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Simple Summary: Multiple myeloma (MM) is a type of cancer that affects the blood and bone marrow.
Each individual diagnosed with MM will inevitably experience a relapse or develop resistance to the
prescribed treatment. The development of new pharmaceuticals is an expensive and time-consuming
process, which requires the investigation of more efficient approaches. This review article explores
the potential of repurposing current drugs, originally designed for other conditions, for the treatment
of MM. This approach is more efficient and economical in comparison to the process of developing
new drugs from scratch. For instance, thalidomide, initially used for several medical ailments, has
shown effectiveness in treating MM. This study emphasizes the potential of repurposing common
drugs, such as aspirin and statins, for the treatment of MM. This approach not only speeds up the
availability of new treatments but also offers hope for better outcomes for patients with MM. Future
investigations will give priority to determining the most effective dosages and integrating these
repurposed drugs with traditional therapy to improve their effectiveness.

Abstract: MM is a common type of cancer that unfortunately leads to a significant number of deaths
each year. The majority of the reported MM cases are detected in the advanced stages, posing
significant challenges for treatment. Additionally, all MM patients eventually develop resistance or
experience relapse; therefore, advances in treatment are needed. However, developing new anti-
cancer drugs, especially for MM, requires significant financial investment and a lengthy development
process. The study of drug repurposing involves exploring the potential of existing drugs for new
therapeutic uses. This can significantly reduce both time and costs, which are typically a major
concern for MM patients. The utilization of pre-existing non-cancer drugs for various myeloma
treatments presents a highly efficient and cost-effective strategy, considering their prior preclinical
and clinical development. The drugs have shown promising potential in targeting key pathways
associated with MM progression and resistance. Thalidomide exemplifies the success that can be
achieved through this strategy. This review delves into the current trends, the challenges faced
by conventional therapies for MM, and the importance of repurposing drugs for MM. This review
highlights a noncomprehensive list of conventional therapies that have potentially significant anti-
myeloma properties and anti-neoplastic effects. Additionally, we offer valuable insights into the
resources that can help streamline and accelerate drug repurposing efforts in the field of MM.

Keywords: hematological malignancies; multiple myeloma; drug repurposing; drug development;
drug resistance
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1. The Significance of Repurposing

Every year, millions of people around the world are diagnosed with cancer, and
sadly, many lose their lives to this devastating disease. Globally in 2020, hematological
malignancy incidence was almost 1.3 million and mortality was over 700,000, making
hematological cancers the fourth highest in terms of cancer mortality [1]. Multiple myeloma
(MM) accounts for more than 12% of all hematologic cancers. MM is a complex form of
cancer that can be challenging to diagnose and treat. It is a malignancy of plasma B cells
and originates in the bone marrow (BM). Despite advancements in treatments, MM remains
an incurable disease as it will inevitably progress or develop resistance to treatments in all
patients. Optimistically speaking, however, therapeutic advancements could potentially
increase life expectancy for MM patients, addressing both current and future challenges.

Drug research and development, especially in the realm of cancer drugs, have experi-
enced remarkable changes in recent decades. Year after year, the collection of medications
to combat cancer continues to grow. Nevertheless, there are a number of challenges that
need to be addressed before a drug can be brought to market. These include the extensive
drug development process, the significant expenses associated with drug research, the pos-
sibility of adverse events, and the limited efficacy of new treatments. In the field of cancer
treatment, the search for effective lead compounds has long followed a well-established
process. This involves conducting extensive preclinical and clinical research to carefully
assess and document the compounds’ pharmacological properties, anti-cancer effects, and
potential toxicity (Figure 1).
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Figure 1. Drug discovery and development stages and process.

Despite the advancements in technology and our improved understanding of human
disease, the translation of these advantages into therapeutic breakthroughs has been disap-
pointingly slow [2,3]. The global pharmaceutical industry faces a multitude of challenges,
such as high attrition rates [4,5], evolving regulations, and prolonged time to market for
new drugs in certain therapeutic fields, all of which have led to increased costs. A prediction
has been made that the return on investment for new drug development is expected to be
less than one dollar for every dollar spent due to the increasing cost and time required for
these endeavors [6]. This could potentially reduce the attractiveness of the pharmaceutical
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industry as an investment option. As shown in Figure 1, the process of developing a new
medicine can span a decade or more and require a significant investment of billions of
dollars [7,8]. Thus, it is crucial to explore alternative methods for drug development.

