. Although all these tools are needed, assessment
is arguably the most critical. Without the ability to identify and characterize deficiencies
at their early stages, prognosis and various repair strategies simply cannot be brought to
bear effectively. For this reason, this research intends to provide recommendations for the
implementation of LiDAR on a TLS platform.

Over the last decade, bridge owners have begun to explore augmenting conventional
assessment approaches with nondestructive evaluation (NDE) [2] and structural health
monitoring (SHM) technologies [3]. The primary barrier associated with the use of these
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technologies is not simply cost but rather the disruption to the traveling public which gen-
erally accompanies their implementation [4]. As a result, rapidly deployable technologies
such as wireless, non-contact or remote sensing are important technologies for the future
of SHM.

This growing interest in sensing technologies that may be deployed in a rapid or
noninvasive manner has focused on the identification of application scenarios that demon-
strate the value of such technologies over conventional approaches. Towards that end, the
research presented herein aims to explore the use of remote sensing (e.g., Light Detection
and Ranging (LiDAR)) to support and improve bridge assessment. LiDAR sensors have
the ability to capture dense point clouds that define the geometry of objects in a remote
(non-contract) manner. For this research, the team used a FARO Focus S 150, with a vertical
range of 300◦, a horizontal range of 360◦, and a minimum step size (angular distance
between points) of 0.009◦ (1.57E-4 rad). The scanner has a range error of ±1 mm [5]. The
sampling frequency was set to 244 points/sec, at a resolution of 0.035◦ (four times the
minimum step size). Figure 1 shows the principal of operations of a typical LiDAR sensor.
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LiDAR sensors may be deployed as Terrestrial Laser Scanners (TLS), Airborne Laser
Scanners (ALS) or Mobile Laser Scanners (MLS) [6]. Over the last few decades, these
sensors have demonstrated an ability to efficiently and rapidly gather a large amount of
high-quality spatial data, surpassing the data collection capacity of the theodolite and total
station [7]. One area that has attracted attention is the use of LiDAR to support structural
assessment activities. The key benefits of LiDAR over conventional approaches in this
application area include (a) a more complete and quantitative record of geometry that
may be used for future “change detection” activities [8], (b) providing a platform to better
conceptualize the structure by exploring the point cloud [7], (c) reducing the potential for
documentation errors [9], (d) helping to standardize the inspection process and reduce the
reliance on qualitative and subjective information [10] and (e) providing full-field geome-
try/displacement information, which contextualizes the information for more complete
data interpretation. Moreover, LiDAR has improved the quality of bridge monitoring
by allowing one to measure bridge displacements in a contactless manner [11]. In the
field of vibration monitoring, traditional methods implement the use of accelerometers to
capture the behavior of structures under (a) ambient vibrations or (b) imposed loading.
This information is then used to calibrate computational models that allow one to study
and determine the structural capacity, condition stage and structural identification [12,13].
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Laser-based approaches for measuring structural vibrations are currently under exploration,
as researchers investigate the detection of passing vehicles through the implementation of
laser doppler vibrometers [14], finite element model calibration by measuring deflection
and mode shapes by the interpretation of data captured via LiDAR and laser doppler
vibrometers [15].

It is important to establish a comparison between conventional vibration sensors
(accelerometers) and TLS. Accelerometers present demonstrated benefits and shortcomings
for measuring the vibration responses of structures. Some of the benefits are: (a) the high
sampling rate [16], (b) the low cost compared to that of TLS [17] and (c) the lower amount
of data compared to that of TLS, while some of the shortcomings are: (a) the single-point
data collection, while LiDAR scanners are able to gather full-field data, (b) the fact that
installation requires traffic disruption [18] and (c) the fact that it can only be used to measure
vibration, while TLS data (point cloud) also provide the geometry of the elements [19].

2. Objectives and Approach

The overarching aim of the research is to explore the use of remote sensing—more
specifically, LiDAR—as a contributor to the vibration analysis of bridges. To achieve
this goal, this research leveraged a diverse set of approaches that included the use of
data collected from (a) operating highway bridges and (b) a mathematical model used to
simulate the dynamic response of typical highway bridges. These data collection efforts
were supported by various data analysis techniques, data visualization and interpretation
approaches and numerical simulation modeling.

