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Abstract: The use of isosorbide-derived polymers has garnered significant attention in recent decades
as a high-performance, renewable material sourced from biomass. Of particular interest is isosorbide
methacrylate, which possesses low viscosity (<500 cps), high thermal properties (Tg ≈ 220 ◦C), and
high modulus (>4 GPa). These characteristics present a promising opportunity to replace BPA-
derived methacrylate compounds in various applications. This investigation aims to synthesize
and characterize isosorbide-based low-viscosity resin systems for 3D printing. The resin blends are
composed of isosorbide methacrylate and two bio-renewable methacrylates, furfuryl methacrylate
(FM) and bis-hydroxymethyl-furan methacrylate (BHMF-M), polymerized through a digital light
processing (DLP) technique. The addition of the bio-based co-monomers serves to enhance the
fracture toughness of the brittle isosorbide methacrylate crosslinked homopolymer (GIc = 37 J/m2).
The resulting polymers exhibit Tg values greater than 200 ◦C and GIc around 100 J/m2. These
resin systems hold potential for imparting high bio-based content to polymers used in additive
manufacturing for high-performance applications.

Keywords: 3D printing; isosorbide methacrylate; biobased; vat photopolymerization; Tg

1. Introduction

Additive Manufacturing (AM), commonly referred to as 3D printing, is poised to play
a significant role in the upcoming industrial revolution, as researchers are exploring ways
to optimize and improve the production of many components [1–3]. AM holds the potential
for faster production of complex parts for jet engines, hearing aids, and gas turbines com-
pared to traditional molding methods [4–12]. The uses of AM extend to dental and medical
applications, as well as consumer goods [4–13]. In the AM printing process, 2D layers are
combined sequentially to form a 3D structure, enabling the creation of complex geometries
with efficient use of time and reduced waste. A wide range of materials, including organic
polymers, ceramics, and metal alloys, can be processed using various printing technologies
such as vat polymerization, material extrusion, and powder bed fusion, among others [1–3].
One of the most widely used vat polymerization printing techniques is digital light process-
ing (DLP), which adopts UV-irradiation to cure photo-sensitive polymers and pre-polymers
on a curing platform in a layer-by-layer fashion [2,3,7,11,13–15].

Petroleum-derived (meth)acrylate resin systems, particularly those sourced from
bisphenol-A (BPA), have been widely studied and used in 3D printing for their rapid curing,
excellent adhesion, and acceptable thermal and mechanical properties [16–18]. However,
these BPA-based (meth)acrylate resins are non-renewable and have a high viscosity, limiting
their processability during printing [18,19].

Isosorbide methacrylate (IM)—in this case, the dimethacrylate of isosorbide—was
introduced as a bio-based, low-viscosity resin for high-performance thermosetting appli-
cations in 2013 by Sadler et al. [20]. The chemical structure of isosorbide methacrylate is
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given in Figure 1. IM monomers can undergo free-radical reaction to form a thermoset-
ting polymer with high extent of cure (85%) and a Tg greater than 220 ◦C. The polymer
also exhibits good thermal stability and a high modulus [20]. These properties make IM
potentially suitable for incorporation into AM resin formulations.
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Lastovickova et al. developed a series of photocurable IM-based resin systems for use
in additive manufacturing. These resin systems have low viscosity (<140 cP at 25 ◦C), high
Tg (159–231 ◦C), and moderate glassy state modulus (2–2.8 GPa) [21]. However, IM-based
resin systems exhibit brittleness, as revealed by the critical strain energy release rate GIc
value of 26 J/m2 (brittle for structural applications). This brittleness is attributed to the
high crosslinking density and the rigid bicyclic core structure of the IM monomer.

A common method for toughening vinyl ester resins is the incorporation of diluents
such as styrene as chain extenders via copolymerization. This approach reduces viscosity
and delays gelation during manufacturing processes while still providing high Tg polymers
(>100 ◦C) [17,22,23]. However, the high volatility of co-monomers such as styrene poses
environmental and health concerns, driving the search for bio-mass alternatives in both
industry and academic fields [24–27].

