5-1-2018

Synthesis and cytotoxicity of azaheterocyclic compounds

Keyur M. Pandya
Rowan University, keyurexton@gmail.com

Follow this and additional works at: https://rdw.rowan.edu/etd

Part of the Medicinal and Pharmaceutical Chemistry Commons

Let us know how access to this document benefits you - share your thoughts on our feedback form.

Recommended Citation
https://rdw.rowan.edu/etd/2549

This Thesis is brought to you for free and open access by Rowan Digital Works. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of Rowan Digital Works. For more information, please contact LibraryTheses@rowan.edu.
SYNTHESIS AND CYTOTOXICITY OF AZAHETEROCYCLIC COMPOUNDS

by

Keyur Pandya

A Thesis

Submitted to the
Department of Chemistry & Biochemistry
College of Science & Mathematics
In partial fulfillment of the requirement
For the degree of
Master of Science in Pharmaceutical Sciences
at
Rowan University
May 19, 2017

Thesis Chair: Subash Jonnalagadda, Ph.D.
Dedications

I dedicate my dissertation work to my foster parents Shailesh Patel, Lata Patel, Dilip Kapadia and Geeta Kapadia who have been a constant source of support and encouragement during the challenges of graduate school life and I am truly thankful for having you in my life. A special feeling of gratitude to my loving parents Manhar Pandya and Jyotika Pandya who have always loved me unconditionally. My wife Neha Patel never left my side and is very special. I also dedicate this dissertation to my brother Chirag and sister Tami. I will always appreciate all they have done for me.
Acknowledgements

First, I would like to thank everyone at Rowan University who have helped me in different ways during my stay in New Jersey.

This thesis was carried out at Rowan University Department of Chemistry & Biochemistry under the direction of Prof. Dr Subash Jonnalagadda.

I want to thank my research supervisor Prof. Dr Subash Jonnalagadda for welcoming me into his group and giving me an opportunity to work as a part of his research group and for being there whenever I needed him during my master program. He has been very understanding, he has the interest of his students at heart, he takes the time to get to know his students as individuals and for that, I am sincerely grateful. I thank him from the bottom of my heart for his keen guidance and effort he has put into me in the scientific training field.

I am also very thankful to Suman Pathi. He was a postdoctoral fellow in our lab, who helped me during my entire research work at Rowan.

My sincere thanks to my thesis committee members Dr Chun Wu and Dr Kandalam Ramanujachary for reading this thesis and providing critical input. Their comments have been instrumental in making this thesis more effective and I’m grateful for their valuable suggestions and information they have shared with me.
Abstract

Keyur Pandya
SYNTHESIS AND CYTOTOXICITY OF AZA HETEROCYCLIC COMPOUNDS
2017-2018
Subash Jonnalagadda, Ph.D.
Master of Science in Pharmaceutical Sciences

Multicomponent coupling reactions (MCRs) have been known for a long time and one such reaction that utilizes isocyanides is Passerini reaction. It is a powerful tool to synthesize libraries of different compounds. Azaheterocyclic compounds play an important role in medicinal chemistry. Motifs such as imidazoles, piperazines, pyrazoles, pyridines, triazoles, etc. are routinely observed in several compounds of pharmacological interest. Several natural products also contain these motifs in them. We have undertaken a library synthesis of heterocyclic molecules driven by our group’s long-standing interest of synthesizing medicinally relevant small molecules employing green chemistry techniques.

This thesis details our efforts on the development of novel synthetic methodologies for the synthesis of functionalized azaheterocyclic compounds as potential anti-cancer agents. We initiated the synthesis of these compounds employing Passerini reaction as the key step. The biological evaluation of these synthetic derivatives showed some promise as anti-cancer agents.
Table of Contents

Abstract .. v
List of Figures ... viii
List of Tables .. xii

Chapter 1: Introduction ... 1
 Multicomponent Coupling Reactions ... 1
 History of Multicomponent Chemistry .. 1
 Synthesis of Isocyanides .. 5
 Heterocyclic Motifs ... 9

Chapter 2: Azaheterocyclic Compounds via Passerine Reaction 14
 Preparation of Chloroquinoline Conjugates ... 14
 Preparation of Piperonal Conjugates ... 19
 Preparation of Chloropyridine Conjugates .. 22
 Preparation of Pyrazole Conjugates ... 26
 Conclusions .. 31

Chapter 3: Experimental Procedures ... 32
 Materials .. 32
 Instrumentation .. 32
 Procedures ... 32
 Method for the Preparation of 2-Chloroquinoline-3-Carbaldehyde 32
 Procedure for the Preparation of 4-(Bromomethyl)benzoic Acid 32
 General Reaction Procedure for Preparation of Passerini Product 33
Table of Contents (Continued)

General Procedure for the Amination of Passerini Products 33
Preparation of N-Phenyl-N’-(1-Phenylethylidene)-Hydrazine 47
Preparation of 1, 3-Diphenyl-1H-Pyrazole-4-Carboxaldehyde 47
Preparation of the Aryl-1-Phenylpyrazole-4-Carboxylic Acid 48

Chapter 4: Spectral Characterization ... 51

References ... 65
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1. Probiotic synthesis of adenine</td>
<td>1</td>
</tr>
<tr>
<td>Figure 2. Strecker synthesis of α-aminoacids</td>
<td>2</td>
</tr>
<tr>
<td>Figure 3. Hantzsch dihydropyridine synthesis</td>
<td>2</td>
</tr>
<tr>
<td>Figure 4. Hantzsch pyrrole synthesis</td>
<td>2</td>
</tr>
<tr>
<td>Figure 5. Biginelli synthesis of dihydropyrimidines</td>
<td>3</td>
</tr>
<tr>
<td>Figure 6. Robinson synthesis of tropinone</td>
<td>3</td>
</tr>
<tr>
<td>Figure 7. Passerini multicomponent coupling reaction</td>
<td>4</td>
</tr>
<tr>
<td>Figure 8. Bucherer-Bergs synthesis of hydantoin</td>
<td>4</td>
</tr>
<tr>
<td>Figure 9. Asinger reaction</td>
<td>4</td>
</tr>
<tr>
<td>Figure 10. Ugi four component coupling reaction</td>
<td>5</td>
</tr>
<tr>
<td>Figure 11. Gewald’s reaction</td>
<td>5</td>
</tr>
<tr>
<td>Figure 12. Lieke synthesis of isocyanides</td>
<td>6</td>
</tr>
<tr>
<td>Figure 13. Hoffmann synthesis of isocyanides</td>
<td>7</td>
</tr>
<tr>
<td>Figure 14. Synthesis of isocyanides via dehydration of formamide</td>
<td>8</td>
</tr>
<tr>
<td>Figure 15. Synthesis of isocyanides from germinal dihalides</td>
<td>8</td>
</tr>
<tr>
<td>Figure 16. Synthesis of isocyanides from benzoxazole</td>
<td>9</td>
</tr>
</tbody>
</table>
List of Figures (Continued)

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 17. Quinoline-based antimalarial drugs.</td>
<td>10</td>
</tr>
<tr>
<td>Figure 18. Pyridine-based drugs.</td>
<td>11</td>
</tr>
<tr>
<td>Figure 19. Pyrazole-based natural products.</td>
<td>12</td>
</tr>
<tr>
<td>Figure 20. Pyrazole-based drugs.</td>
<td>13</td>
</tr>
<tr>
<td>Figure 21. Preparation of chloroquinoline conjugates.</td>
<td>14</td>
</tr>
<tr>
<td>Figure 22. Preparation of p-bromomethylbenzoic acid.</td>
<td>15</td>
</tr>
<tr>
<td>Figure 23. Preparation of 2-chloroquinoline aldehyde.</td>
<td>16</td>
</tr>
<tr>
<td>Figure 24. Passerini reaction with 2-chloroquinoline aldehyde.</td>
<td>16</td>
</tr>
<tr>
<td>Figure 25. Preparation of 2-chloroquinoline-morpholine conjugate.</td>
<td>17</td>
</tr>
<tr>
<td>Figure 26. Preparation of 2-chloroquinoline-based amines.</td>
<td>17</td>
</tr>
<tr>
<td>Figure 27. 2-Chloroquinoline-based amines.</td>
<td>18</td>
</tr>
<tr>
<td>Figure 28. Preparation of piperonal-based amines.</td>
<td>20</td>
</tr>
<tr>
<td>Figure 29. Piperonal-based amines.</td>
<td>21</td>
</tr>
<tr>
<td>Figure 30. Preparation of 2-chloropyridine-based amines.</td>
<td>23</td>
</tr>
<tr>
<td>Figure 31. 2-Chloropyridine-based amines.</td>
<td>24</td>
</tr>
<tr>
<td>Figure 32. Preparation of quaternary ammonium salts.</td>
<td>26</td>
</tr>
</tbody>
</table>
List of Figures (Continued)

