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Abstract

Mohammed Mehdi Benmassaoud
EFFICACY OF ELUTED ANTIBIOTICS IN 3D PRINTED ORTHOPAEDIC

IMPLANTS
2017-2018

Shivakumar I. Ranganathan, PhD and Tae Won B. Kim, MD.
Master of Science in Mechanical Engineering

Costs associated with musculoskeletal diseases in the United States account

for 5.7 % of the Gross Domestic Product (GDP) [1]. As such, there is a need

to pursue new ideas in orthopaedic implants that can decrease cost and improve

patient care. In the recent years, 3D printing using Fused Deposition Modeling

(FDM) or Stereolithography (SLA) has opened several exciting possibilities to create

orthopaedic implants. Such implants can be engineered to release antibiotics in a

controlled manner either by infusing the drug into the material during manufacturing

or by using built-in design features such as micro-channels and reservoirs [2].

The use of heat in FDM and Ultra-Violet (UV) light in SLA could impact the

anti-bacterial effectiveness of antibiotics. Furthermore, the ability of 3D printed

orthopaedic implants to elute antibiotics, and the rate of elution are not well

understood. The objective of this thesis is threefold: i) Evaluate the efficacy of

antibiotics exposed to UV light and heat; ii) Conduct numerical and experimental

studies to assess drug elution through implants and iii) Perform Kirby–Bauer testing

to determine whether the eluted antibiotics from 3D printed polymer and metal

implants with built-in features maintain their antimicrobial property. Results indicate

that antibiotics elute in a controlled manner and remain effective. Furthermore, the

implant geometry can be optimized using a computational model on drug elution

calibrated with real world data.
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Chapter 1

Introduction

Deep bone infections after orthopaedic surgery remain a difficult problem to

treat. Although penetrance of antibiotic in bone is well documented, its levels and

ability to sterilize the bone is not well understood [3]. Furthermore, the presence

of a metal implant on which bacteria can grow and thrive makes it a challenge to

eradicate the infection without removal of the implant and compromising structural

stability or joint function [4-6].

Orthopaedic trauma patients who suffer open fractures and patients

undergoing joint replacement surgery (hips and knees) are at high risk for developing

post-operative surgical infections. Osteomyelitis, is treated with the removal of the

implant, surgical debridement, and placement of a material, which acts as a delivery

vehicle for high dose local antibiotics to the bone. The most commonly used material

is Poly-Methyl Methacrylate (PMMA), or bone cement. The antibiotic of choice

is loaded into the PMMA at the time the polymer and monomer are mixed, and

then the material is fashioned into the necessary shape or size [7-10]. In orthopaedic

trauma surgery, intramedullary rods are used frequently to act as internal splints in

long bones such as the femur and tibia until the fracture heals. When a femoral or

tibial rod is infected, treatment consists of removal of the rod, surgical debridement

of the bone and placement of a temporary rod made of antibiotic loaded PMMA.

Unfortunately, rates of failure are reported to be as high as 15 % [11-14]. Similarly,

in joint replacement surgery, large articulating metal implants are utilized to treat

osteoarthritis. The gold standard treatment is a 2-stage process whereby the implant

is removed and temporarily replaced with a spacer made of PMMA with antibiotics.

This spacer can be articulating or non-articulating. The patient receives a 6-8 week

course of intravenous antibiotics, and then returns to surgery for a re-implantation of

a new joint replacement. Unfortunately, even with this aggressive treatment regimen,

1



re-infection rates are as high as 15 % [15-19]. The use of PMMA as a drug delivery

mechanism has the following problems–

(a) When used in joint replacement settings, patients are left non-weight bearing

on the extremity for 6-8 weeks, frequently placed in casts and have problems with

cement dislodging and bone erosion [20].

(b) Drug elution properties of PMMA have been shown to be poor [21,22]. The

implant is also susceptible to bacterial colonization and becomes a nidus for continued

infection [23-25].

(c) Polymerization reaction for PMMA is highly exothermic. This limits the

antibiotics that can be mixed into the cement [26].

Thus, there is an inherent clinical need for new and improved drug delivery

materials/implants, and 3D printing offers a potential solution to this problem. The

antibacterial effectiveness of the antibiotics will be analyzed using Kirby-Bauer test

[27].

1.1. Key Contributions

The key contributions of this thesis are as follows:

(a) Analyze the effect of 3D print settings (temperature and ultraviolet light) on the

efficacy of eluted antibiotics.

(b) Conduct experiments to determine the drug elution from the implant using HPLC

and use the results to validate numerical models.

(c) Study the release of antibiotics from poly-caprolactone (PCL), poly-lactic acid

(PLA) and titanium grade Ti-6Al-4V femoral implants.

1.2. Overview of the Thesis

The key contributions will be discussed in the subsequent chapters. The effect

of temperature and ultraviolet light on the efficacy of doxycycline, vancomycin and

cefazolin will be discussed in chapter 2. Subsequently, experimental and numerical

2



studies will be conducted to investigate the drug elution through 3D printed polymeric

box shaped implants in chapter 3, while femoral implants will be considered in chapter

4. Lastly, the overall summary, limitations and future work will be discussed in

chapter 5.
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Chapter 2

Effect of Temperature and Ultraviolet Light on Efficacy of Eluted

Antibiotics

Fused Deposition Modeling (FDM) and Stereolithography (SLA) are two of

the popular techniques used to print orthopaedic implants. To print a part, FDM

uses high temperature to melt the filament as it passes through the nozzle, whereas

SLA relies on an ultraviolet (UV) light. When the antibiotics are introduced in

the material, high temperature and UV light can adversely affect the anti-bacterial

effectiveness of antibiotics. In this chapter, we examine: i) the effect of high

temperature and UV light on the efficacy of antibiotics and ii) composite resin

made up of various weight fractions of Polyethylene Glycol (PEG) and Polyethylene

Glycol Diacrylate (PEGDA) for SLA. Results indicate i) that even after exposing

doxycycline, vancomycin and cefazolin at different temperature between 20 oC and

230 oC for 15 seconds, the antibiotics did not lose their effectiveness (kill radius of at

least 0.85 cm). Whereas, vancomycin is sensitiveto UV light compared to doxycycline

and cefazolin, ii) doxycycline was present in the mixture of PEG/PEGDA with highest

efficacy found in a resin with 20 % PEGDA and 80 % PEG (1.8 cm of kill radius),

whereas lowest efficacy was in 100 % PEGDA (1.2 cm of kill radius).

2.1 Introduction

In the recent years, 3D printing techniques have revolutionized the design of

medical implants. For instance, Radenkovic et al. proposed 3D printing human hollow

organs with lower architectural complexity such as arteries, trachea, larynx and many

more anatomical applications [28]. Along similar lines, Mannoor et al. evaluated the

possibility of 3D printing bionic ears. The authors printed the model by slicing the

Computer Aided Design (CAD) model into layers with the help of the laser and inks
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[29]. Furthermore, 3D printing has also found applications in dentistry. Tamimi et

al. compared 3D printed monolithic monetite blocks and autologous onlay grafts for

craniofacial vertical bone augmentation in rabbits. The authors conclude that the

two methodologies both have the same efficacy on craniofacial bone augmentation.

However, they consider the 3D printing method as an attractive alternative solution

[30].

When dealing with knee and hip arthroplasty, Zhang et al. proposed the

patient-customized computer tomography aided design (CAD) and low temperatures

to 3D print a biphasic calcium phosphate cement spacer containing antibiotics for

total hip arthroplasty. The results obtained suggested significant model-to-model

variation between patients. However, the in-vitro and in-vivo experiments proved the

feasibility of using 3D printed implants for hip arthroplasty [31].

Finally, Kim et al. proposed 3D printing knee implants using Poly-lactic-acid

(PLA) instead of the PMMA bone cement. The authors took into consideration three

parameters (infill percentage, reservoir volume, and the quantity of micro-channels

for injecting the antibiotics inside of the polymer) when printing implants. Results

showed the antibiotics eluted within a span of two weeks [32]. In conclusion, 3D

printing techniques have shown to be a great success in orthopaedic surgery.