Furan building blocks derived from cellulose and hemicellulose have garnered signif-
icant attention as a bio-renewable alternative to petroleum-based aromatics due to their
high modulus, comparable Tg, and excellent flame retardancy properties [28–32]. One of
the well-studied furan-derived chemicals is 2,5-bis-(hydroxy-methyl) furan (BHMF). The
esterification of BHMF to synthesize 2,5-bis(hydroxymethyl)furan methacrylate (BHMF-
M) was reported by Hoydonckx et al. in 2007 [33]. The chemical structure of BHMF-M
is given Figure 2. Subsequently, Hong et al. in 2019 reported a N-heterocyclic carbene
(NHC)-catalyzed proton-transfer polymerization (HTP) pathway to convert BHMF-M into
unsaturated polyesters. The resulting BHMF-M polyester showed improved char yield
(~10 wt% residue as stable carbonaceous materials at 650 ◦C) compared to non-renewable
systems. Furthermore, BHMF-M polyesters underwent Diels–Alder reactions to produce
more robust polyester materials with the highest degree of crosslinking and char yield
(31.4 wt% at 650 ◦C) among the systems studied [28]. Our research group has evaluated the
properties of BHMF-M resin when cured with 20 wt% styrene using dynamic mechanical
analysis. This BHMF-M-Styrene blend produced a polymer with high Tg (150 ◦C), high
storage modulus at room temperature (E’ = 5.2 GPa), and low viscosity, as summarized in
Table 1. Previous studies have also suggested that furan containing monomers have the
potential to impart high toughness [29,32]. This phenomenon can be attributed to physical
interactions associated with furan rings, resulting in the high packing efficiency of the poly-
mer. Therefore, BHMF-M is a potential candidate as a low-viscosity toughening comonomer
for bio-renewable printable resin formulations in additive manufacturing applications.
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Table 1. Monomer viscosity, polymer storage modulus E’, Tg identified as the maximum of loss
modulus (E”) and of tan δ, for isosorbide methacrylate (IM), furfuryl methacrylate (FM) and 2,5-
bis(hydroxy-methyl) furan methacrylate (BHMF-M).

Viscosity @ 21
◦C (cP)

E′

@ 25 ◦C
(GPa)

Tg, E”
(◦C)

Tg, tan δ
(◦C)

IM 157 [20] ~4 [20] - >245 + 9 [20]
FM 4 2.9 ± 0.6 98 ± 4 124 ± 6

BHMF-M
(with wt. 20% Styrene) 16 5.2 - 150

The objective of this investigation is to enhance the toughness of isosorbide methacry-
late (IM) polymers through co-polymerization while maintaining high glass transition
temperature and processability. The BHMF-M was copolymerized with IM via photo-
polymerization at weight fractions ranging from 20% to 80%. The thermomechanical and
mechanical properties of the resulting polymers were extensively studied. In addition,
furfuryl methacrylate (FM), another plant-based methacrylate, was utilized as a mono-
methacrylate chain extender to produce 3D-printed polymers with IM at the same weight
fractions. Both low-viscosity bio-derived compounds have the potential to serve as alterna-
tives to styrene as diluents, offering high Tg, high modulus, and improved toughness. The
chemical structures of FM and BHMF-M are shown in Figure 2, and Table 1 provides the
viscosity of monomers, as well as storage modulus, loss modulus Tg, and tan δ, Tg, of the
free-radically cured polymers of IM, FM, and BHMF-M/Styrene.

2. Experimental
2.1. Materials

The 2,5-Bis(hydroxy-methyl) furan (BHMF) (98.8%) was purchased from Pennakem
(Memphis, TN, USA). Dianhydro-D-glucitol (98%), methacrylic anhydride (94% with 2000 ppm
topanol A as inhibitor), 4-dimethylaminopyridine (DMAP, 99%), sodium chloride (99%), hy-
droquinone (99%), sodium bicarbonate (99%), furfuryl methacrylate (FM, 97% with 200 ppm
monomethyl ether hydroquinone as inhibitor) and phenylbis (2,4,6-trimethylbenzoyl) phos-
phine oxide (PPO, 97%) were purchased from Sigma-Aldrich (St. Louis, MO, USA). Products
were used without further purification.