Drug repurposing, also referred to as drug repositioning, re-tasking, or reprofiling, is
a strategy employed to uncover new therapeutic uses for medications that have already
been approved, tested, or are currently available on the market. These medications were
initially developed and trialed for different therapeutic purposes than the ones they are
being explored for now. Compared to new drug development, the repurposing approach
offers numerous advantages to the research and clinical fields. It can be described as
finding alternative applications for familiar medications. Previous clinical trials have con-
firmed the safety, effectiveness, and efficiency of a drug, considering its pharmacokinetic,
pharmacodynamic, and toxicological properties. As a result, it has gained popularity and
become more accessible. Looking at a drug molecule from a fresh angle could help us
uncover new possibilities for its therapeutic applications beyond the conventional ones.
Repurposing a medicine that has already received approval for a different therapeutic
indication requires less funding. The process of approving drugs through the repurposing
approach is estimated to take anywhere from 3 to 12 years and cost between USD 40 million
to USD 80 million, which is significantly lower than the cost of the traditional drug devel-
opment method [9,10]. In addition, it is anticipated that the repurposing pathway will
have a higher approval rate for medications, estimated at around 30%, compared to the
typical drug development method which only yields 10% [10]. Once failures are taken into
consideration, these advantages can lead to a faster and safer return on investment for the
development of repurposed pharmaceuticals, along with lower average development costs.
Only a small fraction, around 5%, of oncology treatments that qualify for phase 1 clinical
trials end up getting the green light from the FDA. The chances of potential anti-cancer
therapies being approved are even more dismal, with only 1 in 5000–10,000 making the
cut [11]. Through the implementation of a drug repurposing strategy, it becomes feasible
to bypass the initial phase and make swift progress to subsequent phases of clinical trials,
resulting in a reduction in concerns related to pharmacodynamics [11]. Therefore, there is a
strong attraction towards methods that optimize the utilization of information from drugs
that have already been approved and brought to market [12]. In the end, repurposed phar-
maceuticals have the potential to uncover new targets and pathways for further exploration.
Therefore, researchers are currently focusing on exploring new pharmacological action
mechanisms that have emerged from unexpected clinical trial findings. These findings have
sparked interest in bridging the gap between clinical practice and laboratory research. Vari-
ous preclinical investigations are conducted to validate the claim of a new pharmacological
indication. This approach focuses on addressing chronic illnesses such as diabetes, cancer,
and other rare disorders [12]. There are numerous benefits to repurposing pharmaceuticals
in general. This approach is both compelling and practical, especially in today’s era in
which deep data mining technologies are readily accessible. The frequent approval of
repurposed pharmaceuticals suggests that the technique of repurposing has a minimal risk
of drug failure, as most of the drugs being repurposed undergo thorough safety testing. The
drug repurposing sectors have experienced consistent growth from a business perspective,
with approximately 14–16 new companies emerging every five years [13,14].

MM is an incurable cancer in which relapse inevitably occurs even for patients in
remission. Typically, the primary treatment for newly diagnosed MM includes bortezomib
(a proteasome inhibitor), lenalidomide (an immunomodulatory agent), and dexamethasone
(a corticosteroid) [15]. This combination of drugs is termed the VRd regimen and has
shown to be effective in the treatment of MM upfront [15]. Patients may also undergo
autologous stem cell transplantation, if deemed eligible, either initially or later within the
treatment process [15]. However, this regime is not permanently curative, and patients
must switch drugs when they develop resistance. Malignant plasma cells display high
levels of aberrant cell signaling pathways that prevent apoptosis and promote cell survival,
ultimately leading to relapse. The NF-κB pathway is activated by cytokines, such as IL-6,
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and the binding of MM cells to bone marrow stromal cells [16]. This pathway is inhibited
by proteasome inhibitors and strongly linked with disease progression as it increases MM
cell proliferation and resists apoptosis [16]. Similarly, the antiapoptotic subgroup of Bcl-2
includes Mcl-1, Bcl-2, and Bcl-xL, which are commonly overexpressed in MM and are
shown to prevent intrinsic apoptosis by suppressing BH-3 activators and competing for
binding Bax and Bak proteins [17]. The interaction of myeloma cells with the bone marrow
microenvironment is integral to malignant myeloma cell proliferation and the development
of resistance [16]. Cytokines such as IL-6, IL-3, and IL-5 and growth factors such as VEGF
and EGF trigger upregulation of intracellular pathways such as NF-κB, JAK/STAT, PI3-
K/Akt, and Bcl-2 antiapoptotic proteins—all of which promote MM cell proliferation and
therefore the development of resistance [17]. Figure 2 illustrates the primary signaling
pathways that play a crucial role in the development of MM.
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Figure 2. The key signaling pathways involved in the development of MM.

MM therapy has stood out as an anomaly in terms of the typical balance between
risks and benefits. Some medications used in anti-cancer chemotherapy and radiation
have severe adverse effects that can be life-threatening. The primary objective of ther-
apy in MM is to ensure the patient’s survival. Overcoming resistance to treatment is a
significant hurdle when it comes to developing a successful dosage plan. This review
explores the potential of various medications to treat MM, highlighting the anti-cancer
properties of conventional drugs such as thalidomide, statins, celecoxib, aspirin, artesunate,
leflunomide, rapamycin, nelfinavir, valproic acid, metformin, bisphosphonates, and clar-
ithromycin. We have compiled a comprehensive list of resources that may prove valuable
for drug repurposing.

2. Pharmacological Repurposing Strategies and Tools

The drug repurposing strategy involves three stages that occur before a candidate
drug progresses through the development pipeline. These stages include generating
hypotheses to identify a potential molecule for a specific indication, assessing the drug’s
effects using preclinical models, and conducting phase II clinical trials to evaluate its
efficacy (assuming sufficient safety data have been gathered from phase I trials conducted
for the original indication). The first stage is crucial. There are different types of systematic
approaches, such as computational approaches and experimental approaches, that are
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being increasingly used together (Figure 3). These two core domains encompass clinical
data-driven drug repurposing. These techniques generate hypotheses for repurposing
by thoroughly analyzing various types of data, such as electronic health records (EHRs),
genotyping, chemical structure, gene expression, or proteomic information [18]. The
process of signature matching involves comparing the unique characteristics or “signature”
of a specific pharmaceutical compound with those of another compound, disorder, or
clinical phenotype [19,20]. The creation of a drug’s signature can be derived from three
different sources of data: transcriptome (RNA), proteomic, or metabolomic data; chemical
structures; or adverse event patterns.
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Figure 3. Drug repurposing employs diverse computational approaches, either independently or in
concert, to methodically scrutinize various large-scale datasets for insightful interpretations regarding
repurposing hypotheses. Additionally, experimental approaches can uncover repurposing prospects.
EHR stands for electronic health record.

