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Abstract: Patients diagnosed with glioblastoma multiforme (GBM) continue to face a dire prognosis.
Developing accurate and efficient contouring methods is crucial, as they can significantly advance
both clinical practice and research. This study evaluates the AI models developed by MRIMath©
for GBM T1c and fluid attenuation inversion recovery (FLAIR) images by comparing their contours
to those of three neuro-radiologists using a smart manual contouring platform. The mean overall
Sørensen–Dice Similarity Coefficient metric score (DSC) for the post-contrast T1 (T1c) AI was 95%,
with a 95% confidence interval (CI) of 93% to 96%, closely aligning with the radiologists’ scores. For
true positive T1c images, AI segmentation achieved a mean DSC of 81% compared to radiologists’
ranging from 80% to 86%. Sensitivity and specificity for T1c AI were 91.6% and 97.5%, respectively.
The FLAIR AI exhibited a mean DSC of 90% with a 95% CI interval of 87% to 92%, comparable to
the radiologists’ scores. It also achieved a mean DSC of 78% for true positive FLAIR slices versus
radiologists’ scores of 75% to 83% and recorded a median sensitivity and specificity of 92.1% and
96.1%, respectively. The T1C and FLAIR AI models produced mean Hausdorff distances (<5 mm),
volume measurements, kappa scores, and Bland–Altman differences that align closely with those
measured by radiologists. Moreover, the inter-user variability between radiologists using the smart
manual contouring platform was under 5% for T1c and under 10% for FLAIR images. These results
underscore the MRIMath© platform’s low inter-user variability and the high accuracy of its T1c and
FLAIR AI models.

Keywords: glioblastoma multiforme; AI-based segmentation; Sørensen–Dice score; neuro-radiology;
MRI imaging; sensitivity and specificity; machine learning in medical diagnosis; MRIMath©

1. Introduction

Despite recent advancements, glioblastoma multiforme (GBM), the most aggressive
primary brain neoplasm, remains associated with a poor prognosis [1]. The current standard
of care for GBM is maximal safe debulking, followed by concurrent chemoradiation and
adjuvant chemotherapy. Magnetic resonance imaging (MRI) of the brain is the primary
technique for the evaluation of treatment response and disease progression; radiologists
rely on the post-contrast T1 (T1c), fluid-attenuated inversion recovery (FLAIR), T1, T2, and
diffusion-weighted imaging sequences to help them detect and diagnose tumor growth [2].
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It is recommended within 72 h after surgery for the assessment of residual disease, followed
by subsequent MRIs every 2–6 months. Traditionally, the size of GBM on MRI is assessed
by measuring the product of the maximal cross-sectional diameters [3]. However, there is
evidence that 3D volumetric measurements are better at detecting the growth of low-grade
gliomas (LLGs) than the maximal cross-sectional diameters, whose accuracy vs. volumetric
analysis compared to previous and baseline scans is 21.0% and 56.5%, respectively [4].
Also, accurate segmentation and volumetrics are crucial for radiation planning. Finally,
radiomics and texture analysis of GBM necessitate accurate segmentation of GBM on
MRI. Traditionally, gliomas are segmented manually, which is time-consuming with high
inter-observer and intra-observer variation [5,6]. The mean kappa score of the gross tumor
volume (GTV) of newly diagnosed GBM from a Korean study was 0.58 [6]. Hence, a precise
and efficient segmentation technique is needed to improve the clinical management of GBM
and to answer fundamental research questions. We have developed an automated AI-based
segmentation technique for segmenting brain neoplasms on different MRI sequences and
a smart manual contouring platform for corrections when needed. Here, we examine
the performance of AI models for T1c and FLAIR GBM sequences as compared to board-
certified neuro-radiologists. We also study the inter-user variability of the MRIMath smart
manual contouring software (version v1.0.0).

2. Methods
2.1. AI Generation

We have developed a proprietary training model architecture through extensive exper-
imentation and iterative refinements. The training model features a U-Net architecture [7],
designed as the backbone for end-to-end fully supervised training. Our implementation
includes modifications to optimize performance for MRI data segmentation. This model
incorporates inception blocks [8] to enhance feature extraction across multiple scales and
employs robust initialization and regularization techniques such as dropout [9] and L2
normalization [10] to prevent overfitting. At its core, the architecture relies on an encoder–
decoder structure, where the encoder progressively compresses the input into a condensed
feature representation, and the decoder expands these features back to the image dimen-
sions, aiming to predict tumor presence with high precision per pixel. The decoder then
reconstructs the segmented output, culminating in precise segmentation through deter-
ministic convolution and Softmax activation. Data augmentation techniques [11] such as
rotation, flipping, translation, and Gaussian noise injection were employed to enhance
the robustness of the model against variations in MRI scans. The model was trained from
scratch using a proprietary dataset leveraging the TensorFlow framework [12] for defining
and training the architecture. We utilized a standard training loop with an Adam opti-
mizer [13], setting the learning rate at 0.06 and a batch size of 24. Training continued for
up to 500 epochs with early stopping implemented to prevent overfitting. Data prepro-
cessing involves converting 2D Dicom files into 2D numpy arrays [14], maintaining the
patient-specific folder structure to ensure that training and validation splits are carried out
per patient rather than per file. Images were resized to 256 × 256 pixels and normalized to
have pixel values between 0 and 1 for training stability. Hyperparameters were determined
iteratively, selecting the best model configuration for deployment and statistical analysis.