In the recent years, several materials have been used for 3D printing including

plastics, ceramics, metals, or living cells [33]. There are several manufacturing

techniques available for 3D printing. These include: i) Selective Laser Sintering

(SLS) ii) Thermal Inkjet Printing (TIJ) iii) Fused Deposition Modeling (FDM) [34]

and iv) Stereolithography printing (SLA). SLS relies on powder to print materials

and used for printing metallic components [34]. TIJ focuses on the technology that

relies on thermal, electromagnetic, and piezoelectric concept and uses an ink to print

materials [35]. FDM relies on heating and extruding polymers to create printed parts
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[34], while SLA utilizes liquid resin curing under UV light to generate a 3D print and

are among the most popular 3D printing techniques.

We propose exploring the possibility of using FDM and SLA to 3D print

orthopaedic implants. Thereby, we propose examining the effect of high temperature

and UV light on the efficacy of doxycycline, vancomycin and cefazolin.

2.2 Hypotheses

In applying 3D printing in orthopaedic implants, we hypothesize the following:

a. Heat cycle/temperature does not degrade the efficacy of released antibiotics to a

degree which renders them inert.

b. UV exposure (similar to SLA) does not degrade the efficacy of eluted antibiotics.

2.3 Evaluation of the Hypotheses

Fused Deposition Modeling (FDM) printing was one of the methods used

to construct the implants. It involved heating the filament to its melting point

and then extruding it onto the build plate layer by layer until the implant was fully

constructed. Whereas, SLA printing relies on liquid resin that will cure when exposed

to ultraviolet (UV) light. Through the 3D printing FDM process, the antibiotics

infused into the material are irradiated by heat. However in SLA, the antibiotics

are exposed to UV light. If these antibiotics degrade a significant amount through

such exposure it would be futile to load them into a prosthesis. Thereby we propose

using kill studies to investigate the effectiveness of the antibiotics heated at different

temperature.

The bacteria used for the kill studies was prepared by first sterilizing a

beaker of Lysogeny broth (LB) and pipetting out 4 mL into a 15 mL vial. Then an

inoculating loop was swabbed onto the bacteria and then immediately swirled into

the 15 mL vial of LB. The vial was then placed into an incubator for 24 hours. After
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which enough bacteria had grown to be used in the experiment.

The kill studies procedures was as follows: first 1 L of Deionized (DI) water

was mixed with agar powder, second was to heat this solution to near boiling, third

was to pour the liquid agar until the surface of the petri dish had been fully covered,

fourth was to let the agar cool and solidify inside the petri dishes, and finally was

to seed the petri dishes with E. Coli K-12 strain. The seeding process was done by

micropipetting 50 microL of bacteria broth onto each petri dish. If the petri dishes

had been dried out to due storage conditions it’s important to also pipet 50 microL

of LB onto each plate along with the initial 50 µL of bacteria broth. Subsequently,

the bacteria was evenly spread across the surface of the petri dish using an L-Shaped

cell spreader.

The final step is to soak filter paper disks with 6 mm diameter in the solution

retrieved from the experiments and were immediately placed on the petri dish

following the seeding procedure. At the bottom of each beaker were paper towels

soaked in water. Also the tops were loosely covered with seran wrap and the entire

beaker was placed inside an incubator. This final step was done to prevent drying

out of the petri dishes. Once the petri dishes were placed into the incubator for 24

hours they were removed and then analyzed using pictures and ImageJ. Fig. 1 shows

the schematic of the kill studies.
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Figure 1. Schematic of antibiotic loaded filter disks in bacteria seeded petri dish.

2.3.1 Effect of print temperature on the efficacy of eluted antibiotics

. The kill studies were done on doxycycline, vancomycin and cefazolin. Each of these

antibiotics were tested between room temperature and 230 0C with an increment of

20 0C. The zone inhibition for each antibiotic was detected and represented in the

graph shown in Fig. 2.
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Figure 2. The kill radius of each antibiotic at different temperature.

The white, grey and dark columns represent the kill radii of doxycycline,

cefazolin and vancomycin, respectively. The orange line represents the no zone

inhibition situation (meaning when antibiotic lose completely its efficacy). The kill

radius of each antibiotic is larger than the one with no zone inhibition. The no zone

represents the case when the antibiotics lost their efficacy and represent the radius of

the filter paper (0.3 cm). Therefore, the heat has no impact on doxycycline, cefazolin,

and vancomycin. Indeed, Doxycycline has an average of 1.21 cm with 4.8 % confidence

and standard error of 0.022, cefazolin has an average of 1.12 cm with 8.4% confidence

with standard error of 0.038 and vancomycin has an average of 1.15 cm with 7.7%

confidence with standard error of 0.035. These imply that the kill radii does not

fluctuate deeply. The fluctuation happens due to the sample-to-sample error done in

Kirby-Bauer test.
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2.3.2 Effect of ultraviolet light on the efficacy of eluted antibiotics.

Stereolithography (SLA) printing is appealing due to its ability to produce a solid

product with a low temperature procedure when compared to the FDM process. In

this process, the resin is exposed to highly concentrated UV light, which stimulates a

photochemical reaction that results in the liquid mixture polymerizing, thus gaining

the ordered structure of the solid [36]. The antibiotics Doxycycline, Cefazolin, and

Vancomycin were exposed to wavelength of 400 nm for 10 hours and subsequently the

efficacy was tested in Kirby-Bauer test. Fig. 3 shows the effect of UV wavelength of

400 nm for 10 hours considering the control at zero hour.

Figure 3. The kill radius of the antibiotic when exposed to UV wavelength of 400
nm for 10 hours.
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As expected, cefazolin did not lose their effectiveness and still had antibacterial

ability. However, doxycycline lost about 1.89% of its efficacy after 10 hours. Moreover,

its mean radii is 14.5% less than the radius at control. In fact, the mean radii of

doxycycline is 0.95 cm with standard error of 0.033 and the mean radii of cefazolin is

1.23 cm with an error of 0.024. These imply that cefazolin and doxycycline could be

used and still be effective. In contrary, the longer vancomycin is under the UV light,

the lesser is its kill radii. In fact, after 10 hours, it lost about 35% of it efficacy and

its mean radius is 58% less than the one at control. Thereby, vancomycin is sensitive

to UV light.

An experimental resin of Polyethylene Glycol (PEG) and Polyethylene Glycol

Diacrylate (PEGDA) with a photoinitiator, diphenyl phosphine oxide, was formulated

to produce 3D-printed objects. The PEG and PEGDA created the base structure

of the polymer, while the photoinitiator stimulated crosslinks in the polymer when

exposed to UV light, allowing the liquid to cure. A volume-to-volume resin containing

50% PEG, 50% PEGDA, and one gram of photoinitiator per 100 milliliters has been

used for experimental purposes.

Cured resin samples were produced to determine physical and chemical

processes of the crosslinked polymer. Among these properties, antibiotic elution was

the most important. For this area, it was necessary to find a process that would be

able to cure resin in a uniform manner. Attention was shifted to a new procedure in

which a mold designed to prepare bone cement was repurposed to hold liquid resin.

Above this mold, a UV lamp using the same wavelength as the SLA printer was

positioned to shine down upon the liquid lying in the mold. The described apparatus

can be seen in Fig. 4.
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Figure 4. The mold and UV lamp apparatus used to cure resin without the use of
SLA.

