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Abstract: Despite their remarkable performance, deep learning models still lack robustness guar-
antees, particularly in the presence of adversarial examples. This significant vulnerability raises
concerns about their trustworthiness and hinders their deployment in critical domains that require
certified levels of robustness. In this paper, we introduce an information geometric framework to
establish precise robustness criteria for l2 white-box attacks in a multi-class classification setting. We
endow the output space with the Fisher information metric and derive criteria on the input–output
Jacobian to ensure robustness. We show that model robustness can be achieved by constraining the
model to be partially isometric around the training points. We evaluate our approach using MNIST
and CIFAR-10 datasets against adversarial attacks, revealing its substantial improvements over
defensive distillation and Jacobian regularization for medium-sized perturbations and its superior
robustness performance to adversarial training for large perturbations, all while maintaining the
desired accuracy.

Keywords: adversarial robustness; information geometry; fisher information metric; multi-class
classification

1. Introduction

One of the primary motivations for investigating machine learning robustness stems
from the susceptibility of neural networks to adversarial attacks, wherein small perturba-
tions in the input data can deceive the network into making the wrong decision. These
adversarial attacks have been shown to be both ubiquitous and transferable [1–3]. Beyond
posing a security threat, adversarial attacks underscore the glaring lack of robustness in
machine learning models [4,5]. This deficiency in robustness is a critical challenge as it
undermines trustworthiness in machine learning systems [6].

In this paper, we shed an information geometric perspective to adversarial robustness
in machine learning models. We show that robustness can be achieved by encouraging
the model to be isometric in the orthogonal space of the kernel of the pullback Fisher
information metric (FIM). We subsequently formulate a regularization defense method
for adversarial robustness. While our focus is on l2 white-box attacks within multi-class
classification tasks, the method’s applicability extends to more general settings, including
unrestricted attacks and black-box attacks across various supervised learning tasks. The
regularized model is evaluated on MNIST and CIFAR-10 datasets against projected gradient
descent (PGD) l∞ attacks and AutoAttack [7] with l∞ and l2 norms. Comparisons with
the unregularized model, defensive distillation [8], Jacobian regularization [9], and Fisher
information regularization [10] show significant improvement in robustness. Moreover, the
regularized model is able to ensure robustness against larger perturbations compared to
adversarial training.

The remainder of this paper is organized as follows. Section 2 introduces notations,
notions of adversarial machine learning, and definitions related to geometry. Then, we
derive a sufficient condition for adversarial robustness at a given sample point. Section 3
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presents our method for approximating the robustness condition, which involves promoting
model isometry in the orthogonal complement of the kernel of the pullback of the FIM. In
Section 4, several experiments are presented to evaluate the proposed method. Section 5
discusses the results in the context of related work on adversarial defense. Finally, Section 6
concludes the paper and outlines potential extensions of this research. Appendix A provides
the proof of the results stated in the main text.

2. Notations and Definitions
2.1. Notations

Let d, c ∈ N∗ such that d ≥ c > 1. Let m = c − 1. In the learning framework, d will
be the dimension of the input space, while c will be the number of classes. The range of a
matrix M is denoted as rg(M). The rank of M is denoted as rk(M). The Euclidean norm
(i.e., l2 norm) is denoted as ∥ · ∥. We use the notation δij = 1 if i = j and 0 otherwise. We
denote the components of a vector v by vi ∈ R with a superscript. Smooth means C∞.

2.2. Adversarial Machine Learning

An adversarial attack is any strategy aiming at deliberately altering the expected
behavior of a model or extracting information from a model. In this work, we focus on
attacks performed at inference time (i.e., after training), sometimes referred to as evasion
attacks. The most well-known evasion attacks are gradient-based. Such gradient-based
attacks all follow the same idea that we explain thereafter.

To reach good accuracy and generalization, a machine learning model f (with input
x and parameter w) is typically trained by minimizing a loss function L(y, f (x, w)) with
respect to the parameters w of the model. In its simpler form, the loss function quantifies the
error between the prediction of the model f (x, w) and ground-truth y. Given a clean input
x0, an adversarial example x∗ can be crafted by maximizing the loss function L(y, f (x, w)),
starting from x0 and using gradient ascent xt+1 − xt ∝ ∇xL(y, f (x, w)), where the gradient
is computed with respect to the input x (and not the parameter w as during training). In
order for x∗ to be an adversarial example, x0 and x∗ must be close to each other according
to some dissimilarity measure, typically a lp norm. An adversarial example x∗ is successful
if the model f classifies x∗ differently from x0. Some well-known gradient-based attacks
include the fast gradient sign method [2] and projected gradient descent [3].

Adversarial attacks can be classified according to their threat model. White-box attacks
assume that the adversary has perfect knowledge of the targeted model, including access
to the training data, model architecture, and model parameters. Such an adversary can
directly compute the gradient ∇xL(y, f (x, w)) of the targeted model and craft adversarial
examples. More realistic threat models are classified as gray-box or black-box attacks, where
some or all of the information is unknown to the adversary. In this work, we use both
white-box attacks as well as simple gray-box attacks where the adversary can access the
training data and model architecture, but not the model parameters. To craft such gray-box
adversarial examples, another model is trained with the same data and architecture. Then,
white-box attacks are performed on this model. Finally, the adversarial examples can be
transferred to the targeted model.