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 33. Preparation of pyrazole derivatives.</td>
<td>27</td>
</tr>
<tr>
<td>Figure 34. Preparation of phenylhydrazone.</td>
<td>28</td>
</tr>
<tr>
<td>Figure 35. Preparation of pyrazole aldehyde.</td>
<td>28</td>
</tr>
<tr>
<td>Figure 36. Passerini reaction with pyrazole aldehyde.</td>
<td>29</td>
</tr>
<tr>
<td>Figure 37. Oxidation of pyrazole aldehyde.</td>
<td>29</td>
</tr>
<tr>
<td>Figure 38. Passerini reaction with pyrazole acid.</td>
<td>30</td>
</tr>
<tr>
<td>Figure 39. 400 MHz 1H NMR of compound 74 in DMSO.</td>
<td>51</td>
</tr>
<tr>
<td>Figure 40. 100 MHz 13C NMR of compound 74 in DMSO.</td>
<td>52</td>
</tr>
<tr>
<td>Figure 41. 400 MHz 1H NMR of compound 75b in DMSO.</td>
<td>53</td>
</tr>
<tr>
<td>Figure 42. 100 MHz 13C NMR of compound 75b in DMSO.</td>
<td>54</td>
</tr>
<tr>
<td>Figure 43. 400 MHz 1H NMR of compound 80 in DMSO.</td>
<td>55</td>
</tr>
<tr>
<td>Figure 44. 100 MHz 13C NMR of compound 80 in DMSO.</td>
<td>56</td>
</tr>
<tr>
<td>Figure 45. 400 MHz 1H NMR of compound 81b in DMSO.</td>
<td>57</td>
</tr>
<tr>
<td>Figure 46. 100 MHz 13C NMR of compound 81b in DMSO.</td>
<td>58</td>
</tr>
<tr>
<td>Figure 47. 400 MHz 1H NMR of compound 83 in DMSO.</td>
<td>59</td>
</tr>
<tr>
<td>Figure 48. 100 MHz 13C NMR of compound 83 in DMSO.</td>
<td>60</td>
</tr>
</tbody>
</table>
List of Figures (Continued)

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 49. 400 MHz 1H NMR of compound $84b$ in DMSO</td>
<td>...61</td>
<td></td>
</tr>
<tr>
<td>Figure 50. 400 MHz 1H NMR of compound $84b$ in DMSO</td>
<td>...62</td>
<td></td>
</tr>
<tr>
<td>Figure 51. 400 MHz 1H NMR of compound $95b$ in DMSO</td>
<td>...63</td>
<td></td>
</tr>
<tr>
<td>Figure 52. 400 MHz 1H NMR of compound $95b$ in DMSO</td>
<td>...64</td>
<td></td>
</tr>
<tr>
<td>Table</td>
<td>Page</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>Table 1. In vitro Cytotoxicity of 2-Chloroquinoline Derivatives</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>Table 2. In vitro Cytotoxicity of Piperonal Derivatives</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>Table 3. In vitro Cytotoxicity of 2-Chloropyridine Derivatives</td>
<td>25</td>
<td></td>
</tr>
</tbody>
</table>
Chapter 1

Introduction

Multicomponent Coupling Reactions

The arrangement of specific sets of complicated molecules can be easily accomplished by utilizing diversity-oriented synthesis. A multi-component reaction (MCR) merges three or more structural motifs into one unique compound. With a limited number of reaction steps, MCRs provide easy access to large libraries of organic compounds with diverse functionalization.

History of Multicomponent Chemistry

The approach of MCR is not obscure in nature and it appears that adenine 1, one of the key components of DNA and RNA, was prebiotically assembled by the arrangement of five fragments of hydrogen cyanide, in a process facilitated by ammonia under prebiotic pressure conditions (Figure 1). The additional nucleic bases have also been created under similar conditions involving HCN and water.\(^1\)

\[
\begin{align*}
5 \text{ HCN} & \rightarrow \text{ 1} \\
\end{align*}
\]

Figure 1. Probiotic synthesis of adenine

Strecker’s synthesis of \(\alpha\)-amino nitriles 3 is one of the first examples of multicomponent reactions.\(^2\) Strecker demonstrated an MCR of aldehydes 2 with
hydrogen cyanide and ammonia to generate \(\alpha \)-amino nitriles 3, which were further hydrolyzed to provide easy access to \(\alpha \)-amino acids 4 (Figure 2).

\[\text{Figure 2. Strecker synthesis of } \alpha \text{-aminoacids} \]

Hantzsch described the synthesis of symmetrical dihydropyridines 6 by reacting aldehydes 2 with 2 moles of \(\beta \)-ketoesters 5 in the presence of ammonia (Figure 3).\(^3\) Hantzsch also demonstrated the synthesis of pyroles 9 by combining primary amines 7 with \(\beta \)-ketoesters 5, and \(\alpha \)-halogenated \(\beta \)-ketoesters 8.\(^4\)

\[\text{Figure 3. Hantzsch dihydropyridine synthesis} \]

\[\text{Figure 4. Hantzsch pyrrole synthesis} \]

\[\text{H} \]

\[\text{R}_1 \text{O} + + \text{R}_2 \text{O} \text{CO}_2 \text{Et} \text{NH}_3 \text{HN} \text{CO}_2 \text{Et} \text{R}_1 \text{CO}_2 \text{Et} \text{R}_2 \text{H} \]

\[\text{EtO}_2 \text{C} \text{R}_1 \text{CO} + \text{R}_3 \text{NH}_2 + \text{EtO}_2 \text{C} \text{Br} \text{R}_1 \rightarrow \text{EtO}_2 \text{C} \text{N} \text{R}_3 \text{R}_2 \]
The Biginelli reaction first explained in 1893 is a multicomponent synthesis of dihydropyrimidines 13 via acid-catalyzed cyclocondensation of β-keto esters 10, aromatic aldehydes 11, and urea 12 (Figure 5).5

![Figure 5. Biginelli synthesis of dihydropyrimidines](image)

Sir Robert Robinson showed the first prominent use of MCRs in natural product chemistry via the synthesis of the alkaloid tropinone 18 starting from succinic dialdehyde 14, methylamine 15, and calcium salt of acetone dicarboxylic acid 16 (Figure 6).6

![Figure 6. Robinson synthesis of tropinone](image)

Passerini discovered the first MCR reaction involving isocyanides in 1921. In this reaction, carboxylic acids, carbonyl compounds, and isocyanides react with each other in a one-step transformation affording α-acyloxy carboxamides 22 (Figure 7).7-10 While there have been multiple mechanisms proposed for this reaction, the most commonly invoked mechanism involves the attack of isocyanide in a concerted process.11
Figure 7. Passerini multicomponent coupling reaction

Bucherer and Bergs outlined a four-component coupling reaction in 1934 for the synthesis of hydantoins via a one-pot reaction of aldehyde 2 with HCN, NH₃ and CO₂. Hydantoins could be efficiently converted into α-amino acids through simple hydrolysis (Figure 8).¹²

Figure 8. Bucherer-Bergs synthesis of hydantoin

Another illustration of MCR is the Asinger reaction disclosed in 1958. In this reaction, α-thiolocarbonyl compounds 25 when treated with ketones 24 in the presence of ammonia yielded thiazolines 26 (Figure 9).¹³

Figure 9. Asinger reaction
In 1959, Ugi et al. expanded the utility of Passerini reaction for the synthesis of α-acylamino amides \(28 \) via the treatment of aldehydes \(2 \) with primary amines \(27 \), carboxylic acids \(19 \), and isocyanides \(21 \) (Figure 10).\(^{14}\)

\[
\text{R}_1 \text{CHO} + \text{R}_2 \text{NH}_2 + \text{R}_3 \text{COOH} + \text{R}_4 \text{NC} \rightarrow \text{R}_2 \text{HN} - \text{R}_4
\]

Figure 10. Ugi four component coupling reaction

Gewald et al. reported the synthesis of polysubstituted thiophenes \(31 \) via the reaction of ketones \(29 \) with active methylene compounds \(30 \) in the presence of sulfur and tertiary amine base such as morpholine (Figure 11).\(^{15}\)

\[
\text{R}_1 \text{CO} - \text{R}_2 + \text{NC} - \text{X} \rightarrow \text{S}_8 \text{Base} \rightarrow \text{R}_1 \text{S} - \text{X} - \text{R}_2 \text{NH}_2
\]

Figure 11. Gewald’s reaction

Synthesis of Isocyanides

For a long time, isocyanides (isonitriles) have been described as a rare class of stable organic compounds with a divalent carbon. Most isocyanides have an unpleasant
smell, accordingly isocyanides have been examined as promising non-fatal weapons.16 There have been several methods of synthesis reported for isocyanides.17

One of the first methods reported for the preparation of isocyanides 33 involves the reaction of silver cyanide with allyl iodide 32 (Figure 12).18,19 The unpleasant odor associated with this reaction can be minimized via an \textit{in situ} preparation of isocyanide, by reacting the corresponding bromides with silver and potassium cyanide in acetonitrile at 80°C, in the presence of catalytic amount of TEBAC.20

\textbf{Figure 12.} Lieke synthesis of isocyanides

Hofmann reported the synthesis of isocyanides 38 via condensation of the primary amine 36 with a dichlorocarbene 35, produced \textit{in situ} by heating chloroform 34 with potassium hydroxide (Figure 13).21 However, this method suffers from the lack of reproducibility, small yield, and problems associated with the separation of isocyanides from amines. Ugi further upgraded this method by performing it in a biphasic medium - the combination of dichloromethane and water in the presence of a PTC (phase transfer catalyst).22
Ugi also discovered a method for the formation of isocyanides using dehydration of \(N\)-monosubstituted formamides 40, which in turn could be obtained from primary amines 36 and alkyl formate/formic acid 39 (Figure 14).23 Miscellaneous dehydrating agents such as thionyl chloride, phosphorus tribromide, phosphorus pentoxide, phosphorus oxychloride, and oxalyl chloride have been employed in the presence of a base like triethylamine, pyridine, diisopropylethylamine for the conversion of formamide 40 to isocyanide 38.24
Figure 14. Synthesis of isocyanides via dehydration of formamide

Trifluoromethyl isocyanide 44 was synthesized via the treatment of magnesium with gem-dihalide 43 (Figure 15).²⁵

Figure 15. Synthesis of isocyanides from geminal dihalides

Another method for the preparation of isocyanides 48 involves the trapping of organolithium derivatives of oxazoles and benzoxazoles 45 with electrophiles such as acid chloride (Figure 16).²⁶
In our present work we utilized chloroquinoline, chloropyridine, and pyrazole heterocyclic motifs for the diverse functionalization utilizing Passerini reaction. Quinoline moiety is the key building element in many naturally occurring compounds and pharmacologically active substances. Quinoline containing compounds are known to exhibit wide variety of biological activities such as anti-tuberculosis, anti-malarial, anti-bacterial, anti-fungal, anti-protozoic, antibiotic, and anti-asthma. Several quinolones based antimalarial drugs are used in medicine and several others are in clinical trials (Figure 17).
Pyridine based compounds have also been widely utilized as drugs. Niflumic acid 55 is an analgesic and anti-inflammatory medication used for rheumatoid arthritis. Sulfapyridine 56 is used as antibacterial drug. Mepyramine 58, also known as pyrilamine is the first-generation antihistaminic drug. Pinacidil 59 is a cyanoguanidine drug used for treating the symptoms of multiple sclerosis. Picoxicam 60 is a nonsteroidal anti-inflammatory drug (Figure 18).

