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Abstract 

 

Nikkoli Lueder 

MONITORING EXPRESSION OF METABOLIC GENES DURING THE HYPOXIC 

RESPONSE OF S.CEREVISIAE 

2018-2019 

Mark Hickman, Ph.D. 

Master of Science in  Bioinformatics 

 

All organisms appear to have the ability to sense and respond to changes in their 

environment. Hypoxia, or low oxygen, is experienced by many organisms at some point 

in their life cycle. Some organisms such as S. cerevisiae, a species of yeast, respond by 

dramatically altering gene expression. The result is that genes needed in the new 

environment are turned on and unneeded genes are turned off. S. cerevisiae has been used 

in our study because it shares many genes with other eukaryotes, including humans, so 

many of our findings are applicable to these organisms. Here, we tried to understand how 

metabolic genes change gene expression during the transition to hypoxia. Many 

metabolic pathways, such as the electron transport chain, depend upon oxygen and 

therefore likely respond to changes in oxygen levels. In order to study this, we followed 

gene expression over four hours as cells transitioned from normoxia to hypoxia. We 

performed this time course in triplicate and overlaid the expression data onto metabolic 

pathways in order to uniquely visualize the changes over time and across many pathways. 

As expected, we found widespread changes in many oxygen-dependent metabolic 

pathways, such as aerobic respiration and ergosterol biosynthesis. In addition, we found 

changes in pathways not known to be associated with oxygen, suggesting that oxygen is 

linked to many aspects of metabolism.  
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Chapter 1 

Introduction 

Cells Cope with Hypoxia via a Gene Expression Response 

Bimolecular oxygen gas makes up approximately 1/5 of our atmosphere, and as 

such, life has found a way to make use of it. Oxygen is required to perform aerobic 

respiration and is required for the production of many cellular metabolites, such as 

sterols, unsaturated fatty acids, and heme (1). However, oxygen can also be detrimental 

to organisms by the formation of reactive oxygen species which can cause cellular 

component damage (1). Conversely, when an environment is hypoxic, defined by low 

oxygen levels, it can have a variety of consequences, depending on the organism being 

studied (2). For instance, metazoans such as mice when exposed to hypoxic conditions 

develop cardiac disease due to mitochondrial dysfunction, and oxidative stress (3). On the 

other hand, there are microorganisms such as Schizosaccharomyces pombe, a yeast 

species which has active sterol  regulatory element binding protein (SREBP) during 

hypoxic events (4). The activation of SREBP transcription factor is a response to the 

lowering of sterol levels due to their dependence on oxygen during biosynthesis. In the 

case of Saccharomyces cerevisiae ~400 genes change expression when exposed to 

hypoxia, mediated by transcription factors such as Hap1 and to changing oxygen levels 

(1). The effects of hypoxia have been studied for many years, as the effects are diverse 

and have been found to affect many processes at the tissue and cellular level.  For 

example, a study found that solid tumors are often mildly or highly hypoxic due to a 

rapid growth rate and incomplete vascularization of the tumor (5). This hypoxic state has 
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been found to improve a tumor’s resistance to anticancer treatments (6).  Many neuro- 

degenerative diseases are known to be caused, or at least exacerbated, by hypoxia as well. 

A study was published that documented how there is a deficit of myelination in a 

developing brain when exposed to hypoxia. When myelination is improperly sheathed on 

neural axons, motor, cognitive, and sensory function are impaired in individuals (7).  

Myelination is impaired by hypoxia, resulting in delayed or improper differentiation of 

oligodendrocyte progenitor cells (OPCs) during the perinatal period of development. This 

period of hypoxic vulnerability results in the alteration of expression in metabolic 

pathways, causing unfavorable outcomes for the individual, such as seizures, and other 

neurobehavioral deficits (7, 8). Deficits such as the previous have given cause for 

researchers to study the hypoxic response within model organisms such as  

Saccharomyces cerevisiae. 

Metabolism and its Dependence on Oxygen 

Early in the history of Earth, shortly after the emergence of photosynthesis, 

molecular oxygen became more freely available in the atmosphere. Many organisms 

began to adapt to take advantage of that oxygen by using it as an electron acceptor to 

drive the process of cellular respiration. Many biological processes require the use of 

oxygen as an electron acceptor, and metabolic processes are no exception. For example, 

Sre1p protein is known to be regulated by oxygen-dependent sterol levels, and during a 

hypoxic event, gene expression is altered so that metabolic processing of sterols is 

inhibited (9). Many other processes, such as aerobic respiration, cannot occur in the 

absence of oxygen. Under conditions of insufficient oxygen, yeast cells must resort to 
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fermentation, which is a form of anaerobic respiration. However, anaerobic respiration is 

less efficient in producing energy as aerobic respiration, and in some cases the same 

products cannot be synthesized by their hypoxic counterparts. For example, in the 

absence of aerobic respiration, many intermediates, like acetyl CoA, and acetaldehyde, 

are produced.at different levels (10). In addition, production of NAD+, FAD+, and ATP 

are decreased, or halted altogether. This has caused many organisms to use fermentation 

or anaerobic respiration as a sole mechanism for survival. These changes in the metabolic 

pathways that are utilized is mediated by transcription factors that alter the expression of 

metabolic enzymes. One major regulator of hypoxic genes in mammals is hypoxia 

inducible factor (HIF), a transcription factor which is composed of three HIF alpha and 

one HIF beta subunits. While oxygen is present HIF alpha undergoes proteasomal 

degradation conversely, when no oxygen is available this activity is inhibited, and HIF 

alpha accumulates. This accumulation results in the activation of genes known  to 

promote hypoxic growth (11). It has been found that many oxygen-responsive genes and 

metabolic pathways are conserved across species. For this reason, we study the hypoxic 

response in Saccharomyces cerevisiae, a eukaryote with many of the same metabolic and 

signaling pathways, 

 

Yeast as a Model Organism for Studying Hypoxia and Metabolism 

  Saccharomyces cerevisiae, more commonly known as baker’s yeast, is a model 

organism that we employed to study the response to changing oxygen levels. Yeast is 

affordable, easy to manipulate, and performs cellular division in a manner like other 

eukaryotes such as humans. Additionally, yeast contains metabolic pathways that respond 
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to environmental changes such as hypoxia. An example of such changes occurs during 

glycolysis. Glycolysis can be performed both in the presence and absence of oxygen. The 

steps involved, its purpose, and products vary dependent on the presence of oxygen. No 

matter oxygen’s presence, one glucose, two molecules of ATP, and two coenzyme NAD+ 

molecules are required for glycolysis to occur. However, while oxygen is present, one 

molecule of glucose is converted to a net 36 ATP, six carbon dioxide, and six water 

molecules after undergoing glycolysis, and cellular respiration. Conversely, when no 

oxygen is present, cellular respiration cannot occur. This is because during the Krebs 

cycle, pyruvate is oxidized to acetyl-CoA and CO2 by the enzyme pyruvate 

dehydrogenase complex (PDC). Furthermore, during oxidative phosphorylation, a proton 

gradient is established that requires the oxidation of NADH from the Krebs cycle. Instead 

the process of fermentation occurs, and it only provides a means to continue glycolysis. 

However, fermentation only produces two net ATPs. Also, fermentation produces ethanol 

or lactic acid (depending on the organism), two ATP and two NAD+ molecules. 

However, this is not a net gain of products, as they are reused by glycolysis.  

Many proteins found in yeast function similarly to orthologues in other 

eukaryotes. This has enabled researchers to study genes found across multiple species. 