2.2. Training Data and Golden Truth

The training data study involved a comprehensive dataset comprising 2181 T1c se-
ries and 1556 FLAIR series MRI scans, featuring resolutions ranging from 256 × 256 to
512 × 512, with data collected between 2001 and 2020, acquired from various universities,
community hospitals, and imaging centers across the United States. For T1c, the number of
slices per series ranged from 21 to 248, averaging 94.28 slices, with a standard deviation of
75.29, while the FLAIR series had between 21 and 200 slices, averaging 31.30 slices with a
standard deviation of 27.54.
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MRI magnetic field strengths for T1c included 3.0 T (n = 1218), 1.5 T (n = 961), and 1.0
T (n = 1), with one unspecified. The FLAIR MR series used similar field strengths, with
961 scans at 3.0T, 585 at 1.5 T, and minor counts at 1.0 T (n = 2) and unspecified (n = 8). The
acquisition-type distribution for FLAIR was predominantly 2D (n = 1433), with a smaller
proportion of 3D acquisitions (n = 103).

Various contrast agents were employed depending on machine compatibility and
specific imaging requirements, including Gadolinium, Prohance, Omniscan, Dotarem,
Magnevist, Multihance, and Optimark.

All golden truth segmentation was conducted by a board-certified neuro-oncologist.
The datasets were randomly divided into training (80%) and validation (20%) sets. The
detailed imaging parameters for the T1C and FLAIR series are presented in Tables A1–A4.

2.3. Testing Dataset
2.3.1. Inclusion Criteria

1. Older than 18 years of age.
2. Pathological diagnosis of glioblastoma multiforme.
3. The patient must have had an MRI of the brain with and without contrast that includes

T1C and FLAIR sequences.
4. The data is anonymized.

2.3.2. Exclusion Criterion

1. The T1C or FLAIR series have missing slices.

A total of 78 patients met the inclusion criteria: 17/78 were excluded because their
T1C and FLAIR series had missing slices.

2.3.3. Sample Size Calculation

To evaluate the accuracy, we compare the performance of the FLAIR and T1C AIs to
the consensus golden truth; this procedure generates overall DSC proportions between 0
and 1. We chose to consider an overall DSC proportion of 88% as the reference value in a
comparison using a two-sided, one-sample Z-proportion hypothesis testing.

We base our sample size calculation on the hypothesis that the proportion of Sørensen–
Dice Similarity Coefficient scores (DSC) exceeding the designated threshold of 88% differs
from 50%. We expect that our AI will exceed this threshold 70% of the time. The comparison
will be made using a two-sided, one-sample Z-test and type I error alpha of 0.05. Using R
version 4.1.1, specifically the pwr package for power analysis [15,16], we estimate that a
sample of 42 MRIs is adequate to provide 80% power.

In our work, we are interested in testing our AI on both pre- and post-operative MRIs.
We expect at least a third of the participants to have both pre- and post-operative MRI scans
that can be used in our study. Therefore, we randomly selected 31 subjects from the pool of
participants that meet our inclusion/exclusion criteria.

2.3.4. Studies/Series Selection Procedure

Most brain tumor patients are treated at university hospitals, though some may be
initially diagnosed at community hospitals. Because our intention is to produce a sample
of GBM MRIs that represent the US, we gave preference to MRI studies performed at
community hospitals and imaging centers. This approach resulted in 26 studies performed
at university hospitals, compared to 20 studies at community hospitals and imaging centers,
totaling 46 studies.

Given the prevalence of 1.5 T machines over 3.0 T machines, especially at smaller
institutions, preference was given to 3 T magnets, resulting in 12 studies acquired by
3 T magnets and 34 by 1.5 T magnets. T1C 3D acquisitions, being less common than 2D,
especially at community hospitals, were preferred due to their informativeness, leading to
25 series acquired in 3D and 21 in 2D. Preference was also given to FLAIR series with more
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than 25 slices, resulting in 28 FLAIR sequences with fewer than 25 slices and 18 sequences
with more than 25 slices (range = 26–200).

The selection procedure detailed above resulted in 46 MRI studies from 31 patients,
acquired from a diverse set of 19 centers across the United States, including 13 community
hospitals and clinics, 4 imaging centers, and 2 university hospitals. The MRIs spanned
various magnetic field strengths—1.5 Tesla (n = 33), 3.0 Tesla (n = 12), and some unspecified
(n = 1)—and were performed using equipment from major manufacturers—GE Medical
Systems (Convington, GA, USA) (n = 18), Philips Medical Systems (Oakwood, GA, USA)
(n = 13), Philips Healthcare (Andover, MA, USA) (n = 9), and Siemens (Erlangen, Germany)
(n = 6). The MRI acquisition types included both 2D (T1c: n = 21; FLAIR: n = 44) and 3D
(T1c: n = 25; FLAIR: n = 2) formats. The imaging parameters are shown in Tables A5–A8.
Various contrast agents were employed depending on machine compatibility and specific
imaging requirements, including Gadolinium, Prohance, Omniscan, Dotarem, Magnevist,
Multihance, and Optimark. The MRI image resolution configurations included 256 × 256,
288 × 288, 384 × 384, 432 × 432, and 512 × 512. The T1c repetition time ranged from 9.3 to
666.7 ms; the echo time ranged from 2.6 to 14.9 ms.

2.3.5. Annotators, Tasks, and Golden Truth

Three board-certified neuro-radiologists annotated the testing datasets. Each neuro-
radiologist was tasked with manual contouring of the T1c and FLAIR sequences of the
46 MRIs of patients diagnosed with GBM. They used the smart manual contouring platform
of the MRIMath platform. Specifically, they uploaded the images onto the MRIMath
platform, performed manual segmentations of the T1c and FLAIR sequences, and then
downloaded the data to their computers. They shared the data with the MRIMath for
analysis. A single consensus ground truth was generated from the annotations of the three
neuro-radiologists by majority voting, considering each pixel as a tumor or not, based on at
least 2 out of 3 votes.