2.2. Synthesis and Chracterization of Bio-Derived Methacrylates

Synthesis of Isosorbide Methacrylate: IM was prepared by the reaction shown in
Figure 3 [20]. Isosorbide (120 g, 0.82 mol) was combined with DMAP (5.83 g, 47.8 mmol) in
a 1000 mL three-necked round bottom flask (RBF). The compounds in the RBF were placed
in a 60 ◦C oil bath equipped with a magnetic stir bar. After about two hours, the contents
of the flask became a clear and transparent liquid, free of solids. Subsequently, methacrylic
anhydride (269 g, 1.75 mol) was added dropwise in slight stoichiometric excess using a
pressure equalizing addition funnel and left to react with the isosorbide for 18 h at 60 ◦C.
The product was collected and washed with 350 g of saturated aqueous sodium bicarbonate
solution four times. The organic phase was then washed with deionized water and brine,
leaving a colorless clear liquid resin [1H NMR (CDCl3 δ = 7.27) − IM, δ: 6.16 (s, 1H), 6.10
(s, 1H), 5.61 (s, 1H), 5.59 (s, 1H), 5.25 (s, 1H), 5.20 (q, 1H), 4.90 (t, 1H), 4.53 (d, 1H), 3.99
(s, 2H), 3.96 (d of d, 1H), 3.89 (d of d, 1H), 1.96 (t, 3H), 1.92 (t, 3H)]. The purity of IM was
found to be 97% by taking the ratio of three times the peak area at δ = 4.53, corresponding
to one of the isosorbide bridge hydrogens, to the peak at δ = 1.96 corresponding to the
three hydrogens on one of the methyl groups of the methacrylate. The yield following the
washing steps was 85–92% based on isosorbide over several synthesis runs.
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Figure 3. Reaction scheme for the preparation of Isosorbide methacrylate (IM) [20].

Synthesis of 2,5-Bis(hydroxy-methyl) Furan Methacrylate: BHMF-M was prepared
based on the reaction scheme shown in Figure 4, using the following procedure. A 1000 mL
three-necked RBF equipped with a pressure equalizing addition funnel, a thermometer, a
condenser, and a magnetic stirring bar inside was used. BHMF (80 g) DMAP (7.63 g) were
charged into the flask. The flask was kept at 80 ◦C using an oil bath to melt 2,5-Bis(hydroxy-
methyl) furan (BHMF) and DMAP. Methacrylic anhydride (202.13 g) was added dropwise
for a period of 1 h. The reaction was carried out at 80 ◦C for 24 h with continuous stirring.
The product was collected and washed with 300 mL saturated sodium bicarbonate aqueous
solution four times. The organic phase was then washed with deionized water and brine,
leaving a brown liquid [1H NMR (CDCl3 δ = 7.27) BHMF-M, δ: 6.40 (s, 2H), 6.14 (s, 2H), 5.59
(t, 2H), 5.12 (s, 4H), 1.96 (t, 6H)]. By taking the ratio of three times the peak area at δ = 6.40
corresponding to the two hydrogens on the furan ring to the that of the peak at δ = 1.96
corresponding to the six hydrogens on the methyl groups of the methacrylate groups, the
purity of BHMF-M was found to be 98%. The yield following the washing steps was 85%
relative to BHMF.
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Figure 4. Reaction scheme for the preparation of 2,5-bis(hydroxy-methyl) furan methacrylate
(BHMF-M).

1H-NMR Spectroscopy: 1H-NMR measurements were conducted with a Varian VXR-
Unity 500 (500 Hz) instrument (Cranford, NJ, USA) with spectral window of ±2000 Hz,
32 scans at 293 K and 90◦ pulse width to confirm the structure of synthesized BHMF-M
and IM as given above.

Acid Titration: Acid titration was carried out following ASTM D974–14e2 [34] standard
to determine the amount of residual methacrylic acid from the synthesis and washing
process. Acid number of various batches of resin were all titrated to be below 3 mg KOH/g.

