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Using Alternating Minimization and Convexified Carleman
Weighted Objective Functional for a Time-Domain Inverse
Scattering Problem
Nguyen Trung Thành

Department of Mathematics, Rowan University, 201 Mullica Hill Rd., Glassboro, NJ 08028, USA;
nguyent@rowan.edu

Abstract: This paper considers a 1D time-domain inverse scattering problem for the Helmholtz
equation in which penetrable scatterers are to be determined from boundary measurements of the
scattering data. It is formulated as a coefficient identification problem for a wave equation. Using
the Laplace transform, the inverse problem is converted into an overdetermined nonlinear system of
partial differential equations. To solve this system, a Carleman weighted objective functional, which
is proved to be strictly convex in an arbitrary set in a Hilbert space, is constructed. An alternating
minimization algorithm is used to minimize the Carleman weighted objective functional. Numerical
results are presented to illustrate the performance of the proposed algorithm.

Keywords: inverse medium scattering problem; Carleman estimates; Carleman weighted objective
functional; alternating minimization; numerics

MSC: 35R30; 35L05; 78A46

1. Introduction

Scattering theory of waves is concerned with the effect scatterers have on incident
waves [1]. There are two kinds of problems in the scattering theory. Forward scattering
problems aim to determine the scattered waves, which are generated when incident waves
interact with known scatterers. Inverse scattering problems (ISPs) aim to detect and
identify scatterers from knowledge of the scattered wave(s) generated by one or multiple
incident waves. The identification of scatterers is based on their geometrical or/and
physical properties. Scatterers can be categorized as penetrable or impenetrable. Penetrable
scatterers allow waves to penetrate and are characterized by both physical properties
(such as the refractive index or permittivity) and geometrical properties (such as location
and shape). By contrast, impenetrable scatterers (which are also called obstacles) do not
allow waves to penetrate and are usually characterized by geometrical properties. ISPs
are also divided into two types: inverse medium scattering problems and inverse obstacle
scattering problems. The former aim to determine physical properties (which in turn
provide information about geometrical properties) of penetrable scatterers, whereas the
latter aim to determine the geometrical properties of impenetrable scatterers.

ISPs play a central role in many technologies such as ground-penetrating radar (GPR),
microwave imaging, ultrasound imaging, and seismic imaging; see, e.g., [2–6] and the refer-
ences therein. These technologies are used in various applications. GPR is an effective tool
for detecting buried objects such as landmines, underground structures, or archaeological
sites [5]. Ultrasound is widely used as a medical imaging tool. Recent research has shown
the potential of microwaves in detecting breast tumors or brain strokes [7–11]. Seismic
imaging is used for geophysical explorations [12].

In this paper, we are interested in inverse medium scattering problems for the Helmholtz
equation in the time domain, which can be stated as follows. Let Ω be a convex bounded
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domain in Rd, d ≥ 1, with a piecewise-smooth boundary ∂Ω. We denote by ST the lateral
boundary of Ω× (0, T), i.e., ST := ∂Ω× (0, T) . Consider a coefficient function c(x) which
satisfies the following conditions:

c ∈ C1+α
(
Rd
)

, c ≤ c(x) ≤ c̄, ∀x ∈ Rd, c(x) = 1, x ∈ Rd�Ω, (1)

for some given constants c and c̄ such that 0 < c ≤ 1 ≤ c̄. Here, Cm+α denotes Hölder
spaces, where m ≥ 0 is an integer and α ∈ (0, 1). Consider the following Cauchy problem:

c(x)utt = ∆u(x, t) + f (x, t), (x, t) ∈ Rd × (0, ∞), (2)

u(x, 0) = 0, ut(x, 0) = 0. (3)

The coefficient c(x) represents a physical property of the medium (including the
scatterers) in which the waves propagate. For electromagnetic waves, it represents the
dielectric constant, whereas for acoustic waves, it represents the refractive index. Here, c(x)
is normalized so that its value in the background medium, i.e., in Rd \Ω, equals 1. The
state function u(x, t) represents the wave (or one component of the wave) propagating in
the medium. The function f (x, t) 6≡ 0 represents the source of the wave. In this work, we
assume that the source is located outside of the domain Ω, i.e.,

f (x, t) = 0, x ∈ Ω. (4)

The inverse medium scattering problem is stated as a coefficient identification problem
as follows:

CIP: Suppose that conditions (1)–(4) are satisfied. Determine the coefficient c(x) for x ∈ Ω,
from the boundary data:

g0(x, t) := u(x, t), g1(x, t) :=
∂u(x, t)

∂ν
, (x, t) ∈ S∞, (5)

where ν = ν(x) is the outward unit normal vector of Ω.