2.4. Evaluation Metrics
2.4.1. Overall Dice Score per Patient

The Dice Score (DSC) is utilized to measure the accuracy of the segmentation compared
to a golden truth. It is calculated as follows:

DSC =
2 × TP + ϵ

2 × TP + FP + FN + ϵ

In this equation:

• TP (true positive) represents accurately segmented pixels.
• FP (false positive) indicates erroneously segmented pixels.
• FN (false negative) denotes missed pixels in the segmentation process.
• ϵ is a minor constant added for computational stability.

where ϵ is an arbitrarily chosen small constant set to 10−6. This value is used to prevent
division by zero in cases where the denominator is null, and ensuring DSC equals 1, in
cases where both predicted and GT values are zero, correctly reflecting a perfect match.
Thus, the use of ϵ ensures numerical stability in the computation of the DSC.

True positives pertain to slices where tumors are identified and confirmed by a speci-
fied reference, serving as the ground truth (GT) for a given comparison.

2.4.2. Sensitivity and Specificity

These metrics are defined as follows:

Specificity =
True Negatives

True Negatives + False Positives

Sensitivity =
True Positives

True Positives + False Negatives
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Sensitivity and specificity are measured both at the per-slice and per-pixel levels, the
latter evaluating each individual pixel per scan.

2.4.3. Hausdorff Distance

In our analysis pipeline, the Hausdorff distance quantifies the discrepancy between
ground truth (GT) and predicted segmentation outcomes in the MRI T1c and FLAIR test
datasets. In particular, the 95th percentile (Hausdorff 95) is used as a metric for evaluating
segmentation accuracy, computed per lesion on a slice-by-slice basis within 3D scans [17–19].

Initially, each 3D image volume, consisting of multiple 2D slices, is identified and
labeled as “independent objects” within both GT and prediction masks. For each grouped
pair of objects, the Hausdorff distance was calculated at a 95% confidence interval. We
report the means, standard deviations, and confidence intervals of the Hausdorff distances
across the dataset.

2.5. Statistical Methods

To test the hypothesis that the proportion of overall AI DSC measurements exceeding
the designated threshold of 88% differs from 50%, a two-sided, one-sample Z-test was
utilized. Proportions of DSC above the threshold, along with their corresponding 95%
confidence interval and p-values, are presented. An alpha level of 0.05 was employed to
assess significance [15,16]. The analyses were conducted using R version 4.1.1.

Box plots were utilized to visually represent the distribution of Dice scores. To compare
the volumes measured by the AI and three neuro-radiologists, the following methods
were applied:

• Linear regression (R2) for measuring the degree of correlation.
• Bland–Altman analysis was used to assess the agreement between two methods of

clinical measurement. To evaluate the range within which the vast majority (95%) of
the differences are expected to lie, we define the Limits of Agreement (LoAs) as the
mean difference ±1.96 times the standard deviation of the differences, which represents
a critical value of the standard normal distribution at a 95% confidence level. We
report the 95% confidence intervals for the mean difference.

• Cohen’s Kappa Score (κ) measures the agreement between two raters who categorize
instances into mutually exclusive categories [20]. The Kappa statistic for AI-based
medical imaging evaluates the agreement between the AI algorithm’s segmentation
and expert radiologist’s annotations, calculated as κ = Po−Pe

1−Pe
, where Po is the observed

agreement and Pe is the expected agreement.

To assess the statistical significance of the Kappa scores, we calculated p-values using
a z-score method, which accounts for the variability in Kappa estimation. This involves
computing the standard deviation of Kappa and the z-score to derive the p-value, thereby
providing a robust measure of agreement significance beyond chance.

3. Results
3.1. Patients

The cohort comprised 31 patients diagnosed with GBM, including 16 females and
15 males, who underwent 46 MRI studies. Among these studies, 24 were preoperative
and 22 were postoperative MRIs. The mean age of the patients was 56.68 years, with a
standard deviation of 12.76 years. The median age was 58 years with an interquartile
range (IQR) of 14.25 years. The racial distribution was predominantly white (n = 29) with
African American (n = 2), mirroring the incidence rates in the US population (white = 83.2%,
black = 5.9%) [21].

3.2. Hypothesis Testing

We evaluated the hypothesis that the proportion of overall AI DSC measurements
exceeding a designated threshold (p0 = 0.88) differs from 50%. The two-sided, one-sample
Z-test revealed the following:
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• For the FLAIR AI, the DSC proportions exceed p0, 74% of the time, with a confidence
interval (CI) of (60%, 84%) and a p-value of 0.001. This result indicates that our
proportion is significantly different than 50%.

• For T1C, the DSC proportions exceed p0, 89% of the time, with a CI of (77%, 95%) and
a p-value of < 0.001. This also implies that our proportion is significantly different
than 50%.

These results demonstrate that the measurements from our device, based on both
AI models, are statistically significant and clinically relevant. The high proportion of
DSCs exceeding the p0 threshold demonstrates the efficacy of the AI in aligning with
the consensus ground truth, from the three radiologists. This high level of agreement
underscores the high potential of our AI models to support and enhance diagnostic accuracy
in clinical settings, as detailed in Table 1.

Table 1. Results of the two-sided, one-sample Z-proportion test comparing the MRIMath T1C and
FLAIR AIs to the reference proportion p0 = 0.88.