2.3. Preparation and Characterization of IM-Based Resin Blends and Photocured Polymers

Preparation of IM-based Resin Blends: IM was blended with FM and BHMF-M
separately as co-monomers at weight fractions ranging from 20% to 80% and 0.7 PPO as
the photo-initiator using a THINKY centrifugal mixer (Laguna Hills, CA, USA) at a speed
of 1600 rpm for 5 min followed by a de-gassing step for 1 min.

Viscosity: The viscosity of BHMF-M/IM and FM/IM resin blends was measured using
an AR2000 ex rheometer at 21 ◦C (TA Instruments, New Castle, DE, USA) with 40 mm flat
plate configuration using a shear rate range from 0.01 to 1000 s−1, with 10 measurements
recorded per decade. Shear stress was measured every 2 s at each shear rate. Viscosity was
reported as the average of three measurements at a shear rate of 1000 s−1.

Photo-Curing and Post-Curing: Compact tension and dynamic mechanical analysis
(DMA) test samples were printed using an ANYCUBIC DLP printer (Shenzhen, China)
with 405 nm light source and power density of 509 (µW/cm2). Samples were printed with
100 s exposure time per layer and a layer thickness of 100 µm. Printed samples were post
cured in a blue light oven (Form Cure, Formlabs Inc., Somerville, MA, USA) at 75 ◦C for
2 h, then thermally post-cured at 160 ◦C for 2 h. Samples with BHMF-M contents and
neat IM were further post-cured at 200 ◦C for 1 h and 220 ◦C for 1 h. Figure 5 shows 3D
printed bars for DMA testing, compact tension samples for fracture toughness testing, and
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an object with a more complex open shape that demonstrates these resin systems can be
used to create parts with good resolution.
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Figure 5. DMA and fracture toughness samples printed using FM/IM resins (a), BHMF-M/IM
resins (b), and a complex open structure printed using a 20% BHMF-M/80% IM resin blend (c).

Extent of Cure. Functional groups of methacrylate and carbonyl were identified in
samples before printing, after printing and after post-curing using a Nicolet 6700 FT-IR
spectrometer in transmission (Thermo Fisher Scientific, Waltham, MA, USA). Mid-infrared
spectra(M-IR) in the rage 650−4000 cm−1 were recorded with 32 scans at an 8 cm−1

resolution at room temperature using a deuterated triglycine sulfate (DTGS) detector. The
conversion, α, was calculated by measuring the peak height (PH) of the methacrylate peak
(943 cm−1) relative to that of the carbonyl peak (1717 cm−1) which remained the same
during the reaction, following Equation (1) below. Photo-curing kinetics measurements,
described in the results and discussion section, also use this equation.

α = 1−
PH(t)943cm−1

PH(t = 0)943cm−1

PH(t = 0)1717cm−1

PH(t)1717cm−1
(1)

Table 2 summarizes experimental conversion measurements of the green parts and
post-cured parts for each resin blend as characterized by mid-IR.

Table 2. Extent of cure of BHMF-M/IM and FM/IM resin blends.

Mass %
IM

Mass %
FM

Mass %
BHMF-M

Green Part
Conversion

%

Post-Cure
Conversion

%

100 0 0 - 85
80 20 0 69 85
60 40 0 71 84
40 60 0 70 85
20 80 0 43 85
80 0 20 41 86
60 0 40 44 86
40 0 60 34 85
20 0 80 31 80
0 0 100 38 84

UV-Vis Spectroscopy: Spectrometric measurements of FM, IM and BHMF-M were
obtained using an Ocean Optics (Peabody, MA, USA) USB2000 Spectrometer with a DH-
2000-BAL Ocean Optics Deuterium-Tungsten Light Source in the range of 200–500 nm.
Quartz cuvettes with 1 cm pathlength were used. The absorption spectra measurements
were conducted at ambient temperature. The concentration of the resin solutions was
0.1%wt in acetonitrile.