Figure 17. Quinoline-based antimalarial drugs

![Chemical structures of Quinoline-based antimalarial drugs](image)
Figure 18. Pyridine-based drugs

Piperonal (heliotropin) is an aromatic aldehyde found in many essential oils,45 vanilla and camphor46,47 and has been shown to have antibacterial48 and anxiolytic activities. Additionally, few piperonal derivatives display a promising anticancer activity,49 antileishmanial effect50 and other pharmacological activities.51,52

Pyrazoles play a significant role in natural product and medicinal chemistry. Knorr discovered the antipyretic action of pyrazole derivatives and named the compound antipyrine.53 Kosuge and Okeda isolated 3-n-nonylpyrazole 61 from Houttuynia Cordata, a plant of the piperaceae group from tropical Asia, which displayed antimicrobial activity. They also isolated levo-\(\beta\)-(1-pyrazolyl) alanine 62 from watermelon seeds (Figure 19).54
The pyrazole ring system is present in an array of drugs such as Celecoxib,55 Ionazolac,56 Pyrazofurin,57 Fezolamin,58 Rimonabant,59 Ruxolitinib,60 Crizotinib,61 Tepoxalin62 etc. (Figure 20).63-65 Pyrazoles also play a role in agrochemicals and as bifunctional ligands in metal catalysis.66
Figure 20. Pyrazole-based drugs
Chapter 2

Azaheterocyclic Compounds via Passerini Reaction

Preparation of Chloroquinoline Conjugates

We undertook the synthesis of azaheterocyclic compounds via Passerini reaction and the synthetic scheme is shown in Figure 21. The synthesis was initiated via a three-component coupling between \(p \)-bromomethylbenzoic acid 72, chloroquinoline aldehyde 73, and \(t \)-butylisocyanide. The resulting bromomethylbenzoate 74 was further treated with a variety of secondary amines to produce the target compounds 75 (Figure 21).

\[
\text{72} \quad \text{73} \quad \text{74} \quad \text{75}
\]

Figure 21. Preparation of chloroquinoline conjugates

\(p \)-Bromomethyl benzoic acid 72 was synthesized in 90% yield starting from \(p \)-toluic acid 76 using potassium bromate and sodium thiosulfate at room temperature via benzylic halogenation (Figure 22).\(^{67}\) The compound 72 was confirmed by \(^1\)H-NMR spectral analysis (signals at \(\delta \) 4.7 (2H, benzylic methylene) and at \(\delta \) 12.9 (1H, carboxylic acid).
Figure 22. Preparation of \(\text{p-bromomethylbenzoic acid} \)

2-Chloroquinoline aldehyde \(\text{73} \) was synthesized from acetanilide \(\text{77} \) under Vilsmeier-Haack reaction conditions involving PO\(_3\)Cl and DMF at 80\(^\circ\)C in 89\% yield.\(^{68}\)

The aldehyde \(\text{73} \) was confirmed by \(^1\)H-NMR spectral analysis.

Figure 23. Preparation of 2-chloroquinoline aldehyde

\(\text{p-Bromobenzoic acid} \) \(\text{72} \) was subsequently reacted with chloroquinoline aldehyde \(\text{73} \) and \(t \)-butyl isocyanide in presence of a protic solvent (water) and stirred at room temperature for 12 hours to obtain the \(\alpha \)-acyloxy amide \(\text{74} \) in 94\% yield (Figure 24).
The benzylic bromide in 74 was substituted with morpholine 78a in the presence of DMF and K$_2$CO$_3$ to yield the final target compound 75a (Figure 25). The reaction was carried out at room temperature for 24 hours and the product was obtained in 90% yield.

After standardizing the above substitution, the bromide 74 was further treated with variety of amines such as N-methylpiperazine, imidazole, 4-aminopiperidine, triazole, pyrrolidine, 2-ethylimidazole, 2-methyl-5-methylimidazole, 4-nitroimidazole, and N-butoxycarbonylpiperazine to yield the target amine compounds 75b-j respectively (Figures 26 and 27). All the synthesized compounds were tested for their biological activity against three cancer cell lines SK-MEL (melanoma), MCF-7 and MDA-MB-231 (breast cancer) (Table 1). None of these compounds showed significant cytotoxicity at ~20 μM concentration.
Figure 26. Preparation of 2-chloroquinoline-based amines
Figure 27. 2-Chloroquinoline-based amines
Table 1

In Vitro Cytotoxicity of 2-Chloroquinoline Derivatives.

<table>
<thead>
<tr>
<th>#</th>
<th>Product</th>
<th>Yield (%)</th>
<th>M.P. (°C)</th>
<th>Cytotoxicity (IC₅₀ µM)</th>
<th>CLogP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SKMEL5</td>
<td>MCF-7</td>
</tr>
<tr>
<td>1.</td>
<td>74</td>
<td>96</td>
<td>142-143</td>
<td>>20</td>
<td>>20</td>
</tr>
<tr>
<td>2.</td>
<td>75a</td>
<td>55</td>
<td>119-120</td>
<td>>20</td>
<td>>20</td>
</tr>
<tr>
<td>3.</td>
<td>75b</td>
<td>89</td>
<td>140-145</td>
<td>>20</td>
<td>>20</td>
</tr>
<tr>
<td>4.</td>
<td>75c</td>
<td>51</td>
<td>113-116</td>
<td>19.0</td>
<td>>20</td>
</tr>
<tr>
<td>5.</td>
<td>75d</td>
<td>51</td>
<td>98-99</td>
<td>>20</td>
<td>>20</td>
</tr>
<tr>
<td>6.</td>
<td>75e</td>
<td>70</td>
<td>104-106</td>
<td>>20</td>
<td>>20</td>
</tr>
<tr>
<td>7.</td>
<td>75f</td>
<td>68</td>
<td>103-108</td>
<td>>20</td>
<td>>20</td>
</tr>
<tr>
<td>8.</td>
<td>75g</td>
<td>82</td>
<td>109-111</td>
<td>>20</td>
<td>>20</td>
</tr>
<tr>
<td>9.</td>
<td>75i</td>
<td>88</td>
<td>130-131</td>
<td>>20</td>
<td>>20</td>
</tr>
<tr>
<td>11.</td>
<td>75j</td>
<td>89</td>
<td>105-107</td>
<td>>20</td>
<td>>20</td>
</tr>
</tbody>
</table>

Preparation of Piperonal Conjugates

We then shifted our focus toward the synthesis of piperonal based Passerini adduct 80. The reaction of p-bromomethylbenzoic acid 72 with piperonal 79 and t-butylisocyanide yielded the benzylic bromide 80, which was further treated with variety of secondary amines to yield the target amine compounds 81a-e (Figures 28 and 29). All the synthesized compounds were tested for their biological activity against three cancer cell lines SK-MEL (melanoma), MCF-7 and MDA-MB-231 (breast cancer) (Table 2). None of these compounds showed significant cytotoxicity at ~20 µM concentration.
Figure 28. Preparation of piperonal-based amines
Figure 29. Piperonal-based amines
Table 2

In Vitro Cytotoxicity of Piperonal Derivatives.

<table>
<thead>
<tr>
<th>#</th>
<th>Product</th>
<th>Yield (%)</th>
<th>M.P. (°C)</th>
<th>Cytotoxicity (IC(_{50}) µM)</th>
<th>CLogP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SKMEL5</td>
<td>MCF-7</td>
</tr>
<tr>
<td>1.</td>
<td>80</td>
<td>98</td>
<td>153-155</td>
<td>>20</td>
<td>>20</td>
</tr>
<tr>
<td>2.</td>
<td>81a</td>
<td>92</td>
<td>178-180</td>
<td>>20</td>
<td>>20</td>
</tr>
<tr>
<td>3.</td>
<td>81b</td>
<td>78</td>
<td>92-93</td>
<td>>20</td>
<td>>20</td>
</tr>
<tr>
<td>4.</td>
<td>81c</td>
<td>67</td>
<td>83-84</td>
<td>>20</td>
<td>>20</td>
</tr>
<tr>
<td>5.</td>
<td>81d</td>
<td>54</td>
<td>92-94</td>
<td>>20</td>
<td>>20</td>
</tr>
<tr>
<td>6.</td>
<td>81e</td>
<td>50</td>
<td>120-121</td>
<td>>20</td>
<td>>20</td>
</tr>
</tbody>
</table>

Preparation of Chloropyridine Conjugates

Finally, we synthesized the chloropyridine based Passerini adducts 83 and 84. The reaction of p-bromomethylbenzoic acid 72 with chloropyridine aldehyde 82 and t-butylisocyanide yielded the benzylic bromide 83, which was further treated with variety of secondary amines to yield the target amine compounds 84a-e (Figures 30 and 31). All the synthesized compounds were tested for their biological activity against three cancer cell lines SK-MEL (melanoma), MCF-7 and MDA-MB-231 (breast cancer) (Table 3). Most of these compounds did not show significant cytotoxicity at ~20 µM concentration. The benzylic bromide 83 exhibited toxicity against SK-MEL and MDA-MB-231 cell lines with IC\(_{50}\) values ranging between ~4-6 µM (Table 3).
Figure 30. Preparation of 2-chloropyridine-based amines
Figure 31. 2-Chloropyridine-based amines
Table 3

In Vitro Cytotoxicity of 2-Chloropyridine Derivatives.