Methods rooted in systems biology, like the Genome-wide Positioning Systems net-
work (GPSnet), are aiding in the comprehension of disease–gene–drug interactions, poten-
tially facilitating drug repurposing for MM [13,21–25]. In addition, there are multinational
collaborative programs, like Repurposing Drugs in Oncology (ReDO), that are working to
accelerate the repurposing of non-cancer drugs for cancer treatment. Table 1 provides sup-
plementary information and tools that can assist in the drug repurposing process. Through
the utilization of biological databases and systems biology technologies, it becomes feasible
to identify driver pathways in MM. Subsequently, pre-existing drugs from drug libraries
can be discovered, which possess the ability to target these driver pathways [26]. For
example, by utilizing resources like as STRING and KEGG, the identification of celecoxib as
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a viable therapy for MM was achieved. This was accomplished by specifically targeting the
COX-2 enzyme in MM cells. DeSigN had a role in identifying thalidomide by uncovering
its impact on the IKK and NF-κB pathways in MM. Leflunomide was discovered using the
Cancer Cell Line Encyclopedia because it inhibits DHODH. CMap analysis revealed that
metformin activates AMPK and regulates cell cycle proteins, indicating its potential for
treating MM.

Table 1. Resources for identifying drug interactions that may possibly be employed in drug repurposing.

Purpose Resource Refs.

Human pathways and protein–protein interaction (PPI) BiGRID, STRING, HAPPI, KEGG, Reactome [27–31]

Molecular classification of more than 20,000 main cancers
matched normal tissue from 33 types of cancer Cancer Genome Atlas [32]

Protein expression in cancer, matched normal tissues, and
human cancer cell lines The Human Protein Atlas [33–35]

Drug sensitivity, gene expression, and genotype for human
cancer cell lines Cancer Cell Line Encyclopedia [36]

Data of genome-wide transcription expression from cultured
human cancer cells with many small compounds Connectivity Map 02 (CMap) [37,38]

Disease-specific gene curation and analysis OMIM, GEO [39,40]

Disease–disease connectivity; connectivity of two genes
elaborated within the same disease The human disease network [40]

Disease similarities as seen through the lens of gene regulatory
mechanisms; comprehension of disease etiology

and pathophysiology
Human Disease Network Database (DNetDB) [41]

Drug–drug interaction; comprehensive drug-target information
on tens of thousands of drugs and targets DrugBank [42]

Drug–drug interaction SFINX [43]

Database of more than 270 non-cancer drugs for potential
repurposing for anti-cancer therapy Repurposing Drugs in Oncology (ReDO) [44]

Database of drugs and adverse drug reactions (ADRs) Side Effect Resource (SIDER) [45]

Withdrawn or discontinued drugs WITHDRAWN [46,47]

An inventory of main and secondary uses for
repurposed pharmaceuticals RepurposeDB [48]

Chemical (including drugs)–protein interaction network STITCH [47]

Data on the sensitivity of hundreds of compounds and over a
thousand cancer cell lines Genomics of Drug Sensitivity in Cancer (GDSC) [49]

Gene expression pattern-based prediction of drug effectiveness
against cancer DeSigN [50]

3. Medicines That Could Be Repurposed to Treat MM

MM cells exhibit a wide range of abnormal signaling pathways and protein expression
that contribute to the progression of the disease. Fortunately, there are several agents that
show promise in treating MM by targeting these pathways, either directly or indirectly.
Several drugs being considered for repurposing have mechanisms of action that may
have potential in treating various types of cancers. However, these agents are especially
intriguing when it comes to MM. These findings indicate that MM cells exhibit abnormal
signaling pathways, chemokines, cytokines, and proteins that are targeted by these agents,
many of which play a critical role in disease relapse. Given the inevitability of relapse in
MM patients, it is crucial to explore alternative or additional medications. One promising
approach is drug repurposing, which offers an efficient and potentially effective way to
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address this challenge. Table 2 displays the medications that have potential to demonstrate
effectiveness against MM. Drug repurposing has often occurred by chance and circumstance
throughout history. The identification of an off-target impact or a newly identified on-target
effect led to the advancement of a pharmaceutical drug towards commercialization. The
logic behind estimating the anti-cancer properties of non-cancer drugs was established
based on their effectiveness, mechanisms of action, and minimal side effects (Figure 4).
Interestingly, the most successful cases of drug repurposing so far have not followed
a systematic approach. As an example, the discovery of thalidomide’s effectiveness in
treating erythema nodosum leprosum (ENL) and MM was purely accidental [2].

Table 2. Drugs being repurposed for multiple myeloma (MM).

Drug Name Old-Indication New-Indication Mechanism of Action Clinical Trials Status Refs.