Dynamic Mechanical Analysis: DMA was performed on all polymer samples using
a TA Instruments (New Castle, DE, USA) Model Q 800 instrument to evaluate the glass
transition temperature (Tg) and storage modulus (E’) at room temperature. DMA tests
were conducted using single cantilever geometry at a frequency of 1 Hz and an amplitude
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of 10 µm. Sample dimensions were 3.05 mm × 13 mm × 17.5 mm. Poisson’s ratio was
assumed to be 0.35 for all samples. The temperature was increased at ramp rate 2 ◦C/min
from −120 ◦C to 240 ◦C. Tg was obtained from both loss modulus and tan δ peak positions
and when needed by analysis of the storage modulus as a function of temperature. Reported
values of Tg and E’ are averages of two experiments, so standard deviations are not given
for these data.

Thermal Gravimetric Analysis (TGA): The thermal stability in an inert environment
was investigated using a TA instruments (New Castle, DE, USA) Q50 TGA with a 10 ◦C/min
ramp rate from room temperature to 800 ◦C in argon.

Fracture Toughness: The critical stress intensity factor (KIc) and critical strain energy
release rate (GIc) values were obtained by testing seven compact tension specimens for
each sample composition. A sharp pre-crack was made at the notch bottom using a fresh
blade at room temperature before testing with a 0.5 mm/min crosshead speed at ambient
temperature. KIc and GIc values were calculated following ASTM D 5045-99 [35].

3. Results and Discussion
3.1. Viscosity of IM-Based Resin Blends

In DLP printing, the fluidity of uncured resin is crucial as the resin must flow beneath
the build platform as each layer is printed. Commercial DLP printers typically require
resins with low viscosities, below 1000 cP, at the printing temperature [15]. The viscosities
of IM-based resin blends at room temperature, as presented in Table 3, are all below 1000
cP, making them suitable for DLP printing. Additionally, it was observed that as the mass
contents of the selected diluents increase, the viscosities of IM-based resin blends decrease.

Table 3. Compositions and viscosity of IM-based resin blends with 0.7 wt% of PPO.

Mass %
IM

Mass %
FM

Mass %
BHMF-M

Viscosity
(cP)

100 0 0 157 [20]
80 20 0 32 + 4
60 40 0 7 + 0
40 60 0 7 + 2
20 80 0 5 + 1
80 0 20 107 + 10
60 0 40 92 + 5
40 0 60 89 + 35
20 0 80 69+ 5
0 0 100 61 + 6

3.2. Working Curves of IM-Based Resin Blends

The depth of penetration (Dp) is an important parameter in photocuring using a
DLP printer. The Dp values of different IM-based resin blends were determined using an
ANYCUBIC DLP printer. The working curves of the resin blends were obtained by printing
a single layer with varying exposure times (30 s to 200 s) using a 405 nm light source with a
power density of 509 µW/cm2, as measured by a radiometer (ILT2400, International Light
Technologies, Peabody, MA, USA). The thickness of the printed layer was recorded for each
resin blend at different exposure times, and plots of the curing depth (Cd) as a function of
the natural log of energy density (E) were generated. These curves were used to determine
the critical energy (Ec) and Dp using Equation (2) [14].

Cd = Dpln(E/Ec) (2)

The Dp provides a measure of light attenuation during printing, while the critical
energy is representative of the minimum energy required for the resin to reach gelation.
The results are presented in Table 4, which lists the Dp, Ec, minimum printing time (Min
ET) and the coefficient of determination (R2) associated with the curve fitting for each resin
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blend. It should be noted that significantly better fits, as measured by R2, were obtained for
the BHMF-M blends compared to FM blends. This was particularly observed for blends
with high FM content (20% and 40% IM), making the Dp, Ec, and Min ET values obtained
for those compositions less reliable.

Table 4. Depth of penetration (Dp), critical energy (Ec) and minimum printing time (Min ET) of
IM-based resin blends.