Adversarial robustness aims to build models that classify both x∗ and x0 with the
same class while preserving sufficient accuracy for the clean examples x0. Various defenses
have been proposed to improve adversarial robustness. The most efficient defense is called
adversarial training, which was first described in [2] and further developed in [3]. The idea
behind adversarial training is to obtain the parameters w∗ of the trained model as:

w∗ = arg min
w

max
ϵ∈∆(x)

L(y, f (x + ϵ, w)),

in place of the original parameters arg minw L(y, f (x, w)). The set ∆(x) is a set of allowed
adversarial attacks for x, e.g., a l2 ball with a given radius (or budget). In practice, adversar-
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ial training is performed by adding adversarial examples to the training set, thus providing
a lower bound for maxϵ∈∆(x) L(y, f (x + ϵ, w)).

2.3. Geometrical Definitions

Consider a multi-class classification task. Let X ⊆ Rd be the input domain, and let
Y = {1, . . . , c} ⊂ N be the set of labels for the classification task. For example, in MNIST,
we have X = [0, 1]d (with d = 784) and c = 10. We assume that X is a d-dimensional
embedded smooth connected submanifold of Rd. Let m = c − 1.

Definition 1 (Probability simplex). Define the probability simplex of dimension m by

∆m =

{
θ ∈ Rm : ∀k ∈ {1, . . . , m}, θk > 0 and

m

∑
i=1

θi < 1

}
. (1)

∆m is a smooth submanifold of Rc of dimension m. We can see θ = (θ1, . . . , θm) as a coordinate
system from ∆m to Rm. Then, let us define θc = 1 − ∑m

i=1 θi.

A machine learning model (e.g., a neural network) is often seen as assigning a label
y ∈ Y to a given input x ∈ X . Instead, in this work, we see a model as assigning the
parameters of a random variable Y to a given input x ∈ X . The random variable Y has
a probability density function pθ belonging to the family of c-dimensional categorical
distributions S = {pθ : θ ∈ ∆m}.

S can be endowed with a differentiable structure by using pθ ∈ S 7→ (θ1, . . . , θm) ∈ Rm

as a global coordinate system. Hence, S becomes a smooth manifold of dimension m (more
details on this construction can be found in [11], Chapter 2). We can identify pθ with
(θ1, . . . , θm).

We see any machine learning model as a smooth map f : X → ∆m that assigns to an
input x ∈ X , the parameters θ = f (x) ∈ ∆m of a c-dimensional categorical distribution
pθ ∈ S . In practice, a neural network produces a vector of logits s(x). Then, these logits are
transformed into the parameters θ with the softmax function: θ = softmax(s(x)).

In order to study the sensitivity of the predicted f (x) ∈ ∆m with respect to the input
x ∈ X , we need to be able to measure distances both in X and in ∆m. In order to measure
distances on smooth manifolds, we need to equip each manifold with a Riemannian metric.

First, we consider ∆m. As described above, we see ∆m as the family of categorical
distributions. A natural Riemannian metric for ∆m (i.e., a metric that reflects the statistical
properties of ∆m) is the Fisher information metric (FIM).

Definition 2 (Fisher information metric). For each θ ∈ ∆m, the Fisher information metric (FIM)
g defines a symmetric positive-definite bilinear form gθ over the tangent space Tθ∆m. In the standard
coordinates of Rc, for all θ ∈ ∆m and all tangent vectors v, w ∈ Tθ∆m, we have

gθ(v, w) = vTGθw, (2)

where Gθ is the Fisher information matrix for parameter θ ∈ ∆m, defined by

Gθ,ij =
δij

θi +
1
θc . (3)

For any θ ∈ ∆m, the matrix Gθ is symmetric positive-definite and non-singular (see Proposition
1.6.2 in [12]). The FIM induces a distance on ∆m, called the Fisher–Rao distance, denoted as
d(θ1, θ2) for any θ1, θ2 ∈ ∆m.

The FIM has two remarkable properties. First, it is the “infinitesimal distance” of the
relative entropy, which is the loss function used to train a multi-class classification model.
More precisely, if D is the relative entropy (also known as the Kullback–Leibler divergence)
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and if d is the Fisher–Rao distance, then given two distributions θ1 and θ2, we have (see
Theorem 4.4.5 in [12]):

D(θ1||θ2) =
1
2

d2(θ1, θ2) + o
(

d2(θ1, θ2)
)

.

The same result can be restated infinitesimally using the FIM g, as follows:

D(θ||θ + dθ) =
1
2

gθ(dθ, dθ) + o(gθ(dθ, dθ)), (4)

where dθ is seen as a tangent vector of TθS .
The other remarkable property of the FIM is Chentsov’s theorem [13], claiming that the

FIM is the unique Riemannian metric on ∆m, which is invariant under sufficient statistics
(up to a multiplicative constant). Informally, the FIM is the only Riemannian metric
that is statistically meaningful. In [14], Amari and Nagaoka state a more general result.
Along with the FIM, they introduce a family of affine connections parameterized by a real
parameter α, called the α-connections. Theorem 2.6 in [14] states that an affine connection
is invariant under sufficient statistics if and only if it is an α-connection for some α ∈ R.
In other words, the α-connections are the only affine connections that have a statistical
meaning. While Equation (4) gives the second-order approximation of the relative entropy,
an α-connection can be seen as the third-order term in the Taylor approximation of some
divergence [14]. More precisely, a given α-connection can be canonically associated with a
unique divergence (while the second-order term is always given by the FIM). If α = ±1,
the canonical divergences are the relative entropy and its dual (obtained by switching
the arguments in D(θ2||θ1)). More generally, for α ̸= 0, the canonical divergence is not
symmetric. The only canonical divergence that is symmetric is obtained for α = 0, and
is precisely the square of the Fisher–Rao distance. Thus, the Fisher–Rao distance is the
only statistically meaningful distance. This provides a motivation for using the Fisher–Rao
distance to measure lengths in ∆m.