AI Model Proportion of DSC > p0 Lower 95% CI Upper 95% CI p-Value

FLAIR 74% 60% 84% 0.001
T1C 89% 77% 95% <0.001

3.3. Dice Score Comparisons

In this comprehensive analysis, we present a comparative analysis of the performance
of AI-generated segmentation with the consensus GT, as well as the inter-radiologist
agreement for the FLAIR and T1c imaging modalities. We measure the DSC of the entire
dataset and of the true positive set, i.e., the slices with tumors. Figure 1 displays the
T1c and FLAIR AI-generated segmentation alongside the consensus GT delineations for
small and large tumors. The depicted tumors are highlighted with a semi-transparent red
overlay and are delineated by a solid red outline. The comparison clearly demonstrates
a high degree of agreement between the AI-generated segmentation and the consensus
GT, affirming the efficacy of both FLAIR and T1c AIs in accurately reproducing the expert
radiologists’ assessments.

(a) AI (b) GT (c) AI (d) GT

(e) AI (f) GT (g) AI (h) GT

Figure 1. Contours of the AI (a,c,e,g) and consensus GT (b,d,f,h) for the T1c (a–d) and corresponding
FLAIR series (e–h). (e,f) are the FLAIR sequences that correspond to the small tumor in (a,b). (g,h) are
the FLAIR sequences that correspond to the large tumor in (c,d). Tumor segmentation is marked with
a semi-transparent red overlay and delineated by a solid red outline.
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3.3.1. Overall Dice Scores for T1c and FLAIR Modalities

Table 2 illustrates the agreement level between AI-generated segmentation and con-
sensus GT for both the T1c and FLAIR modalities, along with the consistency of inter-
radiologist assessments. The AI–consensus pairing for the T1c modality achieves a mean
DSC of 94.72%, with a 95% CI of (93.31%, 96.13%), similar to the mean DSC values observed
for the radiologist’s pairings ranging from 95.44% to 95.78%. For the FLAIR modality,
the AI–consensus pairing achieves a mean DSC of 89.47%, with a 95% CI of (86.82% to
92.12%), comparable to those obtained from the radiologist comparisons, whose mean
DSC ranges from 89.32% to 91.64%. The box plots of the overall T1c and FLAIR DSC
reveal a consistent median convergence across all tested pairings, suggesting synchronized
performance between the AI system and radiologists (Figure A2).

Table 2. Overall DSC Statistics for T1c and FLAIR Modalities. Comparison across AI and radiologists.

Comparison
T1c FLAIR

Mean 95% CI Mean 95% CI

AI–C 94.72% (93.31%, 96.13%) 89.47% (86.82%, 92.12%)
R1–R2 95.74% (94.84%, 96.65%) 91.64% (90.13%, 93.16%)
R1–R3 95.44% (94.25%, 96.63%) 89.32% (87.21%, 91.43%)
R2–R3 95.78% (94.57%, 96.99%) 90.84% (88.59%, 93.09%)

These results underscore the following:

1. The solid alignment of the T1c and FLAIR AIs with the consensus GT.
2. The low variability between the radiologists using the MRIMath Smart contour-

ing platform.

3.3.2. True Positive Dice Scores

The true positive DSC for both T1c and FLAIR are also similar to the measurements
obtained by comparing the radiologists (see Table A13). In particular, the T1C and FLAIR
AI models mean that DSCs are 81.43% and 77.62% with 95% CI ranges of (75.60%, 87.26%)
and (71.42%, 83.81%), respectively. The mean DSC between radiologists ranges from 76.33%
to 86.09% and 75.10% to 83.38% for T1c and FLAIR images, with a 95% CI of (70.33%,
89.42%) and (71%, 87.22%), respectively. The box plots for the true positive DSC are shown
in Figure A1.

3.3.3. Dice Score Subgroup Analysis

We conducted a subgroup analysis focusing on different settings within the dataset,
including institutional type (university hospitals, community, and imaging centers), MRI
manufacturers (GE, Philips, Siemens), lesion size, single and multiple tumors, field strength,
acquisition type (2D, 3D), and operative status (pre, post). Table 3 reveals that the segmenta-
tion models exhibit a high degree of accuracy and consistency, highlighting the robustness
of the models across various clinical and technical settings. The lowest DSC of 85.18%
is measured from small tumors for FLAIR imaging, reflecting the increased sensitivity
of the DSC to smaller tumor volumes, where minor segmentation inaccuracies become
more significant.
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Table 3. Sub-group analysis. Average Dice score for the T1c and FLAIR AIs.

Experiment Name
T1C FLAIR

Mean DSC 95% C.I Mean DSC 95% C.I

University Hospitals and Clinics 93.83% (91.42%, 96.23%) 89.24% (85.98%, 93.51%)
Community & Imaging Centers 95.88% (94.61%, 97.15%) 89.10% (84.80%, 93.41%)
Manufacturer-GE 96.60% (95.31%, 97.89%) 88.24% (81.80%, 93.56%)
Manufacturer-Philips 92.74% (90.05%, 95.43%) 88.46% (87.83%, 93.94%)
Manufacturer-Siemens 96.35% (94.23%, 98.46%) 94.65% (81.34%, 97.92%)
Field-1.5T 94.94% (93.32%, 96.56%) 89.50% (86.25%, 93.09%)
Field-3.0T 94.06% (89.88%, 98.24%) 89.74% (82.98%, 94.83%)
T1c Acquisition-2D 96.84% (95.83%, 97.84%) 89.68% (83.65%, 93.27%)
T1c Acquisition-3D 92.95% (90.55%, 95.34%) 88.77% (87.03%, 93.59%)
Pre-op 95.65% (93.85%, 97.44%) 90.13% (88.72%, 93.75%)
Post-op 93.71% (91.31%, 96.12%) 88.15% (82.41%, 92.68%)
Single Tumors 97.10% (96.31%, 97.89%) 89.52% (86.92%, 96.26%)
Multiple Tumors 91.89% (89.24%, 94.54%) 89.04% (85.08%, 92.00%)
Small tumors 95.79% (93.70%, 97.88%) 85.18% (76.51%, 89.78%)
Medium tumors 94.68% (91.95%, 97.41%) 92.47% (91.96%, 95.43%)
Large tumors 93.76% (90.67%, 96.85%) 89.86% (87.77%, 95.10%)
ALL 94.72% (93.27%, 96.17%) 89.18% (86.74%, 92.19%)