The bone cement mold contains seven identical channels that run parallel

to each other. These channels were utilized to evaluate several different resin

compositions to compare their properties. These different compositions were labeled

in terms of PEGDA, which contains the functional group that allows the resin to be

polymerized. The different compositions tested were 0% PEGDA, 20% PEGDA, 40%

PEGDA, 60% PEGDA, 80% PEGDA, and 100% PEGDA, with the balance being

comprised of PEG. Before the testing began, it was predicted that the 0% PEGDA

sample would not cure at all, and the 100% PEGDA sample would contain the most

crosslinks of any of the samples. It was also predicted that as the amount of crosslinks

increased, the structural stability of the cured sample would increase and the elution

of antibiotics through the sample would decrease.
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After preparing the liquid resin using the compositions described above, five

milligrams of Doxycycline were added per each milliliter of liquid solution for each

sample. This antibiotic-infused resin was thoroughly mixed to create homogeneous

samples, and these samples were then cured using the UV lamp. The mold produced

bar-shaped samples that had identical dimensions, and a hole puncher was used

to obtain three circular samples from every bar of cured resin. Fig. 5 illustrates

the bar-shaped sample and the smaller, circular sample hole punched from the bar,

respectively.

Figure 5. Printed samples produced using UV light.
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After preparing each sample, each cured resin was compared side by side.

Although no physical property testing was performed, it was observed that cured

samples containing higher percentages of PEGDA were much more rigid than other

samples containing high percentages of PEG. The correlation observed suggests that

samples with a high percentage of PEGDA would be capable of withstanding more

stress than samples with lower PEGDA percentages.

Kirby-Bauer tests were performed to determine the elution of antibiotics

through the cured resin. As predicted, as the percentage of PEGDA increased, elution

of antibiotics continued to decrease. The kill study results can be viewed in Fig. 6.

Figure 6. Kirby-Bauer test result.
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Fig. 6 shows the kill zone radius when changing the percentage of PEGDA

from 20 to 100%. The kill zone decreases from 1.8 cm to 1.2 cm highlighting the

effectiveness of antibiotics for all PEGDA percentages. After analyzing the raw

data, the standard deviation of the data points within each specific composition was

calculated. For each composition, three identically sized samples were submitted for

kill studies. These kill radii and standard deviation calculations appear in Table 1.

Table 1
Raw data of SLA kill studies and standard deviation of the data

PEGDA Kill Radius Kill Radius Kill Radius Mean Standard Deviation
(%) #1 (cm) #2 (cm) #3 (cm) (cm) (cm)
20 1.72 1.86 1.73 1.77 0.07
40 1.65 1.72 1.72 1.7 0.06
60 1.49 1.36 1.37 1.41 0.06
80 1.41 1.17 1.25 1.27 0.10
100 0.98 1.26 1.41 1.22 0.18

In Table 1, it can be observed that for PEGDA volume percentages of 80

and 100 percent, the standard deviation was rather high (0.100 cm and 0.175 cm,

respectively) compared to the lower percentages. This uncertainty level may prove

that the relationship between PEGDA percentage and kill radius are not linear due to

the range of each three-sample study. However, when viewing the raw data visually,

the trend of decreasing kill radius with increasing PEGDA appears to hold true, which
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allows for confidence when discussing the correlation.

Intuitively, this correlation is understandable, as the increased number of

crosslinks would create a stronger network within the cured resin, making it more

difficult for a substance to enter or exit the material. For the biocompatible resin,

this concept applied to the antibiotics, as they lacked the ability to release freely from

the cured sample.

2.4 Summary

Exposure to temperature (20 to 230 0C) had little effect on the efficacy of

doxycycline, vancomycin and cefazolin. However, UV light did adversely impact

vancomycin. In fact, cefazolin did not lose its efficacy, doxycycline lost close to

14.5% and vancomycin about 58%. Thereby, the three antibiotics can be used in

the FDM printer but only cefazolin and doxycycline can be in SLA implant. In

the next chapter, we will study drug delivery in cubic shaped implant with built-in

reservoir experimentally using High Performance Liquid Chromatography (HPLC)

and validating the results obtained numerically in COMSOL.
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Chapter 3

Experimental and Numerical Studies on Drug Elution through 3D

Printed Implant With Built-in Reservoir

The purpose of this chapter is to investigate the elution of doxycycline through

cubic shaped implant with built-in reservoir. The implant was manufactured using

3D printing FDM technique and the drug elution was studied for a period of 15

days. The concentration of eluted doxycycline was determined via the use of High

Performance Liquid Chromatography (HPLC). For the experiment, a mixture of

25 mM of monobasic potassium phosphate buffer and acetonitrile was used as the

mobile phase alongside a Discovery column C8 (length 15 cm, inner diameter of

4.6 mm and particle size of 5µm). A retention time of 9.56 min was obtained for

doxycycline, consistent with other studies in the literature. Furthermore, doxycycline

eluted in a controlled manner and 70 % of the initial amount was eluted after 15

days. A computational model of the implant was generated and the drug elution was

determined using COMSOL. Results indicate that the steady-state occurred after 30

days.

3.1 Introduction

Drug delivery is a mechanism of delivering pharmaceuticals in humans and

animals for a therapeutic purpose. It is typically used for the purpose of controlled

release or targeted delivery [37]. The controlled release mechanism serves many

functions including prolonged drug release duration [37]. G. Tiwari et al. analyzed

the liposomal delivery to increase the efficacy of an anticancer drug [38].

Diffusion is the principal mode through which drug is delivered in a variety

of applications [39]. Diffusion is the transport phenomena of molecules from one

medium to another due to random molecule motion. Drug diffusion takes place in
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two main systems: reservoir and monolithic system. In the reservoir system, drugs

diffuse through a polymeric membrane to reach to the outside environment. In the

monolithic system, the drug is mixed with the polymer. Therefore, the diffusion

happens with an initial burst of release which implies the drug release phenomena

[37, 40].

The application of drug delivery in medical application has been studied by

several authors [41, 42]. These include implantable microfluidic device for neurological

disorders delivering drug directly into brain tissue, a magnetically activated drug

delivery implant via reservoir system as well as periprosthetic implants for orthopedic

applications [32, 41, 42].

In this chapter, we propose examining the elution of doxycycline Poly-lactic

acid (PLA) implant using the reservoir system. This will be done by 3D printing an

implant with reservoir where the doxycycline solution will be injected. The implant

will be submerged in 40 mL of 0.9% sodium chloride irrigation, also called saline.

High Performance Liquid Chromatography will be employed for detection of released

antibiotics.

The retention time of doxycycline will be validated with the findings from

studies done by Monser et al., Fiori et al., Shariati et al., and Sigma Aldrich [43-46].

A numerical model to predict drug delivery will be setup in COMSOL and will be

calibrated using the experimental data.

3.2 Mathematical Background

Diffusion is the principal mode through which drug is delivered and the rate

of diffusion is proportional to the diffusion coefficient, time and concentration. The

general form of the diffusion-convection equation is used to predict the concentration
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(c(x, t) ≈ c) in anisotropic and heterogeneous media as given below [47]:

∂c

∂t
+ ∂cuj

∂xj

= ∂

∂xj

(
Dij

∂c

∂xj

)
+R (1a)

Initial Condition:

c(x, 0) = c0 (1b)

Dirichlet Boundary Condition:

c(x) = cd(∀x ∈ ∂B) (1c)

Neumann Boundary Condition:

−niDij
∂c

∂xj

+ njujc = Jn(∀x ∈ ∂B) (1d)

Where u is the velocity, R is the source, t is time, x is position, Dij is the

anisotropic diffusivity, c0 is the initial concentration of the antibiotics at t = 0, cd

is the concentration of antibiotics at the boundary B, n is the normal vector and Jn

is the normal flux. In special case when u is zero and R is zero, use of Eq. 1a results

in Fick’s second law:
∂c

∂t
= ∂

∂xi

(
Dij

∂c

∂xj

)
(2)

For the steady-state situation, Eq. 2 takes the following form:

∂

∂xi

(
Dij

∂c

∂xj

)
= 0 (3)

The diffusivity D is in general second-order anisotropic tensor given as follows:

D =

Dii Dij Dik

Dji Djj Djk

Dki Dkj Dkk

 (4)

When viewed in the principal direction, the diffusivity takes the following form:
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D =

Di 0 0
0 Dj 0
0 0 Dk

 (5)

Where Di, Dj and Dk are the principal diffusivities. For the special case of

isotropic media, Eq. 4 takes the following form

D = D

1 0 0
0 1 0
0 0 1

 (6)

Finally, for axisymmetric problem, the Fick’s second law (Eq. 2) takes the

following form [48]:

∂c

∂t
= ∇.(D∇c) =

[
1
r
Dr

∂

∂r

(
r
∂c

∂r

)
+Dz

∂2c

∂z2

]
(7)

3.3 Materials

Doxycycline hyclate (or also called doxycycline hydrochloride hemiethanolate

hemihydrate) was obtained from Sigma-Aldrich shipped from Milwaukee. Its

empirical formula is C22H24N2O8.HCl.0.5H2O.0.5C2H6O , its molecular weight is

M = 512.94g/mol and the maximum solubility in water is 50mg/mL. Fig. 7 shows

the chemical structure of doxycycline hyclate.