Remark 1. 1. In practice, the Neumann data, i.e., g1, are usually not measured. However, if the
Dirichlet data, i.e., g0, are measured on the whole boundary ∂Ω, we can compute g1 by solving the
initial value problem (2) and (3) in Rd \Ω.

2. In computation, the infinite time interval [0, ∞) in (5) can be replaced by a finite interval
[0, T]. The reason is that the incident wave is usually excited for a short period of time. Therefore, the
wave function u is usually too small to be useful after some finite time. Moreover, in the numerical
method we discuss in this paper, data at large time instants are essentially eliminated when a Laplace
transform is used. The infinite interval is used for the convenience of theoretical analysis only.

In this work, we assume that the CIP with noiseless data has a unique solution.
Our investigation is devoted to numerical methods for solving it. The most common
numerical methods for solving this inverse problem use the least-squares minimization
approach. These methods find an approximation of the coefficient by minimizing a least-
squares objective functional. Due to the nonlinearity of the CIP, the objective functional
is nonconvex. Therefore, a good initial guess is usually needed for the convergence of
gradient-based iterative optimization methods to the global minimizer of the objective
functional.

We consider in this paper a numerical method for solving the above CIP without re-
quiring a good initial guess. The idea of this method is to transform the CIP into a system of
nonlinear partial differential equations with overdetermined boundary conditions. To solve
the resulting nonlinear system, we minimize a Carleman weighted objective functional
which can be proved to be strictly convex in an arbitrary domain if the Carleman weight
chosen is sufficiently large. The approach of convexification using Carleman weighted



Axioms 2023, 12, 642 3 of 15

objective functional was introduced by Klibanov in the 1990s and then expanded to several
inverse problems by himself and his collaborators; see, e.g., [13–19]. This paper extends the
method we developed in our previous work [14]. The novel contributions of the current paper
include the following: (1) A new first-order PDE system is obtained instead of a second-order
system as in [14]; (2) the convexity of the discrete Carleman weighted objective functional
is proved; and (3) we propose an alternating minimization method to solve the Carleman
weighted objective functional instead of the steepest gradient algorithm used in [14]. The
advantages of the proposed method include the following:

• Unlike the least-squares approach, the proposed method does not require a good first
guess. Indeed, it was demonstrated through numerical examples in our previous
work [14] that the least-squares method failed to converge at initial guesses at which
the convexification method was able to provide a reasonably good approximation of
the coefficient.

• Compared to our previous work [14] and the above references in the convexifica-
tion approach, each minimization sub-problem in our proposed method has a much
smaller number of variables than the original nonlinear system. Consequently, the
sub-problems can be solved more quickly. We observed in our numerical tests that
the alternating minimization method converges much faster than the steepest de-
scent method.

As another interesting approach for solving ISPs that has received a lot of attention
in the last year, we refer to various deep learning-based methods; see, e.g., [20–24] for an
incomplete list of recent works focusing on this direction. Some results for microwave
imaging data for medical applications have been reported in [25–27]. Numerical results of
this approach appear promising, although the mathematical foundation of deep learning is
still to be investigated.

The rest of the paper is organized as follows. In Section 2 we describe the transfor-
mation from the CIP into a nonlinear system of coupled partial differential equations. In
Section 3 we describe the Carleman weighted objective functional and the alternating
minimization algorithm. Section 4 is devoted to the discretized problems and its convexity.
Numerical examples are presented in Section 5. Finally, we make some concluding remarks
in Section 6.

2. Transformation of the CIP into a Nonlinear System

We first transform the CIP into a nonlinear system of coupled partial differential
equations using the method described in our previous work [14]. For that purpose, we use
the Laplace transform:

ũ(x, s) := (Lu)(x, s) =
∫ ∞

0
u(x, t)e−stdt, s > 0,

where s is referred to as the pseudofrequency. Let s be a positive constant depending only
on c̄ such that the Laplace transforms of u and its derivatives Dβu, |β| = 1, 2, converge
absolutely for all s ≥ s. It follows from (2) and (4) that ũ satisfies the equation

∆ũ(x, s)− s2c(x)ũ(x, s) = 0, x ∈ Ω, s ≥ s. (6)

For appropriate choices of the source function f , we can prove that ũ(x, s) > 0 for
s ≥ s; see Theorem 3.1 of [28]. In this work, we assume that the source function is chosen
such that ũ(x, s) > 0 for s ≥ s. We define a new vector-valued function v(x, s) as

v(x, s) :=
∇ũ(x, s)
s2ũ(x, s)