3.4. Sensitivity and Specificity

This section presents an in-depth analysis of slice-wise and pixel-wise specificity
and sensitivity for both T1c and FLAIR modalities, comparing AI-generated results with
those obtained from the neuro-radiologists. The slice-level analysis for the T1c and FLAIR
modalities show that the AI models achieve high specificity and sensitivity, closely aligning
with or even surpassing radiologist benchmarks (Table A9). Specifically, the specificity
metrics across all AI–radiologist pairings indicate near-perfect performance (T1c: 97.49%,
FLAIR: 96.10%), suggesting a high degree of accuracy in correctly identifying negative
cases. Sensitivity results are also robust (T1c: 91.63%, FLAIR: 92.09%) and comparable to
the levels observed between radiologists.

At the pixel level, the specificity and sensitivity assessments, shown in
Tables A11 and A12, reveal pixel-level specificity (T1c: 99.97%, FLAIR: 99.87%) that re-
mains consistently near-perfect across all AI-radiologist pairings. Sensitivity, although
slightly lower than specificity (T1C: 89.11%, FLAIR: 86%), is within an acceptable range.

3.5. Hausdorff Distance

Table 4 reveals that, as compared to a radiologist, the AI exhibits a consistent range of
mean Hausdorff distances, all of which are notably below 5 mm for both T1 and FLAIR
modalities. This uniformity highlights the AIs’ capacity to reliably capture the essential
contours of the segmented objects with a high degree of fidelity across modalities [1,3,4].

Table 4. Hausdorff 95% (in mm) for T1c and FLAIR AI. AI and radiologist Hausdorff distances.

Prediction Ground Truth
T1c FLAIR

Mean 95% CI Mean 95% CI

AI C 2.8943 (1.949, 4.103) 3.5217 (2.1146, 4.929)
AI R1 3.2080 (2.182, 4.525) 4.2637 (2.5294, 5.998)
AI R2 3.2781 (2.336, 4.602) 4.1239 (2.6128, 5.635)
AI R3 3.1494 (2.179, 4.406) 3.9018 (2.4156, 5.743)
R1 R2 2.7666 (1.899, 3.757) 3.9871 (2.3092, 5.665)
R1 R3 2.9069 (1.765, 4.294) 4.4493 (2.4695, 6.429)
R2 R3 2.6447 (1.774, 3.756) 4.1278 (2.3834, 5.872)
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3.6. Volume Measurements
3.6.1. Tumor Volumes: Linear Regression

Figure 2 plots the linear relationship between the volumes measured by T1C and
FLAIR AI versus the consensus FT and among the radiologists. The results confirm a
high degree of correlation and agreement between the consensus GT and both the T1c
(R2 = 0.965 for the OLS line; R2 = 0.939 for the y = x line) and FLAIR AI (R2 = 0.967
for both the OLS line and y = x lines). A detailed comparison across different radiologist
pairings reveals that the agreement between the AI and the consensus GT R2 is similar to
the radiologists’ for both the OLS and the y = x lines (Table A14). In panels (a) and (e),
the T1c and FLAIR AI models demonstrate an exceptional correlation with the consensus
ground truth, as evidenced by R2 values close to 1 and regression slopes nearly equivalent
to the line y = x, indicating not only high predictive accuracy but also volume conservation
in the tumor segmentation. These findings are corroborated by the high degree of alignment
in the regression slopes and intercepts.

Figure 2. Cont.
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Figure 2. Linear regression analysis of volumes across AI and radiologist pairings for both T1C (a–d)
and FLAIR (e–h) series. The analyses include AI vs. consensus GT (a,e), R1 vs. R2 (b,f), R1 vs. R3 (c,g),
and R2 vs. R3 (d,h). The red dashed line represents the y = x line; the solid line represents the OLS
regression line; the gray region indicates the confidence interval; the blue “x” marks denote the data
points. The results of regression around the OLS line and x = y are summarized in Table A14.

Specifically, the slopes of the best fits of the AI to consensus GT are closer to 1 (0.886
for T1c and 1,007 for FLAIR) as compared to most of the comparisons between radiologists
(0.845, 0.759, 0.641 for T1c and 1.001, 0.851, 0.837 for FLAIR; Table A14). Comparative
analysis among radiologists, shown in panels (b) to (d) for T1c and (f) to (h) for FLAIR,
reveals a generally high level of agreement, with R2 values consistently above 90%. Fur-
thermore, the high R2 among different pairings of radiologists compared to the y = x line,
detailed in Table A14, reflects a high level of consistency, ensured by MRIMath©’s smart
manual contouring.

