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Abstract: Stimuli-responsive drug delivery systems (DDSs) offer precise control over drug release,
enhancing therapeutic efficacy and minimizing side effects. This review focuses on DDSs that leverage
the unique capabilities of phase change materials (PCMs) and metal–organic frameworks (MOFs)
to achieve controlled drug release in response to pH and temperature changes. Specifically, this
review highlights the use of a combination of lauric and stearic acids as PCMs that melt slightly
above body temperature, providing a thermally responsive mechanism for drug release. Additionally,
this review delves into the properties of zeolitic imidazolate framework-8 (ZIF-8), a stable MOF
under physiological conditions that decomposes in acidic environments, thus offering pH-sensitive
drug release capabilities. The integration of these materials enables the fabrication of complex
structures that encapsulate drugs within ZIF-8 or are enveloped by PCM layers, ensuring that drug
release is tightly controlled by either temperature or pH levels, or both. This review provides
comprehensive insights into the core design principles, material selections, and potential biomedical
applications of dual-stimuli responsive DDSs, highlighting the future directions and challenges in
this innovative field.

Keywords: stimuli-responsive drug delivery system; phase change material; metal–organic framework

1. Phase Change Materials (PCMs)

Phase change materials (PCMs) are materials that absorb or release a significant
amount of “latent” heat when undergoing a change in their physical state, which usually is
the change in state between liquid and solid [1]. Throughout the heating or cooling process,
PCMs undergo a phase change when the conditions reach a specific temperature [2]. The
PCMs’ temperature will remain constant in the process of “latent” heat absorption or re-
lease [3]. This phenomenon shows that PCMs can absorb the latent heat and store it, which
means PCMs can be chosen as a thermal storage material [4]. PCMs are materials with ben-
efits that include a high capacity for storing solar thermal energy, the capability to transmit
large amounts of latent heat, and elevated energy densities [5]. They can be composed of
diverse materials, encompassing both natural and synthetic polymers. Encapsulating PCMs
enhances the effectiveness of heat transfer and the stability of mechanical systems [6]. PCMs
are divided into two types: inorganic phase change materials (IPCMs) and organic phase
change materials (OPCMs). Each has its own advantages and disadvantages, and the choice
of using them depends on the application’s requirements. IPCMs have been used in thermal
energy systems for building applications [7]. IPCMs are further divided into two types:
salt hydrates and metallics. Salt hydrates exhibit high energy storage capacity in thermal
energy storage (TES) systems [8]. Metallic IPCMs, on the other hand, address certain issues
posed by salt hydrates, such as poor thermal conductivity or significant corrosion levels.
Metallic IPCMs are better suited for high-temperature applications exceeding 4100 ◦C [9].
OPCMs typically comprise waxes, polymers, or organic salts, and they are more expensive
than IPCMs. Common OPCMs include paraffin waxes and fatty acids such as stearic or
palmitic acids [10]. OPCMs find application across various uses, and both paraffin wax
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and fatty acids demonstrate versatility in terms of operating temperatures. Paraffin wax
stands out as a favored OPCM due to its cost-effectiveness compared to many other PCMs.
It is characterized by low toxicity, chemical stability, and non-corrosiveness [11]. Therefore,
OPCMs like paraffin wax are better suited than salt-hydrate PCMs for TES applications in
buildings. TES systems require multiple thermal cycles; however, salt-hydrate PCMs may
dissociate during these cycles [12]. Compared to IPCMs, most OPCMs such as paraffin
wax, are non-corrosive and chemically stable. They are recyclable and have high latent
heat. Unfortunately, they still have disadvantages, such as low thermal conductivity and
size increase during the process of phase change [13]. Most of the OPCMs used in TES
systems need to be encapsulated in containers. In comparison, IPCMs have the advantages
of higher thermal conductivity, low cost, and being nonflammable. Since IPCMs consist
mostly of salt hydrates and metallic components, they are corrosive to metals, which means
IPCMs have limited long-term applications. Furthermore, IPCMs have a higher risk of
phase separation than OPCMs [13–15].

1.1. Fatty Acid PCMs

Fatty acids, such as myristic acid, capric acid, palmitic acid, and stearic acid, are
OPCMs [16,17]. Many researchers have used fatty acids as PCMs and attempted to enhance
their thermal properties, including incorporating conducting fillers such as carbon nan-
otubes (CNTs), metal foams, graphite, etc. For instance, choosing CNTs as a conductive
additive in fatty acids helps prevent a reduction in heat storage capacity [17]. Lauric acid is
a medium-chain fatty acid (MCFA), defined as a saturated or unsaturated fatty acid with
6 to 12 carbons. MCFAs are typically present in medium-chain triglycerides (MCTs). The
melting point of lauric acid is 43.8 ◦C [18]. These triglycerides are usually hydrolyzed in the
gastrointestinal tract, forming free fatty acids through the action of lipases [19,20]. Lauric
acid is a saturated fatty acid mostly found in coconut oil. Its chemical formula is C12H24O2,
and its chemical structure is shown in Figure 1. Lauric acid (LA) undergoes conversion
into monolaurin in the human body. Monolaurin can maintain health by inhibiting pneu-
mococcus and protecting host cells, thereby preventing bacterial infections [19]. Lauric
acid, existing as a solid white powder under normal room conditions, finds applications
in various industries, including the manufacturing of soaps, cosmetics, and specific food
items [21].
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Figure 1. Structure of lauric acid and stearic acid.