These orthologous genes can be monitored to determine what function(s) each gene has, 

and what they are influenced by (12). These influences range from changes in the 

environment, such as hypoxia, or changes in tissues, such as cellular damage. A previous 

study using Saccharomyces cerevisiae researched how hypoxia affected protein 

localization within cells. Their focus was to find out how protein localization and 
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production is affected by a hypoxic event. What they found was that hypoxia selectively 

alters cellular distribution of ~200 proteins across multiple organelles. The study stated 

many proteins that would be inhibited during hypoxia still formed, but instead of forming 

in its respective organelle of use, it would form in the cytosol, and remain there, until the 

environment became reoxygenated (12).  

As previously stated, yeast withstand environments ranging from aerobic to 

anerobic environments for extended periods of time. This quality varies among 

eukaryotes; in contrast to yeast, many organisms require an aerobic environment to 

generate ATP for cellular energy (12).  An aerobic environment is often required as the 

essential cofactor heme requires oxygen for its synthesis; further, heme is required in the 

formation of sterols. Heme and sterol biosynthesis decrease as oxygen levels decrease. 

This is due to Hap1’s indirect regulation of many oxygen dependent genes that are 

inactive during anerobic conditions (1). This quality promotes yeast as a model organism 

to study the effects of hypoxia. We expose many of the genes responsible for this quality 

by regulating the oxygen levels of their environment, to study the many oxygen regulated 

processes, such as redox regulation, respiration, and biosynthesis (13). In a more general 

sense we are studying the biosynthetic pathways of yeast to enhance our understanding of 

the organism, and ourselves. 

The Role of Oxygen in Biosynthetic Pathways 

  Oxygen utilization in biosynthetic pathways occurs at a variety of steps. For 

example, vitamin D2, and many steroid hormone drugs are produced by using ergosterol 

and its intermediates as precursors, all of which cannot be synthesized without oxygen 
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(14). Regarding our research, we studied the expression of all genes across a time course 

to understand not necessarily the products formed, but how the expression of biosynthetic 

genes in reacted to the levels of oxygen. The regulation of these enzymes is controlled by 

signaling pathways that end in the activation or repression of transcription factors (TFs). 

We and others have discovered that many transcription factors (such as Hap1, Mot3, 

Rox1, Upc2, Ecm22, the Hap2/Hap3/Hap4/Hap5 complex, and Mga2) participate in the 

hypoxic regulation of gene expression, including biosynthetic genes (13). Much gene 

expression is controlled by transcription factor binding to sites within the promoter of the 

target gene. Potential sites can be identified and used to predict which transcription 

factors are mediating the expression changes during hypoxia. One example of 

transcription factors controlling a metabolic pathway is the factors Hap1, Ecm22, and 

Upc2 controlling the expression of genes required for the biosynthesis of ergosterol, the 

fungi equivalent of cholesterol. Hap1 during aerobic conditions is the transcription factor 

responsible for expression of mitochondrial respiratory genes and oxidative stress genes. 

Hap1 is activated through binding by heme, which requires oxygen for its biosynthesis. 

When oxygen is not present, heme biosynthesis cannot occur and Hap1 is turned off as a 

transcriptional activator. Inhibition of many steps during ergosterol biosynthesis occur 

when oxygen levels are low. Hap1 and Upc2 appear to signal importer and other genes 

during periods of low oxygen, which causes structural changes within the cell to gather 

exogenous ergosterol (15, 16).   

Metabolic pathways other than ergosterol biosynthesis are affected by oxygen 

presence as well.  The glycolytic pathway and the tricarboxylic acid cycle are altered 
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when oxygen is lacking in the environment. Intermediates generated during these 

processes have been found to divert and promote anabolism, which under oxygen-rich 

conditions would be thermodynamically unfavorable. This causes a cascade of inhibition 

in the entry of glucose-derived carbons in the pentose pathway, serine, glycerol, 

hexosamine, and other various biosynthesis pathways (17). Many of these genetic 

responses are preserved between Homo sapiens and Saccharomyces cerevisiae, and as 

such have prompted exploration into the field. 

Our study focused on gene expression changes among biosynthetic genes in 

Saccharomyces cerevisiae as the cells adapted to hypoxia. Our goal was to understand 

how biosynthetic pathways as a whole adapted to this new environment and further to 

determine which signaling pathways and transcription factors facilitated these changes. 

We hoped to find genes that exhibited similar responses and regulation across different 

metabolic pathways, suggesting that a single signaling pathway can have a systemic 

impact on diverse metabolic pathways. Importantly, we visualized the expression data 

overlaid on the metabolic pathways in a novel fashion to highlight reproducibility as well 

as the role of different signaling pathways. Our work attempts to take a systems-level 

view of how metabolic pathways change as a cell adapts to a different cellular 

environment. 
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Chapter 2 

Materials and Methods 

Gene expression during hypoxia was measured as previously (13, 18). Briefly, 

hypoxia was achieved by continuously sparging flasks with ultra-high-purity nitrogen 

gas. Cells were captured at the indicated times, total RNA was extracted, and enriched 

mRNA was subject to Illumina sequencing. Gene expression was measured at 8 time 

points to measure the hypoxic response: once after 0, 5, 10, 30, 60, 120, 180, and 240 

minutes had elapsed. This time course is based on previous research, where it has been 

found to be an optimal time course. This time course is considered to be optimal as it was 

found to be the period in which the greatest changes in expression occurred (13, 18). The 

expression data for this research was procured from the labor of other research assistants 

from within the Hickman wet lab at Rowan University, Glassboro NJ. The resulting 

FASTQ files and raw HTSeq count data were deposited in NCBI's Gene Expression 

Omnibus and are accessible through GEO Series accession number GSE85595.  

 

The Role of RStudio  

RStudio is an internal development environment (IDE) where a user may execute 

data driven algorithms using the R programming language both of which are open source 

products. R is considered a staple tool within the bioinformatics community as it’s 

designed to work upon large datasets that are vectorized, such as gene expression data. 

Another fortunate quality of R is the availability of packages. Packages for our purposes 

may be summed up as collections of algorithms created by other users that may be 

imported into another user’s instance of R to perform a set of tasks. This functionality 
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allows R to often have a lower learner curve compared to other programming languages 

and enables a user to have access to functions that they normally would have to create. 

Packages alone make R an excellent choice for the novice and expert bioinformatician as 

they range from data manipulation, statistical testing, graphic creation, and more. It is for 

these reasons we chose R as the primary tool for data manipulation and visualization.  

 After our dataset of 6212 unique genes were loaded into RStudio, a variety of 

data manipulations and packages were implemented. Gene expression data was first 

manipulated by a normalize function produced by Dr. Mark Hickman (18). Dr. 

Hickman’s normalization function removes all genes with no available values, the PAU 

genes (that are almost identical in sequence and thus difficult to distinguish) and 

normalizes each column of data to the lowest summed column. After gene expression 

data was normalized, a flooring algorithm constructed by Dr. Hickman was used (18). 

The flooring algorithm reads each expression value, and any value found to be less than 

20, is replaced by 20. The floored data was then evaluated for the amount of fold changes 

at each time point by another algorithm of Dr. Hickman’s. The fold change algorithm is 

given 3 parameters; the dataset, the minimum amount of fold changes required for a gene 

to not be removed from the dataset, and finally if dataset is log transformed, what 

logarithmic base was used. After the fold change algorithm removed unwanted genes, a 

set of 1070 genes underwent a final log base two transformation normalizing the data in 

order to streamline the visualization of heatmapping the gene dataset. 