20



Figure 7. Chemical structure of doxycycline hyclate from Sigma Aldrich.

The 3D printer used is Ultimaker 2+ from the Ultimaker Company. For PLA,

it was preferable to order natural PLA from Sigma Aldrich with diameter 2.85 mm.

The natural PLA used has a density of 1.25 g/cm3 [49].

3.4 Experimental Setup

3.4.1 Stages in 3D printing of the implant. A CAD model of the implant

was created in SOLIDWORKS. The outside dimension of the cubic implant was

0.94in× 0.94in× 0.26in and the dimension of reservoir was 0.79in× 0.79in× 0.1in.

Fig. 8 shows the 3D printed cuboid implant.
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Figure 8. Cuboid implant.

The microstructure of the printed part is significantly affected by the

print settings. Some of these settings include infill percentage, print orientation,

temperature of build plate and nozzle, speed of printing and material flow among

others. This could have significant impact in the drug delivery. In this study,

the nozzle diameter was set to 0.4mm, layer height was 0.1mm, wall thickness was

1.05mm but the top and bottom thickness were 0.8mm. The infill density was set at

20% and the speed of printer head was 50mm/s. Finally, the support structure was

only used in the build plate.
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3.4.2 Design of experiment. The implant was merged into 40 mL of saline

(0.9% sodium chloride irrigation, USP). Doxycycline Hyclate with concentration of

10 mg/mL was injected into the reservoir by pausing the printer during the print

stage. Fig. 9 shows the experimental setup used in the study.

Figure 9. Experimental setup of the cuboid implant.

3.5 HPLC Experiment

3.5.1 Material used. Monobasic potassium phosphate (Worldwide Life

Science, Bristol, PA) mixed with 1L of Deionized water and HPLC Acetonitrile Acs,

Reagent and pH (EMD Millipore, Billerica, MA) were the reagents used for HPLC

experiment. The monobasic potassium phosphate buffer was prepared by mixing

23



3.41g of the salt in 1L of deionized water to create the buffer with molar concentration

of 25 mM. The two mobile phases were prepared and suggested following Sigma

Aldrich technical paper.

3.5.2 HPLC methodology. The detection and determination of the

solutions were done using HPLC Agilent 1100. The system consists of JetDirect card

connected to the detector, G1310A isocratic pump with solvent container, G1314A

VW detector with flow cell and G1328A Manual Injector, PC, monitor and software

for post-processing the data obtained. The Column used is SUPELCO Discovery

column C8 (length 15 cm, inner diameter of 4.6 mm and particle size of 5 µm). The

mobile phase flow rate was 1 mL/min. The detection wavelength was set to 260 nm

and the injection volume was set to be 55 µL. Fig. 10 shows the gradient used for the

mobile phase. Based on published data by Sigma-Aldrich, detection of doxycycline

was expected to be within 15 minutes. The second phase was run for 5 minutes to

clean the HPLC from any elements leftover. The third phase was used to prepare for

the next experiment.
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Figure 10. Mobile phase methodology.

3.5.3 Calibration curve. The chromatogram resulted gives the absorbance

values, using which concentration can be inferred. In this thesis, the antibiotics

considered were in the range of 0.1-0.5 mg/mL with an increment of 0.05 mg/mL.

Fig. 11 shows the baseline curve of concentration versus absorbance as obtained

using HPLC. Clearly, the results indicate that the concentration increases with

increasing absorbance values, albeit in nonlinear manner.
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Figure 11. Baseline curve of HPLC experiment.

3.6 COMSOL Experiment

3.6.1 Geometry, initial and boundary conditions. The axisymmetrical

model (symmetry about the vertical axis) of the implant (see Fig. 9) and the

surrounding saline solution is shown in fig. 12. The inner domain is the reservoir

containing the antibiotics which held within the PLA implant. The volume of the

saline is 2.44 in3, the radius of the beaker is 1.19 in and the height is 0.55 in. The

PLA domain dimension in COMSOL is 0.47 in × 0.26 in and the reservoir domain

has a dimension of 0.395 in × 0.1 in.
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Figure 12. The geometry created in COMSOL.

In this study, saline (Ds = 1.99× 10−9m2/s) and doxycycline solution (Dd =

1.2×10−11m2/s) are considered to be isotropic but PLA is considered anisotropic due

to the directionality in the 3D printing process [50] with the following second rank

diffusivity tensor:

Dp =
[
2.917× 10−13 0

0 9.147× 10−12

]
m2/s (8)

The initial condition is the initial concentration (ci) of the antibiotic solution

in each domain. Since the solution only exist in reservoir domain, ci is zero in PLA

and saline domain but within the reservoir, the initial concentration is 10 mg/mL ≈

19.5 mol/m3 . As for boundary condition, there is no flux at the outside boundary

because of no loss and no boundary at the axisymmetric axis.
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3.6.2 Mesh generation. Selecting appropriate mesh size is extremely

important for accuracy when solving initial boundary value problems using finite

element analysis. The size, shape, number of elements and time step are among

the parameters that need to be tuned. In COMSOL, when using either 2D or 2D

axisymmetric geometry, there are different ways of generating a mesh such as the

default way focuses on the number of elements. Usually, in this case, higher elements

lead to better results, but at the cost of a longer computation time. Changing the

shape of meshing is also an option by either choosing tetrahedral, quadrilateral,

triangular or mapped elements. Table 2 compares the settings for each meshing

types.

28



Table 2
Comparison between the six meshes settings

Mesh Type Mesh’s information
Time Number Run Reciprocal Reciprocal cmax cmin

Step of time error at error at (mol/ (mol/
elements (s) initial final time m3) m3)

time step step
Mapped/free 40 6240 4 0.01695 8.27e-6 1.33 0.36
triangular -
Extremely

Fine
Mapped and 48 2252 4 0.0254 3.416e-6 1.35 0.36
free traingular

- Finer &
0.0796 in

Free 37 1610 2 0.0076 8.27e-6 1.31 0.36
Triangular -
Extra Fine
Controlled 37 1610 2 0.0076 8.27e-6 1.31 0.36
Mesh 1-

Extra Fine
Controlled 34 516 1 0.00485 9.45e-6 1.24 0.35
Mesh 2 -
Finer

Free Quad 38 5926 4 0.0161 8.26e-7 1.3 0.36
and triangular
-Extremely Fine

Due to the higher number elements, smaller initial reciprocal error and

adequate time step, we choose the extremely fine section of mapped/free triangular.

Fig. 13 shows the convergence and meshing for the computational model.
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Figure 13. Mapped and free triangular mesh with 6240 elements. The X and Y-axis
represents the dimension of the geometry created, the convergence shows the error
Vs time step.
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3.7 Results and Discussions

A total of five experiments (see Appendix A) were conducted on doxycycline

solution using HPLC Agilent 1100 to detect the retention time [46]. Fig. 14A shows

chromatogram of five antibiotics under the family of tetracycline detected by Sigma

Aldrich and Fig. 14B shows the retention time.
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Figure 14. Comparison of results between Sigma-Aldrich methodology [46] and one
of the chromatography from current work. A) The proposed B) Sigma Aldrich
methodology. The Y-axis represents the absorbance, X-axis represents retention
time.
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The retention time of doxycycline based on the current work is 9.59 ± 0.06

minutes and compare well with the results from Sigma Aldrich (10 minutes). The

slight difference in retention time could be attributed to factors such as different

HPLC devices and mobile phase (see Table 4). Additionally, there has been an

increase of acetonitrile from 40% to 100% in order to clean the noise and be able

to run the experiment again. Lastly, Sigma Aldrich analyzed a sample made of

doxycycline mixed with the monobasic potassium phosphate buffer KH2PO4 whereas

in the present study, saline was used in the solution [51].