Thalidomide Sedative,
anti-nausea MM

Inhibits IKK (also
NF-κB); inhibits TNF;

inhibits IL-1, IL-6,
IL-12, VEGF

Approved in
combination with
dexamethasone

[51,52]

Statins High Cholesterol MM

HMG-CoA reductase
inhibitors,

upregulation of PUMA
and NOXA

Smouldering MM,
phase II [53–56]

Celecoxib Anti-
inflammatory

MM and
drug-resistant MM

Inhibits COX-2,
inhibits Mcl-1, Bcl-2,

survivin, Akt

Not for MM, approved
for FAP [57–59]

Aspirin Anti-
inflammatory MM

Inhibits COX-1 and
COX-2, suppresses

cytokines and NF-κB,
inhibits EKR and
Blimp1, activates

ATF4/CHOP

Preclinical [60,61]

Artesunate Malaria MM and
drug-resistant MM

Decreased expression
of MYC and Bcl-2,

triggers cleavage of
caspase-3

Preclinical [62–65]

Leflunomide Rheumatism MM
DHODH inhibitor,
cyclin D2 and pRb

inhibition

Phase II [66,67]

Clarithromycin Antibiotic MM and
drug-resistant MM

Inhibits IL-6 and
MGFs Phase III [68,69]

Rapamycin Fungal infections MM Antagonist of mTOR Phase I [70–73]

Valproic acid Seizures, migraine,
and epilepsy MM Blocks HDAC, inhibits

NF-κB and cytokines Preclinical [74]

Nelfinavir HIV Infection MM and
drug-resistant MM

Inhibits 26S
proteasome- disrupts

Akt and STAT3,
ERK1/2

Phase I [75–78]

Metformin Diabetes mellitus
type 2 MM

Activates AMPK
(suppresses mTORC1,
activates p53), inhibits

EMT, regulates cell
cycle proteins

(ERK1/2, JAK2/STAT),
IL-6 suppression

Smoldering Myeloma
and Monoclonal
gammopathy of
undetermined

significance phase II,
MM phase I

[77,79–81]
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Table 2. Cont.

Drug Name Old-Indication New-Indication Mechanism of Action Clinical Trials Status Refs.

Bisphosphonates Osteoporosis MM
HMG-CoA pathway

suppression, osteoclast
apoptosis

Preclinical [82,83]

CuET
Alcohol-abuse

drug disulfiram
(DSF)

Drug-resistant MM ALDH inhibition Preclinical [84]

Albendazole Parasitic infections Drug-resistant MM

Microtubule system
interference,

p65/NF-κB pathway
inhibition

Preclinical [85]
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3.1. Thalidomide

Thalidomide, a derivative of glutamic acid [86], was initially introduced as a sedative
in 1957 [87] and also employed as an antiemetic during pregnancy. However, due to its
severe teratogenic effects, it was withdrawn from the market in 1961 [88]. Moving forward,
however, thalidomide’s efficacy against erythema nodosum leprosum (ENL), a cutaneous
form of leprosy, led to its FDA approval for this condition in 1998 [89]. Subsequently, its
anti-angiogenic properties expanded its usage to treat various skin disorders, infectious
diseases, immunologic and rheumatologic disorders, hematologic diseases, and several
cancer types [90–92]. In 2006, the FDA-approved thalidomide for newly diagnosed MM
in combination with dexamethasone. Thalidomide influences numerous signaling path-
ways commonly dysregulated in cancer cells [93]. It inhibits tumor necrosis factor (TNF),
frequently deregulated in cancers [94], and impedes NF-κB activation, a protein complex
crucial for DNA transcription, cytokine production, and cell survival, by inhibiting IκB
kinase (IKK) [95]. Additionally, thalidomide inhibits interleukin (IL)-1, IL-6, and IL-12,
granulocyte-macrophage colony-stimulating factor (GM-CSF), vascular endothelial growth
factor (VEGF), basic fibroblast growth factor (bFGF), and interferon (IFN) [96,97], making
it potentially effective against various cancers like AIDS-related Kaposi’s sarcoma, renal
cell carcinoma, and gliomas [98–100]. Thalidomide shows promise in treating hormone-
dependent prostate cancer, as evidenced by a phase III clinical trial where it reduced
time to prostate-specific antigen (PSA)-based progression in patients receiving androgen
deprivation therapy [101]. However, toxicity issues have impeded many clinical trials
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of thalidomide as a cancer treatment [102–104], leading to the development of less toxic
thalidomide analogues with similar anti-cancer effects. Thalidomide’s repurposing in-
volved off-label usage, pharmacological analysis, and derivative development, resulting in
significant clinical and commercial success in MM.

3.2. Statins

The discovery of statins as HMG-CoA reductase inhibitors led to their approval
for treating individuals at high risk of heart failure. The transformation of HMG-CoA to
mevalonic acid is catalyzed by HMG-CoA reductase, which is the first and rate-limiting step
in cholesterol production. Statins inhibit HMG-CoA reductase, which in turn suppresses
cholesterol biosynthesis and the mevalonate cascade. Byproducts of this cascade play a vital
role in the survival of cancer cells; therefore, the effectiveness of statins in combating various
types of cancer cells has been assessed. Studies have demonstrated that Simvastatin can
induce apoptosis in CML cells [105]. In addition, it has been found through meta-analyses
that statins are associated with a lower risk of hematological malignancies [106,107]. The
use of statins has been linked to an enhanced survival rate and a decrease in mortality in
MM [53–56]. Clinically in 4315 patients, statin use is associated with improved survival
in MM [54]. A PRISMA-compliant meta-analysis indicated that statin use might be a
protective factor for MM incidence [108].