The completely transformed dataset then was used to generate heatmaps for 

visualization purpose. To perform heatmapping, a package called ggplot2  was called to 
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make use of its function heatmap.2 (19). Heatmap.2 allows a user in its most basic form 

to choose a row in a dataset, and a color scheme to be applied based on its numeric value, 

the more relatively extreme the value is, the more extreme the coloring is as well. 

Heatmap.2 was applied to each gene replicate, and then each gene triplicate was merged 

into one single png file, that was exported, and manipulated by ImageMagick.  

After heatmaps were generated for each gene, genes were filtered further then 

evaluated by RStudio’s K means clustering algorithm. The dataset of 1070 genes was 

evaluated for each replicate’s p value significance by using RStudio’s native function 

p.value(x, y), where x is the dataset, and y is the origin, if no y is assigned, R assumes y 

to be 0. If a gene did not have a significant p-value, and 3-fold changes in at least two of 

its replicates (determined by the fold change algorithm previously), it would not undergo 

K means clustering. Only 375 genes were passed to R’s function kmeans(x, n, …), where 

x is the dataset, n is the number of clusters, then optional arguments, such as specific 

distances of measure can be used, if no distance metric is specified, Euclidean distance is 

defaulted to. The 375 gene dataset was passed to the kmeans function, n was set to 10, 

and no optional arguments were passed. The selection of 10 clusters was validated by 

using two packages called cluster, and psych. The cluster and psych packages define 

parameters to manipulate clustering data, such as calculating a norm, centering a cluster, 

and calculating  the sum of squared error (SSE) values upon multiple random data sets, 

and finally can return a plot of those calculations (20, 21). SSE values are used to predict 

how a theoretical dataset is related to an actual dataset, Figures S14-S16 demonstrates the 

validation of selecting 10 clusters using the SSE calculations.        
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Image Cleanup and Creation using ImageMagick and Inkscape 

ImageMagick is free software that can perform image editing via command line in 

a Unix environment (22). This allows for preliminary image editing which is then edited 

further with the use of Inkscape. Inkscape is an open source scaling vector software that 

is used to create and edit illustrations. It can be used on multiple image formats, but its 

primary source material is scalable vector graphics ( .svg) files (23). It functions similarly 

to Adobe Photoshop, without being a proprietary product. Some noteworthy features that 

Inkscape contains are its ability to implement the use of a grid, which allows a user to 

snap lines and shapes to it, such as lines, arcs, and ellipses. Text can be placed in this 

same fashion. The use of layered sheets can be used as well, this can and has helped in 

separation of image objects as they are created and can overlap on one another. Lastly, 

Inkscape can export images in a variety of ways, such as pdf, svg, png, and jpg. You may 

choose to export by selection rather than by exporting the entire image as well. For the 

creation of the biosynthetic pathway figures, a model was built using the pathway 

structures found on yeastgenome.org, as these are consistent with other established 

pathway models. However, manipulation of a pathway’s layout did occur when deemed 

necessary, such as in Figure 4, where if no modifications were made, overlapping of 

heatmaps arose.  

YeastMine and Pandas  

YeastMine is SGD’s application programming interface (API) (24). This API 

allows a user with proper API key credentials to write scripts in one of several languages 

(Python 3 in our case) and query the database for whatever information they require. We 
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performed a query for identifiers, the associated organism, and description, of each gene, 

then saved the results of that query to a text file. This text file was then manipulated in 

Python using the package Pandas. Pandas contains tools for data analysis, indexing, and 

alignment, and when applied to our data, an alignment based on gene name was 

performed (25). 

SGD Gene Ontology Slim Mapper   

The SGD Gene Ontology Slim Mapper tool on SGD site allows a visitor to enter a 

set of genes. The tool then returns a breakdown of the set of genes demonstrating what 

biological functions the set seems to be involved in by percentage. Two percentages are 

returned: one displays the % of genes within your set that contribute to a specific 

function. The other shows the genome frequency of this biological function, which is the 

background rate of the function. Each biological function displays what genes from 

within your set contribute to this function.  

Yetfasco  

YETFASCO identifies proteins that potentially regulate each cluster (26). First, 

this tool was used to identify transcription factors that may regulate the cluster by 

analyzing whether transcription factor binding sites that were statistically enriched in the 

promoters of the given cluster. Second, this tool was used to identify regulatory genes 

that control the mRNA levels of genes in the cluster. To do this, the tool examines 

whether downstream genes affected by deletion or other manipulation of the regulator 

were statistically enriched in the given cluster. For each gene cluster, the tool returns an 

ordered list of potential regulators and a list of binding sites. Significance is determined 
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by a rank sum test. Regulators or binding sites were considered significantly enriched in a 

cluster if the p-value was  0.05 and the ROC (Receiver Operating Characteristic, 

indicating sensitivity vs. specificity) > 0.5 (26).  
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Chapter 3 

Results 

Data Manipulation and Cleansing 

 To visualize how gene expression changes during hypoxia, RNA-seq was 

performed on cells harvested at eight time points (27). To identify genes that 

reproducibly change, the time course was performed in triplicate. The strain of S. 

cerevisiae  used for this study was a S288C-derived strain, which has a repaired HAP1 

allele, and is a wild type for other oxygen dependent regulators such as ROX1, MOT3, 

ECM22, UPC2, HOG1, the HAP2/3/4/5 complex and MGA2 (13). In RStudio, our 

original gene dataset was a table with each gene as a row and each column as a time 

point. Three trials of this time course were applied and recorded so each gene would have 

3 sets of data to illustrate the expression at any given time for that gene. We then 

normalized the data as described in the Material and Methods. The application of min 

normalization is done so all gene expression can be measured from the same relative 

starting point fairly. After the previous manipulation, a flooring script was applied to our 

data. The flooring script set a minimum value, and any value found to be less than that 

value in the dataset was set to it (the floor is the bottom level, hence flooring). In our case 

we set any read lower than 20 to 20 because any read less than 20 could be noise in the 

instrument when a reading was taken. Since twenty is considered the lowest level of 

possible expression in our data, this does not present an issue in further manipulation or 

analysis. After the data was floored, it was then followed by a fold changelog2 

transformation. Each gene was evaluated by the fold change algorithm, removing all 
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unwanted genes from our dataset. The remaining gene were then log transformed using a 

base of two, and any gene found to have a value more extreme than ± 5 at a specific time 

point was adjusted to ± 5 respectively. We performed this transformation to allow 

moderate expression change to appear more brightly during the production of heatmaps. 

The transformed data was then transferred to a new matrix, where each gene was checked 

for a three-fold change in each of its three replicates of expression change. If a gene had 

two or more replicates that met this criterion, we considered this gene significant, and 

stored it into a new matrix to be used as the base data for K means clustering.  