Now, we consider X . Since we are studying adversarial robustness, we need a metric
that formalizes the idea that two close data points must be “indistinguishable” from a
human perspective (or any other relevant perspective). A natural choice is the Euclidean
metric induced from Rd on X .

Definition 3 (Euclidean metric). We consider the Euclidean space Rd endowed with the Euclidean
metric g. It is defined in the standard coordinates of Rd for all x ∈ Rd and for all tangent vectors
v, w ∈ TxRd by

gx(v, w) = vTw, (5)

thus, its matrix is the identity matrix of dimension d, denoted as Id. The Euclidean metric induces a
distance on Rd that we will denote with the l2-norm: ∥x1 − x2∥ for any x1, x2 ∈ Rd.

From now on, we fix :

• A smooth map f : (X , g) → (∆m, g). We denote by f i the i-th component of f in the
standard coordinates of Rc.

• A point x ∈ X .
• A positive real number ϵ > 0.

Define the Euclidean open ball centered at x with radius ϵ by

b(x, ϵ) =
{

z ∈ Rd : ∥z − x∥ < ϵ
}

. (6)

Definition 4. Define the set (Figure 1):

Ax =

{
θ ∈ ∆m : arg max

i
θi = arg max

i
f i(x)

}
. (7)
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For simplicity, assume that f (x) is not on the "boundary" of Ax, such that arg maxi f i(x) is
well-defined.

X

+

x

b(x, ϵ)

∆m

+

f (x)

f (b(x, ϵ))

Ax

∆m \ Ax

f

Figure 1. ϵ-robustness at x is enforced if and only if f (b(x, ϵ)) ⊆ Ax.

The set Ax is the subset of distributions of ∆m that have the same class as f (x).

Definition 5 (Geodesic ball of the FIM). Let δ > 0 be the Fisher–Rao distance between f (x) and
∆m \ Ax (Figure 2), i.e., the Fisher–Rao distance between f (x) and the closest distribution of ∆m

with a different class.
Define the geodesic ball centered at f (x) ∈ ∆m with radius δ by

b( f (x), δ) = {θ ∈ ∆m : d( f (x), θ) ≤ δ}. (8)

In Section 3.3, we propose an efficient approximation of δ.

X

+

x

b̃(x, δ)

b(x, ϵ)

∆m

+

f (x)

b( f (x), δ)

δ

f

Figure 2. ϵ-robustness at x is enforced if b(x, ϵ) ⊆ b̃(x, δ).

Definition 6 (Pullback metric). On X , define the pullback metric g̃ of g by f . In the standard
coordinates of Rd, g̃ is defined for all tangent vectors v, w ∈ TxX by

g̃x(v, w) = vT JT
x G f (x) Jxw, (9)
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where Jx is the Jacobian matrix of f at x (in the standard coordinates of Rd and Rc). Define the
matrix of g̃x in the standard coordinates of Rd by

G̃x = JT
x G f (x) Jx. (10)

Definition 7 (Geodesic ball of the pullback metric). Let d̃ be the distance induced by the
pullback metric g̃ on Rd. We can define the geodesic ball centered at x with radius δ by

b̃(x, δ) =
{

z ∈ Rd : d̃(x, z) ≤ δ
}

. (11)

Note that the radius δ is the Fisher–Rao distance between f (x) and ∆m \ Ax as defined in
Definition 5.

2.4. Robustness Condition

Definition 8 (Robustness). We say that f is ϵ-robust at x if

∀z ∈ Rd, ∥z − x∥ < ϵ ⇒ f (z) ∈ Ax. (12)

Equivalently, we can write (Figure 1):

f (b(x, ϵ)) ⊆ Ax. (13)

Proposition 1 (Sufficient condition for robustness). If b(x, ϵ) ⊆ b̃(x, δ), then f is ϵ-robust at
x (Figure 2).

Our goal is to start from Proposition 1 and make several assumptions in order to
derive a condition that can be efficiently implemented.

Working with geodesic balls b(x, ϵ) and b̃(x, δ) is intractable, so our first assumption
consists of using an “infinitesimal” condition by restating Proposition 1 in the tangent space
TxX instead of working directly on X . In TxX , define the Euclidean ball of radius ϵ by

Bx(0, ϵ) =
{

v ∈ TxX : gx(v, v) = vTv ≤ ϵ2
}

. (14)

Similarly, in TxX , define the g̃x-ball of radius δ by

B̃x(0, δ) =
{

v ∈ TxX : g̃x(v, v) = vTG̃xv ≤ δ2
}

. (15)

Assumption 1. We replace Proposition 1 by

Bx(0, ϵ) ⊆ B̃x(0, δ). (16)

Proposition 2. Equation (16) is equivalent to

∀v ∈ TxX , g̃x(v, v) ≤ δ2

ϵ2 gx(v, v). (17)

Since m < d, the Jacobian matrix Jx has a rank smaller or equal to m. Thus, since G f (x) has
full rank, G̃x = JT

x G f (x) Jx has a rank of at most m (when Jx has a rank of m).

Assumption 2. The Jacobian matrix Jx has a full rank equal to m.

Using Assumptions 1 and 2, the constant rank theorem ensures that for small enough
δ, f is ϵ-robust at x. However, contrary to Proposition 1, Assumption 1 does not offer any
guarantee on the ϵ-robustness at x for arbitrary δ.
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3. Derivation of the Regularization Method

In this section, we derive a condition for robustness (Proposition 4), which can be
implemented as a regularization method. Then, we provide two useful results for the
practical implementation of this method: an explicit formula for the decomposition of
the FIM as G = PT P (Section 3.2), and an easy-to-compute upper-bound of δ, i.e., the
Fisher–Rao distance between f (x) and ∆m \ Ax (section 3.3).