MM cells containing chromosomal translocation t(4;14) is typically a more aggressive
subtype of MM. It has been shown that t(4;14)-positive cells have increased reliance on the
mevalonate pathway due to its production of geranylgeranyl pyrophosphate [109]. When
treated with statins, t(4;14)-positive cells underwent an integrated stress response due to a
lack of geranylgeranyl pyrophosphate and, used in conjunction with bortezomib, results
showed even greater cytotoxic effects in vivo [109]. MM cells frequently rely heavily on
Mcl-1 for their survival, making them resistant to venetoclax, a Bcl-2 inhibitor [17]. Statins
have the potential to overcome resistance to venetoclax in MM cell lines and primary cells
by blocking the mevalonate pathway. Furthermore, it has been observed that statins can
enhance the susceptibility to apoptosis induced by S63845, a potent Mcl-1 inhibitor [110].
In retrospective analyses of venetoclax clinical trials in patients with MM, the use of statins
prior to treatment was found to be significantly associated with a greater likelihood of
achieving a rigorous complete response prolonging progression-free survival [110]. The
sensitivity of MM cells to venetoclax is increased by statins through the upregulation of
two pro-apoptotic proteins, PUMA (in a mechanism not dependent on p53) and NOXA
(via the integrated stress response) [110]. Additional research involving animals and
humans suggests that statins may offer some level of protection against the development
of MM [56]. This study presents a new avenue for utilizing statins in the treatment of
MM and other blood malignancies. It also indicates their potential in preventing cancer in
susceptible populations.

3.3. Celecoxib

Several studies have demonstrated a clear link between the overexpression of
cyclooxygenase-2 (COX-2) and lower survival rates in patients with MM [111,112]. Hema-
tological malignancies such as Hodgkin’s lymphoma, NHL, CLL, CML, and MM show
an upregulation of COX-2. COX-2 plays a crucial role in angiogenesis, metastasis, cell
proliferation, and survival [57,113]. Celecoxib, a non-steroidal anti-inflammatory drug
(NSAID), selectively inhibits COX-2. Celecoxib has been used in the clinic since 1998 to
treat osteoarthritis, rheumatoid arthritis (RA), and generalized pain. In addition, extensive
research has indicated celecoxib as a promising chemopreventive drug for various forms
of cancer [58]. Furthermore, studies have indicated that celecoxib has the ability to inhibit
crucial survival proteins in various types of cancers, such as Mcl-1, Bcl-2, survivin, and
Akt [114]. In MM, these proteins have all been established as overexpressed; additionally,
Mcl-1 and Bcl-2 are drivers for the mechanisms of acquired resistance and relapse [17]. The
FDA has previously approved celecoxib for use in a number of cancer therapies, including
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familial adenomatous polyposis (FAP) (800 mg/day), albeit at higher doses than prescribed
for RA or osteoarthritis [115]. Higher dosages of celecoxib can lead to various side effects,
including cardiotoxicity, gastrointestinal issues, and renal problems. Therefore, it is im-
portant to exercise caution when using NSAIDs in cancer treatment. Limited data exist
regarding the role of COXs in the onset and progression of MM. To address this, researchers
tested seven human MM cell lines representing different disease stages to assess COXs
expression levels and cell viability upon treatment with COX inhibitors alone or in com-
bination with conventional anti-MM drugs. The results showed that all tested drugs had
moderate antiproliferative effects on MM cell lines [116]. Celecoxib shows great potential
as a potential anti-myeloma drug, considering its correlation with decreased survival rates
in MM due to COX-2 overexpression.

3.4. Aspirin

Aspirin, also known as acetylsalicylic acid (ASA), is another, more common, NSAID
that is utilized for pain relief and reducing fever. In addition, it effectively helps prevent
myocardial infarctions and cerebrovascular accidents caused by thromboembolism. As
a target, aspirin is not as selective as celecoxib. Aspirin inhibits both COX-1 and COX-2,
preventing the synthesis of prostaglandin H2 (PGH2) and prostaglandin E2 (PGE2). These
compounds play a role in regulating inflammatory and thrombus formation processes.
Aspirin not only inhibits COX-1/2, but also has a suppressive effect on other inflamma-
tory cytokines like NF-κB. Additionally, it impacts pro-survival ERK signaling in cancer
cells. It is worth noting that MM cells exhibited an overexpression of both NF-κB and
ERK signaling [117,118]. Furthermore, Aspirin demonstrates its anti-tumor effect in MM
by inhibiting Blimp1 and activating the ATF4/CHOP pathway [119]. Based on two sig-
nificant prospective studies, the “Health Professional Follow-up Study” (1986–2008) and
the “Nurses’ Health Study” (1976–2008), it has been found that taking aspirin after being
diagnosed with MM is associated with a lower risk of death, both overall and specifically
related to MM [60]. According to the trials, regularly taking 325 mg aspirin five or more
times per week was linked to a significant 40% decrease in the rate of MM [61]. However,
it is important to consider potential secondary issues like bleeding stomach ulcers and
heartburn when using aspirin for an extended period of time.

3.5. Clarithromycin

Clarithromycin (CAM) is a widely used antibacterial treatment belonging to the class
of semisynthetic macrolide antibiotics. The first clinical study revealed a significant increase
in median survival time for patients with advanced non-small cell lung cancer (NSCLC)
who underwent long-term CAM therapy [120]. It has been discovered that CAM can be a
helpful addition to the treatment of MM [68]. Although treating MM with single agent CAM
therapy is not effective, there is confirmed efficacy of CAM in combination chemotherapies
for the treatment of MM. There have been several documented clinical trials that have
explored the use of CAM in combination with other drugs for MM patients. These trials
include NCT01745588, NCT01559935, and NCT02248428 [69,121–127]. However, most
recently, a randomized phase III clinical trial found that in combination with steroid
dexamethasone and lenalidomide, CAM did not improve progression-free survival due to
the toxic effects of steroid overexposure (NCT02575144) [128].