FM Blends BHMF-M Blends

IM content (%) 20 40 60 80 100 0 20 40 60 80 100
Dp (µm) 413 725 513 498 503 80 127 159 196 321 503

Ec (mJ/cm2) 9.5 16.5 9.7 9.2 8.4 6.0 8.7 9.1 7.9 9.6 8.4
Min ET (s) 18.7 32.5 19.0 18.0 16.5 11.7 17.1 17.9 15.4 18.9 16.5

R2 0.691 0.916 0.920 0.954 0.986 0.945 0.980 0.991 0.977 0.995 0.98

The light absorbance of BHMF-M, IM, and FM resins was evaluated in the wavelength
range of 200 nm to 500 nm as shown in Figure 6. The absorbance of the resin at the printing
wavelength affects Dp, which is crucial in controlling the cumulative dose profile. As
shown in Table 4, the Dp values of IM/FM blends are relatively high, generally greater
than 400 µm, and relatively independent of composition. This is due to low absorbance for
both IM and FM resin at the 405 nm wavelength. In contrast, the Dp value for BHMF-M
modified resin blends decreases monotonically as the BHMF-M content increases, with a
value of only 80 µm for 100% BHMF-M resin. This is attributed to the higher absorbance
of BHMF-M resin at 405 nm wavelength compared to that of IM, as shown in Figure 6.
The Ec and Min ET values also decrease with increasing BHMF-M content in the resin
blends, suggesting a higher reactivity of BHMF-M compared to IM. Based on the analysis
of the working curve parameters, a 100 s exposure time and a 100 µm layer thickness were
selected as the printing parameters for all resin blends.
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Figure 6. Absorbance spectra of BHMF-M, IM, and FM from 250 nm to 450 nm wavelengths.

3.3. Thermo-Mechanical Properties of Green Parts

The thermo-mechanical properties of the green parts were studied using DMA. The
results indicated that all IM/FM resin blends resulted in green materials (printed part
prior to post-curing) with Tg close to room temperature, due to vitrification at the printing
temperature. However, a clear trend was observed in the Tg of BHMF-M/IM polymers as a
function of composition. Figure 7 presents the storage and loss moduli of the printed green
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parts as a function of temperature for three BHMF-M/IM polymers (20% BHMF-M/80%
IM, 60% BHMF-M/40% IM, and 100% BHMF-M/0% IM). The data indicate a decrease in
Tg as the content of BHMF-M increases. This behavior is attributed to the lower conversion
of monomers in blends with a higher BHMF-M content as shown in Table 2, resulting from
lower Dp with increasing BHMF content.
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Figure 7. DMA plots for three BHMF-M/IM polymers showing that the Tg of printed parts decreases
as the weight content of BHMF-M increases.

Cure modeling of the printing process can be used to better understand differences in
the behavior of resin formulation [36–38]. The differences in printed green material sample
conversion were analyzed using our recently published model that combines calculated
cumulative dose profiles and resin cure kinetics models to predict conversion [38]. The
cumulative dose profile is controlled by the printing process and resin properties. Resin
properties include Dp and Ec. The printing parameters include printer light intensity I0,
layer exposure time ∆t, layer thickness ∆z, and number of layers n. In a DLP printing
process, a series of layers is irradiated in sequence with well-defined characteristics: initially,
the first layer (L1) is irradiated for a defined time t; then, the displacement of the moving
stage allows light to irradiate the subsequent layer (L2). Note that because the light must
exceed Ec to cure the interface between L2 and L1, L1 inevitably is exposed to an additional
light dose. The process continues until the object reaches the desired thickness. As each
layer has a thickness equal to ∆z, the total applied dose Ez along z of the printed object is
the result of the sequential irradiation of the layers being built. The cumulative applied
reduced dose E’z at depth d of the ith layer can be calculated using Equation (3). Figure 8
shows the applied cumulative reduced dose profiles in 3.5 mm thick bars printed with the
80% BHMF-M and 20% BHMF-M modified IM resin systems.