3.1. The Partial Isometry Condition

In order to simplify the notations, we replace

• Jx with J, which is a full-rank m × d real matrix.
• G f (x) with G, which is an m × m symmetric positive definite real matrix.
• G̃x with G̃, which is a d × d symmetric positive-semidefinite real matrix.

We define D = (ker(G̃))⊥. We will use the two following facts.

Fact 1.
D = rg(JT) = (ker(J))⊥ =

(
ker(JTGJ)

)⊥
(18)

Fact 2. JTGJ is symmetric positive semidefinite. Thus, by the spectral theorem, the eigenvectors
associated with its nonzero eigenvalues are all in D = rg(JT).

In particular, since rk(J) = m, there exists an orthonormal basis of TxX , denoted as
B = (e1, . . . , em, em+1, . . . , ed), such that each ei is an eigenvector of JTGJ, and such that
(e1, . . . , em) is a basis of D = rg(JT) and (em+1, . . . , ed) is a basis of ker(J).

The set D = rg(JT) is an m-dimensional subspace of TxX . g̃x does not define an inner
product on TxX because G̃ has a nontrivial kernel of dimension d − m. In particular, the set
B̃x(0, δ) is not bounded, i.e., it is a cylinder rather than a ball. However, when restricted to
D, g̃x|D defines an inner product. We define the restriction of B̃x(0, δ) to D:

B̃D(0, δ) =
{

v ∈ D : vTG̃v ≤ δ
}

, (19)

and similarly, we define the restriction of Bx(0, ϵ) to D:

BD(0, ϵ) =
{

v ∈ D : vTv ≤ ϵ2
}

. (20)

Assume that f is such that Equation (16) holds (i.e., Bx(0, ϵ) ⊆ B̃x(0, δ)). Moreover, assume
that we are in the limit case defined as follows: for any perturbation size, we can find
a smaller perturbation of f such that Equation (16) does not hold anymore. This limit
case is equivalent to having BD(0, ϵ) = B̃D(0, δ). In this case, B̃x(0, δ) is the smallest
possible g̃x-ball (for the inclusion) such that Equation (16) holds. We noticed experimentally
that enforcing this stronger criteria yields a larger robustifying effect. Thus, we make the
following assumption:

Assumption 3. We replace Equation (16) with

BD(0, ϵ) = B̃D(0, δ). (21)

Proposition 3. Equation (21) is equivalent to

∀v ∈ D, g̃x(v, v) =
δ2

ϵ2 gx(v, v). (22)

We can rewrite Equation (22) in matrix form:

∀v ∈ D, vTG̃v =
δ2

ϵ2 vTv. (23)
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In Section 3.2, we show how to exploit the properties of the FIM to derive a closed-form
expression for a matrix P ∈ GLm(R), such that G = PT P. For now, we assume that we can
easily access such a P and we are looking for a condition on P and J, which is equivalent to
Equation (23).

Proposition 4. The following statements are equivalent:

(i) ∀u ∈ D, uT JTGJu =
δ2

ϵ2 uTu,

(ii) PJJT PT =
δ2

ϵ2 Im,

where Im is the identity matrix of dimension m × m.

Proposition 4 constrains the matrix PJ to be a semi-orthogonal matrix (multiplied by a
homothety matrix). A smooth map f between Riemannian manifolds (X , g) and (∆m, g)
is said to be (locally) isometric if the pullback metric (denoted f ∗g) coincides with g, i.e.,
f ∗g = g. Such a map f locally preserves distances. In our case, f ∗g = g̃ is not a metric
(since its kernel is non-trivial); thus, f cannot be an isometry. However, Equation (22)
ensures that f locally preserves distances along directions spanned by D. Hence, f becomes
a partial isometry, at least in the neighborhood of the training points.

Under the Assumptions 1–3, Equation (ii) in Proposition 4 implies robustness as
defined in Definition 8. In other words, Equation (ii) is a sufficient condition for robustness.
However, there is no reason for a neural network to satisfy Equation (ii). This is why we
define the following regularization term:

α(x, ϵ, f ) =
1

m2









PJJT PT − δ2

ϵ2 Im









, (24)

where ~ · ~ is any matrix norm, such as the Frobenius norm or the spectral norm. We use
the Frobenius norm in the experiments of Section 4. To compute α(x, ϵ, f ), we only need to
compute the Jacobian matrix J, which can be efficiently achieved with backpropagation.
Finally, the loss function is:

L(y, x, ϵ, f ) = l(y, f (x)) + λ α(x, ϵ, f ), (25)

where l is the cross-entropy loss, and λ > 0 is a hyperparameter controlling the strength of
the regularization with respect to the cross-entropy loss. The regularization term α(x, ϵ, f ) is
minimized during training, such that the model is pushed to satisfy the sufficient condition
of robustness.

3.2. Coordinate Change

In this subsection, we show how to compute the matrix P that was introduced in
Proposition 4. To this end, we isometrically embed ∆m into the Euclidean space Rc using
the following inclusion map:

µ : ∆m −→ Rc

(
θ1, . . . , θm

)
7−→ 2

(
√

θ1, . . . ,
√

θm,

√
1 −

m

∑
i=1

θi

)

We can easily see that µ is an embedding. If Sm(2) is the sphere of radius 2 centered at the
origin in Rc, then µ(∆m) is the subset of Sm(2), where all coordinates are strictly positive
(using the standard coordinates of Rc).
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Proposition 5. Let g be the Fisher information metric on ∆m (Definition 2), and g be the Euclidean
metric on Rc. Then µ is an isometric embedding of (∆m, g) into (Rc, g).