<table>
<thead>
<tr>
<th>#</th>
<th>Product</th>
<th>Yield (%)</th>
<th>M.P. (°C)</th>
<th>Cytotoxicity (IC₅₀ µM)</th>
<th>CLogP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SKMEL5</td>
<td>MCF-7</td>
</tr>
<tr>
<td>1</td>
<td>83</td>
<td>92</td>
<td>128-129</td>
<td>4.05</td>
<td>16.16</td>
</tr>
<tr>
<td>2</td>
<td>84a</td>
<td>80</td>
<td>78-80</td>
<td>>20</td>
<td>>20</td>
</tr>
<tr>
<td>3</td>
<td>84b</td>
<td>71</td>
<td>99-100</td>
<td>>20</td>
<td>>20</td>
</tr>
<tr>
<td>4</td>
<td>84c</td>
<td>77</td>
<td>103-104</td>
<td>>20</td>
<td>>20</td>
</tr>
<tr>
<td>5</td>
<td>84d</td>
<td>59</td>
<td>113-115</td>
<td>>20</td>
<td>>20</td>
</tr>
<tr>
<td>6</td>
<td>84e</td>
<td>76</td>
<td>95-97</td>
<td>>20</td>
<td>>20</td>
</tr>
</tbody>
</table>

In an effort to increase the solubility and efficacy of the target compounds, the *N*-methylpiperazine adducts 75b, 81b, and 84b were converted to the corresponding quaternary ammonium salts 85-87 respectively upon treatment with methyl iodide in acetonitrile (Figure 32).
Preparation of Pyrazole Conjugates

The outline for the synthesis of pyrazole based Passerini adducts is shown in Figure 33. The synthesis was initiated with the condensation of acetophenone 88 with phenyl hydrazine 89 to yield the hydrazone 90. Hydrazone 90 upon Vilsmeier-Haack formylation yielded the aldehyde 91 which upon oxidation with KMnO₄ furnished the carboxylic acid 92. The reaction of acid 92 with benzaldehyde 93 benzyl isocyanide 94 resulted in the formation of the target Passerini adduct 95 (Figure 33).
Figure 33. Preparation of pyrazole derivatives

Hydrazine hydrochloride 89 and acetophenone 88 were refluxed in anhydrous ethanol in the presence of catalytic acetic acid for 7 hours and the completion of reaction was monitored by TLC using 10% EtOAc/Hexane. The reaction mixture was cooled to room temperature, when the product precipitated out of the reaction mixture. The product was filtered, washed with cold ethanol and dried under vaccum to obtain pure acetophenone phenylhydrazone as a yellow solid in 93% yield (Figure 34).
Phosphoryl chloride was added to DMF and the mixture stirred for 1hr at 0°C. The mixture was then slowly added to a solution of acetophenone phenylhydrazone 90 in DMF and the reaction mixture was allowed to stir for 10 min at 0°C and gradually heated to 60°C for 4hr. The reaction was monitored by TLC using 30% EtOAc/Hexane as the eluant. The reaction mixture was cooled to room temperature and basified with cold and saturated aqueous sodium hydroxide solution to effect precipitation. The precipitate was filtered and washed with cold water to obtain the product aldehyde 91 as a off white solid in 92% yield (Figure 35).

Initially Passerini coupling was attempted with pyrazole aldehyde 91, benzoic acid 96 and benzyl isocyanide 94 in water at room temperature However, this reaction did not materialize and no product formation was obtained even upon heating for an extended
period of time (Figure 36). Accordingly, we shifted our focus to converting the pyrazole aldehyde 91 to the corresponding acid 92 as it was presumed that the electrophilicity of the pyrazole aldehyde was drastically reduced because of the pyrazole ring system.

\[
\text{H}^+ \quad \text{N} \quad \text{N} \quad \text{C} \quad \text{O} \\
91 \quad + \quad \text{O} \quad \text{H} \quad \text{C} \quad \text{O} \\
96 \quad + \quad \text{N} \quad \text{C} \quad \text{O} \\
94 \quad \rightarrow \quad \text{O} \quad \text{H} \\
\text{H}_2\text{O} \quad 25^\circ\text{C}, \quad 24\text{h} \quad \text{No Reaction}
\]

\[\text{Figure 36. Passerini reaction with pyrazole aldehyde}\]

Aldehyde 91 was dissolved in pyridine: water (1:1) and KMnO₄ was added to the reaction mixture and stirred overnight at room temperature. The reaction mixture was monitored by TLC using 30% EtOAc/Hexane. Upon completion, ice cold water was added to the reaction mixture followed by the addition of aq. NaOH to effect precipitation. The mixture was filtered and the filtrate was acidified with conc. HCl which resulted in the precipitation. The solid was filtered and recrystallized in hexane to yield the carboxylic acid 92 (Figure 37).⁶⁹

\[
\begin{align*}
\text{H}^+ & \quad \text{N} \quad \text{N} \\
91 \quad \text{Pyridine:H}_2\text{O} (1:1), \quad 12\text{h} \quad \rightarrow \\
& \quad \text{H}^+ \quad \text{N} \quad \text{N} \\
92 \quad \text{Pyridine:H}_2\text{O} (1:1), \quad 12\text{h}
\end{align*}
\]

\[\text{Figure 37. Oxidation of pyrazole aldehyde}\]
As expected, the Passerini reaction was fruitful by converting pyrazole aldehyde to pyrazole acid. The reaction of acid 92 with benzaldehyde 93 and benzyl isocyanide 94 under aqueous conditions resulted in the formation of α-acetoxyamide 95a (Figure 38). Similarly, compounds 95b, and 95c were obtained by replacing acetophenone with dichloracetophenone and benzaldehyde with p-chlorobenzaldehyde respectively (Figure 38).

![Figure 38. Passerini reaction with pyrazole acid](image)

Figure 38. Passerini reaction with pyrazole acid
Conclusions

In conclusion, we have prepared a series of azaheterocyclic compounds using Passerini reaction as a key step in the synthesis. The heterocyclic motifs synthesized include quinoline, pyridine, and pyrazole. The synthesized compounds were tested for their biological efficacy against melanoma and breast cancer cells. While most of the compounds tested did not show promising cytotoxicity, these assays gave us valuable insights for further development of these conjugates towards drug discovery.
Chapter 3

Experimental Procedures

Materials

All the reactants were of reagent grade, and purchased from Acros Organics, Alfa Aesar or Sigma Aldrich, and used without further purification. All solvents were used without further drying or purification and were of ACS grade purchased from Fisher Scientific.

Instrumentation

Nuclear Magnetic Spectroscopy (NMR) spectra were produced using the Varian 400 MHz spectrophotometer. The instrument was maintained at 25°C operating at 400 MHz for 1H NMR, and 100 MHz for 13C NMR. The deuterated solvent (CDCl$_3$, DMSO-d$_6$) used for each respective spectrum is referenced to the appropriate literature peak shift.

Procedures

Method for the preparation of 2-chloroquinoline-3-carbaldehyde.70 Phosphorus oxychloride (6.5 mL, 70.0 mmol) was slowly added to N,N-dimethylformamide (2.3 mL, 30.0 mmol) at 0°C and this solution was slowly added to acetanilide (1.3 g, 10.0 mmol) and heated at 80°C for 16h. The reaction mixture was then poured on ice, and the white product was filtered and dried. The compound was purified by recrystallization from a petroleum ether/ethyl acetate mixture.

Procedure for the preparation of 4-(bromomethyl)benzoic acid. p-Toluic acid (4.0 g) was dissolved in 60.0 mL of EtOAc and treated with KBrO$_3$ (14.7 g) in 50.0 mL of water. A solution of NaHSO$_3$ (9.2 g) in 50.0 mL water was added dropwise over 20 minutes. The reaction mixture turned brown upon addition and it was further stirred for
4.5-5 hrs and quenched with 100.0 mL of 1M Na$_2$S$_2$O$_3$ solution. The two layers were separated and the aqueous layer was extracted twice using ethyl acetate. The combined organic layers were dried over Na$_2$SO$_4$, concentrated *in vacuo* and recrystallized in methanol to yield the acid.

General reaction procedure for preparation of Passerini product.71,71,73 To a suspension of the aldehyde (1 mmol) and acid (1 mmol) in 10.0 mL water was added isocyanide (1.02 mmol). The reaction mixture was sonicated and vortex stirred repeatedly for 30 minutes and then stirred overnight. The reaction mixture was filtered and washed with saturated solution of NaHCO$_3$ followed by hexane to obtain the pure product.