E
′
z =

n

∑
k=i

(
I0e−[d+(k−i)∗∆z]/Dp

)1/2
∆t (3)

The cure kinetics of resin systems were investigated using photo-attenuated total re-
flectance Fourier transform infrared spectroscopy (ATR-FTIR). A single reflection diamond
ATR unit (Golden Gate, Specac, Fort Washington, PA, USA) was integrated with a Nicolet
6700 FT-IR spectrometer (Thermo Fisher Scientific, Waltham, MA, USA) equipped with
a temperature controller. A thin layer of the resin sample was irradiated with 405 nm
light generated by an LED assembly, and its IR spectra were continuously collected by
the FT-IR spectrometer. The light intensity that reached the bottom of the resin layer was
pre-determined using a radiometer. The decrease in the methacrylate double bond peaks at
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943 cm−1 was monitored as a measure of conversion, as described by Equation (1). The
conversion profiles of the two resins were plotted against applied reduced dose and fitted
to an nth order reaction kinetics model, expressed by Equation (4). This kinetic model
considers the ultimate conversion (αu), reaction rate constant (k), reaction order (n), and
light intensity (I). The results are presented in Figure 9.

α = αu −
[
α
(1−n)
u − (1− n)kI

1
2 t
] 1

1−n (4)
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The reaction kinetics, as represented by the conversion-dose relationship, allowed for
the prediction of conversion profiles by mapping the conversion onto the reduced dose
profiles, as depicted in Figure 10. The average through the thickness predicted conversion
of the 20% BHMF-M polymer was found to be higher than that of the 80% BHMF-M
polymer (0.42 compared to 0.31). The predicted conversions were in good agreement
with the experimentally obtained through thickness conversion measurements for these
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two green parts (0.41 and 0.31 for 20% BHMF-M modified and 80% BHMF-M modified
IM systems, respectively) as shown in Table 2. This difference can be attributed to the
absorbance of the BHMF-M monomer at the printing wavelength. As the BHMF-M content
increases, the light penetrates less through the part, resulting in lower conversion and
hence a lower Tg of the green parts. It is believed that the exotherm associated with the
free radical polymerization reaction results in higher experimental degrees of conversions
compared to predicted conversions for these systems.
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3.4. Thermomechanical and Mechanical Properties of IM-Based Polymer

The thermomechanical properties of post-cured resins were studied using DMA.
Figure 11 presents the storage modulus as a function of temperature for IM-based systems,
where the green curves represent FM/IM systems, the blue curves represent BHMF-M/IM
systems, and the black curve represents the neat IM polymer. A summary of properties
for these systems, including resin viscosity, Tg, and E’ at room temperature, can be found
in Table 5. The Tg values and estimates of Tg reported in Table 5 were obtained using the
storage modulus curves by taking the temperature corresponding to the inflection point
when available or a 1 GPa cut-off value of E’.

Table 5. Viscosity, Tg, and E’RT f FM/IM and BHMF-M/IM blends.

Wt
(%)

Viscosity (21 ◦C)
(cP)

Tg, E’
(◦C)

E’RT
(GPa)

Td5%
(◦C)

IM 100 157 [20] ~220 [20] 3.9 305

BHMF-M

20 107 >200 4.5 272
40 92 >200 4.4 243
60 89 >200 4.2 245
80 69 >200 4.5 246

100 61 150 3.6 225

FM

20 32 200 3.3 280
40 7 170 3.5 272
60 7 140 3.0 272
80 5 110 3.1 273
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As shown in Figure 11, the neat IM polymer possesses a Tg greater than 200 ◦C,
characterized by the storage modulus curve which remains greater than 1 GPa even at
240 ◦C. The Tg of IM-based polymer system decreases as the content of FM and BHMF-M
co-monomers increases. As expected, the incorporation of mono-functional FM impacts Tg
more than BHMF-M, due to the more significant decrease in network crosslinking density
resulting from the monofunctional monomer. The polymer that contains 20 wt.% of FM has
a Tg below 200 ◦C, whereas all the BHMF-M blends exhibit Tg above 200 ◦C.

IM-based resin blends result in polymers with high storage modulus at 25 ◦C, as
shown in Table 5. The neat IM polymer system processes a storage modulus of 3.9 GPa
at 25 ◦C. The FM-modified IM-based polymers show lower values compared to the neat
IM system. The BHMF-M modified systems exhibit higher storage modulus compared
to the neat IM polymer. This is due to the incorporation of the furan rings of the BHMF-
M monomers into the backbone of the polymer networks. The result is consistent with
findings in previous work on furan-based networks by our group and that of others that
the furan moiety imparts high glassy modulus to thermosets [29–32]. A clear correlation
between co-monomer content and polymer storage modulus was not evident for both
FM/IM and BHMF-M/IM polymer networks.