Table 3
The comparison between Sigma Aldrich methodology and the current work in HPLC
experiment [46]

HPLC’s Sigma Aldrich methodology A Current Work
parameters

HPLC Water Alliances 2487 Agilent 1100
machine
Injection 5 µL 5 µL
Column Supelco Discovery C8 (15 cm × Supelco Discovery C8 (15 cm ×

4.6mm ID, 5 µm particles) 4.6 mm ID, 5 µm particles)
Mobile phase (A) 25 mM KH2PO4,pH 3, (B) (A) 25 mM KH2PO4, pH 3.4, (B)

Acetonitrile 10 % B to 40 % B Acetonitrile 10 % B to 40 % B
over 15 minutes over 15 minutes, 100 % B over

5 minutes
Flow Rate 1 mL/min 1 mL/min

Temperature 35 0 C
Pressure < 70.1 atm (1030 psi) < 100 atm (1469.59 psi)
Detection UV, 260 nm UV, 260 nm
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The use of reversed phase HPLC on doxycycline have been widely studied

for different purpose. Monser et al. proposed running HPLC experiment on five

tetracycline families to separate them from the pharmaceutical product. The HPLC

used is called Beckman HPLC characterized by HPLC device equipped with UV 166

variable wavelength spectrophotometer. The column used is carbon column filled

with hypercab porous graphitic carbon with dimension 10 cm × 4.6 mm I.D.,7 µm of

particle size. The mobile phase used is a mixture of potassium dihydrogenophosphate

buffer 50 mM,pH 2 and 40% of volume-to-volume of acetonitrile run for a period of

15 minutes. The flow rate of the mobile phase is 1 mL/min and the injection of the

sample is 20 µL. The resulted retention time is 11.2 min [43].

Fiori et al. used HPLC to detect doxycycline mixed with acid water and

acetonitrile. The HPLC used is Hewlett Packard, also called HP, Ti Series 1050

liquid chromatography equipped with Rheodyne 7125 injector. The chosen column is

Phenomenex Luna C18 with dimension of 15 cm × 2.0 mm I.D. with particle size of

3.5 µm. The mobile phase is a mixture of oxalic acid (0.02 M,pH 2.5), acetonitrile and

methanol with volume ratio of 75-17-8. Doxycycline was detected around 12 minutes

[44].

Shiariati et al. used HPLC to extract tetracycline, oxytetracycline and

doxycycline in bovine milk, human plasma and water samples. The authors use

Varian 9012 HPLC alongside Varian 9050 wavelength UV/Vis for detecting the

antibiotics in the solution. 20 µL of the sample were manually injected using

Rheodyne 7725 injector. The column used is Supelco C18 analytical with dimension

15 cm × 4.6 mm I.D.,3 µm of particle size). The mobile phase is a mixture

of oxalic acid (0.005 M, pH 2.4), methanol and acetonitrile with volume ratio of

71:16:31 volume-to-volume-to-volume in the first 6 minutes and ratio of 50:25:25

volume-to-volume-to-volume between 6 and 15 minutes. The flow rate and the
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detection wavelength were respectfully 1 mL/min and 360 nm. The retention time of

doxycycline is 10 minutes [45].

Fig. 15 compares the result of Sigma Aldrich, Fiori, Monser, Shariati and the

current work. Even though different columns with same inside diameter and different

methodologies were employed, the retention times were closer to each other. In fact,

the margin difference was very small. Therefore, when using a carbon column type

with dimension 10-15 cm × 2-4.6 mm ID, the retention time of doxycycline ranged

between 9.5 and 12 minutes.

Figure 15. The comparison of retention time between different methodologies.
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Fig. 16 represent the experimental versus numerical results during a period of 2

weeks. The experimental result shows a drug elution increasing in controlled manner.

However, it did not reach steady-state level within this time period. Overall, there

is a good match between computational and experimental results (maximum error of

10%).

Figure 16. Comparison between Experimental and COMSOL results at different
time.
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Fig. 17 shows the percentage release of doxycycline from the 3D printed

implant using HPLC and COMSOL data. The percentage release was computed

by first calculating the initial and final amount. The initial amount is 10 mg since

m=ci × V=10 mg/mL × 1 mL=10 mg, and the final amount is the product of the

final concentration and the total volume of the saline (40 mL). Dividing the final

amount to the initial amount yields the percentage release. For a period of 14 days,

there is a total release of over 70% of initial amount of doxycycline.

Figure 17. The comparison between the HPLC and COMSOL results in percentage
release.
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Fig. 18 shows the contour plots of the experimental setup at time 0, 24, 48,

72, 120 and 336 hours. In the first day, 7 mol/m3 of concentration eluted from the

reservoir indicating a release of 36%. By 48 hours, more than 50% was eluted. Based

on these results, the half-time period for the elution of doxycycline through this PLA

implant is estimated to be about 47.02 hours (about 2 days). Even though the saline

domain does not change color, the legend shows an increase of concentration. At

zero hours, the minimum concentration was negligible. At 336 hours, the minimum

concentration was 0.375 mol/m3 indicating a total elution over 70 %.

Figure 18. Contour plot of the numerical simulation at different time period. The
number at the end of the legends are considered to be equal to zero.
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Fig. 19 shows the change of concentration in r-direction. At the boundaries,

there is no release of antibiotics when time is equal to zero hours since the diffusion

did not start yet. As for 336 h, the concentration gradient is almost negligible (a

decrease of 0.02 mol/m3). The change of concentration slope increased in the first

two days but start decreasing from the third day due to passing half-time period of

elution. The graph at the right side shows the concentration gradient from reservoir to

the outside domain. Before reaching PLA surface, the concentration is steady to the

change of r-direction until it reaches PLA surface. At the boundary, the concentration

exponentially decreases until it becomes negligible then increases with small increment

when leaving into saline domain due to the non-homogeneous boundary between PLA

surface and reservoir domain. This phenomena explains the concentration in the PLA

surface shown in Fig. 19.

Figure 19. The change of concentration along r-direction: The left plot represents at
the boundaries, the right represents from the reservoir to saline domain.
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Fig. 20 shows the flux from reservoir to saline domain. The total flux defines

the transfer rate. According to Fick’s first law, flux is dependent on the concentration

gradient and the diffusion coefficient. In this case, the diffusion coefficient is fixed

for each domain. However, the concentration gradient changes because of the release.

Since there is a big drop in concentration gradient at the surface PLA as shown in Fig.

19. This explains the flux peak closer to the PLA surface. The diffusion coefficient

being very low implies the negligibility of total flux. The fluxes are higher at the

boundary between PLA surface and reservoir and between PLA surface and saline.

This could be explained due to the diffusion coefficient of each domain.

Figure 20. Total flux from reservoir to saline.
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Fig. 21 compares the concentration versus time at three different points

when the elution reaches steady-state level. The blue graph shows the COMSOL

result that was compared to the experimental result which is closer to the reservoir

domain. The green graph shows the concentration at the end of the PLA surface

and the red graph shows the concentration at the end of saline domain. As a result,

the farther we are from the reservoir, the lower the antibiotic elution rate. On

the other hand, the three curves reach steady-state level at 700 hours (closer to 1

month) and the steady-state concentration of the three graphs are all equal to 0.3902

mol/m3 ≈ 0.200 mg/mL. The amount of doxycycline eluted from the reservoir at

steady-state: 0.200mg/mL × 40 mL=8 mg since the saline domain has a volume of

40 mL. The initial amount inside of the reservoir is 10 mg: 10 mg/mL × 1 mL=10

mg. Therefore, this analytical calculation validates the accuracy of the concentration

in steady-state. Moreover, according to our numerical result, 80% of the amount of

doxycycline will elute by 700 hours. The 20% will be left in the PLA surface since the

elution reaching steady-state implying that there is no more antibiotic in the reservoir.