Now, we use the stereographic projection to embed ∆m into Rm:

τ : µ(∆m) −→ Rm

(µ1, . . . , µm, µc) 7−→ 2
(

µ1

2 − µc , . . . ,
µm

2 − µc

)
,

with µc = 2
√

1 − ∑m
i=1 θi.

Proposition 6. In the coordinates τ, the FIM is:

Gτ,ij =
4

(1 + ∥τ/2∥2)
2 δij. (26)

Let J̃ be the Jacobian matrix of τ ◦ µ : ∆m → Rm at f (x). Then, we have:

G = J̃TGτ J̃ =
4

(1 + ∥τ/2∥2)
2 J̃T J̃. (27)

Thus, we can choose:

P =
2

1 + ∥τ/2∥2 J̃. (28)

Write f (x) = θ = (θ1, . . . , θm) and θc = 1 − ∑m
i=1 θi. For simplicity, write τi(θ) =

τi(µ(θ)) = 2
√

θi/(1 −
√

θc) for i = 1, . . . , m. More explicitly, we have:

Proposition 7. For i, j = 1, . . . , m:

Pij =
δij√

θi
− τi(θ)

2
√

θc
. (29)

3.3. The Fisher–Rao Distance

In this subsection, we derive a simple upper-bound for δ (i.e., the Fisher–Rao distance
between f (x) and ∆m \ Ax). In Proposition 5, we show that the probability simplex ∆m

endowed with the FIM can be isometrically embedded into the m-sphere of radius 2. Thus,
the angle β between two distributions of coordinates θ1 and θ2 in ∆m with µ1 = µ(θ1) and
µ2 = µ(θ2) is:

cos(β) =
1
4

c

∑
i=1

µi
1µi

2 =
c

∑
i=1

√
θi

1θi
2. (30)

The Riemannian distance between these two points is the arc length on the sphere:

d(θ1, θ2) = 2 arccos
c

∑
i=1

√
θi

1θi
2. (31)

In the regularization term defined in Equation (24), we replace δ with the following up-
per bound:

δ = d( f (x), ∆m \ Ax) ≤ d( f (x), O), (32)

where O = 1
c (1, . . . , 1) is the center of the simplex ∆m. Thus,

δ ≤ 2 arccos
c

∑
i=1

√
f i(x)

c
. (33)
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4. Experiments

The regularization method introduced in Section 3 is evaluated on MNIST and CIFAR-
10 datasets. Our method uses the loss function introduced in Equation (25).

4.1. Experiments on MNIST Dataset
4.1.1. Experimental Setup

For the MNIST dataset, we implement a LeNet model with two convolutional layers of
32 and 64 channels, respectively, followed by one hidden layer with 128 neurons. The code
is available here: https://github.com/lshigarrier/geometric_robustness.git (accessed on 1
December 2022). We train three models: one regularized model, one baseline unregularized
model, and one model trained with adversarial training. All three models are trained with
the Adam optimizer (β1 = 0.9 and β2 = 0.999) for 30 epochs, with a batch size of 64, and
a learning rate of 10−3. For the regularization term, we use a budget of ϵ = 5.6, which
is chosen to contain the l∞ ball of radius 0.2. The adversarial training is conducted with
10 iterations of PGD with a budget ϵadv = 0.2 using l∞ norm. We found that λ = 10−6

yields the best performance in terms of robustness–accuracy trade-off; this value is small
because we did not attempt to normalize the regularization term.

The models are trained on the 60,000 images of MNIST’s training set and then tested
on 10,000 images of the test set. The baseline model achieves an accuracy of 98.9%
(9893/10,000), the regularized model achieves an accuracy of 94.0% (9403/10,000), and the
adversarially trained model achieves an accuracy of 98.8% (9883/10,000). Although the
current implementation of the regularized model is almost six times slower to train than
the baseline model, it may be possible to accelerate the training using, for example, the
technique proposed by Shafahi et al. [15], or using another method to approximate the
spectral norm of J̃. Even without relying on these acceleration techniques, the regularized
model is still faster to train than the adversarially trained model.

4.1.2. Robustness to Adversarial Attacks

To measure the adversarial robustness of the models, we use the PGD attack with the
l∞ norm, 40 iterations, and a step size of 0.01. The l∞ norm yields the hardest possible attack
for our method, and corresponds more to the human notion of “indistinguishable images”
than the l2 norm. The attacks are performed on the test set, and only on images that are
correctly classified by each model. The results are reported in Figure 3. The regularized
model has a slightly lower accuracy than the baseline model for small perturbations, but
the baseline model suffers a drop in accuracy above the attack level ϵ = 0.1. Adversarial
training achieves high accuracy for small- to medium-sized perturbations but the accuracy
decreases sharply above ϵ = 0.3. The regularized model remains robust even for large
perturbations. The baseline model reaches 50% accuracy at ϵ = 0.2 and the adversarially
trained model at ϵ = 0.325, while the regularized model reaches 50% accuracy at ϵ = 0.4.

Table 1 provides more results against AutoAttack (AA) [7], which was designed to offer
a more reliable evaluation of adversarial robustness. For a fair comparison, and in addition
to a baseline model (BASE), we compare the partial isometry defense (ISO) with several
other computationally efficient defenses: distillation (DIST) [8], Jacobian regularization
(JAC) [9], which also relies on the Jacobian matrix of the network, and Fisher information
regularization (FIR) [10], which also leverages information geometry. We also consider
an adversarially trained (AT) model using PGD. ISO is the best defense that does not rely
on adversarial training. In future work, ISO may be combined with AT to further boost
performance. Note that ISO and JAC are more robust against l2 attacks since they were
designed to defend the model against such attacks. On the other hand, AT is more robust
against l∞ attacks, because the adversarial training was conducted with the l∞ norm.

https://github.com/lshigarrier/geometric_robustness.git
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Figure 3. Accuracy of the baseline (dashed, blue), regularized (solid, green), and adversarially trained
(dotted, red) models for various attack perturbations on the MNIST dataset. The perturbations are
obtained with PGD using l∞ norm.