Stearic acid (SA) is another saturated fatty acid with a total of 18 carbons; the chemical
formula is C18H36O2. Stearic acid is synthesized by animal fat hydrolysis or through the
hydrogenation of cottonseed or vegetable oil [22,23]. The structure of stearic acid is shown
in Figure 2. Both lauric acid and stearic acid are hydrophobic and insoluble in water, but
they are all soluble in ethanol [24]. The melting point of stearic acid is around 69.3 ◦C, and
it is non-toxic and biocompatible; it dissolves in common organic solvents. Stearic acid is
usually used in the production of soap, detergents, or cosmetics like shampoos [25]. Both
lauric acid and stearic acid can be used as phase-change materials [16,26–28]. The crystal
structure of long-chain fatty acids like stearic acid or lauric acid typically presents a layered
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arrangement, which can be proven by X-ray diffraction. Its crystalline morphology can
be lamellar, acicular, or columnar forms [29]. The mixture of lauric acid and stearic acid
(LASA) in an 80:20 ratio gives a melting point of 39 ◦C. This temperature is slightly above
the physiological human body temperature of 37 ◦C. Figure 3 shows the melting peaks of
the mixtures of lauric acid and stearic acid at various ratios in the differential scanning
calorimetry (DSC) curve. Based on the finding that LASA in a ratio of 80:20 yields a melting
point of 39 ◦C, it can be used in the drug delivery system as a “gate” for releasing the target
drug molecules. The drug molecules encapsulated in the LASA mixture are released as the
temperature increases over 39 ◦C. Several groups have already prepared nanoparticle drug
delivery systems with LASA (80:20) for encapsulating doxorubicin (DOX), Rhodamine B
(RhB), and IR780 iodide (IR780). The encapsulated drug molecules were not released until
the temperature reached above 39 ◦C [30,31].
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1.2. PCMs for Drug Delivery Systems

Stimuli-responsive materials are substances that change their physicochemical prop-
erties in response to external factors such as temperature, pH, or light [33,34]. PCMs are
stimuli-responsive materials that change their phase states in response to temperature vari-
ations. Building upon this, PCMs, such as thermo-sensitive materials, can find applications
in drug delivery systems to control release [32]. PCMs are stimulated by temperature to
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exhibit a phase transition between solid and liquid states. Fatty acid PCMs possess advan-
tages such as temperature sensitivity, low toxicity, and ease of modification. Consequently,
they can be utilized in stimulative-drug delivery systems. As the temperature increases
above the melting point of the PCMs, they transition from a solid state to a liquid state, and
the drug molecules encapsulated in the PCMs are released into the surrounding medium.
This simple physical process can be used in the development of a stimulative drug delivery
system, allowing for precise control of drug release by adjusting the temperature [28,30,35].
PCMs with phase transitions occurring at slightly above 37 ◦C are usually chosen for use in
temperature-responsive drug delivery systems. For instance, 1-tetradecane, which melts at
a temperature range of 38 ◦C to 39 ◦C, and lauric acid, with a melting point of 43.8 ◦C [32],
along with LASA in an 80:20 ratio, with a melting point of 39 ◦C, are noteworthy exam-
ples [36]. Figure 4 shows the release profile of dextran encapsulated in a gelatin microbead
with a PCM shell (1-tetradecane and dodecanoic acid) at 37, 39, and 42 ◦C. It demonstrates
that there was no release at temperatures below 37 ◦C. In comparison, the release increased
when the temperature reached 39 ◦C and further doubled at 44 ◦C compared to that at
39 ◦C [32].
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The eutectic mixture of lauric acid and stearic acid in an 80:20 ratio exhibits a melting
point of 39 ◦C. Both lauric acid and stearic acid are naturally biocompatible. LASA can
serve as a gating material for precisely controlling drug release [37]. Nanoparticle drug
delivery systems can be developed using LASA as a gating material that encapsulates
drug molecules in the core. As the temperature increases above 39 ◦C, LASA undergoes a
phase change from solid to liquid, leading to the immediate release of the drug molecules.
Microparticles were produced through a coaxial electrospray method, wherein 0.2 g/mL
of LASA in ethanol and dichloromethane (DCM) was used as the shell solution, the
Rhodamine B (RhB) dissolved in an aqueous gelatin solution as the core solution, and
the payload as the bovine serum albumin (FITC-BSA). The cumulative release profiles of
FITC-BSA under sustained heating at both 37 ◦C and 40 ◦C are shown in Figure 5 [36]. A
negligible cumulative release was observed at 37 ◦C, indicating that the drug molecules
were still trapped in the nanoparticles because LASA remained in the solid state. When
the temperature reached up to 40 ◦C, the cumulative release of FITC-BSA reached around
90% within 10 min. This is attributed to the phase change of LASA at its melting point of
39 ◦C, transitioning from a solid to a liquid state, leading to the release of the majority of
FITC-BSA from the microparticles.
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2. Metal–Organic Frameworks