Genes we considered significant were then assessed for similar expression 

patterns during hypoxia via k-means clustering. RStudio natively supplies the ability to 

perform k-means clustering merely by invoking “kmeans(x, n, …)”, where x is the matrix 

or data frame to be clustered, and n is the number of desired clusters. A user may pass 

optional parameters, such as the distance metric a user wishes to use; however, if none 

are specified, Euclidean distance will be used.  Multiple iterations of k-means clustering 

using Euclidean distance as a metric were performed to test various k values; however, a 

k of 10 was decided upon. A validation of a k value of 10 was conducted by designing an 

algorithm to test what k would be optimal. To do this, we invoked two R packages, 

cluster, and psych. The cluster and psych packages allow users to easily define 

parameters to manipulate clustering data, such as calculating a norm, centering a cluster, 

and calculating  the sum of squared error (SSE) values upon multiple random data sets 

(20, 21). SSE values are used to predict how a theoretical dataset is related to an actual 

dataset. This can be useful when building a predictive model to validate a choice, such as 
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choosing the correct number of cluster groups. After multiple runs of the SSE algorithm, 

it was found a k of 9.4 was optimal, we did not wish to use a fractional k value, so we 

chose to overestimate the value of k. This decision was made using Figures S14 to S17 as 

a cautionary measure. If 9 clusters were chosen instead, it would be harder to interpret 

defined similarity of the genes within a specific cluster. A column of “Cluster #” was 

appended to the manipulated matrix, so a record could be kept of which genes belong to 

which clusters.  

Heatmap Production 

RStudio supports many packages as previously noted, several of which can 

produce heatmaps. We made use of the package ggplot2 ,another graphic production 

package of R (19). The specific function used from ggplot2 was heatmap.2, a heatmap 

generator. To use heatmap.2 a user chooses a numeric vector, and a color scheme, and in 

our study, we used each gene’s expression data, and a color scheme of green, black, and 

red. Optional settings can be configured for this function one of which was creation of a 

color scale, and we applied this option. For our settings using heatmap.2, heatmapping 

should be interpreted as followed: green indicates the gene is decreasing in expression, 

black means no change has occurred, and red denotes an increase in gene expression. 

Genes that were removed from the experiment had their heatmaps represented by a grey 

box instead of a traditional heatmap image. This indicates that the gene deleted in the 

strain background (for the purpose of genetic crosses); two examples include gene 29 in 

Figure 1 and gene 6 in Figure S5. Note, all genes within the defined metabolic pathways 

had a heatmap generated for them regardless of whether the gene showed a large 
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expression change (and thus met our filtering criteria described above). This color 

scheme was applied to each replicate of every gene’s expression data, and thus generated 

one image for each replicate. After each replicate image was created, all replicates from 

the same gene were then merged into one png image that was exported, then manipulated 

by ImageMagick and the scaling vector software, Inkscape. 

 

ImageMagick and Inkscape, Image Creation and Manipulation 

Inkscape is a scaling vector graphical design program used for a variety of 

graphic designs, but we must note a few edits we performed before its use, using 

ImageMagick. We took advantage of using ImageMagick, since a Unix environment is 

appropriate to perform a series of repetitious tasks across many files (28). When 

heatmap.2 created our heatmaps of each gene, it padded all of them with unwanted 

whitespace. We used ImageMagick to remove the whitespace from each image. This may 

seem trivial, but there were several hundred images to process, and by implementing this 

simple step, we saved countless hours of work. After that, we used the websites KEGG 

(genome.jp) and SGD (yeastgenome.org) to view known biosynthetic pathways of yeast. 

We did this in order to categorize genes by occurrence within a pathway. After each gene 

was processed and filed, we imported the images for processing in Inkscape. For our 

purpose, we would start a new project for each biosynthetic pathway. Then we would 

import each gene to its appropriate pathway, rescaling each gene to an appropriate size. 

Once the genes were resized, we organized each gene in order of its appearance and step 

within the pathway. Pathway schemas were initially created based on the schemas present 

on SGD; however, modifications were made when necessary. After this step, we 
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appended colored numbers which corresponded to cluster groups. This was done to 

indicate if a gene came from a cluster, and if so, which one. We did this so that a reader 

could easily view a pathway, or multiple pathways at once, and see which genes are 

responding similarly to the oxygen levels present. Each gene’s name was replaced by a 

numeric identifier, in order to reduce the cluttering of the figures. The gene numbers and 

their associated gene names are listed in an Excel file (see appendix) which is organized 

by biosynthetic pathway; the user should refer to this table to obtain individual gene 

names. 

 

YeastMine, Slim Mapper, Yetfasco, and Pandas 

After we created our version of the biosynthetic pathways, we used YeastMine 

and wrote a script that would extract all defined information about each gene in our 

dataset. We then saved the extracted data to a .txt file. We did this to keep a local 

collection of genes relevant to us, thus speeding up our ability to interpret the pathways 

as per what was happening over the hypoxic time course. By harvesting gene definitions, 

we then had the ability to group keywords, and find what key terms appeared frequently 

in a cluster. This also made room for the possibility to generate word clouds to display 

information about clusters.  

While YeastMine was a great tool for definition extraction, another tool, Slim 

Mapper, was required to interpret statistically how many genes contributed to our idea of 

a cluster’s function, and what percentage of those genes made up the yeast genome. In 

our case, we entered each cluster as a separate set of genes to further enforce what 

functions a cluster seemed to carry out. Using the next tool, we took this a step further -
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we wanted to find what proteins could potentially be regulating the genes in each of our 

clusters. To achieve this, we made use of the website Yetfasco. Each of our clusters was 

pasted into the tool “Find potential regulators of your favorite genes” on the site, and a 

list of regulators was returned for each cluster. While this was useful, it also proved to be 

unwieldy, at least in the case of the TFs. To elaborate, when the list of significant TFs 

was generated for each cluster, it contained several hundred to 1,000 rows depending on 

the cluster of genes that was entered. This is because each gene may have more than one 

regulator of its expression, so a data expansion occurs. To alleviate this, a web crawler 

was developed and implemented to navigate to the resulting webpages produced by 

Yetfasco. This crawler read the webpage and saved all genes and their associated p 

values to a text file. Then Pandas aligned and counted the occurrences of any and all TFs 

found at a specified binding site. This raw data was saved to a text file. The counting 

script was further expanded on by restricting the count to only count a TF occurrence if 

its p value was a significant one, 0.05.  

Novel Design 

What is novel in our approach is the presentation of the data. To our knowledge, 

no one has yet to map yeast’s metabolic biosynthetic pathways where gene expression is 

also mapped during hypoxia. A similar publication, titled, “Mining metabolic pathways 

through gene expression;” has basic biosynthesis pathways overlaid with some genes; 

however, it is not nearly as in depth as our study (29). Regulation of the pathways may 

have previously been known, but regulatory connections between the pathways are still a 

relative mystery. We sought to explore the possibility of connections between the 
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pathways regarding expression change and regulation by monitoring them over the 

course of hypoxia. Regarding the regulation of each cluster, many TFs and binding sites 

were found to be of significance in the regulation of several clusters. Certain genes stood 

out among the others in their sheer volume of occurrence in clusters. Several examples of 

this include HOG1, and MSN2,4, all of which handle stress. This can be viewed in Table 

1. When a biosynthetic pathway has several genes in it that are found to be in the same 

cluster, there seems to be a more significant p value for its regulatory genes found on 

YETFASCO. This tells us that these regulatory genes are even more significant to the 

cluster, and the regulation of the metabolic genes found within it. This is present in our 

heatmaps as well, where the more vibrantly colored heatmaps (such as genes from cluster 

8) seem to have very significant p values regarding regulation and application to binding 

sites. While numeric data presents the information, a visualization of the data makes it 

easier to understand what was happening during hypoxia. Visualization of gene 

expression allowed us to focus on what gene response yeast had during a controlled, time 

restricted hypoxic event; interpretation of the heat mapped response of the genes allowed 

us to more easily understand the true scale of change occurring.   