General procedure for the amination of Passerini products. To a solution of the Passerini adduct (1 mmol) in DMF (6 mL), K$_2$CO$_3$ (20 mmol), and amine (1.2 mmol) were added and stirred overnight at room temperature. Ice cold water was added to the reaction mixture and stirred for 5 minutes. The precipitate was filtered, washed with cold water (2 x 10.0 mL), and dried under vaccum to obtain the pure product.
2-(tert-Butylamino)-1-(2-chloroquinolin-3-yl)-2-oxoethyl4-(bromomethyl)benzoate():
Yield: 96%; color less solid, mp 142 – 143 °C; 1H NMR (400 MHz, DMSO-d$_6$) δ (ppm)
8.42 (s, 1H), 8.20 (s, 1H), 8.12 (d, J = 8.0 Hz, 1H), 7.96 – 7.99 (m, 3H), 7.86 (t, J = 7.6 Hz,
1H), 7.68 (d, J = 8.0 Hz, 1H), 7.58 (d, J = 8.4 Hz, 2H), 6.46 (s, 1H), 4.74 (s, 2H), 1.29 (s,
9H); 13C NMR (101 MHz, DMSO-d$_6$) δ (ppm) 165.9, 165.1, 150.3, 147.3, 144.6, 139.4,
132.3, 130.6, 130.4, 129.3, 129.2, 128.9, 128.5, 128.2, 127.3, 7.3.4, 51.6, 33.7, 29.0
ESIMS: m/z calculated for C$_{23}$H$_{22}$BrClN$_2$O$_3$ (M+H)$^+$ 489.06 found 488.50.

2-(tert-butylamino)-1-(2-chloroquinolin-3-yl)-2-oxoethyl-4-(morpholinomethyl)
benzoate(): Yield: 55%; color less solid; mp 119 – 120 °C; 1H NMR (400 MHz, DMSO-d$_6$) δ (ppm)
8.39 – 8.42 (m, 1H), 8.17 – 8.21 (m, 1H), 8.10 – 8.14 (m, 1H), 7.96 – 8.01 (m, 1H), 7.91 – 7.96 (m,
2H), 7.83 – 7.89 (m, 1H), 7.64 – 7.71 (m, 1H), 7.42 – 7.48 (m, 2H), 6.44 – 6.46 (m, 1H), 3.52 (s, 4H),
3.50 (s, 2H), 2.32 (s, 4H), 1.29 (s, 9H); 13C NMR (101 MHz, DMSO-d$_6$) δ (ppm) 165.9, 165.4, 150.3,
147.3, 145.0, 139.3, 132.3, 130.2, 129.8, 129.2, 129.1, 128.5, 128.3, 128.2, 127.3, 73.2, 66.8, 62.6,
53.8, 51.6, 29.0; ESIMS: m/z calculated for C$_{27}$H$_{30}$ClN$_3$O$_4$ (M+H)$^+$ 496.20 found 496.00.
2-(tert-butylationo)-1-(2-chloroquinolin-3-yl)-2-oxoethyl 4-((4-methylpiperazin-1-yl)methyl)benzoate(): Yield: 89%; color less solid; mp.140 – 145 °C; \(^1\)H NMR (400 MHz, DMSO-d\(_6\)) \(\delta\) (ppm) 8.41 (s, 1H), 8.19 (s, 1H), 8.12 (d, \(J = 8.0\) Hz, 1H), 7.99 (d, \(J = 8.4\) Hz, 1H), 7.93 (d, \(J = 8.2\) Hz, 2H), 7.84 – 7.88 (m, 1H), 7.68 (t, \(J = 7.5\) Hz, 1H), 7.44 (d, \(J = 8.2\) Hz, 2H), 6.46 (s, 1H), 3.47 (s, 2H), 2.20 – 2.45 (m, 8H), 2.11 (s, 3H), 1.30 (s, 9H); \(^{13}\)C NMR (101 MHz, DMSO-d\(_6\)) \(\delta\) (ppm) 165.9, 165.4, 150.3, 147.3, 145.5, 139.3, 132.2, 130.5, 130.2, 129.9, 129.7, 129.2, 129.1, 128.4, 128.2, 127.3, 73.2, 62.2, 55.3, 53.2, 51.6, 46.4, 29.0; ESIMS: m/z calculated for C\(_{28}\)H\(_{33}\)ClN\(_4\)O\(_3\) (M+H\(^+\)) 509.23 found 509.00.

2-(tert-butylationo)-1-(2-chloroquinolin-3-yl)-2-oxoethyl4-((4-aminopiperidin-1-yl)methyl)benzoate(): Yield: 51%; color less solid; mp 98 – 99 °C; \(^1\)H NMR (400 MHz, DMSO-d\(_6\)) \(\delta\) (ppm) 8.41 (s, 1H), 8.19 (s, 1H), 8.12 (d, \(J = 8.4\) Hz, 1H), 7.99 (d, \(J = 8.5\) Hz, 1H), 7.93 (d, \(J = 7.7\) Hz, 2H), 7.86 (t, \(J = 7.7\) Hz, 1H), 7.68 (dd, \(J = 8.1, 7.0\) Hz, 1H), 7.42 (d, \(J = 8.0\) Hz, 2H), 6.46 (s, 1H), 3.47 (s, 2H), 3.23 (br s, 2H), 2.62 – 2.71 (m, 2H),
1.92 (t, J = 10.8 Hz, 2H), 1.66-1.56 (m, 2H), 1.29 (s, 9H), 1.13 – 1.24 (m, 3H); ESIMS: m/z calculated for C_{28}H_{33}ClN_{4}O_{3} (M+H)^{+} 509.23 found 509.00.

2-(tert-butylamino)-1-(2-chloroquinolin-3-yl)-2-oxoethyl 4-(pyrrolidin-1-ylmethyl) benzoate(): Yield: 68%; color less solid; mp 103 – 108 °C; \(^1 \)H NMR (400 MHz, Acetone-d\(_6\)): \(\delta \) (ppm) 8.47 (s, 1H), 8.00 (d, J = 7.8 Hz, 1H), 7.95 (d, J = 8.4 Hz, 2H), 7.89 (d, J = 8.2 Hz, 1H), 7.77 (m, 1H), 7.57 – 7.62 (m, 1H), 7.40 (d, J = 8.4 Hz, 2H), 7.32 (s, 1H), 6.49 (s, 1H), 3.58 (s, 2H), 1.95 (m, 4H), 1.61 – 1.67 (m, 4H), 1.30 (s, 9H); \(^{13} \)C NMR (101 MHz, DMSO-d\(_6\)): \(\delta \) (ppm) 165.9, 165.4, 150.3, 147.3, 139.3, 132.3, 130.2, 129.5, 129.1, 129.0, 128.5, 128.2, 128.1, 127.2, 73.2, 59.7, 54.1, 51.6, 28.9, 23.8; ESIMS: m/z calculated for C_{27}H_{30}ClN_{3}O_{3} (M+H)^{+} 480.21 found 480.00.

2-(tert-butylamino)-1-(2-chloroquinolin-3-yl)-2-oxoethyl 4-((2-ethyl-1H-imidazol-1-yl)methyl)benzoate(): Yield: 82%; color less solid; mp 109 – 111 °C; \(^1 \)H NMR (400 MHz, DMSO-d\(_6\)): \(\delta \) (ppm) 8.40 (s, 1H), 8.20 (s, 1H), 8.09 (d, J = 8.2 Hz, 1H), 7.95 – 7.99
(m, 2H), 7.85 (dd, J = 1.4, 7.0 Hz, 1H), 7.67 (dd, J = 1.1, 8.1 Hz, 1H), 7.21 (d, J = 8.2 Hz, 1H), 7.11 (d, J = 1.2 Hz, 1H), 6.79 (d, J = 1.2 Hz, 1H), 6.45 (s, 1H), 5.24 (s, 2H), 1.28 (s, 9H), 1.03 – 1.08 (m, 2H); 13C NMR (101 MHz, DMSO-d6): δ (ppm) 165.9, 165.2, 150.3, 149.2, 147.3, 144.4, 139.3, 132.3, 130.7, 129.2, 128.9, 128.7, 128.5, 128.2, 127.8, 127.3, 121.0, 51.6, 48.6, 28.9, 20.0, 12.7; ESIMS: m/z calculated for C28H29ClN4O3 (M+H)+ 505.20 found 504.60.