It is widely recognized that various myeloma growth factors (MGFs), including IL-6,
have a significant impact on the advancement of MM [17,129]. CAM has been shown to
inhibit several MGFs, including IL-6 [130]. The treatment of MM with complementary
and alternative medicine CAM involves various potential mechanisms of action. These
include autophagy inhibition, immunomodulatory activity, reversibility of drug resistance,
steroid sparing/enhancing impact, and suppression of MGFs. MM is characterized by the
excessive growth of cancerous plasma cells that produce a single type of immunoglobulin
(Ig). The presence of excessive misfolded or unfolded Ig can cause considerable stress
on the endoplasmic reticulum [131]. Thus, MM arises as a fragile tumor that is particu-
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larly susceptible to autophagy inhibitors, proteasome inhibitors, and histone deacetylase
6 inhibitors. The combined effects of CAM play a crucial role in the treatment of MM [132].

3.6. Rapamycin

The antifungal agent rapamycin, also known as sirolimus and commercialized as
Rapamune®, was initially discovered by Surendra Nath Sehgal and colleagues. It was
isolated from the bacteria Streptomyces hygroscopicus on the island of Rapa Nui [133].
One of the initial signs of its approval was its use in managing graft rejection in kidney
transplant recipients, thanks to its immunosuppressant properties [134]. Rapamycin was
later identified as an antagonist of the mTOR (mammalian target of rapamycin) signaling
pathway. mTOR plays a crucial role in various signaling pathways, such as cytoskeleton
maintenance, protein synthesis, autophagy, lipid synthesis, cell growth, and angiogene-
sis [135]. In addition to its role in preventing graft rejection, rapamycin has been extensively
researched as a potential anti-cancer treatment for various types of cancer. Rapamycin
sensitized MM cells to apoptosis induced by dexamethasone [70]. In addition, the effec-
tiveness of analogs and newer TORC1/TORC2 inhibitors in myeloma models has been
supported by preclinical studies. Clinical trials in the initial phases have already begun [71].
Rapamycin, when combined with CC-50 (Revlimid), an immunomodulatory analog (IMiD)
of thalidomide, has demonstrated anti-MM activity [72]. These trials serve as the basis for
evaluating the effectiveness of mTOR inhibitors in combination with IMiDs in improving
patient outcomes in MM. The individuals under investigation experienced negligible ad-
verse effects from rapamycin, which highlights its decreased risk and treatment advantages.
In order to further improve the efficiency of this molecule, efforts have been made to en-
hance its structure. Everolimus, an orally administered inhibitor of the mTOR pathway, is a
second-generation compound derived from rapamycin (sirolimus). It has been investigated
in the treatment of MM, although it does not demonstrate much effectiveness when used
alone. The concurrent administration of lenalidomide and everolimus was well received by
patients, as it resulted in expected side effects and demonstrated positive outcomes in a
group of individuals who had undergone extensive prior treatment [73]. This research can
provide guidance in selecting patients for future clinical studies involving mTOR inhibition
in MM.

3.7. Valproic Acid

Valproic acid (VPA, Depakene) is a medication that is commonly prescribed for the
treatment of migraine, seizures, epilepsy, and bipolar disorders. Valproic acid is believed
to block voltage-gated sodium channels and histone deacetylases (HDAC). HDAC plays
a crucial role in the survival of MM cells. It is believed that the impact of bortezomib on
apoptosis in MM is partially due to the inhibition of Class-I HDACs [74]. In addition, VPA
has been found to inhibit the activation of NF- κB and the production of inflammatory
cytokines TNF and IL-6 [136]. It has been found that VPA enhances autophagic flux in
human MM cells [137]. In vitro studies demonstrated autophagy activation in MM cell
lines RPMI8226 and U266 following VPA treatment [138]. There are indications that VPA
could potentially be utilized as a treatment for MM [139].

3.8. Nelfinavir

Nelfinavir, an efficient protease inhibitor, is effective against both HIV-1 and HIV-
2. As for ritonavir, principally attributed to the drug’s anti-cancer properties include
its ability to disrupt Akt signaling and induce endoplasmic reticulum stress. Nelfinavir
therapy has been seen to induce regression of prostate xenograft tumors and decrease
phosphorylation of both STAT3 and Akt [140]. In MM, treatment induces a reduction in
signaling via Akt, STAT3, and Erk1/2 by inhibiting the 26S proteasome [75]. Additionally,
Nelfinavir and bortezomib have a synergistic effect. In a trial involving MM and non-
small cell lung cancer, the combination of bortezomib and nelfinavir increased endothelial
resistance (ER) stress and inhibited growth in vitro and in vivo. The buildup of ubiquitin
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(Ub) proteins is the mechanistic consequence of nelfinavir therapy. Bortezomib, on the
other hand, inhibits degradation by the proteasome; this interferes with proteotoxic stress
and ultimately induces cell death [141]. MM cells may also become sensitive to bortezomib
in the presence of nelfinavir. Nelfinavir demonstrates inhibitory effects on the proteasome,
an activity that bortezomib fails to target. This leads to the hypothesis that nelfinavir’s
anti-neoplastic actions in MM cells are mostly mediated by this mechanism in conjunction
with suppression of Akt-phosphorylation [76]. An Open-Label Phase I clinical trial is being
conducted to investigate the effects of combining nelfinavir and bortezomib in patients
with relapsed and refractory MM [77].

