Identifying Chewing Alterations in a Parkinsonian Model

Nicholas Zanghi
Rowan University

Taylor Good
Rowan University

Shivam Patel
Rowan University

Francois Gould
Rowan University

Follow this and additional works at: https://rdw.rowan.edu/stratford_research_day

Part of the Disease Modeling Commons, Musculoskeletal System Commons, Nervous System Diseases Commons, Pathological Conditions, Signs and Symptoms Commons, and the Stomatognathic System Commons

Let us know how access to this document benefits you - share your thoughts on our feedback form.

https://rdw.rowan.edu/stratford_research_day/2024/may2/14

This Poster is brought to you for free and open access by the Conferences, Events, and Symposia at Rowan Digital Works. It has been accepted for inclusion in Rowan-Virtua Research Day by an authorized administrator of Rowan Digital Works.
Identifying Chewing Alterations in a Parkinsonian Model
Nicholas P. Zanghi, Taylor Good, Shivam Patel, Dr. Francois Gould

Background

- Patients suffering from Parkinson’s Disease will typically experience a range of motor and nonmotor symptoms that affect individuals to varying degrees and with differing patient perceptions.
- It is a common neurodegenerative disorder that presents with characteristic signs such as pill-rolling tremor, stooped posture, and shuffling gate.
- Parkinson’s symptoms can be remediated through treatment, yet, the disruption of oropharyngeal function is not responsive.
- Understanding the deficits it may induce in patients is key to developing the proper treatments.

Significance

- Dysphagia disables patients of meeting their most basic physiologic needs for survival, food and water (Defined by Maslow’s Hierarchy of needs).
- With this in mind, we seek to lay the foundation for understanding mastication kinematics so that these important needs for the survival of humans can be understood and met with future treatment.
- This rotenone-induced rat model of Parkinson’s Disease characterizes functional deficits in musculoskeletal swallowing dynamics.

Methods

Training

- Proper PPE
- Rat Handling
- Rat Behavior Training for our Research Purposes
- Food and Water Restriction

Surgery

- Implantation of Radio-Opaque Beads
- Implant Sites: Anterior Upper Jaw (AUJ), Posterior Upper Jaw (PUJ), Tongue (T), Lower Jaw (LJ)

Rotenone Injections (Parkinson’s Induction) (2 doses, up to 16 days)

- Continued Water Restriction
- Rotenone Neuro behavior

Fluoroscopic Analysis

- Analysis of MasticationKinetics Changes Between Pre- and Post- Parkinson’s Induction

Results

- Parkinson’s induction (through Rotenone injections) demonstrated an increase in anterior/posterior range of motion of the tongue, regardless of dose.
- This finding was significant compared to baseline (rats before Rotenone injections).

Other Findings

- No effect on chew cycle duration between different doses of Rotenone
- No effect of treatment time on chew cycle duration
- No impact of dose on jaw ROM
- Jaw range of motion is decreased after 16 days compared to before treatment
- No effect of dose or duration of treatment on timing of the tongue’s AP position

Future Directions

- Alter treatment duration
- Alter Rotenone concentration
- Utilize alternate measurements to assess oropharyngeal dysfunction

Figure 1. – Tongue anterior/posterior range of motion for Rotenone doses 2.75mg/kg and 3mg/kg

Figure 2. – Relative time of minimum gape for Rotenone doses 2.75mg/kg and 3mg/kg

Discussion

- Parkinsonian oropharyngeal dysfunction and weight loss was noted among the rats injected with Rotenone, indicating the method of induction was proper.
- With Parkinson’s we typically do not see an increase in range of motion whatsoever, therefore, the significant increase in the anterior/posterior range of motion of the tongue was unexpected.
- An expected outcome of Parkinson’s would be rigidity or tremor, therefore, the significant delay in jaw closure was expected.

References