. (7)

From (7) we obtain

∆ũ(x, s) = ∇ · (s2v(x, s)ũ(x, s)) = s2(∇ · v(x, s))ũ(x, s) + s4|v(x, s)|2ũ(x, s). (8)
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Substituting (8) into (6), we obtain the following equation:

∇ · v(x, s) + s2|v(x, s)|2 = c(x), x ∈ Ω. (9)

Equation (9) provides an explicit way to compute the coefficient c(x) if v(x, s) is known.
Unfortunately, both functions c and v are unknown in this equation. However, since the
right-hand side of (9) does not depend on s, we can eliminate the unknown function c(x)
by differentiating (9) with respect to s. Denoting by q(x, s) := ∂v(x, s)/∂s, we obtain the
following integral differential equation for q:

∇ · q(x, s)− 2s2q(x, s) ·
∞∫

s

q(x, τ)dτ + 2s
∣∣ ∞∫

s

q(x, τ)dτ
∣∣2 = 0, x ∈ Ω, s ≥ s. (10)

In addition, q satisfies the following boundary condition:

q(x, s) · ν = ϕ(x, s) :=
∂

∂s

(
g̃1(x, s)

s2 g̃0(x, s)

)
, x ∈ ∂Ω, (11)

with g̃0 and g̃1 being the Laplace transforms of g0 and g1, respectively.
We note that Equation (10) is not easy to solve. Using the same approach as in

our previous work [14], we represent the function q(x, s) as a series with respect to an
orthonormal basis of L2(s, ∞). For this purpose, we consider Laguerre polynomials [29]:

Ln(s) = e−s/2
n

∑
k=0

(−1)kCk
n

sk

k!
, s ∈ (0, ∞), Ck

n =
n!

(n− k)!k!
.

It can be verified that the set { fn(s)}∞
n=0, where fn(s) := Ln(s− s), s ∈ (s, ∞), is an

orthonormal basis in L2(s, ∞). We then approximate the function q(x, s) as follows.

q(x, s) ≈
N−1

∑
n=0

qn(x) fn(s), s ≥ s, (12)

where N is a sufficiently large integer. The choice of N will be discussed in our numerical
examples presented in Section 5. Substituting the truncated series (12) into (10), we approx-
imate the coefficients qn(x), n = 0, . . . , N − 1, by the solution of the following equation:

N−1

∑
n=0
∇ · qn(x) fn(s)− 2s2

N−1

∑
m=0

N−1

∑
n=0

qm(x) · qn(x) fm(s)
∞∫

s

fn(τ)dτ

+ 2s
N−1

∑
m=0

N−1

∑
n=0

qm(x) · qn(x)
∞∫

s

fm(τ)dτ

∞∫
s

fn(τ)dτ = 0.

(13)

Multiplying both sides of (13) by fk(s), integrating over (s, ∞), and using the orthonormal-
ity of { fn(s)}∞

n=0 in L2(s, ∞), we obtain the following system of coupled nonlinear equations:

∇ · qk(x) +
N−1

∑
m=0

N−1

∑
n=0

Fkmnqm(x) · qn(x) = 0, k = 0, . . . , N − 1, x ∈ Ω, (14)

where the numbers Fkmn, k, m, n ∈ {0, . . . , N − 1}, are given by

Fkmn =

∞∫
s

2s fk(s)
( ∞∫

s

fm(τ)dτ

∞∫
s

fn(τ)dτ
)
ds−

∞∫
s

2s2 fk(s) fm(s)
( ∞∫

s

fn(τ)dτ
)
ds.
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The boundary conditions for qn are obtained by substituting again the truncated
series (12) into (11). More precisely, we have

qk(x) · ν = ϕk(x), x ∈ ∂Ω, (15)

with
ϕk(x) =

∫ ∞

s
ϕ(x, s) fk(s)ds.

3. Carleman Weighted Objective Functional and Alternating Minimization Algorithm

We note that the unknown functions qk, k = 0, . . . , N − 1, in system (14) and (15) are
coupled. Moreover, this system is overdetermined. Therefore, direct methods for solving
this system are not applicable. To overcome this difficulty, we convert the above system into
a minimization problem. For simplicity of notation, we denote by
Q(x) := (q0(x), ..., qN−1(x)). We approximate the solution of (14) and (15) by minimizing
the following objective functional:

J(Q) =
1
2

N−1

∑
k=0

∫
Ω

[
∇ · qk(x) +

N−1

∑
m=0

N−1

∑
n=0

Fkmnqm(x) · qn(x)

]2

W2(x)dx, (16)

in the set

G := {Q ∈ H1(Ω) : ‖qk‖H1(Ω) ≤ R, qk(x) · ν = ϕk(x), x ∈ ∂Ω}, (17)

where R is a given positive constant. In (16), W(x) is a Carleman weight function. The key
idea of adding this weight function to the objective functional J is to make it convex in the
set G. The choice of the weight function W(x) depends on the geometry of the domain Ω.
We will discuss the choice of this function in our numerical examples.