3.6.2. Tumor Volumes: Bland–Altman Analysis

Figure 3 presents the Bland–Altman plots assessing the agreement of segmented tumor
volumes between the T1C and FLAIR AIs and the consensus GT, as well as among different
radiologists. The figure reveals a tight correlation between the volumes measured by the
T1C and FLAIR AIs as compared to the consensus golden truth. For example, in the T1C
analysis, the mean difference in volume measurement between AI and consensus GT is
2065 mm3 (Table A15), which is in the range of differences measured between radiologist
pairings (1583 mm3, 3720 mm3). In the FLAIR analysis, the AI vs. consensus GT mean
difference is 154 mm3, considerably smaller than the minimal difference between radiol-
ogists of 1040 mm3. Table A15 also demonstrates that the Limits of Agreement for both
T1c and FLAIR AIs as compared to the consensus GT are within the range or better than
what is measured from the radiologist pairings. These findings highlight AI’s capability to
maintain a high level of precision and reliability in tumor volume assessments.

Figure 3. Cont.
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Figure 3. Bland–Altman analysis of volumes (in mm³) for both T1c (a–d) and FLAIR (e–h) series
between AI and radiologists’ pairings. The analyses include AI vs. consensus GT (a,e), R1 vs. R2 (b,f),
R1 vs. R3 (c,g), and R2 vs. R3 (d,h). Limits of Agreement (LoAs) and mean difference with 95%
confidence intervals are depicted. Results are summarized in Table A15 for T1c and FLAIR modalities.

3.6.3. Kappa Score (k)

Table A16 presents a comparative analysis of Kappa scores revealing substantial
agreement with a κ scores of 0.7617 and 0.6867 for the T1c and FLAIR AIs as compared
to the consensus GT, respectively. These agreement levels are within the range of scores
obtained by comparing the radiologists.

3.7. Variability of the Smart Manual Contouring Platform of MRIMath

The results demonstrate that the manual contouring platform of MRIMath is asso-
ciated with low variability (<5% for T1C and <10% for FLAIR). Furthermore, there was
no statistically-significant difference between the DSCs and volumes measured by the
three neuro-radiologists.
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4. Discussion and Conclusions

Our results reveal that the T1C and FLAIR AIs’ pixel and volume predictions align
closely with the manual contouring by board-certified neuro-radiologists. Furthermore,
our smart manual contouring system yields low inter-user variability.

We compare the MRIMath© platform’s results side by side with other leading plat-
forms such as Neosoma [22] and the state-of-the-art model called Swin Transformer [23],
trained on the BRATS dataset [24] by Nvidia and Vanderbilt university [25]. Table 5 de-
tails key aspects of model operation, preprocessing requirements, and performance across
these platforms, illustrating the unique approaches of each. MRIMath© is noted for being
fully automated by not including preprocessing steps that require human supervision,
like deboning, interpolation, and registration; this automation significantly simplifies the
preprocessing pipeline compared to the more complex requirements of Neosoma and
Nvidia’s model.

While MRIMath© processes images in 2D and treats each modality independently,
Neosoma and Brats employ a 3D approach and integrate four modalities. Moreover,
MRIMath© adopts a streamlined approach by handling a single series type (FLAIR or
T1c), which contrasts with the subcomponent segmentations used by the other platforms.
Notably, the performance of MRIMath© is highlighted with DSC scores of 89.47% for
FLAIR and 94.79% for T1c. Neosoma shows an average DSC of 88.3% for preoperative
data and 77.6% for postoperative data. The Nvidia model yields an average DSC of 91.3%.
The output of the MRIMath© FLAIR AI is equivalent to the sum of all the subcomponents
measured by Brats and Neosoma; the T1C AI segmentation is equivalent to the sum of the
enhancing and necrosis subcomponents. These results underscore the distinct advantages
of MRIMath© in enhancing the efficiency and accessibility of tumor segmentation for
clinical applications.

Table 5. Comparison of preprocessing requirements, model characteristics, and performance.

Feature MRIMath© Neosoma [22] Brats [25]

Deboning Not Required Required Required
Interpolation Not Required Required Required
Registration Not Required Required Required
Data Type 2D 3D 2D/3D
Number of AIs 2 1 1
Output 1 per AI 3 Subcomponents 4 Subcomponents
Series Single: FLAIR or T1c Multiple: T1, T1c, FLAIR, T2 Multiple: T1, T1c, FLAIR, T2
DSC FLAIR: 90%, T1c: 95% Preop: 88%, Postop: 78% Average: 90%

As compared to the literature, the manual contouring platform of MRIMath is asso-
ciated with low inter-user variability, 5% for T1C, and 10% for FLAIR. The larger inter-
observer variability for FLAIR is thought to be due to vague and imprecise boundaries [5,6].
The mean kappa of the gross tumor volume (GTV) of newly diagnosed GBM from a Korean
study was 0.58 as compared to 0.77 for the MRIMath manual contouring [6]. In a recent
report, the mean DSC of the GTV of the FLAIR signal of low-grade gliomas was reported at
77% (substantial disagreement) [26]; in contrast, the mean DSC of the manual contouring
of FLAIR images using the MRIMath smart platform was 91% (see Table 2).

The MRIMath GBM AIs can potentially by applied in radiotherapy and neurosurgical
planning by improving efficiency, saving time, and lowering inter-user variability. They can
also be applied to evaluate and update the current standard of care for longitudinal tumor
monitoring including the RANO criteria [4]. By delivering precise and reliable segmentation
within seconds, our AI tools set a foundation for accurate volumetric evaluations of tumor
progression, which are pivotal for longitudinal monitoring and for clinical trials. The
MRIMath smart manual contouring platform offers a safety net that allows physicians to
review and approve AI segmentation efficient and with low variability. An efficient and
robust segmentation is also needed for the clinical analysis of PET scans. From a research
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perspective, the precise segmentation capability of our AI facilitates detailed analysis of
tumors, which is critical for developing predictive models in radiomics studies.
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Appendix A. Dataset Demographics

Appendix A.1. Characteristics of the Training MRI Studies

Table A1. Training T1c series MR imaging parameters.