Table 1. Clean and robust accuracy on MNIST against AA, averaged over 10 runs. The number in
parentheses is the attack strength.

Defense BASE ISO DIST JAC FIR AT

Clean 99.01 96.51 98.81 98.95 98.84 98.98
AA-l2 (0.15) 35.70 43.38 35.35 38.74 1.68 73.34
AA-l∞ (1.5) 10.38 22.15 9.63 13.30 0.03 95.43

4.2. Experiments on CIFAR-10 Dataset

We consider a DenseNet121 model fine-tuned on CIFAR-10 using pre-trained weights
for ImageNet. The code is available here: https://github.com/lshigarrier/iso_defense.git
(accessed on 26 January 2023). As for the MNIST experiments, we compare the partial isom-
etry defense with distillation (DIST), Jacobian regularization (JAC), and Fisher information
regularization (FIR). Here, adversarial training (AT) relies on the fast gradient sign method
(FGSM) attack [16]. All defenses are compared against PGD for various attack strengths.
The results are presented in Table 2. The defenses are evaluated in a “gray-box” setting
where the adversary can access the architecture and the data but not the weights. More
precisely, the adversarial examples are crafted from the test set of CIFAR-10 using another
unregularized DenseNet121 model. AT is the more robust method, but ISO achieves a
robust accuracy 30% higher than the next best analogous method (FIR).

One of our goals is to provide alternatives to adversarial training (AT). Apart from
high computational costs, AT suffers from several limitations: it only robustifies against
the chosen attack at the chosen budget and it does not offer a robustness guarantee. For
example, under Gaussian noise, AT accuracy decreases faster than baseline accuracy (i.e.,
no defense). Achieving high robustness accuracy against specific attacks on a specific
benchmark is insufficient and misleading to measure the true robustness of the evaluated
model. Our method offers a new point of view that can be extended to certified defense
methods in future works.

Table 2. Clean and robust accuracy on CIFAR-10 against PGD. The number in parentheses is the
attack strength.

Defense BASE ISO DIST JAC FIR AT

Clean 92.93 76.86 84.96 86.17 89.98 80.78

PGD (4/255) 2.49 40.17 7.54 8.56 9.74 68.82

PGD (8/255) 0.47 39.68 3.35 3.66 4.05 66.61

https://github.com/lshigarrier/iso_defense.git
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5. Discussion and Related Work

In 2019, Zhao et al. [17] proposed to use the Fisher information metric in the setting
of adversarial attacks. They used the eigenvector associated with the largest eigenvalue
of the pullback of the FIM as an attack direction. Following their work, Shen et al. [10]
suggested a defense mechanism by suppressing the largest eigenvalue of the FIM. They
upper-bounded the largest eigenvalue by the trace of the FIM. As in our work, they added
a regularization term to encourage the model to have smaller eigenvalues. Moreover, they
showed that their approach is equivalent to label smoothing [18]. In our framework, their
method consists of expanding the geodesic ball b̃(x, δ) as much as possible. However, their
approach does not guarantee that the constraint imposed on the model will not harm the
accuracy more than necessary. In our framework, matrix PJ (compared with δ/ϵ) informs
the model on the precise restriction that must be imposed to achieve adversarial robustness
in the l2 ball of radius ϵ.

Cisse et al. [19] introduced another adversarial defense called Parseval networks. To
achieve adversarial robustness, the authors aim to control the Lipschitz constant of each
layer of the model to be close to unity. This is achieved by constraining the weight matrix of
each layer to be a Parseval tight frame, which is another name for semi-orthogonal matrix.
Since the Jacobian matrix of the entire model with respect to the input is almost the product
of the weight matrices, the Parseval network defense is similar to our proposed defense,
albeit with completely different rationales. This suggests that geometric reasoning could
successfully supplement the line of work on Lipschitz constants of neural networks, such
as in [20].

Following another line of work, Hoffman et al. [9] advanced a Jacobian regularization
to improve adversarial robustness. Their regularization consists of using the Frobenius
norm of the input–output Jacobian matrix. To avoid computing the true Frobenius norm,
they relied on random projections, which are shown to be both efficient and accurate. This
method is similar to the method of Shen et al. [10] in the sense that it will also increase
the radius of the geodesic ball. However, the Jacobian regularization does not take into
account the geometry of the output space (i.e., the Fisher information metric) and assumes
that the probability simplex ∆m is Euclidean.

Although this study focuses on l2 norm robustness, it must be pointed out that there
are other “distinguishability” measures that can be used to study adversarial robustness,
including all other lp norms. In particular, the l∞ norm is often considered to be the most
natural choice when working with images. However, the l∞ norm is not induced by any
inner product and, hence, there is no Riemannian metric that induces the l∞ norm. However,
given an l∞ budget ϵ∞, we can choose an l2 budget ϵ2 =

√
dϵ∞, such that any attack in the

ϵ∞ budget will also respect the ϵ2 budget. When working on images, other dissimilarity
measures are rotations, deformations, and color changes of the original image. Contrary
to the l2 or l∞ norms, these measures do not rely on a pixel-based coordinate system.
However, it is possible to define unrestricted attacks based on these spatial dissimilarities,
for example, in [21].

In this work, we derive the partial isometry regularization for a classification task.
The method can be extended to regression tasks by considering the family of multivariate
normal distributions as the output space. On the probability simplex ∆m, the FIM is a
metric with constant positive curvature, while it has constant negative curvature on the
manifold of multivariate normal distributions [22].