To minimize the objective functional J in (16), we use a proximal block alternating
minimization method. This method updates the unknown functions qk, k = 0, . . . , N − 1,
alternatively; see, e.g., [30–33]. The algorithm is described as follows.

The sequence {Q(i)} obtained by the alternating minimization satisfies the following
square summable property.

Lemma 1. Let Q(i) := (q(i)0 , . . . , q(i)N−1), i = 0, 1, . . . , be obtained by Algorithm 1. Then:

∞

∑
i=1
‖Q(i) −Q(i−1)‖2

H1(Ω) :=
∞

∑
i=1

N−1

∑
k=0
‖q(i)k − q(i−1)

k ‖2
H1(Ω) < ∞.

Algorithm 1: Proximal block alternating minimization algorithm for minimizing
the objective functional J(Q).

Given an initial guess Q(0) := (q(0)0 , q(0)1 , . . . , q(0)N−1) and a positive constant L.
Repeat the following steps until a stopping criterion is met:
• For k = 0, 1, . . . , N − 1:

Find q(i)k as the minimizer of the objective functional:

Jk(qk) :=
1
2

J(q(i)0 , . . . , q(i)k−1, qk, q(i−1)
k+1 , . . . , q(i−1)

N−1 ) +
L
2
‖qk − q(i−1)

k ‖2
H1(Ω). (18)
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Proof. Since q(i)k is the minimizer of Jk, it follows from (18) that Jk(q
(i)
k ) ≤ Jk(q

(i−1)
k ). This

inequality implies that

J(q(i)0 , . . . , q(i)k−1, q(i)k , q(i−1)
k+1 , . . . , q(i−1)

N−1 ) +
L
2
‖q(i)k − q(i−1)

k ‖2
H1(Ω)

≤ J(q(i)0 , . . . , q(i)k−1, q(i−1)
k , q(i−1)

k+1 , . . . , q(i−1)
N−1 ).

Hence,

L
2
‖q(i)k − q(i−1)

k ‖2
H1(Ω) ≤ J(q(i)0 , . . . , q(i)k−1, q(i−1)

k , q(i−1)
k+1 , . . . , q(i−1)

N−1 )

− J(q(i)0 , . . . , q(i)k−1, q(i)k , q(i−1)
k+1 , . . . , q(i−1)

N−1 ).
(19)

Taking the sum of inequality (19) for k = 0, 1, . . . , N − 1, we obtain

L
2
‖Q(i) −Q(i−1)‖2

H1(Ω) ≤ J(Q(i−1))− J(Q(i)). (20)

Thus,

L
2

∞

∑
i=1
‖Q(i) −Q(i−1)‖2

H1(Ω) ≤ J(Q(0))− lim
n→∞

J(Q(n)). (21)

The proof is complete.

Remark 2. The global convergence of the alternating minimization algorithm has been proved for
objective functionals which satisfy the so-called Kurdyka–Lojasiewicz (KL) property. One case in
which this KL property is satisfied is when the objective functional is locally strongly convex; see,
e.g., [34,35]. In the case d = 1, as we will prove in Theorem 1, the objective functional J(Q) in (16)
is strongly convex in an arbitrary given set. Therefore, the global convergence of the alternating
minimization follows.

4. Discretized Objective Functional and Convexity in 1D

In this section, we consider the discretized version of the objective functional J(Q)
in (16) in 1D. Our focus in this section is to prove the convexity of the discretized version of
J in an arbitrary domain in an appropriate Hilbert space. Although results concerning the
convexity of continuous Carleman weighted objective functionals associated with second-
order elliptic systems have been reported [14], this appears to be the first time that the
convexity for the discretized objective functional for the first-order system (14) is proved.
The multi-dimensional case is still open.