Metal–organic frameworks (MOFs) are crystalline materials comprising metal ions
or clusters coordinated with organic linkers. Most organic linkers typically consist of
carboxylic acids or nitrogen-containing ligands [39,40], while the metal constituents or
metal clusters often include species such as iron, zinc, cobalt, and copper [41–43]. MOFs are
unique three-dimensional coordination polymers distinguished by their high porosity [44].
It has different properties from other coordination polymers, the significant voids in
MOFs allow for exceptional functionality in applications like gas storage and catalysis.
This characteristic enables MOFs to perform significantly in fields ranging from energy
storage to drug delivery. Their inherent porosity and structural versatility make them
highly promising materials. MOFs exhibit significant internal surface area and tunable
pore dimensions. As a result, they find applications in a wide array of disciplines [45,46].
For instance, MOFs constructed with titanium-oxo cluster linkers have been shown to
possess 90% porosity [47]. The size of pores is usually below 3 nm, and some large
pores reach up to 9.8 nm [46,48]. Also, it has a maximum internal surface area of up to
7000 m2/g [45]. Because MOFs contain inorganic and organic components, they have
potential applications in clean energy [49], catalysis [50,51] gas separations [38,48], and
drug delivery [52]. MOFs are widely used in carbon capture and gas storage; for example,
utilizing MOFs to reduce carbon dioxide emissions in coal-fired power plants involves
capturing either post-combustion or pre-combustion [53]. MOFs can also be employed
for hydrogen storage, for instance, by improving the packing efficiency and volumetric
hydrogen storage density through alterations in crystal size distribution and morphological
design, thus augmenting the hydrogen storage capacity. Several MOFs have proven to
be potential candidates in materials science, transportation engineering, and medical
applications. HKUST-1 exhibits a unique structure and performance and is highly suitable
for gas adsorption and separation applications [54,55]. MIL-53 has a tunable pore size,
making it applicable in catalysis and drug delivery [56,57]. ZIF-8 is pH-dependent, making
it valuable for drug delivery [58]. MOF-5, one of the earlier MOFs discovered, finds its
primary application in hydrogen storage, holding a pivotal role in the field [59].

2.1. Zeolitic Imidazolate Framework-8

Zeolitic imidazolate framework-8 (ZIF-8) is a classic MOF that can be commercialized
with high production. ZIF-8 has many advantages, like a large surface area, controllable
porosity, structural tunability, and high thermal and chemical stability. Based on those
properties, researchers have modulated ZIF-8 for further exploration and research [60].
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ZIF-8 is constructed from zinc ions and 2-methylimidazole (mIM); ZIF-8 is usually de-
scribed as a three-dimensional network consisting of tetrahedral zinc ions connected with
2-methylimidazole ligands; the structure of ZIF-8 is shown in Figure 6 [61]. The building
unit is zinc (II)-imidazolate tetrahedron, a crystal structure with rhombic dodecahedral or
cubic shapes [62]. The formation process is similar to synthesizing metal nanocrystals; those
nanoparticles are high-symmetry bcc crystal structures [63–66]. ZIF-8 has the advantage
of a high porosity of up to 60% and a pore volume of up to 1.088 mL/g. That property
is used for gas storage, absorption, and drug delivery. Researchers prepared ZIF-8 using
surfactant-mediated methods by adding Tween 80 or Span 80 to achieve faster adsorption
kinetics [67,68]. ZIF-8 has also found application in drug delivery systems due to its high
porosity and easy modification. The imidazolate linkers are fundamental organic linkers
that render ZIF-8 susceptible to decomposition under acidic conditions. Consequently,
ZIF-8 can enable the target drug’s single/multi-stimulus responsive release [69,70]. There
are several synthesis methods for ZIF-8, such as the room temperature solution synthesis
method [71], solvothermal method [72], and microfluidic synthesis [73]. The most common
and convenient method is room-temperature synthesis, achieved by mixing two solutions
in a specific ratio and stirring overnight. The solid is then collected, washed, and placed in
a vacuum overnight [71].
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Researchers have incorporated different base-type additive triethylamines (TEAs) to
synthesize ZIF-8 in various sizes [75]. This synthesis method enables the production of ZIF-
8 particles with sizes of approximately 134 nm and 288 nm without altering the morphology
of the ZIF-8 crystalline structures. After the thermal treatment of ZIF-8, dispersion within a
polysulfide (PSf) matrix has been shown to enhance the membranes’ thermal stability and
mechanical strength. The modified membrane demonstrated improved performance for
CO2/CH4 separation applications [76]. Carbonization at 800 ◦C is another effective method
to adjust the pore size range for the high-porosity carbon of ZIF-8. This method increased
the exposed surfaces with nitrogen-containing functional groups, which increased the CO2
adsorption capacity [68]. Those methods make it easier to add additives. The chemicals
commonly used in the synthesis are zinc nitrate hexahydrate and 2-methylimidazole. The
reagents, molar ratio, solvent use, and condition are different depending on the needed
properties of ZIF-8 [77]. The synthesis temperature plays a vital role in determining the
size of ZIF-8. For instance, choosing 1-methylimidazole and zinc acetate hexahydrate in
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a methanol system produced rhombic dodecahedra ZIF-8 (300 µm) under solvothermal
conditions. Conversely, using the same chemicals but different synthesis conditions at room
temperature, ZIF-8 assumes a truncated rhombic dodecahedra shape with an average size
of 3 µm [78]. Furthermore, variations in chemical composition induce structural changes in
ZIF-8. A truncated cube shape in ZIF-8 (180 nm) was obtained using zinc acetate hexahy-
drate and 2-methylimidazole coupled with cetyltrimethylammonium bromide (CTAB) as a
surface-specific capping ligand via a hydrothermal synthesis in water [65,79]. In contrast, a
rhombic dodecahedra-shaped ZIF-8 (660 nm) was synthesized using zinc nitrate dihydrate
and 2-methylimidazole without CTAB [80].