3.9. Metformin

Metformin is a commonly prescribed medication for the treatment of insulin-independent
DM type 2 (diabetes mellitus). AMPK is crucial for cellular metabolism, specifically in
controlling glucose metabolism. Metformin enhances the utilization of blood glucose
absorption by muscles and liver by activating AMPK. AMPK suppresses mTORC1, a path-
way associated with cell proliferation, while activating p53, a tumor suppressor protein
involved in promoting cell death. Metformin has been found to inhibit mTORC1 in a way
that is different from AMPK [142]. Metformin has been found to have various effects on
cancer cells, including inhibiting epithelial-to-mesenchymal transition (EMT), inducing
senescence, and reducing the survival of cancer stem cells [143]. In MM, the development of
EMT phenotypes is pertinent and has been shown to be the hypoxic drive and contributing
to malignant plasma cell migration and cells acquiring drug resistance [144]. MM cells
will also overexpress EMT transcription factors in response to signals from the BMM [144].
Therefore, metformin has the potential to be developed as a therapeutic anti-cancer treat-
ment [145,146]. Based on a comprehensive analysis of observational studies, it was found
that individuals with diabetes who were prescribed preventative metformin medication
experienced a lower likelihood of developing cancer and succumbing to cancer-related
causes [145]. Studies suggest that metformin may have inhibitory effects on various cell
cycle regulatory proteins, such as cyclin D1, Rb, ERK1/2, JAK2/STAT signaling, and mito-
chondrial function, which could potentially explain its observed effects [147]. Metformin
suppresses IL-6 signaling by reducing IL-6R expression on MM cells [148]. In addition,
metformin is known to stimulate autophagy. Researchers are currently focusing on the
AMPK/mTORC1 and mTORC2 pathways to trigger autophagy and cell cycle arrest in
myeloma. Importantly, in comprehensive studies, metformin use among diabetic individu-
als with MGUS was linked to a decreased risk of developing active MM [149,150]. Several
preclinical studies have also shown the anti-myeloma effects of metformin [79,151]. Several
studies have demonstrated the synergistic effects of combining metformin with drugs
that affect glycolysis, such as ritonavir in MM [79]. The interaction between metformin
and a Glut4 glucose transporter inhibitor, which would modulate MM, was predicted
in silico [80]. Metformin and FTY720 synergistically trigger apoptosis in MM cells [152].
Metformin has been found to potentially speed up cell death in MM cells when com-
bined with the proteasome inhibitor bortezomib, by inhibiting a protective autophagic
response and disrupting protein homeostasis [81]. A Phase I clinical trial, conducted in an
open-label manner, investigated the combination of metformin and bortezomib in patients
with relapsed and refractory MM [77]. It appears that when metformin is used alongside
chemotherapy, MM patients may experience a longer survival period.

3.10. Bisphosphonates

Bisphosphonates are a class of chemical compounds that contain two phosphonate
groups and two R-groups, distinguishing them from other bisphosphonates. There are
two main classes of bisphosphonates: nitrogenous and non-nitrogenous. Examples of
nitrogenous bisphosphonates are clodronate, tiludronate, etidronate, and nitrous bispho-
sphonates. On the other hand, non-nitrogenous bisphosphonates include zoledronate,
neridronate, alendronate, pamidronate, ibandronate, olpadronate, and risedronate. Due to
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its early presence in bone metabolism research, bisphosphonates were later recommended
for postmenopausal women as a preventive measure against bone loss (osteoporosis). In ad-
dition, its application was broadened to encompass patients suffering from bone loss caused
by metastatic lung cancer, breast cancer, and MM. The mechanisms governing nitrogenous
and non-nitrogenous bisphosphonate compounds have distinct differences. The integration
of first-generation non-nitrogenous bisphosphonates with the ATP of osteoclasts results in
the production of ATP analogs that exhibit resistance to hydrolysis. The activity of farnesyl
pyrophosphate synthase (FPPS), a crucial enzyme in the HMG-CoA pathway responsi-
ble for cholesterol production, is suppressed by fourth and third-generation nitrogenous
bisphosphonates. Based on extensive clinical and laboratory research, it has been found
that nitrogenous bisphosphonates are effective in treating both solid and hematological
cancers [153]. Osteoclast cells undergo apoptosis when exposed to bisphosphonates [154].
The growth of MM is facilitated by the favorable conditions found in bone microenvi-
ronments. The interaction between osteoclasts and MM cells is reciprocal, with each one
influencing the other’s activity and survival [82,83]. The collaboration between MM cells
and osteoclasts is disrupted by bisphosphonates, which creates an unfavorable microenvi-
ronment for MM cell growth. In MM, bisphosphonate has potential to serve as a valuable
supplemental treatment.

3.11. CuET

Diethyldithiocarbamate-copper complex (CuET) is a product of metabolism combin-
ing Disulfiram (DSF) and cofactor copper [155]. DSF is an FDA-approved drug for alcohol
abuse, and it causes adverse, immediate, and unpleasant reactions to alcohol consump-
tion [156]. This is because DSF inhibits enzyme aldehyde dehydrogenase (ALDH), which is
crucial in the liver’s metabolism of alcohol [156]. CuET is a biologically active complex,
due to the copper cofactor, and is shown to produce intracellular and extracellular reactive
oxygen species (ROS), which promotes apoptosis [157]. Additionally, in cancer cells, CuET
caused levels of proteasome inhibition, which MM cells are extremely sensitive to due to
their function in antibody production, and aggregated proteins such as IκB (which inhibits
NF-κB), p27, Kip1, and c-Myc [157]. Multiple myeloma stem cells (MMSCs), cells integral
in the progression of disease, display increased ALDH activity and have higher tumori-
genic rates [158]. Additionally, the dominant isoform of ALDH is notably more expressed
in bortezomib-resistant MM cells, and a significantly higher percentage of the resistant
cells express ALDH [158]. Inhibition of the metabolic enzyme offers a viable treatment
application for MM. An in vitro and in vivo study observed that CuET can negatively affect
the stem cell qualities of MM cells, minimize tumor growth, and eliminate clonogenicity by
inhibiting ALDH via the Hedgehog and ALDH1A1 pathways [159]. Furthermore, CuET
successfully induced apoptosis in bortezomib- and carfilzomib-resistant MM cells and
affected MM cells in ways similar to proteasome inhibitors as it induced the unfolded
protein response [84]. CuET’s mechanism of action and effects on MM cells in vitro and
in vivo establish the drug as a promising target to be repurposed for MM treatment.