2-(tert-butylamino)-1-(2-chloroquinolin-3-yl)-2-oxoethyl4-((4-nitro-1H-imidazol-1-yl)methyl)benzoate(): Yield: 88%; color less solid; mp 130 – 131 ºC; 1H NMR (400 MHz, DMSO-d6): δ (ppm) 8.49 (d, J = 1.4 Hz, 1H), 8.41 (s, 1H), 8.20 (s, 1H), 8.11 (d, J = 9.2 Hz, 2H), 7.96 – 8.03 (m, 4H), 7.86 (ddd, J = 1.4, 7.0, 8.5 Hz, 1H), 7.68 (ddd, J = 1.2, 7.0, 8.1 Hz, 1H), 7.49 (d, J = 8.4 Hz, 2H), 6.46 (s, 1H), 5.40 (s, 2H), 1.29 (s, 9H); 13C NMR (101 MHz, DMSO-d6): δ (ppm) 165.8, 165.1, 150.3, 147.9, 147.3, 142.6, 139.3, 138.2, 132.3, 130.8, 129.4, 129.1, 128.9, 128.9, 128.5, 128.2, 127.3, 122.3, 73.3, 51.6, 50.9, 28.9; ESIMS: m/z calculated for C26H24ClN5O5 (M+H)+ 522.16 found 521.90.
2-(tert-butylamino)-1-(2-chloroquinolin-3-yl)-2-oxoethyl4-((2-methyl-5-nitro-1H-imidazol-1-yl)methyl)benzoate: Yield: 87%; color less solid; mp 143 – 144 °C; 1H NMR (400 MHz, DMSO-d$_6$): δ (ppm) 8.44 (s, 1H), 8.40 (s, 1H), 8.20 (s, 1H), 8.10 (d, $J = 8.2$ Hz, 1H), 7.99 (m, 3H), 7.85 (t, $J = 8.2$ Hz, 1H), 7.67 (t, $J = 7.5$ Hz, 1H), 7.37 (d, $J = 8.2$ Hz, 2H), 6.48 (s, 1H), 5.40 (s, 2H), 2.23 (s, 3H), 1.28 (s, 9H); 13C NMR (101 MHz, DMSO-d$_6$): δ (ppm) 165.9, 165.2, 150.3, 147.3, 146.2, 145.9, 142.2, 139.4, 132.3, 130.9, 129.2, 128.9, 128.5, 128.4, 128.2, 127.3, 123.4, 73.3, 51.6, 50.0, 28.9, 13.4; ESIMS: m/z calculated for C$_{27}$H$_{26}$ClN$_5$O$_5$ (M+H)$^+$ 536.17 found 535.80.

tert-Butyl 4-((2-(tert-butylamino)-1-(2-chloroquinolin-3-yl)-2-oxoethoxy) carbonyl) piperazine-1-carboxylate (): Yield: 89%; color less solid; mp 105 – 107 °C; 1H NMR (400 MHz, DMSO-d$_6$): δ (ppm) 8.40 (s, 1H), 8.19 (s, 1H), 8.11 (d, $J = 8.2$ Hz, 1H), 7.98 (d, $J = 8.8$ Hz, 1H), 7.94 (d, $J = 8.0$ Hz, 2H), 7.85 (t, $J = 8.0$ Hz, 1H), 7.67 (t, $J = 7.6$ Hz, 1H), 7.44 (d, $J = 7.6$ Hz, 2H), 6.46 (s, 1H), 3.52 (s, 2H), 3.27 (m, 4H), 2.28 (m, 4H), 1.35 (s, 9H), 1.30 (s, 9H); 13C NMR (101 MHz, DMSO-d$_6$): δ (ppm) 165.9, 165.4, 154.4,
Yield: 70%; color less solid; mp 104 – 106 °C; \(^1\)H NMR (400 MHz, DMSO-\(d_6\)) \(\delta\) (ppm) 8.68 (d, \(J = 1.2\) Hz, 1H), 8.41 (s, 1H), 8.20 (s, 1H), 8.11 (d, \(J = 8.1\) Hz, 1H), 7.90 – 7.98 (m, 3H), 7.85 (d, \(J = 1.5\) Hz, 1H), 7.67 (d, \(J = 1.2\) Hz, 1H), 7.40 – 7.36 (m, 2H), 6.45 (s, 1H), 5.51 (s, 2H), 1.29 (s, 9H); \(^{13}\)C NMR (101 MHz, DMSO-\(d_6\)): \(\delta\) (ppm) 165.9, 165.2, 152.6, 150.3, 147.3, 145.2, 142.8, 139.3, 132.3, 130.6, 129.2, 128.9, 128.8, 128.5, 128.2, 127.3, 73.3, 52.3, 51.6, 28.9; ESIMS: m/z calculated for \(\text{C}_{25}\text{H}_{24}\text{ClN}_2\text{O}_3\) (M+H)\(^+\) 478.17 found 477.40.

1-(benzo[\(d\)][1,3]dioxol-5-yl)-2-(tert-butylamino)-2-oxoethyl 4(bromomethyl)benzoate(): Yield: 98 %; color less solid; mp 153 – 155 °C; \(^1\)H NMR (400 MHz, DMSO-\(d_6\)) \(\delta\) (ppm) 7.98 (s, 1H), 7.96 (s, 1H), 7.87 (s, 3H), 7.57 – 7.61 (m, 2H), 7.09 (d, \(J = 1.7\) Hz, 1H), 6.54 (s, 1H), 5.16 (s, 2H), 1.30 (s, 9H); ESIMS: m/z calculated for \(\text{C}_{19}\text{H}_{19}\text{BrN}_2\text{O}_3\) (M+H)\(^+\) 418.76 found 418.57.
Hz, 1H), 7.04 (dd, $J = 1.8, 8.0$ Hz, 1H), 6.94 (s, 1H), 6.03 (d, $J = 1.3$ Hz, 2H), 5.92 (s, 1H), 4.75 (s, 2H), 1.20 (s, 9H); 13C NMR (101 MHz, DMSO-d$_6$) δ (ppm) 167.8, 165.2, 148.1, 147.9, 144.3, 130.5, 130.4, 130.3, 129.7, 121.9, 108.8, 108.3, 101.9, 76.0, 51.2, 51.1, 33.8, 29.0; ESIMS: m/z calculated for C$_{21}$H$_{22}$BrNO$_5$ (M+H)$^+$ 448.08 found 470.10.

![Chemical Structure](image)

1-(benzo[d][1,3]dioxol-5-yl)-2-(tert-butylamino)-2-oxoethyl 4-morpholinomethylbenzoate: Yield: 92%; color less solid; mp 178 – 180 °C; 1H NMR (400 MHz, DMSO-d$_6$): δ (ppm) 7.94 (d, $J = 8.2$ Hz, 2H), 7.87 (s, 1H), 7.46 (d, $J = 8.2$ Hz, 2H), 7.09 (s, 1H), 7.04 (dd, $J = 8.0, 1.6$ Hz, 1H), 6.93 (d, $J = 8.0$ Hz, 1H), 6.02 (s, 1H), 5.92 (s, 1H), 3.53 – 3.58 (m, 4H), 3.52 (s, 2H), 2.35 (m, 4H), 1.19 (s, 9H); 13C NMR (101 MHz, DMSO-d$_6$) δ (ppm) 167.8, 165.5, 148.1, 147.9, 144.7, 130.6, 130.0, 129.7, 128.8, 121.9, 108.8, 108.2, 101.9, 75.8, 66.8, 62.6, 53.8, 51.0, 29.0; ESIMS: m/z calculated for C$_{25}$H$_{30}$N$_2$O$_6$ (M+H)$^+$ 455.22 found 455.20.
1-(benzo[d][1,3]dioxol-5-yl)-2-(tert-butylamino)-2-oxoethyl4-((4-methylpiperazin-1-yl)methyl)benzoate(): Yield: 78%; color less solid; mp 92 – 93 °C; \(^1\)H NMR (400 MHz, DMSO-\(d_6\)): \(\delta\) (ppm) 7.93 (d, \(J = 8.0\) Hz, 2H), 7.86 (s, 1H), 7.44 (d, \(J = 8.1\) Hz, 2H), 7.08 (s, 1H), 7.04 (d, \(J = 8.0\) Hz, 1H), 6.92 (d, \(J = 8.0\) Hz, 2H), 6.02 (s, 2H), 5.92 (s, 1H), 3.50 (s, 2H), 2.17 – 2.43 (m, 8H), 2.12 (s, 3H), 1.19 (s, 9H); \(^{13}\)C NMR (101 MHz, DMSO-\(d_6\)): \(\delta\) (ppm) 167.8, 165.5, 148.0, 147.9, 145.2, 130.5, 130.0, 129.6, 128.7, 121.9, 108.8, 108.2, 101.9, 75.8, 62.2, 55.3, 53.2, 51.1, 46.4, 29.0; ESIMS: m/z calculated for C\(_{26}\)H\(_{33}\)N\(_3\)O\(_5\) (M+H\(^+\)) 468.25 found 468.20.

1-(benzo[d][1,3]dioxol-5-yl)-2-(tert-butylamino)-2-oxoethyl4-((4-aminopiperidin-1-yl)methyl)benzoate(): Yield: 54%; color less solid; mp 92 – 94 °C; \(^1\)H NMR (400 MHz, DMSO-\(d_6\)): \(\delta\) (ppm) 8.02 (d, \(J = 5.8\) Hz, 1H), 7.83 – 7.97 (m, 2H), 7.42 (t, \(J = 6.7\) Hz, 1H), 7.00 – 7.12 (m, 2H), 6.89 – 6.95 (m, 1H), 6.02 (d, \(J = 5.2\) Hz, 1H), 5.91 (d, \(J = 5.6\) Hz, 1H), 5.42 (d, \(J = 5.8\) Hz, 0H), 3.76 (s, 0H), 3.48 (d, \(J = 5.2\) Hz, 1H), 2.67 (d, \(J = 11.2\) Hz, 1H), 1.92 (s, 1H), 1.62 (d, \(J = 13.1\) Hz, 2H), 1.19 (s, 9H); \(^{13}\)C NMR (101 MHz, DMSO-\(d_6\)): \(\delta\) (ppm) 167.8, 165.5, 148.1, 147.9, 145.7, 130.6, 130.0, 129.5, 128.6, 121.9,
108.8, 108.2, 101.9, 75.8, 62.4, 52.7, 51.1, 35.9, 29.0; ESIMS: m/z calculated for
C_{26}H_{33}N_{3}O_{5} (M+H)^{+} 468.25 found 468.20.