In the following, let Ω = (0, b). In this 1D problem, we denote the spatial variable by
x instead of x. The objective functional J can be rewritten as

J(Q) =
1
2

N−1

∑
k=0

∫ b

0

[
q′k(x) +

N−1

∑
m=0

N−1

∑
n=0

Fkmnqm(x)qn(x)

]2

W2(x)dx, (22)

Consider a partition of the interval (0, b) into M sub-intervals by a uniform set of grid
points 0 = x0 < x1 < · · · < xM = b with grid size h := b/M. Denote by qi

k an approximate
value of qk(xi), i = 0, . . . , M. In the following we use Q to represent the matrix Q = (qi

k).
The objective functional J is replaced by the following discrete version:

Jh(Q) :=
h
2

N−1

∑
k=0

M−1

∑
i=0

[
(Ri

k(Q)
]2

W2
i , (23)
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where Wi = W(xi) and Ri
k(Q) is given by

Ri
k(Q) =

qi+1
k − qi

k
h

+
N−1

∑
m=0

N−1

∑
n=0

Fkmnqi
mqi

n. (24)

To simplify the notation, we define the following bilinear function:

Gi
k(Q, Q̃) :=

N−1

∑
m=0

N−1

∑
n=0

Fkmnqi
m q̃i

n, (25)

for two matrices Q = (qi
k) and Q̃ = (q̃i

k).
The boundary condition (15) can be rewritten as

q0
k = −ϕk(0), qM

k = ϕk(b). (26)

The minimization problem now becomes a finite dimensional problem in which the
unknown matrix Q belongs to the set M of real matrices of sizes N × (M + 1). In the
following, we consider the standard Frobenius norm of matrices inM defined by

‖Q‖F :=

[
N−1

∑
k=0

M

∑
i=0

(qi
k)

2

]1/2

.

We also consider the H1 norm inM:

‖Q‖2
H1 :=

N−1

∑
k=0

M−1

∑
i=0

(
qi+1

k − qi
k

h

)2

+ ‖Q‖2
F.

We also use 〈, 〉F to denote the Frobenius inner product of two matrices inM.
For each positive constant R, we define the set B(Q̂, R) inM as

B(Q̂, R) := {Q ∈M : ‖Q− Q̂‖H1 < R, q0
k = −ϕk(0), qM

k = ϕk(b)}. (27)

where Q̂ := (q̂i
k), with q̂i

k := −ϕk(0) + (ϕk(b) + ϕk(0))ih/b, i = 0, . . . , M.
As we mentioned in Section 2, the choice of the Carleman weight function W(x) for

the convexity of the objective functional J (or Jh) depends on the domain Ω. In this 1D case,
we can choose W(x) = e−λx, where λ is a positive constant referred to as the Carleman
weight coefficient. With this choice, we can prove that the objective functional Jh is convex
in the domain B(Q̂, R) for any fixed radius R given that the Carleman weight coefficient λ
chosen is large enough. To prove this property, we need the following estimate, which can
be considered as a discrete Carleman estimate. Its proof is presented in Appendix A.

Lemma 2. Let ξ i, i = 0, . . . , M, be scalar values in R with ξ0 = 0. Then, for Wi := e−2iλh,
i = 0, . . . , M, λ > 0, h > 0, the following estimate holds:

M−1

∑
i=0

W2
i

(
ξ i+1 − ξ i

h

)2

≥
(

eλh − 1
h

)2 M

∑
i=0

(ξ i)2W2
i . (28)

Now we are ready to state and prove the convexity of the objective functional Jh.

Theorem 1. Let R be an arbitrary positive number. Then, there exists a sufficiently large positive
number λ0 depending only on the parameters R, h, Fkmn, Q̂, N such that the objective functional
Jh(Q) defined by (23) is strongly convex on B(Q̂, R) for all λ ≥ λ0. More precisely, there exists a
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constant C∗ = C∗(R, h, Fkmn, Q̂, N) > 0 such that for arbitrary matrices Q̃, Q ∈ B(Q̂, R), the
following estimate holds:

Jh(Q + δQ)− Jh(Q)−∇Jh(Q)(δQ) ≥ C∗‖δQ‖2
H1 , for all λ ≥ λ0, (29)

where ∇Jh is the gradient of Jh.

Proof. It follows from (24) that

Ri
k(Q + δQ) =

qi+1
k − qi

k
h

+
δqi+1

k − δqi
k

h
+ Gi

k(Q + δQ, Q + δQ).

Since Gi
k is bilinear, it follows that

Gi
k(Q + δQ, Q + δQ) = Gi

k(Q, Q) + Gi
k(Q, δQ) + Gi

k(δQ, Q) + Gi
k(δQ, δQ).