The field work designated for the comprehension of the effects of response vibrations
regarding the point cloud data required the use of a numerical model that served as a refer-
ence, where different variables could be evaluated. The variables tested in this controlled
digital environment were (1) scanner-dependent (Resolution, Temporal frequency, Angular
frequency) and (2) structure-dependent (Amplitude of vibration, Frequency of vibration).

3. Field Data Collection

The scanned structure is a steel multi-girder bridge with a total of 11 spans with a
combination of single- and double-spans. The girders are braced laterally through X- and
K-shaped frames and are supported by concrete piers. The structure was built in 1986,
utilizing the substructure, the foundation and the preexisting bridge built in 1956. The
bridge was reported to have excessive vibration, hence the need for this research project.

During the analysis of the bridge point cloud data captured via the LiDAR of an
operating bridge, localized ripples were noted in horizontal elements that were expected
to be planar in nature (such as steel girder flanges). Figure 2 shows an example of the
ripples observed. These ripples were measured to have an amplitude of approximately
25 mm (25 times the range error of the scanner) and were more significantly detected within
a range of 4 m around the scanner. It was hypothesized that these ripples are a result
of the bridge vibrating under truck traffic. If true, given the broadband nature of traffic
excitation (1–5 Hz for typical highway bridges [20–22], analyzing these ripples should be
able to provide information about the dynamic properties of the test structure. That is,
their frequency is likely more related to the dynamic properties of the structure than the
frequency of the loading (since it is broadband within the frequency range of interest).
This paper presents the results obtained after the examining this hypothesis through the
use of data obtained from an operating highway bridge, along with the use of numerical
and physical models. The following sections outline the research conducted using each of
these approaches.
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Figure 2. Ripple pattern found in the point cloud of the collected field data caused by operating traffic.

3.1. Observation from an Operating Highway Bridge

This ripple phenomenon was easily observed throughout the point cloud data, as
shown before, indicating that this was not a one-time event. Then, the focus oriented
toward determining the potential extraction of modal frequencies from the point cloud
data as a means of characterizing the dynamic performance of the bridge. This subsection
presents how the Temporal Frequency and Angular Frequency of the point cloud data were
calculated and how they were used to estimate the frequency of bridge vibrations.

3.1.1. Temporal Frequency during the Field Data Collection

The temporal frequency of the LiDAR data is defined as the inverse of the time it
takes for two horizontally consecutive data points to be registered. Figure 3 explains this
concept, where points E and H are considered to be horizontally consecutive points since
they have the same vertical rotational angle and were taken in two consecutive LiDAR
revolutions. Similarly, points A-D, B-E and F-I are also horizontally consecutive points.
Then, the inverse of the time between these two points is the Temporal Frequency (ft), as
shown in Equation (1), where tp is the time between two consecutive points. During the
field data collection, the scanner was set to perform at a ft of 24Hz; therefore, the tp was
0.04167 s.

ft =
1
tp

, (1)
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3.1.2. Angular Frequency during Field Data Collection

The angular frequency of the LiDAR data is defined as the horizontal degrees covered
per second by the scanner. The Angular Frequency (fa) can be found by multiplying the
temporal frequency of the scanner by the step size or resolution (the angular distance
between two consecutive points), as shown in Equation (2):
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fa = ( ft − 1)× Resolution (2)

In Equation (2), since the temporal frequency is the number of points per second, one
unit must be subtracted, since the equation seeks the number of spaces between the data
points. The final units of Fa are degrees per second. During the field data collection, the
scanner was set to perform at a resolution of 0.035◦, resulting in an fa of 0.805 deg/s.

3.1.3. Measurement of the Bridge Frequency of Vibrations

Based on the setting of the scanner at the moment of the field data collection, the
bridge frequency of vibration was calculated through the following process:

• Calculate the angular distance (Distang) between the two low points (of a ripple),
considering the LiDAR’s location following Equation (3). X and Y are the coordinates
of the selected data points.