41



Figure 21. Comparison of the eluted concentration at different time.

3.8 Summary

The drug elution in an implant with reservoir features has proven to be

efficient. For a period of 15 days, about 70% of doxycycline was released. Quantifying

the amount eluted was done through HPLC. Using carbon-based column and mobile

42



phase made of mixture between buffer and organic solution, the retention time of

doxycycline was found around 9.56 min.

The experimental study was a validation to numerical simulation. The

concentration contour, gradient and change of flux were examined for optimization.

The half-time of the drug elution is 47 hours. Additionally, it was numerically

predicted that the elution will stabilize after 30 days. By that time, 80% of the

amount was released and 20% stayed inside of the surface. Therefore, we propose to

investigate drug elution through other polymeric and metal 3D printed hollow shaped

orthopaedic implants to better understand the drug elution.
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Chapter 4

Kill Studies on Antibiotics Eluted through 3D Printed Implants

The purpose of this chapter is to study the elution of doxycycline through 3D

printed orthopaedic shaped implant with reservoir and microchannel features using

three different materials: Poly-Lactic Acid (PLA), Poly-Caprolactone (PCL) and

Titanium grade Ti-6Al-4V. The PLA and Ti-6Al-4V experiments were run for a

period of 31 days and the PCL experiment for one day. The antibacterial ability of

eluted doxycycline from PCL, PLA and Titanium were inspected using Kirby-Bauer

test on the bacteria E.coli k-12. The results show that most of doxycycline eluted

through the three materials in the first 24 hours and reached the steady-state level

after 30 days for PLA and Titanium. Additionally, Titanium implants released more

amount of antibiotics than PLA implant did. The eluted antibiotics through all the

implants demonstrated the ability to kill bacteria in the subsequent Kirby-Bauer test.

These outcomes prove that 3D printed polymeric and metallic implants with built-in

reservoir(s) and microchannel(s) have great potential in orthopaedic applications.

4.1 Introduction

Orthopaedic implants are commonly made using metallic alloys (iron, cobalt

and titanium) and polymers. Steel based orthopaedic implants are usually made up

of 316L stainless steel and iron-based alloy with mixture of iron, chromium, nickel,

and small amount of manganese, carbon, molybdenum and silicon. The extra low

interstitial (ELI) grade of titanium based of titanium, aluminum and vanadium form

the family of titanium implants. Along similar lines, several polymers(ultrahigh

molecular weight polyethylene, poly methyl methacrylate, silicone rubber) have been

used in articulating joints and bone cement [52]. The focus of this thesis will be on

Poly-caprolactone (PCL), Poly-lactic Acid (PLA) and titanium implants.
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PCL is a biodegradable, bioresorbable polymer with a melting point of 600C.

Woodruff et al. studied the application of PCL in the biomedical field. PCL is

suitable for controlled drug delivery due to its high permeability to many drugs and

its ability to be fully excreted from the body once bioresorbed [53].

Contrary to PCL, PLA is a thermoplastic material discovered in 1932 by

Carothers at DuPont by heating lactic acid under vacuum while removing the

condensed water. It is bioplastic and biodegradable material. This thermoplastic

is characterized by having glass transition temperature 40 0C- 700C, melting

temperature 1300C- 1800C, a density of 1.25 g/cm3 and tensile strength of 53 MPa.

PLA can be applied in food, bone fixation, drug delivery and tissue engineering [49,

54].

Titanium is a metallic element with the atomic number equal to 22. It is

characterized by silver color and is the seventh most existed metal in the planet [55].

In medicine, titanium is usually used to create implants for orthopaedic purpose

such as plates, screw, or for cardiovascular such as pacemaker [56]. There are many

different titanium alloys including Ti-6Al-7Nb or Ti-5Al-3Mo-4Zr. The most used

alloy in medical application are Ti-6Al-4V and cpTi. Ti-6Al-4V was originally

created for aerospace applications [57]. It has a mechanical properties between 1

and 1.45 GPa and elongation ranging from 25% to 4.4%, and has a mixture of 90%

of total weight for titanium, 6% for aluminum, 4% for vanadium, 0.25% of iron and

0.2% of oxygen. It is characterized by a density of 4.43 g/cm3, elastic modulus of

113.8 GPa and ultimate tensile strength of 950 MPa. The melting temperature of

Ti-6Al-4V is between 1604 0C and 1660 0C [58]. Titanium implants have been widely

used for mechanical purpose. However, to the best of our knowledge, there is limited

studies of drug delivery through these implants.

The study of antibiotic controlled release through metals has been pursued
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by several authors. Adams et al. proposed an in-vivo and in-vitro study by creating

vancomycin-containing sol-gel film on Titanium alloy rod (Ti-6Al-4v) to treat

infection. The in-vitro study was done in S.aureus culture by implantation of the

model into the infected femora. Vancomycin eluted in five days in the in-vitro study

and the 28 days in in-vivo study implying an elution in controlled manner [59].

This chapter will study the elution of doxycycline from PCL, PLA and

Ti-6Al-4V 3D printed implant with built-in features such as reservoir and

microchannel for a period of 31 days, for PLA and Titanium, and 24 hours for

PCL mixed with antibiotic. The success of the eluted doxycycline regarding

antibacterial ability will be tested using Kirby-Bauer test on the bacteria E. coli k-12

strain. The Minimum Inhibitory Concentration (MIC) of doxycycline will be used

for baseline studies.

Kirby-Bauer test has been extensively used for antibacterial susceptibility

studies. Neut et al. explored the potential creation of antimicrobial when

combining fusidic acid or clindamycin with gentamycin loaded in bone cement

using Kirby-Bauer test [60]. Rossi et al. used Kirby-Bauer test to determine the

minimum inhibitory concentration of Gentamicin on the bacteria Staphylococceus

Aureus and haemolyticus [61]. Andrews explores the determination of minimum

inhibitory concentration for different antibiotics using E. coli k-12 instead. The

minimum inhibitory concentration of Tetracycline in E. coli is 0.002 mg/mL [62].

4.2 Material and Methodology

4.2.1 Materials. The antibiotic used is doxycycline monohydrate

(Mw=462.45 g/mol) . It is soluble in ethanol or methanol but barely in water.

The antibiotic was obtained from World Wide Life Science, Bristol PA (from vendor

Alfa Aesar). The chemical formula for doxycycline monohydrate is C22H24N2O8.H2O

and the chemical structure is shown in Fig. 22.
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Figure 22. Chemical structure of doxycycline monohydrate (biomol).

Kirby-Bauer test, or also called agar diffusion assay, requires the use of petri

dishes, nutrient agar, E. coli K-12 bacteria, L-Shaped Cell Spreaders, parafilm,

Lysogeny Broth (LB), micropipette, tips, vials, incubator and refrigerator, gloves

and lab coat. The most important material for this experiment are Escherichia coli

K-12 (E.coli K-12) and LB. E.coli K-12 strain was obtained from Carolina Biology

(Burlington, NC). It is gram negative bacteria and kept at 37 0C. Lysogeny Broth is

the nutrient for E. Coli K-12. The petri dishes and agar nutrient are from Worldwide

Life Science Company too.
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4.2.2 Geometry of the femoral implant. The geometry of the femoral

implant was created in SOLIDWORKS (see Fig. 23) and closely mimics the geometry

of an implant used in clinical practice.

Figure 23. 3D model of the femoral implant.

As a novelty, reservoirs and microchannels were introduced within the implant

geometry as described in Ranganathan et al. [2]. The micro-channels were placed

on the sides, top and the bottom and were connected to two reservoirs (see Fig.

24). The doxycycline solution was introduced into the reservoir through the side hole.
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Figure 24. Femoral implant with built-in features such as reservoir and five
microchannel.