![Chemical Structure](image)

1-(benzo[d][1,3]dioxol-5-yl)-2-(tert-butylamino)-2-oxoethyl4-((1H-imidazol-1-yl)methyl)benzoate(): Yield: 67%; color less solid; mp 83 – 84 °C; \(^1\)H NMR (400 MHz, DMSO-d\(_6\)): \(\delta\) (ppm) 7.96 (d, \(J = 7.2\) Hz, 2H), 7.85 (s, 1H), 7.75 (s, 1H), 7.34 (d, \(J = 7.6\) Hz, 2H), 7.16 (s, 1H), 7.08 (s, 1H), 7.03 (d, \(J = 8.0\) Hz, 1H), 6.89 – 6.93 (m, 2H), 6.02 (s, 2H), 5.91 (s, 1H), 5.29 (s, 2H), 1.19 (s, 9H); \(^{13}\)C NMR (101 MHz, DMSO-d\(_6\)): \(\delta\) (ppm) 167.8, 165.3, 148.1, 147.9, 144.1, 138.3, 130.5, 130.4, 129.6, 129.3, 128.3, 121.9, 120.3, 108.8, 108.2, 101.9, 75.9, 51.1, 49.7, 29.0; ESIMS: m/z calculated for C\(_{24}\)H\(_{25}\)N\(_3\)O\(_5\) (M+H)^{+} 436.19 found 435.70.

![Chemical Structure](image)

1-(benzo[d][1,3]dioxol-5-yl)-2-(tert-butylamino)-2-oxoethyl4-((1H-1,2,4-triazol-1-yl)methyl)benzoate(): Yield: 50%; color less solid; mp 120 – 121 °C; \(^1\)H NMR (400 MHz, DMSO-d\(_6\)): \(\delta\) (ppm) 8.68 (d, \(J = 1.9\) Hz, 1H), 7.95 – 8.01 (m, 2H), 7.86 (d, \(J = 5.2\) Hz, 1H), 7.57 – 7.63 (m, 1H), 7.35 – 7.39 (m, 1H), 4.27.09 (ddd, \(J = 1.6, 4.2\) Hz, 1H), 7.04 (ddd, \(J = 1.6, 4.2\) Hz, 1H), 2.27 (s, 3H), 1.18 (s, 9H).
= 1.7, 4.4, 8.0 Hz, 1H), 6.93 (d, J = 2.4 Hz, 1H), 6.91 (d, J = 2.5 Hz, 1H), 6.02 (d, J = 1.2 Hz, 2H), 5.92 (d, J = 5.4 Hz, 1H), 5.52 (s, 1H), 5.43 (d, J = 5.4 Hz, 1H), 1.19 (s, 9H); 13C NMR (101 MHz, DMSO-d$_6$): δ (ppm) 167.8, 152.6, 148.1, 147.9, 145.2, 142.5, 130.4, 129.5, 128.7, 121.9, 108.8, 108.2, 108.2, 101.9, 75.9, 52.3, 51.1, 29.0; ESIMS: m/z calculated for C$_{23}$H$_{24}$N$_4$O$_5$ (M+H)$^+$ 437.18 found 436.10.

![Structure](image)

2-(tert-butylamino)-1-(2-chloropyridin-3-yl)-2-oxoethyl4-(bromomethyl)benzoate:

Yield: 92 %, color less solid, mp 138 – 140 °C; 1H NMR (400 MHz, DMSO-d$_6$) δ (ppm) 8.44 (dd, J = 4.8, 1.9 Hz, 1H), 8.16 (s, 1H), 7.93 – 7.96 (m, 2H), 7.86 (dd, J = 1.9, 7.7 Hz, 1H), 7.57 – 7.61 (m, 2H), 7.51 (dd, J = 4.8, 7.7 Hz, 1H), 6.31 (s, 1H), 4.75 (s, 2H), 1.27 (s, 9H); 13C NMR (101 MHz, DMSO-d$_6$) δ (ppm) 165.7, 165.0, 151.0, 150.5, 144.6, 139.2, 131.4, 130.6, 129.2, 124.2, 73.2, 51.6, 33.7, 28.9; ESIMS: m/z calculated for C$_{19}$H$_{20}$BrClN$_2$O$_3$ (M+H)$^+$ 439.04, found 439.00
2-(tert-Butylamino)-1-(2-chloropyridin-3-yl)-2-oxoethyl 4-(morpholinomethyl)benzoate: Yield: 80 %; color less solid; mp 78 – 80 °C; 1H NMR (400 MHz, DMSO-d$_6$) δ (ppm) 8.43 (dq, J = 2.4, 4.4 Hz, 1H), 8.15 (d, J = 1.9 Hz, 1H), 7.91 (dt, J = 2.1, 8.8 Hz, 2H), 7.86 (dt, J = 1.8, 7.7 Hz, 1H), 7.50 (ddd, J = 2.0, 4.6, 7.5 Hz, 1H), 7.45 (d, J = 8.3 Hz, 2H), 6.31 (d, J = 1.2 Hz, 1H), 3.53 (dd, J = 6.3, 11.0 Hz, 6H), 2.33 (d, J = 4.7 Hz, 4H), 1.27 (d, J = 2.2 Hz, 10H); 13C NMR (101 MHz, DMSO-d$_6$) δ (ppm) 167.8, 165.5, 148.1, 147.9, 144.7, 130.5, 130.1, 129.7, 128.8, 121.9, 108.8, 108.2, 101.9, 75.8, 66.8, 62.6, 53.8, 51.1, 29.0; ESIMS: m/z calculated for C$_{23}$H$_{28}$ClN$_3$O$_4$ (M+H)$^+$ 446.19 found 446.20.

![Chemical Structure](attachment:image.png)

2-(tert-butylamino)-1-(2-chloropyridin-3-yl)-2-oxoethyl4-((4-methylpiperazin-1-yl)methyl)benzoate: Yield: 71 %; color less solid; mp 99 – 100 °C; 13C NMR (101 MHz, DMSO-d$_6$); δ (ppm) 165.9, 165.4, 150.9, 150.5, 145.3, 139.2, 131.4, 130.1, 129.9, 128.0, 124.3, 72.9, 62.1, 54.9, 52.8, 51.6, 46.0, 28.9; ESIMS: m/z calculated for C$_{24}$H$_{31}$ClN$_4$O$_3$ (M+H)$^+$ 459.22 found 459.20

![Chemical Structure](attachment:image.png)
2-(tert-butylamino)-1-(2-chloropyridin-3-yl)-2-oxoethyl4-((4-aminopiperidin-1-yl)methyl)benzoate: Yield: 59%; color less solid, mp 113 – 115 °C; 1H NMR (400 MHz, DMSO-d_6) δ (ppm) 8.43 (dd, $J = 1.9$, 4.8 Hz, 1H), 8.15 (s, 1H), 7.88 – 7.92 (m, 1H), 7.85 (dd, $J = 1.9$, 7.8 Hz, 1H), 7.50 (dd, $J = 4.7$, 7.7 Hz, 1H), 7.42 (d, $J = 8.1$ Hz, 1H), 6.30 (s, 1H), 3.48 (s, 1H), 2.69 (d, $J = 11.4$ Hz, 1H), 1.89 – 1.97 (m, 1H), 1.67 (d, $J = 12.5$ Hz, 2H), 1.26 (s, 9H); 13C NMR (101 MHz, DMSO-d_6): δ (ppm) 165.9, 165.4, 150.9, 150.5, 145.3, 139.2, 131.4, 130.1, 129.9, 128.0, 124.3, 72.9, 62.1, 55.0, 52.8, 51.6, 46.0, 28.9. ESIMS: m/z calculated for C$_{24}$H$_{31}$ClN$_4$O$_3$(M+H)$^+$ 459.22 found 459.20

![Chemical Structure](image_url)

2-(tert-butylamino)-1-(2-chloropyridin-3-yl)-2-oxoethyl4-((1H-imidazol-1-yl)methyl)benzoate (•): Yield: 77%; color less solid; mp 103 – 104 °C; 1H NMR (400 MHz, DMSO-d_6) δ (ppm) 8.41 (d, $J = 5.6$ Hz, 1H), 8.20 (d, $J = 5.7$ Hz, 1H), 8.11 (dd, $J = 1.8$, 8.3 Hz, 1H), 7.99 – 8.04 (m, 2H), 7.86 (dt, $J = 5.5$, 8.4 Hz, 1H), 7.67 (t, $J = 7.6$ Hz, 1H), 7.63 – 7.57 (m, 2H), 7.34 (td, $J = 6.3$, 5.8, 2.8 Hz, 1H), 6.47 (s, 1H), 5.42 (d, $J = 6.0$ Hz, 2H), 1.29 (s, 8H). ESIMS: m/z calculated for C$_{22}$H$_{23}$ClN$_4$O$_3$(M+H)$^+$ 427.16 found 427.20
2-(tert-butylamino)-1-(2-chloropyridin-3-yl)-2-oxoethyl4-((1H-1,2,4-triazol-1-yl)methyl)benzoate(): Yield: 76%; color less solid; mp 95 – 97 °C; \(^1\)H NMR (400 MHz, DMSO-\(d_6\)) \(\delta\) (ppm) 8.67 (s, 1H), 8.43 (dd, \(J = 1.8, 4.7\) Hz, 1H), 8.15 (s, 1H), 7.98 (s, 1H), 7.94 (d, \(J = 8.2\) Hz, 2H), 7.85 (dd, \(J = 1.8, 7.6\) Hz, 1H), 7.50 (dd, \(J = 4.8, 7.6\) Hz, 1H), 7.38 (d, \(J = 8.3\) Hz, 2H), 6.29 (s, 1H), 5.51 (s, 2H), 1.26 (s, 9H). ESIMS: m/z calculated for C\(_{21}\)H\(_{22}\)ClN\(_5\)O\(_3\) (M+H)\(^+\) 428.15 found 427.20