Assessment of Metabolic Pathways (Primary)   

Each pathway exhibited different levels of gene expression change while in the 

presence of hypoxia. Some pathways exhibited a level of exclusivity regarding cluster 

presence (such as cluster 8 within the electron transport chain); however, not all pathways 

were dominated by a cluster presence.  Glycolysis is an example of this, where cluster 6 
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may be the domineering cluster present, but clusters 9 and 1 are also prevalent. This is 

not mentioning the other clusters that can be seen in this pathway.     

To understand the hypoxically-induced changes to yeast metabolism, we focus 

individually on each biosynthetic pathway. Starting with Figure 1 (Glycolysis), we have 

observed several interesting gene expression changes. As the hypoxic time course 

proceeds, upregulation is occurring in most genes. All genes within cluster 6 appear to 

exhibit heavy upregulation once 15 minutes has passed. Genes within clusters 1, 7, 0 and 

9 exhibit upregulation as well, but seem especially interesting during the middle of the 

time course. There are a few genes that exhibit downregulation; however, only one 

downregulated gene was found in a cluster, specifically, cluster 5. To further understand 

what was occurring, we needed to examine the clusters associated with glycolysis. Using 

our information from Slim Mapper, we knew that the upregulated genes in clusters 0, 1, 

6, 7, and 9 are responsible for a variety of tasks necessary to yeast as seen in Table 1. 

Transcription factors (TFs) such as HOG1, MSN2, SKO1, and TOD6 appear in high 

frequency and high significance, based on p-value scoring. From established databases 

such as SGD, we knew these regulators are important in stress response, and in the case 

of TOD6, RNA II polymerase transcription.  

Moving on from glycolysis, we arrive at the citric acid cycle (TCA) (Figure 2).  

Figure 2 shows an increase of expression in most genes, with very few genes decreasing 

in expression. Not many of the genes ended up in a cluster for TCA. This is because the 

clustering algorithm we used was only passed genes that were found to show substantial 

expression changes in at least 2 replicates.  These genes still did exhibit increased 
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expression and have aided us in understanding the TCA biosynthetic pathway. We 

showed the expression of all biosynthetic genes in a pathway, regardless of whether the 

gene met a minimum fold change. For this reason, many genes in the figures do not have 

a cluster number because they did not change enough. Genes 16 and 17 show a decrease 

in expression in one replicate each. We speculated this may have been the organism 

sensing the environment, trying to detect what changes, if any, have transpired. Unlike 

glycolysis, where significant expression change was found to be both increasing and 

decreasing, TCA only had clusters of genes increasing in expression. This makes sense as 

yeast produces ethanol during fermentation (while conditions are hypoxic), and we have 

found clusters 1, 4 and 9 to all contain properties known for response to chemicals. So, it 

may be reasonable to speculate that genes within those clusters help alleviate the stress of 

living in an alcohol rich environment. Several TFs are found to be significant during 

TCA, some of which include: HOG1, MSN2, MSN4, CUP9, YAP1, and TOD6. CUP9 has 

been found to play a role in negative regulation of dipeptide transport, while YAP1 is 

responsible for regulation of transcription of various stress handling factors (24). 

 Moving along in yeast’s aerobic respiration, we arrive at the electron transport 

chain (ETC) (Figure 3). Figure 3 shows the various ETC complexes as well as other 

significant structures that are used to support the ETC. Many genes appeared to be 

clustered in ETC. Most striking was the prevalence of cluster 8 within complexes 3 and 

4. However, there is a presence of clusters 1, 2, 3, 6, 7, and 9. The pathway appeared to 

overall increase in expression, except for genes contained in clusters 2 and 8. We have 

speculated that as conditions became more oxygen-deficient, genes within the ETC 



23 

 

pathway were signaled to increase in expression. Cluster 8’s function has appeared to be 

cellular respiration, metabolite and energy precursors, ion transportation, transmembrane 

transport, response to chemicals, and several other processes. Based on the processes one 

could speculate that during anaerobic conditions, the ETC is focused on alcohol 

accumulation, and oxygen disappearance, causing a shift in processes to maintain a basal 

level of energy production. This speculation is further enhanced by the fact that complex 

3 is known to ‘leak’ electrons and these ‘leaked’ electrons then react with molecular 

oxygen. However, in periods of low oxygen when molecular oxygen is scarce, perhaps 

yeast cells decrease expression of genes in complex 3 in order to reduce ‘leaking’ 

electrons, which while unbound, could cause damage to the cell. 

 Not directly connected to the ETC we inspect purine biosynthesis (Figure 4). 

Purine is the first pathway that was found to overall decrease in expression. Many of the 

downregulated genes are within cluster 5 in Figure 4. Cluster 5 was found to be 

responsible for rRNA processing, biogenesis of ribosomal subunits, and assembly of 

biological structures. In contrast to cluster 5, clusters 3 and 9 contain genes with 

increasing expression during purine synthesis. This was interesting since clusters 3 and 9 

are responsible for a combination of chemical response, protein targeting, protein 

phosphorylation, carbohydrate metabolic process, lipid transport, pseudohyphal growth, 

protein folding, response to DNA damage, and other cellular responses. In addition, 

expression is increasing at the steps between the conversion of dGTP and dATP, 

relatively isolated from the decreasing genes (see Figure 4). What may be occurring is 

that chemicals such as alcohol are putting strain on the organism’s viability, and health, 
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so, to compensate gene expression emphasis switches from reproduction/replication to 

self-preservation to combat the increasingly stressful environment. However, further 

testing is required to validate such a claim, and was outside the scope of this study.  

Next to be discussed is the biosynthesis of fungal sterols by the ergosterol 

pathway (Figure 5). Every gene within this pathway was decreasing in expression at 

some time point, and often it occurred at several times over the time course. This can be 

interpreted as synthesis of ergosterol not being a high priority during hypoxia – which is 

surprising because ergosterol biosynthesis requires oxygen; thus, one might expect 

increased level of these enzymes when oxygen level is decreased, at least in the 

beginning of the time course. Three clusters are found in Figure 5: clusters 0, 2, and 5. 

These clusters were found to be involved in metabolic processes and assembly of cellular 

structures.  Another study found that when ergosterol is transported from the endoplasmic 

reticulum to the plasma membrane, ATP must be consumed regardless of the transporting 

molecule used (30, 31). This seems reasonable as gene expression seemed to not focus on 

growth or development, but instead is involved in maintenance of cellular health and 

basal energy levels during a hypoxic event.  

Assessment of Metabolic Pathways (Supplementary)    

Two pathways are found in Figure S1; the top pathway depicts proline 

biosynthesis while the bottom depicts the biosynthesis of glycine and serine. In proline 

synthesis, during the conversion of 2-oxoglutarate to L-glutamate we see increased 

expression in genes 1 and 2. Gene 2 is a member of cluster 4 which serves lipid metabolic 

process, response to chemical, transposition, and lipid transport. An occurrence of cluster 
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8 appeared between the conversion of L-arginine to L-ornithine. This was interesting as 

cluster 8 shares some of the properties of cluster 4, like response to chemicals. Overall, 

the pathway had increased expression, with some instances of no change, except genes 

tied to the production of L-glycine and L-serine. L-glycine and L-serine are both 

precursors to protein formation (32). So, if expression of genes that produce these 

molecules is down, we should be able to predict that protein formation in down as well 

during hypoxia. 