49



4.2.3 3D printing of PCL, PLA and Ti-6Al-4V implants.

PCL implants. The main goal is to show the antibiotic loaded 3D printed

femoral components are capable of killing bacteria. This will be achieved by first

creating 3D printed parts using the geometry of the knee implant shown in Fig.

24. Thereby, we propose manufacturing PCL filament mixed with doxycycline. The

diameter of PCL will be between 2.40 and 2.90 mm. Moreover, we propose mixing

PCL powders, which represents 75% of total mass of PCL filament, and PCL pellets,

which represents 25% of total mass and adding doxycycline representing 0.8% of

total mass in an extruder heated to 70 0C. The filament created will be implemented

into the 3D printer.

The Ultimaker 2 is the platform through which the 3D printing process

is conducted. This process needs to be carefully monitored throughout, as PCL

is not an easy material to utilize due to its soft, pliable, properties when heated

above room temperature. For this reason, certain parameters within the file and

printer settings must be modified in order to ensure good print quality. First,

line code should be introduced into the printer’s numerical control programming

language (G.code) to allow the change of temperature for the nozzle. Second, the

implant should be printed at 75% of full scale. This change should be done in

Cura, 3D printing software. Third, several parameters in the printer have to be

altered: the speed and the temperature should be decreased (temperature of printing

PCL should be 130 0C compared to the standard temperature 210 0C used for

polymers such as poly-lactic acid) while the material flow should be increased by 50%

more than the standard flow. Fig. 25 shows the PCL implant with antibiotics infused.
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Figure 25. PCL implant with antibiotic loaded.

PLA implants. The PLA implant were created following the geometry model

shown in Fig. 24. The infill of printing was 5%, the height of layers was 0.1 mm and

the speed of printing was 60 mm/s. Fig. 26 shows the PLA implant.
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Figure 26. PLA implant.

Metal implants. The metal implant was created using additive

manufacturing technique from the third party company TECOMET. The 3D

printing technique used is called Direct Metal Laser Sintering. The process requires

melting the powder titanium Ti-6Al-4V using the laser. After finishing the creation

and letting some time for cooling down, the inside powder are taken off. Fig. 27

shows metal implant.
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Figure 27. Metal implant.

4.2.4 Preparation of antibiotic solution. The 31.6 mg/mL of the

doxycycline solution was made by mixing 1.892 ± 5% grams of doxycycline

monohydrate in 60 mL of saline, also called 0.9% sodium chloride irrigation, USP

shipped from Baxter. Each 100 mL of the solution contain 900 mg of sodium chloride

and the pH is between 4.5 and 7.0 with a mean of 5.5. It was made around 20 days

before the experiment with a density of 0.976 g/mL.

4.2.5 Design of experiments. Before starting the experiment, it is highly

recommended to have a 1 L and 255 mL of beaker, saline, doxycycline solution,

Titanium, PCL and PLA implants ready. As for PCL, we submerge the implant

mixed with doxycycline in beaker filled with 255 mL of saline. The samples were

taken in matter of hours. Fig. 28 shows the design of experiment for PCL implant.
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Figure 28. Design of experiment for PCL implant.

As for PLA and titanium implants, the mass of Titanium (39.44g ± 0.95%)

and of PLA (14.134 g ±1.57%) was measured to be able to monitor the total volume

of the injected antibiotic solution inside of the reservoirs in each implant. The next

step will be filling 1L beaker with saline until reaching the full size then close all

microchannel except the side using blue tape 3M to inject antibiotic solution into the

implant through the open microchannel using 5 mL syringe. This step will be repeated

until the antibiotics solution overflows from the implant. In our records, 8.874 mL ±

5.07% was injected in PLA and 11.58 mL ± 3.61% was injected in Titanium implant

which was validated after measuring the final mass of Titanium and PLA implants

and divide it with the density of the doxycycline solution. Finally, raise the implant

over the open 1L saline filled beaker and remove the tape. Subsequently, lower implant

into the beaker to submerge it. 2mL from the sample were taken at different time

period. A control experiment was done to investigate the kill radius by repeating
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the same experiment without injecting antibiotics solution inside of the implant to

confirm the source of the zone inhibition.

4.3 Results and Discussions

4.3.1 Minimum inhibitory concentration (MIC). The Kirby-Bauer test

is very important for two main reasons: bacteria’s sensitivity to antibiotics and

MIC. According to Centers of Disease Control and Prevention, most of E. coli are

harmless but some of them could be pathogenic [63]. The MIC experiment is very

important because it helps understanding and predicting the minimum concentration

of antibiotic that can be used.

Finding the MIC requires testing different concentration of doxycycline

monohydrate mixed with deionized water to find the zone inhibition. The

concentration to be tested are between 0.01 and 4 mg/mL. The first zone inhibition

was detected at concentration 0.01 mg/mL. Thereby, we consider 0.01 mg/mL as

MIC of doxycycline on E.coli k12 as shown in Fig. 29. Doxycycline hydrochloride

mixed with water has a MIC between 0.03-128 mg/L (0.0003-0.128 mg/mL) on

Haemophilus species but have a MIC between 0.25-16 mg/L on Neisseria species [60].

Other studies show that the MIC of doxycycline on E. Coli ATCC 25922 is 1 mg/L

and no MIC on E. Coli ATCC 35218 compared to 100 mg/L of our MIC on E. Coli

ATCC 10798 [64]. Based on these results, our MIC is within these ranges.

55



Figure 29. MIC curve.

The MIC was also numerically predicted using COMSOL. The process was

investigated in 2D. Two circles were built. The first one has a diameter of 100 mm

representing petri dishes and the second has a diameter of 6 mm representing filter

paper. The small circle is located in the middle of the petri dish. The concentration

of the small circle is equivalent of the concentration used for MIC experiment. The

concentration of the biggest circle was set to be zero and the uniform diffusion chosen

is D=1.5 × 10−11 m2/s. The mesh used is free quadrilateral with extra fine size. Fig.

30 shows the mesh of the geometry and result found numerically.
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Figure 30. Mesh of the geometry and result at c=0.2 mg/mL.

The numerical MIC was validated with experimental result as shown in

Fig. 31. We tested the results between 0.2 mg/mL and 1 mg/mL. The outcome

shows a very small difference except at 1 mg/mL. In fact, the numerical studies is

within the standard deviation of the experimentation. Unfortunately, the higher the

concentration, the higher the gap between numerical and experimental results. We

hypothesize that Kirby-Bauer test is a medium to medium test but COMSOL works

on continuous medium.

57



Figure 31. Validation of MIC using experimental and numerical work.

4.3.2 Elution through PCL implants. For the PCL experiment, a

Kirby-Bauer test was implemented to understand the presence and antibacterial

abilities of the eluted doxycycline through PCL implants by taking 11 samples from

the experiment and detect its zone inhibition. Fig. 32 shows the result of the PCL

experiment after 5 and 10 hours and shows the elution of doxycycline through PCL

implants. The elution of doxycycline started within the first minutes of the beginning

of the experiment. After 9 minutes, the zone inhibition of doxycycline in the saline

was 0.9 cm. After 24 hours, the radius was more than 1 cm. Fig. 32 proves the

potential of elution within 24 hours. In fact, the zone inhibition can be see even after

5 hours. Moreover, the zone inhibition indicates that the antibiotic elution was still

58



successful. Contrary to bone cement, even though the implant was heated during

manufacturing, doxycycline was still able to kill the bacteria.

Figure 32. Zone inhibition of PCL after 5 and 10 hours experiment and the elution
graph of Doxycycline Hyclate from PCL femoral implant.
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4.3.3 Elution through PLA and Ti-6Al-4V implants. The drug elution

through PLA and Ti-6Al-4V implants were evaluated through zone inhibition. Fig.