The effects of co-polymerization on the fracture toughness of FM/IM and BHMF-
M/IM polymers were studied by conducting fracture toughness tests. The critical stress
intensity factor (KIc) and critical strain energy release rate (GIc) were calculated to determine
the fracture properties of these polymer networks and were compared to those of the neat
IM polymer. Results, as presented in Figure 12, show that the incorporation of FM and
BHMF-M into IM provides a significant increase in fracture toughness. It was found that
the BHMF-M imparted a greater enhancement in both GIc and KIc values compared to the
FM co-polymers. With regards to the FM/IM systems, both GIc and KIc values increased as
the content of FM increased, except for the 60% modified system which exhibited lower
values. The addition of the BHMF-M co-monomer at concentrations as low as 20% resulted
in a significant increase in GIc fracture toughness to values at or greater than 100 J/m2.
A significant increase was not observed with further increases in BHMF-M concentration.

The thermal degradation behavior of FM/IM and BHMF-M/IM polymer systems
was investigated using TGA in an argon atmosphere. The TGA thermograms of the cured
FM/IM and BHMF-M/IM samples are shown in Figure 13a,b, respectively. The thermal
decomposition temperatures corresponding to a 5% weight loss (Td5%) decreased as the
weight percent of BHMF-M increased, ranging from 272 ◦C for 20% BHMF-M to 225 ◦C for
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neat BHMF-M polymer. This trend suggests that the furan moiety is less thermally stable
than the isosorbide building block. The Td5% values for single component crosslinked
polymers are significantly higher than the Tg of those systems −85 ◦C higher for IM
and 75 ◦C higher for BHMF-M. However, the Td5% values are much closer to the Tg of
the blends, suggesting that those compositions’ decomposition would affect glassy state
performance at temperatures close to Tg. As for the FM/IM polymer systems, the thermal
decomposition temperatures of the FM-modified networks were lower than those of the
neat IM system. However, increasing the FM content did not result in a lower thermal
decomposition temperature. In comparison, the FM-modified polymer systems exhibited
better thermal stability than the BHMF-M-modified systems, as evidenced by a higher
thermal decomposition temperature and a slightly lower degradation rate. In all cases, Td5%
was found to be much higher than Tg. These observations suggest that the furan moiety
has a greater impact on the thermal degradation behavior of the polymer when crosslinked
into the backbone structure. The char yields of both FM and BHMF-M modified polymer
systems showed that the furan moiety imparts a higher char yield than the isosorbide
building blocks. The BHMF-M modified networks had a slightly higher char yield possibly
due to a higher crosslinking density compared to the FM-modified networks.
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Figure 13. (a) TGA thermograms of cured samples of FM/IM polymer systems; (b) TGA thermograms
of cured samples of BHMF-M/IM polymer systems.

4. Conclusions

In this study, fully bio-derived isosorbide-based resin formulations were examined as
a replacement for BPA-derived methacrylates and styrene copolymers in 3D printing. The
viscosity of the resin blends was low (below 0.12 Pa·s at 20 ◦C). The working curves and
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curing kinetics were analyzed to determine optimized printing parameters. The results
showed that BHMF-M acts as a photo absorber at the printing wavelength, leading to
reduced overall conversions compared to FM-modified IM resins in as-printed parts. After
post-cure, however, the differences in conversion became negligible. The addition of FM
and BHMF-M co-monomers at low concentrations increased the fracture toughness of IM
to levels suitable for practical applications (GIC > 100 J/m2). In terms of thermomechanical
properties, BHMF-M/IM co-polymers had Tg values greater than 200 ◦C (determined by
the E’ curves) with good thermal stability, whereas the incorporation of mono-functional
FM reduced Tg significantly (Tg below 200 ◦C for 20 wt.% FM). Overall, IM-based resin
systems show great potential for use in bio-based polymers for additive manufacturing
with advantageous properties.
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