Figure S2 is a collection of hypoxic signaling genes. This was organized from 

high expression to lower expression (top to bottom) to separate what occurred in some 

known hypoxia signaling genes. Most genes were increased or decreased in expression, 

however, gene 17 was rather unchanged. Gene 17 is HAP3, which is a known global 

regulator of respiratory gene expression. HAP3 has several known regulators; CAD1, 

GCN5, IXR1, MED2, XBP1, and YAP1. All of which except IXR1 happen during a 

stressful event such as peroxide formation, or heat stress (24). The lack of expression 

change in gene 17 was interesting as the organism was going through a hypoxic event. 

Perhaps a greater duration of hypoxia is required to observe change in gene 17 as it 

would appear to serve a role in stress response. 

Figure S3, pentose phosphate synthesis, is heavily unresponsive to hypoxia. 

However, a few genes, such as 2, 7, and 9, did change and belong to clusters 1, 5, and 9 

respectively. Cluster 1 was ambiguous, lacking a primary focused response; instead, it 

was a collection of many factors. Some of these factors included: various protein 

processing, response to chemicals, oxidative stress, and cell wall organization or 
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biogenesis.  What is interesting about this, is that of the many pathways that handled 

response to chemicals, expression is not highly regulated in either direction. Perhaps in 

future study, one could discern the specifics of what chemicals the organism is 

responding to, perhaps pentose phosphate biosynthesis would respond to another 

chemical if it were placed within the environment.  

Figure S4, heme biosynthesis, generally was increased in expression, or was 

unaffected by hypoxia. The only exception to this was gene 1, HEM1. HEM1 catalyzes 

the first step in the heme biosynthetic pathway; an N-terminal signal sequence is required 

for localization to the mitochondrial matrix; expression is regulated by Hap2p-Hap3p 

(24). In Figure S4, only genes 6, 7, and 8 were clustered, but all three were increasing in 

expression. Gene 6 was found in cluster 3, which had roles in stress, cellular repair, 

various growth, translational elongation, as well as many others. Gene 6, or HEM13, is 

known to be transcriptionally repressed by oxygen and heme. As heme production, and 

oxygen levels are decreased, expression of HEM13 was increasing. HEM13 is known to 

catalyze the 6th step in heme’s biosynthetic pathway, which partially may explain why 

genes 7 and 8 are increasing in expression as well (24). Another possible explanation of 

upregulation of heme production is that it is a binder of oxygen within a cell. If heme 

concentrations increase during hypoxia, this might be a mechanism to sequester the small 

amount of free molecular oxygen that is available. This might not only provide a greater 

amount of oxygen for oxygen-dependent processes, but also reduce the probability of 

oxygen causing additional damage by reacting with and destroying biomolecules, like 

DNA and proteins.  
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Pyrimidine (Figure S5) has displayed mostly genes with decreased expression; 

however, a few genes were found to be increased, namely genes 5 and 8, both of which 

belong to cluster 9. Gene 4 remained unchanged during hypoxia while gene 10 was the 

only gene that increased expression and was found in a cluster. What was most 

interesting about this pathway is that the first several steps showed genes decreasing in 

expression, but a spike of increased expression occurs for a time, then it is returned to a 

decreased state. This is not the case for our next pathway, aspartate.  

Figure S6 at most steps in this pathway displayed a range of decreases in gene 

expression, except for a few genes, which were typically toward the end of the pathway. 

Several genes were found to have opposing expression patterns across their replicate sets, 

specifically genes 1, 18, 19, and 22. Genes 1, 18, 19, and 22 displayed this quality to 

differing degrees, however, gene 19 appeared the most striking. This may have indicated 

that gene 19 temporarily responds to hypoxia by ceasing its use and attempted to wait for 

a change in its environmental, and/or biological state. 

Pyridoxine biosynthesis (Figure S7) contained mostly sporadically changing gene 

expression; except gene 6, which appeared in cluster 5, and was highly downregulated.  

Gene 6 plays a role in the conversion of D-ribose 5-P to D—ribulose 5-P, which was 

likely not occurring, due to gene 6’s expression response. Only genes 3 and 4 appeared to 

increase in any notable activity, with gene 4 appearing in cluster 0. Interestingly, when 

glutamine enters the pathway, we see the increased activity in gene expression. Perhaps 

this is related to the use of the stored glycogen in the biosynthesis of glucose (Figure 1).  
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The pathways of histidine, valine, alanine, and leucine (Figure S8) remain heavily 

unchanged throughout hypoxia. In fact, during the biosynthesis of histidine, there are 

only minor blips of expression change for the whole pathway. In the case of the leucine, 

and valine pathway, there was initially a trend toward decreasing expression, with 

isolated increases; however, there were significant increases at the final step of valine, 

and leucine formation. This may be in part due to the hydrophilic nature of histidine, and 

during hypoxia, yeast will not form water from fermentation, so there is no expression 

increase.  

  Much like the previous pathway, lysine biosynthesis (Figure S9) shows varying, 

but scarce expression change. Interestingly, genes 4, 6, and 7 increased, albeit by very 

small amounts, while the rest of the genes remain unchanged, or are lowering in 

expression. Possibly the biosynthesis of new intermediates is not a priority, but the use of 

current intermediates is still occurring to produce lysine. 

Figure S10, the tyrosine, phenylalanine, tryptophan pathways generally showed 

no change in expression during hypoxia. No genes were found to exist in clusters from 

this pathway; however, a gene of interest was gene 9, ARO9. ARO9 is known to catalyze 

the reaction of catabolizing the products of this pathway (24). Perhaps during the 

transition from an aerobic to an anaerobic environment, these products are not required 

by the organism, and thus they are broken down for a short period of time to be used as 

components for other processes.   

During folate’s biosynthesis under hypoxia (Figure S11), minor sporadic 

increases in expression occurred. In addition, several genes including gene 2, encoding 
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FOL1, showed decreased expression, suggesting that this gene controls an important 

regulatory step. Overall, the genes in this pathway were not found to be strongly 

regulated, and thus oxygen appears to have minimal impact. This makes sense as there is 

no direct relationship between oxygen and the formation of THF, which is the source of 

methyl groups in the cell.  

Figure S12, biotin synthesis seemed slightly affected by hypoxia. Of the 3 genes 

involved in this pathway, gene 3 (THI20) shows the greatest increase in expression. No 

genes in this pathway reached the 3-fold threshold so there not subject to clustering 

analysis. In future work that focuses only on the synthesis of biotin, perhaps a lax of 

restriction in significance is required to ascertain which cluster, if any, these genes could 

potentially belong to.  