2.2. ZIF-8 for Drug Delivery System

All ZIFs contain transition metals and imidazole ligands; ZIF-8 comprises zinc ions
with tetrahedral coordination linked by imidazole ligands. ZIF-8 has many advantages for
applications in drug delivery systems. The imidazole ligands can deprotonate and generate
an anionic multi-terminal ligand, exhibiting strong alkalinity. When these imidazole
ligands interact with metal ions, they form a coordination of a certain intensity. The choice
of transition metal ions, such as Mn2+, Co2+, Cu2+, and Zn2+, is based on their suitable
softness and hardness. The reversible coordination between transition divalent metal ions
and organic ligands provides the constructed MOFs with a distinctive advantage in drug
delivery [52,69,81]. Another reason for selecting MOFs as drug carriers is the consideration
of toxicity and its intensity. Both the metal ions and the organic ligands must exhibit good
biocompatibility, and it is imperative to avoid highly toxic metal ions such as Cr and Ni.
The most suitable metal ions, such as Fe, Zn, and Mn, should be essential elements for
human life activities [69].

The imidazole linkers have strong alkalinity, ZIF-8 decomposes during acid conditions,
and ZIF-8 has been proven as a pH-responsive material, as Figure 7 shows below; it shows
Dox-loaded-ZIF-8 with an ICG solution immersed in pH = 5.5 PBS and pH 7.4 PBS for
various periods of time. The ZIF-8 decomposed after six hours in pH 5.5 compared with
the pH 7.4 buffer [74]. The drug delivery system, with the capability to encapsulate and
release drugs in response to an acidic environment, has become one of the most extensively
researched domains [82]. The blood and normal tissue pH is typically around pH 7.4. In
contrast, the pH in tumor tissue tends to be more acidic, ranging from pH 5.5 to 6.0 [83].
The reason for using the pH-responsive drug carrier is to reduce the premature release of
the drug during transportation in the blood circulation. This improvement can enhance the
effective release of anticancer drugs in the tumor tissue or the target organ [84,85]. Excessive
drug release during transportation can cause undesirable side effects, and insufficient drug
release within target organs or cells hinders the achievement of efficient therapy [86].

Two methods are currently used to encapsulate drugs in ZIF-8. The first method is post-
synthetic encapsulation, which involves synthesizing ZIF-8, preparing the stock solution
with drug molecules, adding ZIF-8 to stir for days, removing the suspension, collecting the
precipitation in a centrifuge machine, and drying it in a vacuum [87]. The second method
is the one-pot synthesis method, which involves preparing zinc acetate hexahydrate and a
2-methylimidazole solution separately. Firstly, the drug stock solution is added to the
zinc acetate hexahydrate solution and mixed well. Subsequently, the 2-methylimidazole
solution is added dropwise to the mixture. Lastly, all the precipitate is collected using a
centrifuge machine and dried in a vacuum [88]. Figure 8 shows the release profiles of ZIF-8
encapsulated with doxorubicin using the one-pot synthesis method under different pH
conditions. The release percentage reached 100% within the pH range of 5–6, compared
to 0% release within the pH range of 6.5–7.4. This result substantiated the pH-responsive
nature of the drug-loaded ZIF-8 carrier, demonstrating that the one-pot synthesis method
effectively encapsulated drug molecules into ZIF-8 [88].
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3. Coaxial Electrospray

Electrospray (ES) is widely used in analytical chemistry and material science to prepare
nanoparticles. During electrospray, liquid samples form charged droplets under high
voltages. The electrospray is commonly used to produce nanoparticles, typically in the
range of 1 to 100 nanometers [90]. ES, also called electro-hydrodynamic atomization, has
become popular in the fabrication of nanoparticles and thin films. With the discovery of
electrospray ionization in the 1980s, more people became interested in the method. In
2002, John Bennett Fenn won the Chemistry Nobel Prize for discovering that ES ionization
could be used in mass spectrometry [91,92]. Electrospinning and electrospraying are
similar technologies; depending on the liquid used in the experiment, electrical energy
can yield fiber (electrospinning) or particles (electrospraying). The electrospraying and
electrospinning experiment setups are the same, including a high-voltage supply, a syringe
pumper, a syringe filled with solution, a metal needle, and a conductive collector [93].