Finally, the precise quantification of the robustness condition presented in Equation (12)
and Proposition 4 paves the way for the development of a certified defense [23] in this
framework. By strongly enforcing Proposition 4 on a chosen proportion of the training set,
it may be possible to maximize the accuracy under the constraint of a chosen robustness
level, which offers another solution to the robustness–accuracy trade-off [24,25]. Certifiable
defenses are a necessary step for the deployment of deep learning models in critical domains
and missions, such as civil aviation, security, defense, and healthcare, where a certification
may be required to ensure a sufficient level of trustworthiness.
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6. Conclusions and Future Work

In this paper, we introduce an information geometric approach to the problem of
adversarial robustness in machine learning models. The proposed defense consists of
enforcing a partial isometry between the input space endowed with the Euclidean metric
and the probability simplex endowed with the Fisher information metric. We subsequently
derived a regularization term to achieve robustness during training. The proposed strategy
is tested on the MNIST and CIFAR-10 datasets, and shows a considerable increase in
robustness without harming the accuracy. Future works will evaluate the method on other
benchmarks and real-world datasets. Several attack methods will also be considered in
addition to PGD and AutoAttack. Although this work focuses on l2 norm robustness,
future work will consider other “distinguishability” measures.

Our work extends a recent, promising but understudied framework for adversarial
robustness based on information geometric tools. The FIM has already been harnessed
to develop attacks [17] and defenses [10,26] but a precise robustness analysis is yet to
be proposed. Our work is a step toward the development of such an analysis, which
might yield certified guarantees relying on these geometric tools. The study of adversarial
robustness, which is non-local by definition and contrary to accuracy, should benefit greatly
from a geometrical vision. However, the current literature on adversarial robustness is
mainly concerned with the FIM and its spectrum (which are very local objects) without
unfolding the full arsenal developed in information geometry. In our work, we demonstrate
the usefulness of such an approach by developing a preliminary robustification method.
Model robustification is a hard, unsolved yet vital problem to ensure the trustworthiness
of deep learning tools in safety-critical applications. Our framework could be extended
and applied to existing certification strategies, such as Lipschitz-based [27] or randomized
smoothing [23], where statistical models naturally appear.
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Appendix A. Proofs

Proof of Proposition 2. (17) ⇒ (16). Assume (17). Let v ∈ Bx(0, ϵ). Thus, gx(v, v) ≤ ϵ2.
We have

g̃x(v, v) ≤ δ2

ϵ2 gx(v, v) ≤ δ2

ϵ2 ϵ2 = δ2. (A1)

Thus, v ∈ B̃x(0, δ).
(16) ⇒ (17). Assume (16). Let v ∈ TxX , v ̸= 0. Define w = ϵ v/

√
gx(v, v). Then

gx(w, w) = ϵ2. Thus, w ∈ Bx(0, ϵ). Hence, w ∈ B̃x(0, δ). Thus, g̃x(w, w) < δ2. Finally,
we have

g̃x(w, w) =
ϵ2

gx(v, v)
g̃x(v, v) < δ2. (A2)

We obtain Equation (17) by multiplying by gx(v, v)/ϵ2.

http://yann.lecun.com/exdb/mnist/
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
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Proof of Fact 1. We prove the third equality (the second equality is a well-known fact of
linear algebra).

Let u ∈ ker J. Then, JTGJu = 0; thus, u ∈ ker(JTGJ). Hence,
(
ker(JTGJ)

)⊥ ⊆
(ker(J))⊥.

Let v ∈ ker JTGJ. Since G is symmetric positive-definite, the function w 7→ N(w) =√
wTGw is a norm. We have 0 = vT JTGJv = N(Jv)2. The positive-definiteness of the norm

N implies Jv = 0. Thus, v ∈ ker J. Hence, (ker(J))⊥ ⊆
(
ker(JTGJ)

)⊥.

Proof of Proposition 3. The implication (22) ⇒ (21) is immediate (by double inclusion).
Now, assume (21) holds. Let v ∈ D. Define w1 = ϵ v/

√
gx(v, v) and w2 = ϵ v/

√
g̃x(v, v).

Then, with a similar argument as in the proof of Proposition 2, we can obtain Equation (22).
Note that w2 is well-defined because v /∈ ker(J).

Proof of Proposition 4. Let us first introduce the polar decomposition.
Let A be a m × d matrix.
Define the absolute value of A by |A| = (AT A)

1
2 . Note that the square root of AT A is

well-defined because it is a positive-semidefinite matrix
Define the linear map u : rg(|A|) → rg(A) by u(|A|x) = Ax for any x ∈ Rd.
Using the fact that |A| is symmetric, we have that ∥Ax∥2 = xT AT Ax = (AT Ax)Tx =

(|A|2x)Tx = xT |A|T |A|x = ∥|A|x∥2; thus, u is an isometry (we can arbitrarily extend u on
the entire Rd, e.g., by setting ker(u) = ker(|A|).).

Let U be the matrix associated to u in the canonical basis.
We now prove the main result.
Let A = PJ. Using the polar decomposition, we have

PJ = U|PJ|, (A3)

where U is an isometry from rg(|PJ|) = (ker |PJ|)⊥ = (ker(PJ))⊥ = (ker(J))⊥ = D to
rg(PJ) = Rm (using our assumption that rk(J) = m). Transposing this relation, we obtain

JT PT = |PJ|UT . (A4)

Hence, by multiplying both relations, we have

PJJT PT = U|PJ|2UT = UJT PT PJUT (A5)

Assume that (ii) holds, i.e., PJJT P = Im. Then,

JTGJ = JT PT PJ = UT PJJT PTU = UTU. (A6)

Since U is an isometry from D to Rm, then UTU is the projection onto D, denoted as ΠD.
Thus, we have JTGJ = ΠD, which is (i).