A mostly unchanged pathway during the hypoxic time course, riboflavin synthesis 

(Figure S13). Every gene but gene 2 displays at least some point of increased expression, 

however, only gene 7, FMN1 displays increases without the presence of decreasing 

expression.   
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Chapter 4 

Discussion 

Applications Across Species 

 Hypoxia signaling pathways are generally conserved between species, and are 

found across all mammalian cells (33).  In addition to this, many biosynthetic processes 

and pathways are shared among species. A study reported a species of fish Triplophysa 

dalaica, that had adapted to the extremely cold climate of the Qinghai-Tibetan Plateau, 

and its high altitude. The high altitude of the Qinghai-Tibetan Plateau is inherently 

hypoxic to most species, but these fish carry several hypoxia related genes that allow 

them to handle the extreme environment. Two candidate genes, HIF-1αB and HIF-1αA 

are highly suspected to contribute this adaptation.  HIF-1αB and HIF-1αA have been 

found to be orthologous to HIF in yeast and other various mammals. The study further 

claimed that many species such as yak, Tibetan mastiffs, and even the Tibetan people 

carried HIF with increased genetic similarity to those of the studied fish (34). This may 

be of interest, as our population continues to increase in number, and the demand for 

space, and more importantly food increases as well. Studying hypoxia activation of 

related genes in these fish and yeast may lead to an understanding of how to activate 

paralogous and orthologous genes in other species we consider commodities. If this can 

be achieved, we could effectively convert what we consider nigh inhabitable land into 

farmable territory, increasing our gross food output, and possibly alleviate food shortages 

in specific locations in the world.  
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Applications in Alcohol 

 Another related study focused on the comparison of K. lactis and S. cerevisiae   

orthologous genes related to anoxia. The purpose of this study was to compare the 

fermentation process of each species in aerated and anoxia conditions to monitor the 

importance of iron metabolism. This is of interest, as iron works in tandem with heme as 

a temporary oxygen binder for transportation, and the electron transport chain (ETC) 

requires not only large amounts of oxygen but is the main intracellular sink of iron ions 

(35). Perhaps this demand for iron is an explanation as to why Figure S4 shows almost no 

downregulation of genes but contains several upregulated genes. S. cerevisiae may need 

more heme to facilitate iron/oxygen transport, and as another result of this demand, many 

genes in Figure 3 may be significantly downregulated. The increased need for heme and 

the downregulation of genes in the ETC also occurred due to the shift from aerobic to 

hypoxic conditions. This causes an increase in reactive oxygen species, where excess 

NADH is produced from the activity of the tricarboxylic acid cycle, and it can no longer 

be used by the ETC, because no molecular oxygen is available. These 2 strains of yeast 

were not found to behave the same, K. lactis has been found to prefer respirative 

metabolism, while S. cerevisiae prefers respire-fermentative. This study was based on 

previously proposed set of S. cerevisiae genes that were believed to characterize 

transcriptional responses to oxidative stress (35, 36). Another study states that levels of 

heme in S. cerevisiae regulate the activity of Hap1, a transcriptional regulator of 

respiration genes. When heme levels decrease in a cell, heme will not bind to Hap1. This 

lack in binding results in ROX1 becoming inactive, and ROX1 no longer represses genes 
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involved in the hypoxic response. While Hap1 is unbound to heme, Mot3 aids in the 

repression of ROX1 in specific promoters.  It should be noted as well that IXR1 is related 

to the hypoxic response of S. cerevisiae in cross regulation of ROX1 (36). This is 

incredibly interesting, as clusters 3 and 4 are involved in the biosynthesis of heme, and 

we have found that they have ROX1, HAP1, and IXR1, as significant regulatory TFs of 

those clusters. Manipulation of ROX1, HAP1, and IXR1 may aid future research in 

studying of regulating the fermentation process.  By regulating the fermentation process, 

regulation of alcohol production occurs. This research could be used to increase 

production yields for alcohol producing companies; and since this may alter brewing 

techniques, alteration of tastes in consumed alcohol-based products may occur, resulting 

in increasing product availability. The increased production of alcohol may also alleviate 

the looming fuel shortage we are to expect within the next 100 years by being used as 

biofuel. 

Applications in Biofuel 

 As the global demand for fuel increases, investigation of fuel alternatives has 

risen as well, and a currently implemented practice is the use of biofuels. Biofuel 

production is successful regarding its clean, renewable production.  Many different 

microorganism species have been recorded as successful producers of various biofuels, 

one of which being S. cerevisiae. S. cerevisiae is a model organism for such research, as 

it innately has alcohol resistance genes making it capable of surviving the production 

process. This production process is further enhanced by genetic engineering with a basis 

like our submitted research. However, modifications are currently very limited for yeast, 
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and in general biofuel production yields are too small to be produced in an efficient 

manner.  Currently yeast can only be made to synthesize alcohol chains of a max of six 

carbons in length, leaving the synthesis of longer alcohols a persistent dilemma. The 

limitations of biofuel production stem in part from, a lack of comprehensive 

understanding of  biosynthetic pathways (37). Currently, there is minor knowledge about 

each biosynthetic pathway’s reaction during a hypoxic event, and the vagueness of 

understanding increases when multiple pathway response is considered. Our study can be 

used as a platform to further the study of biosynthetic processes, making associated fields 

like the field of genetic modification a more efficient venture.    

Applications in Hypoxic Tissue Studies 

 Further applications of studying hypoxic Saccharomyces cerevisiae gene 

expression extend into hypoxic tissue study. As previously stated, many diseases 

are caused by exposing cell and tissue to hypoxic environments. Many studies 

have attempt to detect if hypoxia was a source of impairment in biological 

function. What most studies have found is that it is hard to identify what damage 

is caused by hypoxic exposure, and what damage may have come from another 

source. Another problem in detection of hypoxic damage is the cost per benefit 

expense involved in developing technology to accurately identify the source of 

incidence (5). Our research may help alleviate such cost, as we have identified 

several orthologous genes and pathways that are altered during the hypoxic 

response. For example, we have found that genes in clusters 6, 8 and 9 play key 

roles in mitochondria organization, response to stress, and cellular respiration. 
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Each of the clusters have significant p values for the transcription factors HOG1, 

YAP6, and MSN2. Our study has also found that these clusters are heavily 

expressed in the biosynthetic processes of glycolysis (see Figure 1), and ETC (see 

Figure 3). If one were to study just that information and how orthologous genes in 

these pathways are affected by hypoxia in our species, it could save many 

resources furthering such study. Consider HOG1’s orthologous mammalian 

counterpart, gene p38, p38 has been found to interact similarly to HOG1; this 

implies its regulatory behavior is similar as well, indicating the study of HOG1 

could be used as a basis of understanding for our own p38 gene (1).  There are 

other pathways we have submitted that may be used for orthologous study of gene 

expression, such as ergosterol (see Figure 5).               

During hypoxia, biosynthesis of ergosterol is inhibited in Saccharomyces 

cerevisiae, because it is an oxygen regulated pathway within many yeast species. In lieu 

of this, Saccharomyces cerevisiae cells signal change in their cell wall structure to 

promote reuptake of exogenous ergosterol (13, 15).  Figure 5 supports this claim as an 

overall reduction in gene expression has occurred in most of the genes involved in 

ergosterol biosynthesis. Except, gene 4, which had a unique increase in expression. 

According to SGD, HMG2 (gene 4) is responsible for sterol biosynthesis and is, the rate 

limiting step of the conversion of HMG-CoA to mevalonate.  In recent years, new 

functions of ergosterol have been found. For example, 11-dehydroergosterol peroxide has 

significant antitumor activity, and several compounds with anti-HIV activity are 

structural analogues of ergosterol [8, 9]. Therefore, study of ergosterol has broad 
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application as an important precursor for the development of new anti-cancer and anti-

HIV drugs, promoting further study of the biosynthesis, metabolism and regulation of 

fungal sterols (14). Many studies focus on sterol assembly, use, and function, using S. 

cerevisiae and other organisms to identify possible similarity in expression for humans.  

One study used Drosophila melanogaster as a model. Interestingly, they chose 

this based on the use of a previous yeast model (38). It was not stated why yeast was not 

used, but it was stated that yeast does contain several oxysterol-binding proteins (OSBP). 