The coaxial ES (Co-ES) can produce micro- or nano-sized particles in multilayers by
introducing coaxial solution jets. Compared to alternative microencapsulation methods,
the benefits of choosing this technique include superior encapsulation efficiency, bioactivity,
and uniform size distribution [94]. The encapsulation efficiency of particles reached up to
100% in a core–shell spherical shape. The size range of multilayer particles ranges from
10 nm to 100 µm depending on the electric field between the needle tips and the ground.
The “Taylor cone” is formed in an inverted triangle shape due to the repulsive force caused
by the electric field, which elongates the core and shell liquids. The jet of solution at the
end of the Taylor cone splits into multilayered droplets due to the repulsive force [95–97].
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The uniaxial electrospray uses only one solution, while the Co-ES is modified through
uni-axial electrospray by attaching a coaxial needle to introduce two solutions separately.
The common solvents used in electrospray include water, ethanol, dichloromethane, and
dimethylformamide, which are volatile solvents. Core–shell nanoparticles with a hard
shell can be produced with polymers like gelatin [98], Poly(lactic-co-glycolic acid) [99], and
Polylactic Acid [100] as the shell solution [95].

Many parameters and factors affect the final products of Co-ES. These include the
flow rates of the inner and outer solutions, viscosities, surface tensions, relative humidity,
surrounding temperature, and electric intensity. The applied voltage is the main factor
that affects the morphology of particles. The higher the voltage applied to the needles
and collector, the greater the electric intensity between tips and collectors. This causes
the jets to split into multi-jets, forming finer particles. Figure 9 shows two voltages from
left to right with the increased applied positive voltage of 7.3 kV and 4.3 kV [89]. The
formation of the Taylor cone shape is shown during the process of increasing voltage.
When the voltage reached a significantly high level, a phenomenon known as “multi-
jet” appeared. This indicates the generation of multiple liquid jets that split, resulting in
smaller and more dispersed particles. As a result, the speed and distribution of particles
increase [101–103]. In addition to the applied voltage, the flow rates of the core and shell
solutions can also influence the Co-ES products. As the flow rate decreases, the droplet size
also decreases. This phenomenon occurs because less electric force is needed to overcome
the hydrodynamic forces at lower flow rates [104].
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Figure 9. Schematic illustrating Co-ES setup. Step (A): Polymer solutions for the shell and drugs for
the core are loaded into the respective outer and inner sections of a coaxial needle, which is connected
to syringe pumps that control the jetting speeds of the solutions. Step (B): Upon application of high
voltage, the charged solutions form a stable double-layered conical structure (i.e., Taylor cone) at the
needle tip, subsequently breaking into core-shell droplets. Rapid solvent evaporation in air results in
the formation of dense microparticles with a core-shell structure. Step (C): The microparticles are
collected using either aluminum foil or a water bath [105]. Copyright 2022 ScienceDirect.

The materials used in Co-ES play a vital role in influencing surface tension, viscosity,
and electrical conductivity. Electrical conductivity is related to the liquid jet’s stability; ad-
justing the core liquid’s electrical conductivity helped achieve a stable Taylor cone [106,107].
The purpose of using Co-ES is to form core–shell nano-/microparticles. To form particles,
the outer solution needs to be completely coated on the inner liquid, and a stable liquid
jet can be achieved by adjusting the surface tension by adding surfactants such as Tween
80 or polyvinyl alcohol (PVA) [97,108,109]. Viscosity is the measure of a fluid’s resistance
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to flow, reflecting the strength of internal molecular interactions. In Co-ES, the liquid can
transfer electrical stress through viscosity to form a stable cone-shaped jet. The shell liquid
should have sufficient viscosity to coat the core. The low viscosity in the shell liquid makes
forming the cone jet difficult. However, suppose the viscosity of the shell liquid is too high.
In that case, a significantly large electric field is required to overcome the high viscosity
and drag the liquid out for cone-jet formation [102,107,110]