33 A shows the zone inhibition through Ti-6Al-4V. The experiment was run three

times. For each experiment, three filter paper were submerged in the solution to

get an average zone inhibition with standard deviation. Fig. 33 B represents the kill

radius of eluted doxycycline through PLA. The procedure is similar to the experiment

made on titanium. Appendix B to E represents the result for each experiment after

3 runs.
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Figure 33. Kill Radius of doxycycline eluted through A Titanium implant B PLA
implant.

The control experiment shows no zone inhibition (0.3 cm is the radius of filter

used). Thereby, the radius shown in Fig. 33 shows the presence of doxycycline in

saline. The median kill radius of PLA experiment is 0.543 cm with standard error of

0.013 and 95% confidence interval of 0.0267. As for metal experiment, the median

kill radius is 0.608 cm with standard error of 0.014 and 95% confidence interval of
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0.044. According to the confidence, the median of the antibiotic elution from PLA

is bounded between 0.516 cm and 0.569 cm and Titanium is bounded between 0.578

cm and 0.638 cm. Fig. 34 shows the 95% confidence interval of PLA and Titanium

experiment.

Figure 34. Confidence interval of 95% for PLA and Titanium.

The line representing mean interval is considered to be small (less than 0.1 cm

for both of them). However, the interval for Titanium is slightly higher than the one

62



of PLA. Indeed, the maximum value of the mean for PLA is closer to the minimum

value of the mean for Titanium. The range of difference of kill radius for PLA

experiment is 0.168 cm compare to 0.225 cm for Titanium experiment. Additionally,

PLA experiment has a variance of 0.0025 and metal has a variance of 0.0032. These

results are small which implies that there is small fluctuation for the two experiments

and are in steady-state level.

The comparison between PLA and Titanium experiment was suggested to

further investigate the drug release. Fig. 35 shows the column comparing the kill

radius at each hour that the samples were taken in the experiment. Fig. 36 shows

the comparison of radius between PLA and titanium. The column proves that the

doxycycline is released more from titanium than in PLA apart from 1 hour, 120

hours and 168 hours. This was done for two main reasons. First, Titanium has more

microchannel than PLA since two more holes are included in titanium implant during

fabrication to clean the femur from the powders. Second, we were able to inject 11.58

mL of doxycycline solution in titanium implant compare to 9 mL injection in PLA

implant. Fig. 36 confirms the results found in Fig. 35. In Fig. 36, the two graphs

are close to stability with small fluctuation after 1 day of experiment. Thus, the

drug elution from PLA and Titanium reaches steady-state situation after one day of

experiment and stays stable for 30 days.
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Figure 35. Comparison of kill radius of doxycycline eluted from PLA and Titanium
at each time taken.
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Figure 36. Drug elution from PLA Vs Titanium implant.

4.4 Summary

In summary, the study of active implant using 3D printing PCL, PLA and

Titanium can be a great asset in orthopaedic. In fact, doxycycline eluted through the

three materials. Unlike bone cement, the drug elution through PLA and Titanium

stayed in steady-state situation for a period of one month after 24 hours. The

Kirby-Bauer test is very useful to investigate antibiotic elution and test the ability of

antibiotics on bacteria. In this study, the eluted doxycycline demonstrated the ability

of killing bacteria. Nevertheless, the experiments were proven to be successful. It is

preferable to detect the concentration of doxycycline in saline. Moreover, in-vivo

study will be helpful on investigating its application on human body.
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Chapter 5

Conclusion and Future Research Directions

In this thesis, we investigated the efficacy of eluted antibiotics in 3D printed

orthopaedic implants using Titanium (Ti6Al4V), Poly-lactic acid (PLA) and

Poly-Caprolactone (PCL) materials.

Chapter 2 focused on the effect of temperature and ultra-violet light on the

efficacy of eluted antibiotics. Results indicate that the exposure to temperature had

little effect on the efficacy of doxycycline, vancomycin and cefazolin. However, UV

light did adversely impact the efficacy of vancomycin. Thereby, SLA printing may

not be appropriate to print implants infused with vancomycin but FDM printing can

be used for all antibiotics considered in this research.

The elution of doxycycline through cubic shaped implant with built-in

reservoir was investigated in Chapter 3. Experiments were conducted using HPLC

and were used to calibrate the numerical model in COMSOL. Results indicated that

the retention time of doxycycline was found around 9.56 min. Furthermore, 70 % of

doxycycline was released in 15 days.

Chapter 4 investigated the elution of doxycycline through 3D printed femoral

implants with built-in reservoir and microchannels using three different materials:

Poly-Lactic Acid (PLA), Poly-Caprolactone (PCL) and Titanium grade Ti-6Al-4V.

The antibacterial ability of eluted doxycycline from PCL, PLA and Titanium were

inspected using Kirby-Bauer test on the bacteria E.coli k-12. Results show that most

of doxycycline eluted through the three materials in the first 24 hours and reached

the steady-state level after 30 days for PLA and Titanium. Additionally, Titanium

implants released more amount of antibiotics than the ones made using PLA.

Results from the present study highlight the potential of using 3D printed

polymeric and metallic implants with built-in reservoir(s) and microchannel(s)
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in orthopaedic applications. In the future, additional experiments are necessary

to understand the variability observed in the obtained results. It would also be

preferable to conduct in-vivo experiments to further investigate the drug elution

and examine the possible side effects. Also, a complete Finite Element Model of

the 3D femoral implant can be set up to optimize the implant geometry that could

potentially minimize the total number of experimental trials required to bring this

promising concept to market.
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Appendix A

Retention Time of Doxycycline Detected in High Performance Liquid

Chromatography (HPLC)

Figure A1. Detection of doxycycline in ethanol solution when injection is 1 µL.
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Figure A2. Detection of doxycycline in ethanol solution when injection is 5 µL.
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Appendix B

Poly (lactic acid) (PLA) - Doxycycline Monohydrate 31.6 mg/mL

Table B1
Zone Inhibition and Standard Deviation of release of
Doxycycline from PLA implant

Time(hours) Radius kill (cm) Standard Deviation
1 0.496 0.042
2 0.475 0.027
4 0.546 0.077
6 0.525 0.081
8 0.584 0.191
10 0.630 0.220
24 0.595 0.160
48 0.614 0.108
72 0.563 0.136
120 0.561 0.183
168 0.581 0.180
336 0.509 0.161
486 0.463 0.046
528 0.497 0.107
675 0.537 0.146
758 0.504 0.110
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Appendix C

Poly (lactic acid) (PLA) - No Antibiotic

Table C1
Zone Inhibition and Standard Deviation on PLA implant
with no antibiotics

Time(hours) Radius kill (cm) Standard Deviation
1 0.3 0
2 0.3 0
4 0.3 0
6 0.3 0
8 0.3 0
10 0.3 0
24 0.3 0
48 0.3 0
72 0.3 0
120 0.3 0
168 0.3 0
336 0.3 0
486 0.3 0
528 0.3 0
675 0.3 0
758 0.3 0

78



Appendix D

Titanium Ti6Al4V - Doxycycline Monohydrate 31.6 mg/mL

Table D1
Zone Inhibition and Standard Deviation of release of
Doxycycline from Ti6Al4V implant

Time(hours) Radius kill (cm) Standard Deviation
1 0.476 0.060
2 0.590 0.132
4 0.608 0.113
6 0.568 0.038
8 0.702 0.247
10 0.687 0.133
24 0.662 0.178
48 0.577 0.173
72 0.595 0.227
120 0.553 0.184
168 0.566 0.171
336 0.663 0.292
486 0.619 0.176
528 0.643 0.252
675 0.591 0.289
758 0.622 0.284
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Appendix E

Titanium Ti6Al4V - No Antibiotic

Table E1
Zone Inhibition and Standard Deviation on Ti6Al4V
implant with no antibiotics

Time(hours) Radius kill (cm) Standard Deviation
1 0.3 0
2 0.3 0
4 0.3 0
6 0.3 0
8 0.3 0
10 0.3 0
24 0.3 0
48 0.3 0
72 0.3 0
120 0.3 0
168 0.3 0
336 0.3 0
486 0.3 0
528 0.3 0
675 0.3 0
758 0.3 0
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