Stat Slice Thickness Repetition Time Echo Time Spacing Between Slices

Mean 2.85 679.31 6.6 3.12
Std 1.65 748.61 5.63 2.28
Median 3 460.88 4.59 1.6
IQR 4 1743.24 5.89 5
Min 0.9 3.87 1.32 0.7
Max 10 9420 141 10

Table A2. Training T1c series MR imaging parameters—continued.

Stat Inversion Time Pixel Bandwidth Echo Train Length Imaging Frequency Flip Angle

Mean 495.85 189.74 24.33 98.44 41.21
Std 473.97 138.11 50.11 30.7 34.56
Median 600 150 1 123.26 15
IQR 950 51.89 2 63.87 55
Min 0 61.05 0 42.59 6
Max 2550 1116.09 256 128.17 180
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Table A3. Training FLAIR series MR imaging parameters.

Stat Slice Thickness Repetition Time Echo Time Spacing Between Slices

Mean 3.88 9459.36 141.58 3.71
Std 1.16 1589.21 51.04 2.61
Median 4 9420 141 4
IQR 2 2000 16 5.5
Min 0.47 2236.53 8.22 1
Max 5.5 15,830 422.27 7.5

Table A4. Training FLAIR series MR imaging parameters—continued.

Stat Inversion Time Pixel Bandwidth Echo Train Length Imaging Frequency Flip Angle

Mean 2465.02 299.71 29.35 8,546,996.87 124.03
Std 316.36 175.53 40.25 73,023,776.54 37.24
Median 2500 287 13 123.26 90
IQR 550 82 18 59.38 80
Min 750 61.04 0 42.59 90
Max 2854.26 1302 236 639,061,410 180

Appendix A.2. Characteristics of the Testing MRI Studies

Table A5. Testing T1c imaging parameters.

Stat Slice Thickness Repetition Time Echo Time Spacing Between Slices

Mean 3.13 336.14 8.71 3.71
Std 1.57 399.67 8.47 2.40
Median 3.20 113.23 7.62 3.00
IQR 3.40 599.16 5.41 4.40
Min 0.93 5.77 2.30 0.70
Max 5.00 1800.00 58.00 7.50

Table A6. Testing T1c imaging parameters—continued.

Stat Pixel Bandwidth Echo Train Length Imaging Frequency Flip Angle

Mean 167.69 34.78 79.59 52.41
Std 105.31 52.89 29.26 48.71
Median 161.00 1.50 63.89 30.00
IQR 52.93 99.25 44.56 81.50
Min 46.48 1.00 25.55 8
Max 559.00 122.00 127.80 180

Table A7. Testing FLAIR imaging parameters.

Stat Slice Thickness Repetition Time Echo Time Spacing Between Slices

Mean 4.72 9575.28 130.26 6.05
Std 0.83 1725.29 38.50 1.05
Median 5.00 9236.00 125.00 6.50
IQR 0.00 2198.00 20.38 0.50
Min 1.00 4800.00 81.00 1.00
Max 5.91 12,000.00 349.26 7.50
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Table A8. Testing FLAIR imaging parameters—continued.

Stat Pixel Bandwidth Echo Train Length Imaging Frequency Flip Angle Inversion Time

Mean 253.62 28.63 79.59 105.67 2475.97
Std 140.72 32.68 29.26 29.57 338.03
Median 276.00 24.00 63.89 90.00 2500.00
IQR 244.93 45.00 44.56 0.00 600.00
Min 61.05 1.00 25.55 90.00 1660.00
Max 740.00 171.00 127.80 180.00 2854.50

Appendix B. Slice-Wise Specificity and Sensitivity

Table A9. T1c AI slice-level specificity and sensitivity measures.

Prediction
Specificity Sensitivity

GT Mean (%) 95% CI GT Mean (%) 95% CI

AI C 97.49% (96.08%, 98.89%) C 91.63% (85.21%, 98.04%)
R1 R2 99.47% (99.15%, 99.78%) R2 94.12% (88.92%, 99.32%)
R2 R1 99.18% (98.51%, 99.85%) R1 95.05% (90.01%, 100.08%)
R1 R3 98.53% (97.48%, 99.58%) R3 95.31% (89.22%, 101.40%)
R3 R1 99.87% (99.61%, 100.13%) R1 91.40% (85.12%, 97.68%)
R2 R3 98.09% (96.86%, 99.32%) R3 93.80% (87.42%, 100.18%)
R3 R2 99.70% (99.42%, 99.99%) R2 89.81% (83.08%, 96.54%)

Table A10. FLAIR AI slice-level specificity and sensitivity measures.

Prediction
Specificity Sensitivity

GT Mean (%) 95% CI GT Mean (%) 95% CI

AI C 96.10% (93.73%, 98.47%) C 92.09% (87.99%, 96.19%)
R1 R2 96.97% (95.46%, 98.47%) R2 97.92% (96.70%, 99.13%)
R2 R1 98.02% (96.79%, 99.25%) R1 96.12% (94.29%, 97.94%)
R1 R3 93.96% (91.27%, 96.64%) R3 98.46% (97.12%, 99.81%)
R3 R1 98.86% (97.97%, 99.74%) R1 91.27% (87.40%, 95.14%)
R2 R3 95.01% (92.50%, 97.53%) R3 97.95% (96.34%, 99.56%)
R3 R2 98.92% (98.06%, 99.77%) R2 92.55% (88.67%, 96.43%)

Appendix C. Pixel-Wise Specificity and Sensitivity

Table A11. T1c AI pixel-level specificity and sensitivity measures.