3.1. Co-ES Setup

Co-ES needs two syringes loaded with two solutions. The voltage power supply
connects the positive to the spinneret and the ground to the collector. The syringe fills with
a solution that can produce particles, usually with a polymer solution and additives. The
solution is squirted at a constant flow rate with the syringe pump; the syringe pump can ad-
just the flow rate. In near-field electrospraying/electrospinning, 5–25 kv is usually applied
to the spinneret, and the distance between needles and the collector is 5–25 cm [93,111,112].
The polymers should have sufficient viscosity to produce the particles via ES [113,114]. The
Co-ES can produce micro- or nanoparticles with multiple layers with more than one solu-
tion. The Co-ES has the potential advantage of increasing the encapsulation effectiveness,
injecting diverse additives into particles, and adjusting the morphology of particles. In
a typical Co-ES process, the polymer solution is loaded into the syringe and attached to
the pump. The spherical polymer solution exits through needle tips when the voltage is
not applied. After the voltage is applied to the metal tips, the spherical shape turns into
the cone shape of the droplets due to the repulsive force between the positive charges at
the polymer droplet’s surface and the conductive collector; the cone shape is called Taylor
Cone [94,115]. Figure 10 shows that a low-concentration polymer liquid in a high flow
rate forms very tiny liquid droplets under a high voltage (15–25 kV). The products on the
collector are micro- or nano-sized particles of various sizes and shapes. The morphology
of products can be controlled through the ES parameters to produce solid or porous parti-
cles [116]. The electrical field elongates the core and shell solution at the tips of the metal
needle to become a cone shape [117]. This phenomenon helps control the morphology of
polymer particles in organic solvents. The controlled morphology of particles at micro-
or nanoscales can be used in many applications. These particles can encapsulate various
substances, including food additives [118], drugs [119], and functional materials [120]. The
Co-ES can adjust the particle size range to achieve optimized encapsulation [95]. Also, in
order to control the diameter of the spray, a metal ring connected to a voltage supply was
placed in the path of the ES jet [121].
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3.2. Nano-/Microparticles for Drug Delivery Systems

Active pharmaceutical ingredients (APIs) are used in medicine to treat diseases, mak-
ing the precise delivery of APIs to the human body important [123]. Drug delivery systems
(DDSs) have various delivery methods, including oral, nasal, injection, and inhalation [124].
Challenges for DDSs include controlling drug loading, reducing side effects, addressing
random distribution, and preventing drug accumulation in the body [125]. Controlling
the concentration of therapeutic compounds is crucial for minimizing side effects and
toxicity. In recent years, the controlled-release DDS has gained tremendous attention for
its ability to improve the effectiveness of drug delivery by enhancing control over the
release process [126,127]. This goal can be achieved by designing carriers that deliver
precise amounts of the target drug. Nano-/microparticles are widely used in DDSs, en-
abling the controlled release of therapeutic agents to specific target organs. They offer
benefits such as reduced side effects, controlled dosage, and precise release percentages.
Many nano-/microparticles have been chosen as drug delivery carriers like polymers [128],
silicon or carbon material [129,130], liposomes [131], and magnetic materials [132–134].
Currently, nanotechnology has rapidly advanced in the treatment of diseases such as lung
cancer [135], breast cancer [136], atherosclerotic cardiovascular disease [137], and brain
cancer [138]. The advantages of using nano-/microparticles as drug carriers include their
biocompatibility, efficient drug loading, and biodegradability [139,140]. Data have proven
that the combination of proteins with nanomedicines facilitated the assembly of protein
subunits to deliver drugs on-site to specific tumors [141,142]. Nanoliposomes, composed
of bilayer lipids containing an aqueous reservoir, are used in DDSs. It has been chosen to
deliver hydrophilic and hydrophobic drugs since many anticancer drugs are hydrophobic
compounds. Nanoliposomes serve as suitable carriers for their dissolution without the use
of harmful organic solvents [143,144].

As nano-/microparticles are developed as biocompatible carriers for DDSs, the syn-
thesis method for producing nano-/microcarriers with drugs becomes crucial. Co-ES can
generate spherical-shaped particles with various cores/shells, enabling the encapsulation
of multiple drugs in the core [95,145]. Extensive studies have explored this aspect by
controlling the constant flow rate of the core and shell solution to produce particles with
different drugs. The objective is to regulate the release rate of drugs [146]. The common ma-
terials used to create a multilayer hard shell include poly(lactide-coglycolide) (PLGA) [147],
poly(lactide) (PLA) [148], and gelatin [98]. The advantage of Co-ES lies in its ability to
preserve the bioactivity of the payload, making it suitable for encapsulating proteins, an-
tibodies, and sensitive drugs [96,149]. Furthermore, Co-ES can effectively encapsulate
drugs, achieving a high encapsulation rate of up to 75% for estradiol-loaded PLGA cap-
sules [145]. By adjusting the parameters and surrounding environment of Co-ES, precise
control over the drug release rate has been achieved, thereby meeting specific therapeutic
requirements [94,150].

4. Stimuli-Responsive Drug Delivery Systems

Drug delivery systems (DDSs) can be categorized into various types based on their
characteristics and applications, including targeted DDSs, transdermal DDSs, oral DDSs,
responsive DDSs, etc. [151–154]. Stimuli-responsive DDSs have unique characteristics,
which can deliver loaded drugs with control of dosing and release time, responding to
both exogenous and endogenous stimuli [155]. A stimuli-responsive DDS’s advantage is
its capability for drug release under various external or internal stimuli, even achieving
dual/multiple responsiveness. This DDS can efficiently control the loading of the dose
and sustainably release the drug. So far, many types of stimuli-responsive DDSs have
been developed and researched, including temperature, light, pH, magnetic, and electrical
responses [156–160].