Hence,
Ri

k(Q + δQ) = Ri
k(Q) + Ri

k(δQ) + Li
k(Q, δQ),

where Li
k(Q, δQ) = Gi

k(Q, δQ) + Gi
k(δQ, Q). Thus,

[Ri
k(Q + δQ)]2 − [Ri

k(Q)]2 = [Ri
k(Q + δQ) + Ri

k(Q)][Ri
k(Q + δQ)− Ri

k(Q)]

= [2Ri
k(Q) + Ri

k(δQ) + Li
k(Q, δQ)][Ri

k(δQ) + Li
k(Q, δQ)]

= 2Ri
k(Q)[

δqi+1
k − δqi

k
h

+ Li
k(Q, δQ)] + 2Ri

k(Q)Gi
k(δQ, δQ)

+ [Ri
k(δQ) + Li

k(Q, δQ)]2.

Substituting this equality into (23), we obtain

Jh(Q + δQ)− Jh(Q) =
h
2

N−1

∑
k=0

M−1

∑
i=0

{
[Ri

k(Q + δQ)]2 − [Ri
k(Q)]2

}
W2

i

=
h
2

N−1

∑
k=0

M−1

∑
i=0

2W2
i Ri

k(Q)[
δqi+1

k − δqi
k

h
+ Li

k(Q, δQ)]

+
h
2

N−1

∑
k=0

M−1

∑
i=0

2W2
i Ri

k(Q)Gi
k(δQ, δQ)

+
h
2

N−1

∑
k=0

M−1

∑
i=0

W2
i [R

i
k(δQ) + Li

k(Q, δQ)]2.

(30)

Since the last two terms of (30) are quadratic functions of δQ and the first term on the
right-hand side is a linear function of δQ, we have

∇Jh(Q)δQ = h
N−1

∑
k=0

M−1

∑
i=0

W2
i Ri

k(Q)[
δqi+1

k − δqi
k

h
+ Li

k(Q, δQ)].

Hence,

Jh(Q + δQ)− Jh(Q)−∇Jh(Q)δQ = h
N−1

∑
k=0

M−1

∑
i=0

W2
i Ri

k(Q)Gi
k(δQ, δQ)

+
h
2

N−1

∑
k=0

M−1

∑
i=0

W2
i [R

i
k(δQ) + Li

k(Q, δQ)]2.

(31)

Now we estimate the right-hand side of (31). First, we have
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[Ri
k(δQ) + Li

k(Q, δQ)]2 =

[
δqi+1

k − δqi
k

h
+ Gi

k(δQ, δQ) + Li
k(Q, δQ)

]2

=

(
δqi+1

k − δqi
k

h

)2

+ 2

(
δqi+1

k − δqi
k

h

)[
Gi

k(δQ, δQ) + Li
k(Q, δQ)

]
+
[

Gi
k(δQ, δQ) + Li

k(Q, δQ)
]2

.

(32)

Using the Cauchy–Schwarz inequality, we have

2

(
δqi+1

k − δqi
k

h

)[
Gi

k(δQ, δQ) + Li
k(Q, δQ)

]

≥ −1
2

(
δqi+1

k − δqi
k

h

)2

− 2
[

Gi
k(δQ, δQ) + Li

k(Q, δQ)
]2

.

Substituting this inequality into (32), we obtain

[Ri
k(δQ) + Li

k(Q, δQ)]2 ≥ 1
2

(
δqi+1

k − δqi
k

h

)2

−
[

Gi
k(δQ, δQ) + Li

k(Q, δQ)
]2

. (33)

From (31) and (33) it follows that

Jh(Q + δQ)− Jh(Q)−∇Jh(Q)δQ ≥ h
N−1

∑
k=0

M−1

∑
i=0

W2
i Ri

k(Q)Gi
k(δQ, δQ)

− h
2

N−1

∑
k=0

M−1

∑
i=0

W2
i

[
Gi

k(δQ, δQ) + Li
k(Q, δQ)

]2
+

h
4

N−1

∑
k=0

M−1

∑
i=0

W2
i

(
δqi+1

k − δqi
k

h

)2

.

(34)

Since Q, Q + δQ are in B(Q̂, R), there exists a constant C > 0 depending only on R, Q̂,
h, and Ff mn such that

h
N−1

∑
k=0

M−1

∑
i=0

W2
i Ri

k(Q)Gi
k(δQ, δQ)− h

2

N−1

∑
k=0

M−1

∑
i=0

W2
i

[
Gi

k(δQ, δQ) + Li
k(Q, δQ)

]2

≥ −Ch
N−1

∑
k=0

M−1

∑
i=0

W2
i (δqi

k)
2.