Distang = cos−1

(
X1·X2 + Y1·Y2√

X1
2 + Y1

2·
√

X22 + Y22

)
(3)

• Calculate the period between ripples (TR), which is the time, in seconds, between the
occurrence of two consecutive low points, following Equation (4).

TR =
Distang

( ft − 1)× Resolution
=

Distang

fa
(4)

• Calculate the bridge frequency of vibration (fo), following Equation (5).

fo =
1

TR
(5)

Random samples of five or more consecutive ripples were taken to measure the
vibrating frequency of spans 02, 03, 05 and 07. The previously explained steps and equations
were applied to measure the frequency of vibration of each span. LiDAR’s parameters
during the data collection are summarized in Table 1.

Table 1. LiDAR’s parameters during the field data collection.

Resolution (◦) Temporal Frequency ft (Points/s) Angular Frequency fa
(Degrees/s)

0.035 24 0.805

4. Field Data Analysis and Results

To verify the findings obtained through the LiDAR data analysis, the results were
compared to a full dynamic test performed for the bridge, where different mode shapes
with the correspondent frequency of vibration were found. The dynamic test consisted of
the installation of accelerometers to measure the bridge vibrating response on key locations,
as shown in Figure 4. The spans included within this particular test were 2, 3, 4, 7 and 8;
therefore, these were the only spans where the LiDAR data could be verified. The shape of
Mode 1 and the correspondent frequency of vibration found from the data analysis of these
spans are presented in Figure 5.

The results gathered from the analysis of the field data are summarized in Table 2; this
table includes the results gathered from the dynamic test. The Angular Distance, Ripple
Period and Frequency of Vibration from LiDAR include a range corresponding to the 95%
confidence interval, while the percent error calculated for LiDAR’s Frequency of Vibration
follows Equation (6). Additionally, the natural frequencies for the first eight modes of spans
02, 03–04 and 07–08 are listed in Table 3.
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%error(Frequency) =
(Frequency LiDAR data − Frequency Dynamic test)

Frequency Dynamic test
(6)
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Table 2. Bridge Frequency of Vibration.

Span
Number

Average
Angular Distance

Distang (◦)

Standard
Deviation
Distang (◦)

Ripple
Period
TR (s)

Frequency of
Vibration fo from the

LiDAR Data (Hz)

Frequency of
Vibration fo from the

Dynamic Test (Hz)

2 0.42
(±0.03) 0.03 0.51

(±0.04)
1.98 ± 0.13
(−1.98%) 2.02

3 and 4 0.35
(±0.06) 0.04 0.43

(±0.08)
2.35 ± 0.42

(10.8%) 2.12

7 0.40
(±0.09) 0.05 0.48

(±0.10)
2.07 ± 0.49

(3.5%) 2.00

8 0.36
(±0.03) 0.01 0.43

(±0.04)
2.30 ± 0.22

(15.0%) 2.00

Table 3. Natural Frequencies of the first eight modes of vibration for Spans 2, 3–4 and 7–8 (accelerom-
eters data).

Mode Shape Span 2 Span 3–4 Span 7–8

1 2.02 2.12 2.00
2 2.12 2.47 2.03
3 2.62 2.92 2.10
4 2.72 3.53 2.44
5 3.13 5.04 2.51
6 3.88 5.55 2.54
7 4.29 5.85 2.83
8 5.04 7.26 2.93

5. Numerical Modeling

This section presents the different parameters established to define the numerical
model developed in order to further examine the findings from the field data described
above. The goal of this model was to simulate the bridge/scanner interaction and identify
the influence of various structural parameters (e.g., fundamental frequency, vibration
amplitude) and data acquisition parameters (e.g., temporal and angular frequency, distance
to target) on the ability of LiDAR data to be used to estimate the fundamental frequency of
a structure. The code written to satisfy the objectives of this section considered a vibrating
rectangular plate with the parameters shown in Table 4.