Endogenous stimuli include both internal and biological stimuli. In this type of
DDS, the synthesis of nanocarriers requires an appropriate material that responds to spe-
cific endogenous stimuli, causing the structure to break and facilitating immediate drug
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release. For instance, pH-responsive DDSs release drugs when the pH reaches a spe-
cific value, breaking the structure to release the drug into the surroundings (Figure 11).
pH-responsive DDSs are capable of facilitating therapeutic release inside cells and tis-
sues. For example, tumor tissue has a slight pH difference compared to normal tissue,
allowing nanocarriers to release drugs in the tumor tissue while maintaining the intact
structure in normal tissues. Common pH-responsive materials include liposomes, poly-
mers, carbons, etc. Other endogenous stimuli include enzyme responsiveness and redox
responsiveness [122,155,161–164].
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Exogenous stimuli include temperature, magnetic fields, UV light, and electric fields.
These disrupt the structure of the selected nanocarrier and release the loaded drug into
the targeted tissue [166–168]. For example, temperature-responsive DDSs can keep the
drug at normal physiological temperature within specific nanocarriers but release the drug
when the temperature reaches a threshold value in diseased tissue. Some diseased or
tumor tissues often have higher temperatures, approximately around 40 ◦C to 42 ◦C or
even higher [169,170]. Poly(N-isopropyl acrylamide) (PNIPAM) is a potential material for
thermo-responsive DDS. It forms a hydrophobic globule when the temperature exceeds the
low critical solution temperature, causing drug release due to hydrophobic interactions.
However, if the temperature drops below 32 ◦C, the PNIPAM coil exhibits different solu-
bility in water [171,172]. Figure 12 illustrates the transmittance curves of PNIPAM under
varying temperatures. On the left, the curve represents the status of polymers near their
lower critical solution temperature (LCST). As the temperature increases, the transmission
decreases, indicating a transition from a liquid-like to a solid-like state. Conversely, on
the right, the curves show the behavior of polymers near their upper critical solution
temperature (UCST). As the temperature rises, the transmittance increases, suggesting a
transition from a solid to a liquid-like state [165].
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4.1. pH-Responsive DDS

A pH-responsive drug delivery system is an endogenous stimuli-responsive DDS. The
drug release depends on the pH of organs, tissues, or cells. pH values are suitable stimuli
for controlled drug release due to the variations in pH values among different tissues,
organs, and cells [174]. This property enables the controlled delivery of drugs at specific
sites and times, thereby enhancing the effectiveness of therapy and improving accuracy.
For example, the pH value is different in the tumor (6.4–7.0), stomach (1.5–3.5), small
intestine (5.5–6.8), colon (6.4–7.0), and lysosome (4.5–5.0) [175,176]. Inflammatory tissues
and tumors have lower pH values than blood and normal tissues. The physiological pH
values for humans are typically around pH 7.4 [177,178]. Hydrogels have been proven to be
pH-stimuli-responsive materials, playing a crucial role in biomedical fields. They are water-
based materials with high water percentages and water retention. Additionally, hydrogels
have similar physical properties to living tissues. They exhibit responsiveness to changes
in the acidity or alkalinity of the surrounding environment [174,179]. A dual-stimuli-
responsive DDS can be obtained using hydrogels, such as through the addition of a second
temperature-responsive material or a redox stimuli-responsive material. For example, the
copolymer poly (N-isopropyl acrylamide-co-propyl acrylic acid-co-butyl acrylate) was
synthesized as a hydrogel substrate. This material exhibited a liquid state at pH 7.4 and
37 ◦C, transitioning into a physical gel state under conditions of pH 6.8 and 37 ◦C [180].
Inorganic pH-responsive materials have more significant advantages in biocompatibility,
modification, and thermal stability compared to organic materials. The pH-responsive
inorganic materials include carbon-based nanostructures, mesoporous silica, and calcium
silicate-based materials [162,181,182]. Calcium phosphate-based nanomaterials are suitable
as pH-responsive materials due to their high biocompatibility. Under acidic conditions,
calcium phosphate-based materials decompose into Ca2+ and PO4

3− ions, the body’s
fundamental elements [174,183]. Figure 13 presents the release profile of indomethacin
(IDM) encapsulated in ZIF-8 under varying pH conditions. IDM was used as a model drug,
and its release was measured at each time point and recorded in the release profile. The
data clearly show that the highest release occurs in the acidic environment at pH 5.0, while
the release in the alkaline environment is lower than that in the neutral environment [173].
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4.2. Temperature-Responsive DDSs

Temperature-responsive DDSs, one of the exogenous-stimuli-responsive DDSs, use
nanocarriers to control the release of drug molecules at varying temperatures. Temperature
is applied to the nanoparticles as an external stimulus. When a pathological lesion naturally
increases the temperature or external factors elevate the temperature, the drug is released
to exert its therapeutic effect. The LCST refers to a specific temperature at which a polymer
material dissolves through phase separation and transitions into a solution [185]. This prop-



Materials 2024, 17, 3070 14 of 23

erty is unique to polymeric materials. Many temperature-responsive nanoparticles have
been designed based on this characteristic [184]. Temperature-responsive nanoparticles
have been constructed from metals, carbons, liposomes, carbon nanotubes (CNTs), and
magnetic materials [186,187]. To date, many biocompatible temperature-responsive poly-
mers have been used for DDSs. The core requirement is that the temperature-responsive
material is able to release the drug with a slight temperature change [172,188]. Several
promising materials include poly(N-isopropyl acrylamide) (PNIPAM) derivatives [189],
layer-by-layer (LBL)-assembled nanocapsules, and lauric acid–steric acid mixtures [30,188].