(35)

It follows from Lemma 2 that

h
4

N−1

∑
k=0

M−1

∑
i=0

W2
i

(
δqi+1

k − δqi
k

h

)2

≥ h
8

N−1

∑
k=0

M−1

∑
i=0

W2
i

(
δqi+1

k − δqi
k

h

)2

+
h
8

(
eλh − 1

h

)2 N−1

∑
k=0

M

∑
i=0

W2
i (δqi

k)
2.

(36)

Note that W2
i ≥ e−2λb. From (34)–(36) we obtain

Jh(Q + δQ)− Jh(Q)−∇Jh(Q)δQ

≥ h
8

e−2λb
N−1

∑
k=0

M−1

∑
i=0

(
δqi+1

k − δqi
k

h

)2

+

h
8

(
eλh − 1

h

)2

− Ch

e−2λb‖δQ‖2
F.

(37)
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It is clear that there exists λ0 > 0 such that h
8

(
eλh−1

h

)2
− Ch > 0 for all λ ≥ λ0.

Hence, (29) follows from (37) with

C∗ = he−2λb min

1
8

,
1
8

(
eλh − 1

h

)2

− C

.

The proof is complete.

5. Numerical Implementation and Examples

In this section we describe details of our numerical implementation of the proposed
algorithm.

5.1. Generating Simulated Data

In this work, we tested the proposed algorithm using simulated data. To generate
these data, we solved the forward problem (2) and (3) in a bounded interval (l1, l2) such
that l1 < 0 < b < l2. The source function was chosen as f (x, t) = δ(x − x0) f (t), where
x0 ≤ l1. The total wave function u(x, t) was rewritten as u(x, t) = ui(x, t) + us(x, t), where
ui is the incident wave and us is the scattered wave. The incident wave ui was given by the
following formula:

ui(x, t) =

{
f (t− |x− x0|), t ≥ |x− x0|,
0, 0 ≤ t < |x− x0|.

As in [14], we also used the absorbing boundary condition to approximate the bound-
ary conditions at the endpoints x = l1 and x = l2. The forward problem was then rewritten
as follows:

c(x)us
tt(x, t)− us

xx(x, t) = [1− c(x)]ui
tt(x, t), (x, t) ∈ (l1, l2)× (0, T), (38)

us(x, 0) = us
t(x, 0) = 0, x ∈ (l1, l2), (39)

us
x(l1, t) = us

t(l1, t), us
x(l2, t) = −us

t(l2, t), t ∈ (0, T). (40)

In the numerical examples presented below, we chose l1 = x0 = −0.2, b = 1, l2 = 1.5,
and T = 2. The waveform f (t) of the incident wave was chosen to be

f (t) = A(t− 0.2)e−ω2(t−0.2)2
,

where ω = 30 and A =
√

2ωe1/2. The constant A was used as the normalization factor.
Problem (38)–(40) was solved by an explicit finite difference scheme with a uniform grid in
both the x and t directions with step sizes of ∆x = 0.005 and ∆t = 0.001. This results in
141 grid points in space and 2001 points in time.

In order to simulate noisy measurements, we added additive noise of 5% (in the L2
norm) to the simulated data.

5.2. Numerical Examples of the CIP

In the following examples, the parameters were chosen as follows. The pseudofre-
quencies were s ∈ [4, 15] with step size ∆s = 0.05. The number of Laguerre’s functions
was N = 11. The Carleman weight coefficient λ was chosen to be λ = 3. The proximal
coefficient L was L = 10−4. These parameters were chosen numerically for the best recon-
struction of one simulated dataset, then they were fixed for all other examples. We have
observed in numerical tests that a larger number of Laguerre’s functions do not necessarily
result in substantially more accurate reconstruction results. The possible reason is due to
the fact that the objective functional is quite insensitive to changes in the high-frequency
modes near the minimizer.
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We also remark that the data associated with large pseudofrequencies are dominated
by that at low pseudofrequencies. This is due to the exponential decaying nature of the
Laplace transform. Therefore, the interval of the pseudofrequencies chosen should not be
too large.

Example 1. In the first example, we considered a smooth coefficient c(x) in the following form:

c(x) = 1 + e−100(x−0.4)2
, 0 ≤ x ≤ 1.

The reconstructed coefficient is depicted in Figure 1 together with the exact coefficient.
We can see that the algorithm was able to reconstruct the coefficient quite accurately. The
largest error is near x = 0.6, which is near the “back” of the scattered. We note that the
source illuminates the scatterer from the left. As a result, the measured signal at x = 0 is
stronger than that at x = 1. That made the reconstruction on the left side of the scatterer
easier to reconstruct.

0 0.2 0.4 0.6 0.8 1

x

0.8

1

1.2

1.4

1.6

1.8

2

2.2

c
(x

)

exact coef

reconstructed

Figure 1. Reconstruction of the coefficient c(x) in Example 1. The data were measured at x = 0 and x = 1.