4-(4-(tert-butylamino)-1-(2-chloroquinolin-3-yl)-2-oxoethoxy)carbonyl)benzyl)-1,1-dimethylpiperazin-1-ium iodide(): Yield: 80%; color less solid; \(^1\)H NMR (400 MHz, Chloroform-\(d\)) \(\delta\) (ppm) 8.45 (s, 1H), 8.05 (d, \(J = 7.9\) Hz, 1H), 8.02 – 7.94 (m, 0H), 7.90 (d, \(J = 8.0\) Hz, 1H), 7.74 (t, \(J = 7.9\) Hz, 1H), 7.56 (q, \(J = 9.8, 8.6\) Hz, 1H), 7.47 – 7.40 (m, 2H), 6.57 (s, 1H), 6.35 (s, 1H), 3.71 (d, \(J = 19.0\) Hz, 5H), 3.51 (s, 5H), 2.84 (s, 3H), 1.39 (s, 9H).
4-(4-((1-(Benzo[d][1,3]dioxol-5-yl)-2-(tert-butylamino)-2-oxoethoxy)carbonyl)benzyl)-1,1-dimethylpiperazin-1-ium iodide: Yield: 80%; color less solid; 1H NMR (400 MHz, CDCl$_3$): δ (ppm) 8.01 (d, $J = 7.0$Hz, 2H), 7.43 (d, $J = 7.3$ Hz, 2H), 6.95 – 7.01 (m, 2H), 6.80 (dd, $J = 1.5$, 8.4 Hz, 1H), 6.08 (s, 1H), 5.95 (s, 2H), 3.75 (s, 2H), 3.71 (m, 4H), 3.54 (s, 6H), 2.85 (m, 4H), 1.35 (s, 9H); 13C NMR (101 MHz, CDCl$_3$): δ (ppm) 167.7, 165.0, 148.3, 148.1, 143.0, 130.2, 129.7, 129.3, 128.8, 121.9, 108.6, 107.9, 101.7, 75.9, 68.1, 62.5, 60.9, 51.9, 46.5, 28.9; ESIMS: m/z calculated for C$_{27}$H$_{36}$IN$_3$O$_5$ (M+H)$^+$ 610.18 found 482.30.

Preparation of N-phenyl-N’-(1-phenylethylidene)-hydrazine.74 Phenyl hydrazine hydrochloride (2.0 g, 13.8 mmol) was added to a solution of acetophenone (1.8 g, 15.2 mmol) in 50.0 mL of ethanol at 0°C followed by the slow addition of glacial acetic acid (1.5 mL). The reaction mixture was then refluxed for 2 hr. The completion of the reaction mixture was checked by TLC using 10% EtOAc/hexane. The reaction mixture was cooled to room temperature to effect precipitation. The product was filtered, washed with cold ethanol (2 x 10.0 mL) and dried under vaccum to obtain pure acetophenone phenylhydrazone as a yellow solid (2.8 g, 90% yield).

Preparation of 1,3-diphenyl-1H-pyrazole-4-carboxaldehyde.75 Phosphoryl chloride (1.0 mL, 11.4 mmol) was added to N,N-dimethylformamide (0.8 mL, 11.4 mmol) at 0°C and the mixture stirred for 1 h. This mixture was then slowly added to a solution of
acetophenone phenylhydrazone (2.0 g, 9.5 mmol) in DMF (5.0 mL) and the reaction mixture was allowed to stir for 10 minutes and gradually heated to 60°C for 4hr. The reaction was monitored by TLC using 30% EtOAc/hexane. The reaction mixture was cooled to room temperature and basified with cold and saturated aqueous sodium hydroxide solution (pH ~8.0) to cause precipitation. The solid was filtered and washed with cold water (2 x 20.0 mL) to obtain the crude product as a off white solid (2.2 g, 92% yield)

Preparation of the aryl-1-phenylpyrazole-4-carboxylic acid. Aldehyde (1 mmol) was dissolved in 50 mL (pyridine: water =1:1) and KMnO₄ (1 mmol) was added. The reaction was stirred overnight at room temperature. The completion of reaction was monitored by TLC using 30% EtOAc/hexane. Upon completion, ice cold water was added to the reaction mixture followed by the addition of aq. NaOH to effect precipitation. The mixture was filtered and the filtrate was acidified with conc. HCl which resulted in the precipitation. The solid was filtered and recrystallized in hexane to yield the carboxylic acid

![Image of 1,3-diphenyl-1H-pyrazole-4-carboxylic acid]

1,3-diphenyl-1H-pyrazole-4-carboxylic acid: ¹H NMR (400 MHz, DMSO-d₆): δ (ppm) 12.55 (s, 1H), 9.06 (d, J = 2.1 Hz, 1H), 7.93 – 7.98 (m, 3H), 7.80 (dt, J = 2.1, 7.71 Hz, 2H), 7.48 – 7.56 (m, 3H), 7.40 – 7.44 (m, 3H).
2-(benzylamino)-2-oxo-1-phenylethyl 1,3-diphenyl-1H-pyrazole-4-carboxylate: 1H NMR (400 MHz, DMSO-d_6): δ (ppm) 9.28 (s, 1H), 8.76 – 8.85 (m, 1H), 7.99 (d, $J = 7.8$ Hz, 2H), 7.81 (d, $J = 3.9$ Hz, 2H), 7.49 – 7.58 (m, 5H), 7.39 (dd, $J = 9.9$, 18.5 Hz, 9H), 7.11 – 7.26 (m, 6H), 6.07 (s, 1H), 4.29 (d, $J = 13.2$ Hz, 2H).

2-(benzylamino)-2-oxo-1-phenylethyl 3-(2,4-dichlorophenyl)-1-phenyl-1H-pyrazole-4-carboxylate: 1H NMR (400 MHz, DMSO-d_6): δ (ppm) 9.32 (s, 1H), 8.98 (t, $J = 5.9$ Hz, 1H), 7.99 (d, $J = 8.4$ Hz, 2H), 7.74 – 7.81 (m, 2H), 7.68 (d, $J = 1.0$ Hz, 1H), 7.50 – 7.58 (m, 3H), 7.34 – 7.47 (m, 6H), 7.19 – 7.31 (m, 6H), 6.46 (s, 1H), 6.46 (s, 1H), 4.36 (dd, $J = 3.0$, 5.3 Hz, 2H); 13C NMR (101 MHz, DMSO-d_6): δ (ppm) 167.2, 161.5, 153.7, 139.4, 139.1, 134.8, 134.7, 134.7, 133.4, 132.0, 131.2, 130.1, 129.5, 129.4, 129.1, 128.7, 128.3, 128.1, 127.5, 127.3, 119.8, 112.2, 71.8, 42.7.
2-(benzylamino)-1-(4-chlorophenyl)-2-oxoethyl 1,3-diphenyl-1H-pyrazole-4-carboxylate: Yield: 49%; color less solid; 1H NMR (400 MHz, Chloroform-d) δ (ppm)
8.55 (d, $J = 1.5$ Hz, 1H), 7.73 (d, $J = 7.9$ Hz, 2H), 7.64 (dd, $J = 5.3$, 2.5 Hz, 2H), 7.49 (t, $J = 7.5$ Hz, 2H), 7.38 (d, $J = 1.5$ Hz, 1H), 7.36 – 7.28 (m, 11H), 7.26 (d, $J = 1.4$ Hz, 1H), 6.21 (s, 1H), 5.95 (d, $J = 6.2$ Hz, 1H), 4.28 (d, $J = 6.0$ Hz, 2H). 13C NMR (101 MHz, CDCl$_3$) δ (ppm) 168.07, 161.09, 154.05, 139.14, 137.88, 135.17, 134.60, 133.23, 132.85, 129.89, 129.83, 129.65, 129.27, 129.16, 129.09, 129.06, 128.88, 128.46, 128.16, 127.80, 127.78, 119.91, 113.37, 75.14, 43.37.
Chapter 4

Spectral Characterization

Figure 39. 400 MHz 1H NMR of compound 74 in DMSO
Figure 40. 100 MHz 13C NMR of compound 74 in DMSO
Figure 41. 400 MHz 1H NMR of compound 75b in DMSO
Figure 42. 100 MHz 13C NMR of compound 75b in DMSO
Figure 43. 400 MHz 1H NMR of compound 80 in DMSO
Figure 44. 100 MHz 13C NMR of compound 80 in DMSO
Figure 45. 400 MHz 1H NMR of compound 81b in DMSO
Figure 46. 100 MHz 13C NMR of compound 81b in DMSO
Figure 47. 400 MHz 1H NMR of compound 83 in DMSO
Figure 48. 100 MHz 13C NMR of compound 83 in DMSO
Figure 49. 400 MHz 1H NMR of compound 84b in DMSO
Figure 50. 100 MHz 13C NMR of compound \textbf{84b} in DMSO
Figure 51. 400 MHz 1H NMR of compound 95b in DMSO
Figure 52. 100 MHz 13C NMR of compound 95b in DMSO
References

23. Ugi, I.; Meyr, R.; Angew. Chem. 1958, 70, 702-703
25. [a] Lentz D. J. Fluor. Chem. 1984, 24, 523-530

46. Frosch, P.J.; Johansen, J.D.; Menne, T.; Pirker, C.; Rastogi, S.C.; Andersen, K.E.; Bruz, M.; Goossens, A.; Lepoittevin, J.P.; White, I.R. *Contact Dermatitis*. 2002, 47, 279-287.