Common methods include phase separation, co-precipitation, and electrospray to syn-
thesize temperature-responsive nanoparticles [190–192]. The temperature-sensitive DDS
finds applications in the delivery of anticancer medications and imaging agents [193,194].
The advantages of temperature-responsive DDSs include low toxicity, prevention of over-
dosage, and more controllable drug release [195]. Hydrogels have been extensively used
in biomedical applications, such as wound healing. These materials show temperature-
responsive characteristics, undergoing a solid-to-gel transition in response to temperature
changes [196]. PNIPAM is used as hydrogels with significant potential for biomedical
applications. Formulating PNIPAM with other functional components can maximize its ef-
fectiveness and avoid disadvantages, such as low drug loading capacity. PNIPAM exhibits
hydrophilicity below its LCST and transitions to hydrophobicity above the LCST, as shown
in Figure 14. Additional stimulus materials can be introduced to achieve a multi-stimuli
DDS [184].
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4.3. pH/Temperature Dual-Responsive DDSs

Based on pH- and temperature-responsive materials, dual or multiple responsiveness
can be established. The pH/temperature dual-responsive DDS is designed to respond to
changes in the pH and temperature of the surrounding environment, providing a novel
approach to controlling drug release. The dual-responsive DDS can be designed to create
a more precise drug control system, improving targeted and gradual drug release. This
system also holds the potential to reduce side effects and increase the therapeutic efficacy
of drugs. Hydrogels, as pH-responsive materials, undergo a solid–gel transition with
changes in pH. Hydrogels can absorb and retain a large volume of aqueous content as
biodegradable materials. They can be used to design a pH/temperature dual-responsive
DDS. The temperature-responsive PNIPAM is suitable for combining with hydrogels.
Succinylated cellulose nanocrystals (Su-CNC) are synthesized by incorporating hydrogels
and PNIPAM through free radical polymerization reactions. At temperatures of 35 ◦C
and above, Su-CNC showed responses to temperature changes, resulting in swelling
and increased hydrophobicity, consequently leading to hydrogel shrinkage. Moreover, a
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notable change in PNIPAM occurred when the pH shifted from 8 to 2 [197]. The LCST of
PNIPAM is around 32 ◦C, which is close to physiological body temperature, making it an
ideal material for DDSs. When the temperature decreases to the LCST, the drug remains
encapsulated within the crystal, as illustrated in Figure 15. However, upon temperature
increase beyond the LCST, PNIPAM transitions to a hydrophilic state. Additionally, at
elevated pH levels, the polymers swell, causing the drug to be retained within crystals.
Figure 15 demonstrates that drug release occurs only when the temperature increases and
the pH decreases [197–199].
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5. Summary and Outlook

This review has explored the intricate design and application of stimuli-responsive
DDSs that leverage the unique properties of PCMs and MOFs facilitated by coaxial elec-
trospraying. We discussed the fundamental aspects of PCMs, focusing on their ability
to undergo physical state changes at predefined temperatures, which is critical for con-
trolled drug release. Specifically, the use of lauric acid and stearic acid as PCMs in DDSs
exemplifies how these materials can act as thermal gates, melting slightly above body
temperature to release encapsulated drugs. In parallel, the properties and functionalities of
MOFs, particularly ZIF-8, were detailed, highlighting their stability under physiological
conditions and responsiveness to acidic environments, which are beneficial for targeted
drug delivery. The integration of these materials through coaxial electrospraying allows for
the fabrication of core–shell structures that encapsulate drugs within MOFs surrounded by
PCM layers, ensuring controlled release in response to temperature and pH stimuli.

Looking forward, the development of dual-stimuli DDSs presents several avenues
for further research and optimization. The potential to refine the coaxial electrospraying
process to enhance encapsulation efficiency and payload capacity is vast. Future studies
could explore the incorporation of multiple responsive materials to address a broader range
of physiological signals, such as redox potential and enzymatic activity, which could lead to
more precise targeting and release mechanisms. Additionally, the environmental stability
and reusability of these systems need a thorough investigation to assess their long-term
performance and viability in clinical settings. As the field progresses, regulatory consider-
ations and scalability of production will become increasingly important in transitioning
from laboratory research to practical applications. Collaborative efforts between chemists,
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material scientists, and biomedical engineers will be pivotal in overcoming these challenges
and realizing the full potential of advanced drug delivery systems.
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