Table 4. Numerical model input parameters. Plate specifications.

Parameter Name Description Symbol Unit

Length Length of the span being simulated L cm
Width Width of the typical girder bottom flange b cm

Stiffness Flexural Stiffness of the bridge K kg/cm
Mass Total mass of the bridge m kg

Acceleration
multiplier

Acceleration multiplier to increase the
amplitude of vibration U Unitless

Based on the parameters of Table 4, the natural frequency of the plate was calculated
following Equation (7), where K is the bridge stiffness, and m is the total mass of the bridge.

Wn =
2

√
K
m

(7)

In addition, Table 5 shows the data acquisition parameters simulated by the numerical
model. Figure 6 indicates the global sign convention adopted in the code.
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Table 5. Numeral model input parameters. Scanner settings.

Parameter Name Description Symbol Unit

Resolution Angular distance between two
consecutive points. Deg Degrees

Distance to Target Perpendicular distance between the
scanner and plate Len cm

Temporal Frequency Number of scanner revolutions per second ft rev/s
Scanner Longitudi-

nal Location
Location of the scanner with respect to the

longitudinal direction of the plate LongLoc cm

Scanner
Transverse Location

Location of the scanner with respect to the
transverse direction of the plate TranLoc cm
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Figure 6. Global Sign Convention.

Once all parameters were determined, the algorithm of the numerical model was
applied as follows:

• Calculate the Xdeg of each point with respect to the scanner and assign a distance
alpha. Alpha is the longitudinal location of the point within the plate (see Equation (8)).

alpha = tan(Xdeg)× Len (8)

• Calculate the Zdeg of each point with respect to the scanner and assign a distance beta.
Beta is the transverse distance of the point within the plate (see Equation (9)).

beta = tan(Ydeg)× Len (9)

• Assign an ID to each point of the point cloud, based on the scanner rotating sequence,
assuming the scanner rotates forward and clockwise. The point ID (pointID) was
assigned based on the following code:

zcover = 360; %Vertical degrees covered by the scanner.
ptsCicle = round((zcover/(Deg)),0); %Number of points of scanner revolution.
for i = 1:size(beta,1)
for j = 1:size(beta,2)
pointID(i,j) = (i − 1)+ptsCicle*(j − 1);
end
end

• Finally, the algorithm needed a shape function (Equation (10)), a time assigned to
each point (Equation (11)) and the natural frequency that was previously calculated to
calculate the vertical displacement for each point, as presented in Equation (12).

shape = sin
(

π × (alpha + LongLoc)
L

)
(10)

time =
(

pointID
ptsCicle

)
×
(

1
Rev

)
(11)
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u = U × shape × sin
(

π × time
1/wn

)
(12)

For the initial simulations, the parameters shown in Tables 4 and 5 with the afore-
mentioned equations were employed. The modification of the scanner location allowed
for the identification of the shifts of the ripple patterns with respect to this variable and
highlighted the influence of the incidence angle on the data resolution. Table 6 shows
the resulting ripple patterns for two different temporal frequencies (97 and 43 Hz) and
three different resolutions (0.009◦, 0.09◦ and 0.9◦). Is important to highlight that, in this
initial simulation, the distance to the target (Len) was kept constant; further analysis was
conducted to evaluate the influence of this parameter.

Table 6. Variation in the ripples pattern depending on the laser scanner configuration.

LiDAR’s Temporal Frequency: 90 Hz
(20 × 1st Mode Frequency)

LiDAR’s Temporal Frequency: 45 Hz
(10 × 1st Mode Frequency)
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Since the angular frequency depends on the temporal frequency and resolution of the
scanner, two trends can be observed in Table 6:

(1) As the resolution increases (the angular distance between two consecutive points),
there will be an increase in the angular frequency. This will increase the distance
between ripples for a given vibration frequency.

(2) As the temporal frequency decreases, there will be a decrease in the angular frequency.
This will decrease the distance between ripples for a given vibration frequency.