Now, assume that (i) holds, i.e., JT PT PJ = ΠD, where ΠD is the projection onto D.
We have

PJJT PT = UJT PT PJUT = UΠDUT . (A7)

Since rg(UT) = D, then ΠDUT = UT . Since U is an isometry from D to Rm, then UUT = Im.
Thus, PJJT PT = Im which is (ii).
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Proof of Proposition 5. We need to show that µ∗g = g. Using the coordinates θ on ∆m

(Definition 1) and the standard coordinates on Rc, and writing f (x) = θ0 = (θ1
0 , . . . , θm

0 )
we have

Gij = Gθ0,ij,

=
c

∑
α=1

c

∑
β=1

∂µα(θ0)

∂θi
∂µβ(θ0)

∂θ j δαβ,

=
c

∑
α=1

∂µα(θ0)

∂θi
∂µα(θ0)

∂θ j .

For i = 1, . . . , m and α = 1, . . . , m we have

∂µα(θ0)

∂θi =
δiα√

θi
0

, (A8)

and for α = c:
∂µc(θ0)

∂θi = − 1√
θc

0
, (A9)

with θc
0 =

√
1 − ∑m

i=1 θi
0. Thus,

Gθ,ij =
δij

θi
0
+

1
θc

0
, (A10)

which is the FIM, as defined in Definition 2.

Proof of Proposition 6. For i = 1, . . . , m, the inverse transformation of τ(µ) is

µi(τ) =
2τi

1 + ∥τ/2∥2 , (A11)

and

µc(τ) = 2
∥τ/2∥2 − 1

∥τ/2∥2 + 1
. (A12)

The proofs of Equations (A11) and (A12) are provided below.
Moreover, according to Proposition 5, the FIM in the coordinates (µ1, . . . , µm) is the

metric induced on µ(∆m) by the identity matrix (i.e., the Euclidean metric) of Rc. Hence,
we have

Gτ,ij =
c

∑
α=1

c

∑
β=1

∂µα(τ)

∂τi
∂µβ(τ)

∂τ j δαβ,

=
c

∑
α=1

∂µα(τ)

∂τi
∂µα(τ)

∂τ j .

For i = 1, . . . , m and α = 1, . . . , m, we have

∂µα(τ)

∂τi =
2

1 + ∥τ/2∥2

(
δiα −

τατi

2(1 + ∥τ/2∥2)

)
, (A13)

and for α = c:
∂µc(τ)

∂τi =
2τi

(1 + ∥τ/2∥2)
2 , (A14)
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Thus,

Gτ,ij =
4

(1 + ∥τ/2∥2)
2

(
m

∑
α=1

{
δiαδjα −

δiατ jτα

2(1 + ∥τ/2∥2)
−

δjατiτα

2(1 + ∥τ/2∥2)
+

τiτ j(τα)2

4(1 + ∥τ/2∥2)
2

}
+

τiτ j

(1 + ∥τ/2∥2)
2

)
,

=
4

(1 + ∥τ/2∥2)
2

(
δij −

τiτ j

1 + ∥τ/2∥2 +
τiτ j∥τ/2∥2

(1 + ∥τ/2∥2)
2 +

τiτ j

(1 + ∥τ/2∥2)
2

)
,

=
4

(1 + ∥τ/2∥2)
2

(
δij −

τiτ j

1 + ∥τ/2∥2 +
τiτ j

1 + ∥τ/2∥2

)
,

=
4

(1 + ∥τ/2∥2)
2 δij.

Proof of Equations (A11) and (A12). We have τi(µ) = λµi with λ = 2/(2 − µc). Let us
express µc as a function of τ. We have

∥τ∥2 =
m

∑
i=1

(τi)2 = λ2∥µ∥2. (A15)

Since µ belongs to the sphere of radius 2, we have ∥µ∥2 + (µc)2 = 4. Thus,

∥τ∥2 = λ2
(

4 − (µc)2
)
= 4

4 − (µc)2

(2 − µc)2 = 4
2 + µc

2 − µc . (A16)

Isolating µc, we obtain

µc(τ) =
2∥τ∥2 − 8
∥τ∥2 + 4

= 2
∥τ/2∥2 − 1

∥τ/2∥2 + 1
. (A17)

Now, we can replace µc with the expression of λ. We obtain λ =
(
1 + ∥τ/2∥2)/2; thus,

µi(τ) =
τi

λ
=

2τi

1 + ∥τ/2∥2 (A18)

Proof of Proposition 7. We have

τi(θ) = 2
√

θi
/(

1 −
√

θc
)

. (A19)

Thus, ∥∥∥∥τ(θ)

2

∥∥∥∥2

=
m

∑
i=1

τi(θ)2

4
=

∑m
i=1 θi(

1 −
√

θc
)2 =

1 − θc(
1 −

√
θc
)2 =

1 +
√

θc

1 −
√

θc
.

Hence, for any i = 1, . . . , m:

2
1 + ∥τ(θ)/2∥2 = 1 −

√
θc =

2
√

θi

τi(θ)
. (A20)
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Now, we compute J̃. Let i and j in {1, . . . , m}:

∂τi(θ)

∂θ j =
δij√

θi
(

1 −
√

θc
) −

√
θi

√
θc
(

1 −
√

θc
)2 , (A21)

=
τi(θ)

2

(
δij

θi − τi(θ)

2
√

θiθc

)
. (A22)

Replacing Equations (A20) and (A22) with Equation (28) yields the result.
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