3.12. Albendazole

Albendazole (ABZ) is an antiparasitic agent used to treat intestinal worm infections
and filarial infections [160]. ABZ prevents the uptake of glucose by parasites and mam-
malian cells through the inhibition of the microtubule systems [160]. However, the drug
has applicable anti-cancer properties. In accordance with its mechanism in parasites, in
leukemia cells, ABZ downregulates the protein SIRT3 to cause upregulation of TNF-α,
which subsequently destabilizes microtubules within the cell, halting the cell cycle [161].
Additionally, ABZ-treated leukemia cells showed evidence of ROS production, activation
of the death receptor-mediated pathway, and activation of p38 MAPK, which ultimately
resulted in apoptosis of the malignant cells [161]. Additionally, ABZ-treated leukemia cells
showed evidence of ROS production. These apoptotic effects are consistent in MM cells
both in vitro and in vivo [85]. Among MMSCs, ABZ reduced the number of ALDH-positive
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cells, which correlates with higher rates of tumorigenesis and acquired resistance, and in
doing this, resistant MM cells were resensitized to bortezomib [85]. Furthermore, treatment
of MM cells with ABZ inhibited the NF-κB pathway by diminishing transcription factor
p65 [85]. Repurposing ABZ to be utilized in relapsed MM treatments offers a promising
outlook given the current evidence.

4. Conclusions and Future Prospectives

The search for effective treatments for MM continues to be a substantial problem,
requiring ongoing investigation into new therapeutic approaches. Drug repurposing, the
process of reassessing existing pharmaceuticals for new applications, offers a promising
approach that circumvents numerous difficulties in drug development and expedites
advancements in anti-cancer treatment. Drug repurposing is essential in the advancement
of innovative anti-cancer therapies. This article explores different medications utilized as
anti-cancer agents and their prospective applications in the treatment of MM. Although
drugs like thalidomide have been successful in clinical settings, others such as statins,
aspirin, metformin, and clarithromycin have shown encouraging preclinical and early
clinical results (outlined in Table 2). This highlights the importance of conducting additional
research and clinical trials to fully harness their potential in enhancing outcomes for
patients with MM. Thorough inquiry is necessary to translate non-cancer medicines into
effective treatments for MM. Prior to implementing repurposed medications in patient
care, it is crucial to conduct thorough clinical trials to determine their effectiveness and
mechanism of action. Future research should concentrate on studying the most effective
dosage of repurposed medications specifically designed for people with MM. In addition,
investigating possible synergies with conventional MM treatments could improve therapy
results and inform the creation of improved treatment plans. Hence, it is imperative to
have a comprehensive understanding of the actions of medications prior to subjecting
cancer patients to testing. Utilizing cancer and drug databases, such as the one described
in Table 1, can facilitate, and accelerate this procedure. The fundamental issues regarding
the efficacy and safety of drugs in clinical trials have remained unchanged over time. Drug
repurposing offers significant financial and time efficiencies, making it an appealing option
that can potentially save huge resources when compared to typical drug development
pathways. Repurposing medications that have failed in Phase II or III studies for their
original intended uses, by utilizing their shown anti-cancer effectiveness, could expand
the range of treatment choices for MM. Around 48% of the overall expenses for drug
development are allocated to preclinical development and Phase I clinical trials of a new
chemical entity (NCE). The duration of these critical phases normally spans an average of
seven years [8]. Many drugs fail during the transition from Phase I to Phase II clinical trials
because they are either ineffective or harmful. Hence, medications that fail Phase II trials
may be seen as possible contenders for repurposing if they exhibit anti-cancer properties.
Although non-cancer drugs have shown encouraging effects in preclinical studies, their
clinical application is still questionable. To fully harness the benefits of repurposing drugs
for MM patients, it is imperative to address these concerns by doing thorough clinical
studies. Ultimately, the potential of medication repurposing to further MM treatment is
contingent upon thorough validation through rigorous clinical studies. These endeavors are
crucial for fully realizing the potential of repurposed medications in enhancing outcomes
for MM patients.

5. Practice Points

• Although there have been numerous clinical trials conducted to evaluate different
approaches for treating cancer, the 5-year survival rate for individuals with MM in the
US remains at a modest 55%.

• Myeloma remains a challenging malignancy to treat due to the development of drug
resistance, resulting in relapse for all patients.
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• There is an ongoing demand for new medications. However, the process of finding a
new treatment can often be quite time-consuming. Therefore, repurposing already ap-
proved non-cancer medication for MM can aid in the discovery of new effective drugs.

• The potential for repurposing approved drugs is promising, although a thorough
analysis of these agents is necessary before they can be considered for clinical trials.

6. Research Agenda

• The potential of various non-anti-cancer drugs as an anti-myeloma treatment was
discussed.

• Thalidomide stands out as an exemplary repurposed agent for treating MM.
• There is encouraging evidence that statins, rapamycin, clarithromycin, and lefluno-

mide can inhibit MM.
• Extensive animal studies using the MM animal model, along with phase 1 clinical

studies, are necessary to thoroughly investigate these agents as potential MM therapies.
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