The first observation is somewhat intuitive, but the second observation requires
some explanation. By slowing down the temporal frequency while keeping the resolution
constant, the scanner takes more time to cover the same area of the plate, giving the
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plate more time to change position in between samples. This is equivalent to keeping the
temporal frequency constant and increasing the frequency of vibration of the plate.

The distance between the scanner and the plate will also affect the characterization of
the ripples. A 0.9◦ resolution at 9.14 m. Len has the same ripple pattern as a 0.09◦ resolution
at 91.4 m. Len and a 0.009◦ resolution at 914 m. Len. All of these combinations result in an
angular frequency of 26.9 Deg/s. On the other hand, Table 7 demonstrates how variating
the distance to the target, without changing the resolution, can affect the ripple pattern.
The blue line represents a resolution of 0.009◦ at a 9.14 m. distance from the scanner to the
vibrating plate; the red line is the result of maintaining the same resolution and increasing
the distance to 91.4 m.; finally, the black line represents a ripple pattern of a scan taken
again at 0.009◦ while increasing the distance to 914 m.

Table 7. Influence of the distance to the target on the ripple pattern.

Parameters Ripple Pattern

Resolution: 0.009◦

fa: 26.1
Len: 9.14 m.
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erroneously interpreted as structural distortion, which could lead to false alarms related to
performance concerns. This is particularly relevant for signature bridges that are generally
scanned from considerable distances (in many cases, from shorelines) and have relatively
large amplitude vibrations at relatively low frequencies (<0.5 Hz).

Another factor that influences the shape of the ripples is the location of the scanner,
since this will determine the incidence angle between the beam of light projected from
the scanner and the object scanned. Figure 7 shows a comparison of the ripple patterns
captured from a scanner in three different locations: (a) under the left support, (b) under
the 1/3-span of the plate and (c) under the mid-span.

As mentioned before, in this case, the incidence angle is the parameter altering the
ripple pattern. This effect is similar to what was shown from the distance to the target.
The incidence angle is measured, as shown in Figure 8; therefore, the smaller the incidence
angle, the greater the distance between the ripples (because this corresponds to the largest
distance (on the structure being scanned) between the data from subsequent passes).

For operational vibrations that have sufficient amplitudes to be captured by the LiDAR
sensor, the resulting scan will display ripple patterns. By estimating the distance between
the peak of these ripples (and translating this into time using the data acquisition metrics),
the frequency of the vibrating object can be estimated. For the operating bridge employed
in this research, the natural frequencies were estimated within 1.9% to 10%.

The frequency of vibration of the object is inversely related to the distance between the
ripples (i.e., the period). On the contrary, the amplitude of vibration of the object is directly
related to the amplitude of the ripples. These trends influence the manner in which ripple
patterns manifest within the data, with (a) high-frequency (>10 Hz) vibration generally
showing up as increased noise, (b) typical highway bridge frequencies (2–5 Hz) showing up
as a clear ripple pattern spaced from 1.3◦ to 3.3◦ and (c) long-span bridges with a very low
frequency (<0.3 Hz) resulting in a situation where a user may fail to recognize the presence
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of ripple patterns and treat the resulting data as representative of the static geometry of
the elements.
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The spacing of the ripples (Angular Distance) is directly proportional to the angular
frequency (f a). For example, for a given vibration frequency, a scanner set to a lower
angular frequency will produce ripples with narrower spacing compared to a scanner set
to a higher angular frequency, which will produce ripples with broader spacing, as seen
in Figure 9.

The spacing of the ripples (Angular Distance) is inversely proportional to the vibration
frequency (fo). For example, for a given angular frequency, if the structure is vibrating at a
low frequency, the ripples will have broad spacing, while, if the structure is vibrating at a
high frequency, the ripples produced will have narrow spacing, as seen in Figure 10.
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6. Conclusions

If the scanner’s temporal frequency compared to the object’s vibration frequency
is sufficiently small, aliasing of the ripple pattern occurs, and the shape of the point
cloud could be misinterpreted as a deformation of the scanned element. To avoid this,
the temporal frequency should be kept at at least eight times the vibration frequency
of the object. Therefore, the Nyquist frequency will be at least four times the object’s
vibration frequency.