Prediction
Specificity Sensitivity

Mean (%) 95% CI Mean (%) 95% CI

AI 99.97% (99.96%, 99.98%) 89.11% (82.82%, 95.40%)
R1 99.96% (99.95%, 99.97%) 90.66% (85.45%, 95.86%)
R2 99.99% (99.98%, 99.99%) 78.25% (72.68%, 83.82%)
R1 99.95% (99.93%, 99.97%) 92.06% (85.68%, 98.43%)
R3 100.00% (99.99%, 100.00%) 73.37% (67.06%, 79.68%)
R2 99.97% (99.96%, 99.98%) 88.07% (81.11%, 95.02%)
R3 99.99% (99.99%, 99.99%) 81.63% (74.85%, 88.41%)
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Table A12. FLAIR AI pixel-level specificity and sensitivity measures.

Prediction
Specificity Sensitivity

Mean (%) 95% CI (Lower, Upper) Mean (%) 95% CI (Lower, Upper)

AI 99.87% (99.84%, 99.90%) 86.00% (79.05%, 92.96%)
R1 99.81% (99.76%, 99.87%) 92.35% (89.20%, 95.49%)
R2 99.92% (99.88%, 99.96%) 82.96% (79.44%, 86.49%)
R1 99.75% (99.70%, 99.81%) 95.49% (92.67%, 98.32%)
R3 99.96% (99.93%, 99.99%) 74.72% (70.46%, 78.99%)
R2 99.84% (99.80%, 99.88%) 93.65% (90.24%, 97.06%)
R3 99.94% (99.90%, 99.97%) 81.74% (77.21%, 86.27%)

Appendix D. Dice Score Box Plots for AI and Radiologist Pairings

(a)

(b)

Figure A1. Comparison of Dice score true positive distributions for different pairings between AI
and radiologists. Box plot showing the Dice score distributions for the six different combinations
between AI and radiologists for (a) T1c, and (b) FLAIR modalities.
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(a)

(b)

Figure A2. Comparison of Dice score distributions for different pairings between AI and radiologists
for (a) T1c, and (b) FLAIR modalities.

Appendix E. True Positive Dice scores

Table A13. TP Dice score statistics for T1c and FLAIR modalities. Comparison across AI and radiologists.

Comparison
T1c FLAIR

Mean (%) 95% CI (%) Mean (%) 95% CI (%)

AI–C 81.43 (75.60, 87.26) 77.62 (71.42, 83.81)
R1–R2 80.27 (75.23, 85.32) 82.82 (79.87, 85.78)
R2–R1 80.76 (75.96, 85.57) 81.46 (78.28, 84.65)
R1–R3 83.04 (79.87, 86.22) 80.72 (77.71, 83.72)
R3–R1 76.33 (70.33, 82.33) 75.18 (71.00, 79.37)
R2–R3 86.09 (82.77, 89.42) 83.38 (79.54, 87.22)
R3–R2 79.09 (72.75, 85.42) 78.84 (74.14, 83.53)
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Appendix F. Linear Regression Analysis

Table A14. Linear regression analysis of segmented volumes in mm³ for T1c and FLAIR modalities.

Modality Comparison Slope (a) ± Std Intercept (b) ± Std R2 (OLS) R2 (x = y)

T1c

AI vs. Consensus 0.886 ± 0.051 −368 ± 1203 0.965 0.939
R1 vs. R2 0.845 ± 0.057 751 ± 1512 0.952 0.916
R1 vs. R3 0.641 ± 0.062 1705 ± 1620 0.909 0.579
R2 vs. R3 0.759 ± 0.048 1115 ± 1094 0.959 0.848

FLAIR

AI vs. Consensus 1.007 ± 0.056 −327 ± 1934 0.967 0.967
R1 vs. R2 1.001 ± 0.051 −1060 ± 1914 0.973 0.972
R1 vs. R3 0.851 ± 0.036 −438 ± 1347 0.981 0.934
R2 vs. R3 0.837 ± 0.039 793 ± 1492 0.977 0.930

Appendix G. Bland–Altman

Table A15. Bland–Altman analysis of segmented volumes in mm³ for T1c and FLAIR modalities.

Comparison
T1c FLAIR

Mean Difference 95% CI LoA Mean Difference 95% CI LoA

AI vs. C 2065 (634, 3496) (−7378, 11,508) 154 (−1758, 2067) (−12,469, 12,777)
R1 vs. R2 1583 (−347, 3513) (−11,155, 14,321) 1040 (−851, 2932) (−11,441, 13,522)
R1 vs. R3 3720 (460, 6979) (−17,791, 25,231) 4222 (2081, 6364) (−9912, 18,356)
R2 vs. R3 2136 (166, 4107) (−10,869, 15,142) 3182 (805, 5559) (−12,505, 18,868)

Appendix H. Kappa Scores

Table A16. Comparative analysis of Kappa scores for T1c and FLAIR modalities.

Modality Method 1 Method 2 Kappa Kappa Std 95% CI

T1c

AI C 0.7617 0.0750 (0.6146, 0.9087)
R2 R3 0.8938 0.0556 (0.7849, 1.0027)
R1 R2 0.7943 0.0734 (0.6505, 0.9382)
R1 R3 0.7602 0.0761 (0.6110, 0.9094)

FLAIR

AI C 0.6867 0.0752 (0.5394, 0.8341)
R1 R2 0.6388 0.0758 (0.4902, 0.7874)
R2 R3 0.6314 0.0772 (0.4800, 0.7827)
R1 R3 0.5285 0.0818 (0.3681, 0.6889)
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