Example 2. In the second example, we tested the algorithm for a more challenging smooth function
c(x). More precisely, c(x) is a combination of two Gaussian peaks. Its formula is given by

c(x) = 1 + e−400(x−0.3)2
+ 2e−400(x−0.7)2

, 0 ≤ x ≤ 1.

The reconstructed coefficient is depicted in Figure 2. Although the reconstruction is not
as accurate as in Example 1, it still captured the main peaks of the coefficient function. The
largest peak was reconstructed with a relative error of approximately 17% (2.5 vs. 3) and
the second peak was reconstructed with a relative error of approximately 15% (1.7 vs. 2).

Example 3. Finally, we tested the algorithm for a piecewise constant coefficient with large and
small peaks. The coefficient was given as

c(x) = 1 + 10χ[0.2, 0.4] + 3χ[0.7, 0.8],

where χ[a, b] is the characteristic function of interval [a, b].
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0 0.2 0.4 0.6 0.8 1

x

0.5

1

1.5

2

2.5

3

c
(x

)

exact coef

reconstructed

Figure 2. Reconstruction of the coefficient in Example 2. The data were measured at x = 0 and x = 1.

The reconstructed coefficient is depicted in Figure 3. As we can see, the algorithm was
still able to reconstruct the peaks of the coefficient, with a relative error of approximately
10%, even though the quantitative values are not so accurate. This is a very challenging
example which mimics the case when a “weak” object and a “strong” object are in the same
medium. In this case, it is usually difficult to reconstruct the weaker target. To see the effect
of the number of Laguerre’s functions on the reconstruction accuracy in this challenging
example, we also tested using 20 Laguerre’s functions but the result (not shown in the
figure) was not really improved.

0 0.2 0.4 0.6 0.8 1

x

-2

0

2

4

6

8

10

c
(x

)

exact coef

reconstructed

Figure 3. Reconstruction of the coefficient in Example 3. The data were measured at x = 0 and x = 1.

Concerning computational cost, the algorithm was set to run for 2000 iterations, which
took approximately 5 min on a Lenovo Thinkpad X1 Yoga laptop computer with an Intel i7
1.8 GHz processor with four cores (but only one was used in the computation).
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6. Conclusions

In this paper we combined the Carleman weighted convexification method with an
alternating minimization method for solving a 1D inverse medium scattering problem.
The convexity of the Carleman weighted objective functional was proved in the discrete
setting, which was actually used in the optimization algorithm. The global convergence of
the alternating minimization was shown. Numerical examples indicated that the proposed
algorithm was able to provide a good solution without requiring a good first guess. If more
accurate results are expected, we can use locally convergent gradient-based methods with
the result of the proposed algorithm as an initial guess to refine the reconstruction.
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Appendix A

Proof of Lemma 2. The proof follows the same approach as in [36], Lemma 3.1. Let ηi =
ξ ie−iλh. Then ξ i = ηieiλh. Hence,

W2
i

(
ξ i+1 − ξ i

h

)2

= e−2iλh

(
ηi+1e(i+1)λh − ηieiλh

h

)2

=

(
ηi+1eλh − ηi

h

)2

=
1
h2

[
ηi+1(eλh − 1) + (ηi+1 − ηi)

]2

=

(
eλh − 1

h

)2

(ηi+1)2 +
(eλh − 1)

h2 2ηi+1(ηi+1 − ηi) +
1
h2 (η

i+1 − ηi)2

≥
(

eλh − 1
h

)2

(ηi+1)2 +
(eλh − 1)

h2 2ηi+1(ηi+1 − ηi).

Taking the sum for i = 0, . . . , M− 1, we obtain

M−1

∑
i=0

W2
i

(
ξ i+1 − ξ i

h

)2

≥
(

eλh − 1
h

)2 M−1

∑
i=0

(ηi+1)2 +
(eλh − 1)

h2

M−1

∑
i=0

2ηi+1(ηi+1 − ηi).

Since η0 = ξ0 = 0, it follows that

M−1

∑
i=0

2ηi+1(ηi+1 − ηi) =
M−1

∑
i=0

(ηi − ηi+1)2 + (ηM)2 ≥ 0.

Hence,

M−1

∑
i=0

W2
i

(
ξ i+1 − ξ i

h

)2

≥
(

eλh − 1
h

)2 M−1

∑
i=0

(ηi+1)2 =

(
eλh − 1

h

)2 M

∑
i=0

(ξ i)2W2
i .

The proof is complete.
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