If the angular frequency of the scanner is sufficiently high (i.e., the scanner passes over
the structure at a fast rate), aliasing of the ripple pattern occurs. To avoid this, and to better
characterize the ripple pattern, it is recommended that the angular frequency be selected to
allow the structure to complete ten vibration cycles during scanning.

Adding to the evidence gained from this research on LiDAR’s capability of capturing
the structure’s vibration for model analysis, it is important to highlight the effects that
structural vibrations have on the acquired point cloud data. Ignoring these effects has the
potential of misestimating the member’s dimensions, deflection and/or local damage. It is
important to identify and isolate this source of error.

The following recommendations aim to establish the minimum parameters that should
be considered to ensure the characterization of the ripple patterns that result from the
interaction between the vibrating structure (bridge) and the static LiDAR. For the use of
LiDAR as a tool to estimate the natural frequency of a structure, the primary requirement
is the proper characterization of the ripple patterns that result from vibration. To design an
effective scanning protocol, it is necessary to begin by estimating both the amplitude and
the frequency of the vibration that will be quantified. To choose the scanner’s parameters
before the data acquisition, the following three steps are recommended:

(1) Step 1—Select the maximum distance between the scanner and the object being
scanned from Table 8 (reproduced below), ensuring that the amplitude of vibration is
at least 1.5 times the manufacturer-specified accuracy.

(2) Step 2—Select the angular frequency to be between 3.5 and 13 degrees/s and then use
Table 9 to select the desired temporal frequency to ensure no aliasing will occur. The
criteria to avoid aliasing (as mentioned in the conclusions) were taken as a minimum
of eight times the frequency of the vibrating object.
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(3) Step 3—Based on the results from Steps 1 and 2, use Table 10 to estimate the amount
of time per scan, based on the initial Step Size and Temporal Frequency.

Table 8. Minimum Amplitude of Vibration Detected. Local Accuracy (cm).

LiDAR’s Step Size (Degrees)
0.009 0.018 0.035 0.040 0.070 0.088 0.140 0.175 0.280

D
is

ta
nc

e
to

Ta
rg

et
(m

et
er

s)

1 0.028 0.057 0.110 0.126 0.220 0.276 0.440 0.550 0.880
2 0.057 0.113 0.220 0.251 0.440 0.553 0.880 1.100 1.759
3 0.085 0.170 0.330 0.377 0.660 0.829 1.319 1.649 2.639
4 0.113 0.226 0.440 0.503 0.880 1.106 1.759 2.199 3.519
5 0.141 0.283 0.550 0.628 1.100 1.382 2.199 2.749 4.398
6 0.170 0.339 0.660 0.754 1.319 1.659 2.639 3.299 5.278
7 0.198 0.396 0.770 0.880 1.539 1.935 3.079 3.848 6.158
8 0.226 0.452 0.880 1.005 1.759 2.212 3.519 4.398 7.037
9 0.254 0.509 0.990 1.131 1.979 2.488 3.958 4.948 7.917
10 0.283 0.565 1.100 1.257 2.199 2.765 4.398 5.498 8.797
20 0.565 1.131 2.199 2.513 4.398 5.529 8.796 10.99 17.59
30 0.848 1.696 3.299 3.770 6.597 8.294 13.19 16.49 26.39
40 1.131 2.262 4.398 5.027 8.796 11.05 17.59 21.99 35.18
50 1.414 2.827 5.498 6.283 10.99 13.82 21.99 27.48 43.98
60 1.696 3.393 6.597 7.540 13.19 16.58 26.38 32.98 52.77
70 1.979 3.958 7.697 8.796 15.39 19.35 30.78 38.48 61.57
80 2.262 4.524 8.796 10.05 17.59 22.11 35.18 43.98 70.37
90 2.545 5.089 9.896 11.31 19.79 24.88 39.58 49.48 79.16

100 2.827 5.655 10.99 12.56 21.99 27.64 43.98 54.97 87.96
110 3.110 6.220 12.09 13.82 24.19 30.41 48.38 60.47 96.762
120 3.393 6.786 13.19 15.08 26.38 33.17 52.77 65.97 105.5
130 3.676 7.351 14.29 16.33 28.58 35.94 57.17 71.47 114.3
140 3.958 7.917 15.39 17.59 30.78 38.70 61.57 76.96 123.1
150 4.241 8.482 16.49 18.85 32.98 41.46 65.97 82.46 131.9

Table 9. Angular Frequency (fa). Based on the Temporal Frequency and Step Size.

Temporal Frequency (f t) [Hz]
3 6 7.5 12 15 24 30 48 60 95

Li
D

A
R

’s
St

ep
Si

ze
(◦

) 0.009 0.018 0.045 0.059 0.099 0.126 0.207 0.261 0.423 0.531 0.846
0.018 0.036 0.090 0.117 0.198 0.252 0.414 0.522 0.846 1.062 1.692
0.035 0.070 0.175 0.228 0.385 0.490 0.805 1.015 1.645 2.065 3.290
0.040 0.080 0.200 0.260 0.440 0.560 0.920 1.160 1.880 2.360 3.760
0.070 0.140 0.350 0.455 0.770 0.980 1.610 2.030 3.290 4.130 6.580
0.088 0.176 0.440 0.572 0.968 1.232 2.024 2.552 4.136 5.192 8.272
0.140 0.280 0.700 0.910 1.540 1.960 3.220 4.060 6.580 8.265 13.16
0.175 0.350 0.875 1.138 1.925 2.450 4.025 5.075 8.225 10.32 16.45
0.280 0.560 1.400 1.820 3.080 3.920 6.440 8.120 13.16 16.52 26.32

Table 10. Minutes per Scan. Based on the Angular Frequency for a 360◦ scan.

Temporal Frequency (f t) [Hz]
3 6 7.5 12 15 24 30 48 60 95

Li
D

A
R

’s
St

ep
Si

ze
(◦

) 0.009 333.3 133.3 102.6 60.6 47.6 29.0 23.0 14.2 11.3 7.1
0.018 166.7 66.7 51.3 30.3 23.8 14.5 11.5 7.1 5.6 3.5
0.035 85.7 34.3 26.4 15.6 12.2 7.5 5.9 3.6 2.9 1.8
0.040 75.0 30.0 23.1 13.6 10.7 6.5 5.2 3.2 2.5 1.6
0.070 42.9 17.1 13.2 7.8 6.1 3.7 3.0 1.8 1.5 0.9
0.088 34.1 13.6 10.5 6.2 4.9 3.0 2.4 1.5 1.2 0.7
0.140 21.4 8.6 6.6 3.9 3.1 1.9 1.5 0.9 0.7 0.5
0.175 17.1 6.9 5.3 3.1 2.4 1.5 1.2 0.7 0.6 0.4
0.280 10.7 4.3 3.3 1.9 1.5 0.9 0.7 0.5 0.4 0.2



Remote Sens. 2023, 15, 1003 14 of 15

In general, there are four categories for vibration amplitude/frequency that will dictate
what is possible to capture via LiDAR, as shown in Table 11.

Table 11. Recommended LiDAR scanning goals based on the vibration frequency and amplitude
being characterized.

Amplitude Frequency Goal

Low vibration
amplitude

Less than 1.5 times the
local accuracy N.A. Oversample with the goal of reducing noise

within geometry estimates through averaging

Low vibration frequency
Greater than

1.5 times the local
accuracy

Frequencies less than
0.5 Hz

Characterization of the vibration first mode
and ensuring that the ripple patterns do not

distort dimensional estimates
Moderate
vibration
frequency

Greater than
1.5 times the local

accuracy

Frequencies within the
2–6 Hz bandwidth

Characterization of the vibration first mode
and ensuring that the ripple patterns do not

distort dimensional estimates

High vibration
frequency

Greater than
1.5 times the local

accuracy

Frequencies greater than
15 Hz

Oversample with the goal of reducing noise
within geometry estimates through averaging
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