OSBPs bind oxysterols which are oxygenated derivatives of sterols, that occur when 

sterol oxidation happens or are formed as metabolic products. Oxysterols participate in 

the regulation of apoptosis, cell differentiation, atherosclerotic plaque formation, calcium 

reuptake, and other processes (39-41). This study found that many alignments of OSBP 

domains share more commonality between differing species, rather than between 

members within the same species. This supports the idea that conservation of family 

structure, and that of a diverging family of specialized OSBP genes were present in the 

early evolution of life (38).  Perhaps given the proper study, one could decipher how to 

regulate the expression of sterol production in humans based on research in our yeast 

model leading to the treatment of heart disease, hardening of arteries, and help those with 

a genetic predisposition toward high cholesterol. 

Closing Statement 

Research into the field of hypoxic yeast is incredibly broad, yet there is clear 

insight to be gained by studying yeast as a model organism, since many of its processes, 

and gene functions are conserved across species. We have submitted our findings 
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surveying the biosynthetic processes, and genetic expression changes of S. cerevisiae 

during a hypoxic event, in the hope of providing a sound foundation for future research in 

the field.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



37 

 

Figures and Tables 

 

 

 
Figure 1. The glycolysis pathway. There is a high prevalence of increased expression 

across this metabolic pathway, except for gene 25 which has significantly decreased 

expression. 
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Figure 2. The Citric Acid Cycle. This pathway is heavily up regulated pathway, with the 

notable exceptions being genes 2, 5, 11, and 22, which are slightly down regulated.  
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Figure 3. Genes within the electron transport chain, organized by complex or by activity. 

A variety of expression changes are present, with a high density of cluster 8 in complexes 

3 and 4. 
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Figure 4. Biosynthesis of purine. Many genes within this metabolic pathway are down 

regulated, and of those genes, several are found in cluster 5. 
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Figure 5. Biosynthesis of ergosterol. Many genes in this pathway are down-regulated but 

note the slight upregulation of gene 4 toward the end of the hypoxic time course.  

 

 

 

 

 
Figure S1. Proline (Top), glycine (bottom), and serine (bottom) biosynthetic pathways. 

Generally, these pathways exhibit minor expression changes, except for gene 2. 
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Figure S2. Expression of the known hypoxia signaling genes. A collection of hypoxia 

signaling genes have been arranged from generalized increased expression to generalized 

decreasing expression during hypoxia. 

 

 

 

 

 
Figure S3. The pentose phosphate pathway. Significant expression changes are seen in 

genes 2, 7, and 9. 
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Figure S4. Biosynthesis of heme. Several of the first steps in heme biosynthesis are down 

regulated, while steps 6 to 8 show moderate up-regulation.  

 

 

 

 

 
Figure S5. Biosynthesis of pyrimidine. Genes here are shown to generally decrease in 

expression, although genes 5 and 8 shown significant increases in expression.  
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Figure S6. Biosynthesis of aspartate. Heavily unaffected by hypoxia, aspartate 

biosynthesis does have a few affected genes such as genes 16 and 18.  

 

 

 

 

 

 
Figure S7. Biosynthesis of  pyridoxamine. Many genes have decreased expression but 

note the increase of genes 4 and 3. 
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Figure S8. Biosynthesis of histidine, valine, and leucine. Histidine biosynthesis appears 

unaffected by hypoxia, while valine and leucine show mixed responses, which can be 

seen in genes 14 and 16.   

 

 

 

  

 
Figure S9. Biosynthesis of lysine. Unaffected or down regulated by hypoxia, the 

biosynthesis of lysine is heavily down regulated in gene 2. 
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Figure S10. Biosynthesis of tyrosine, phenylalanine, and tryptophan. Here an oddity in 

expression change is seen in gene 9, where up regulation, and down regulation occurs 

during the hypoxic time course.  
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Figure S11. Biosynthesis of folate. Down regulation can be seen in in at least two 

replicates of many genes here. Note that gene 2 appears downregulated in three 

replicates.  
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Figure S12. Biosynthesis of biotin. While containing only three steps, this pathway 

shows increased gene expression.   

 

 

 

 

 
Figure S13. Biosynthesis of riboflavin. A variety of expression changes can be seen here, 

note the mixed expression change in genes 5, and 6.  
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Figure S14. SSE Calculation demonstrating the correct choice of 10 clusters. The y axis 

represents the number of random SSE calculations performed, with respect to the x axis 

value of appropriate cluster solution. In short, the higher the point on the graph, the better 

the cluster solution value. 
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Figure S15. SSE Calculation demonstrating the correct choice of 10 clusters. The y axis 

represents the number of SSE calculations performed when using actual vs randomly 

sampled data, with respect to the x axis value of appropriate cluster solution. In short, the 

higher the point on the graph, the better the cluster solution value.  



51 

 

 
Figure S16. Log of SSE Calculation demonstrating the correct choice of 10 clusters. A 

log correction was applied to the SSE calculations and is still found to show a solution of 

10 clusters being the optimal choice. 
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Table 1 

 

Table of Clusters by Number 

 

Each cluster is broken down by what transcription factors are significant to it, and their 

prevalence within the cluster. The next column identifies popular binding sites of genes 

within the cluster, the score next to them signifies their ROC rating. The final column 

states what is a domineering force within the definition of what the clustered genes may 

be responsible for. 

 

 

 

Regulatory 

Genes 

Enriched TF Binding 

Sites 

Interpretation 

Genes * Genes ROC  

0 

MSN4 16 

MSN2 14 

TOD6 13 

DOT6 12 

SKO1 12 

SFP1 10 

HAP1 8 

SKN7 8 

 

SUT1 0.617  

UPC2 0.617  

PDR1 0.613 

PDR3 0.612 

STB5 0.603 

Response to hypoxia related genes. regulates growth genes. DNA 

replication 

1 

YAP1 30 

HOG1 30 

MSN2 29 

TEC1 22 

SOK2 21 

GCR1 20 

CUP9 20 

SKO1 19 

 

MSN4 0.808 

RGM1 0.803 

MSN2 0.785 

COM2 0.737 

RSF2 0.692 

Cell growth. Responsive in stress situations. 

2 

MSN2 18 

HAP1 15 

SKO1 13 

HOG1 12 

SFL1 11 

GCR1 8 

YHP1 8 

HOT1 8 

URC2 0.759 

HAP1 0.748 

PDR3 0.730 

ERT1 0.723 

YRR1 0.713 

Metabolism, zinc fingers for transcription, catabolism 

3 

HAP1 13 

TOD6 12 

DOT6 12 

HOG1 12 

LEU3 7 

YAP1 6 

SPT15 5 

STB3 5 

UPC2 0.889 

MOT3 0.802 

SKN7 0.755 

NRG2 0.735 

PUT3 0.719 

Gene repression, stress, 
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Table 1 (Continued) 

 

 

 

 

 

 

 

 

 

 

Regulatory 

Genes 

Enriched TF Binding 

Sites 

Interpretation 

Genes * Genes ROC   

4 

MSN4 17 

MSN2 15 

DOT6 12 

TOD6 12 

GCR1 10 

HAP1 8 

HAC1 8 

SKO1 8 

 

RSC3 0.658 

ROX1 0.655 

HAC1 0.648 

UPC2 0.647 

MBP1 0.639 

Stress Response, Splicing, cleavage, cell cycle, amino acids 

5 

MSN4 29 

YAP1 27 

MSN2 26 

SOK2 22 

TEC1 21 

CUP9 21 

SFP1 20 

YAP6 20 

DOT6 0.926 

TOD6 0.921 

SFP1 0.822 

SUM1 0.809 

STB3 0.785 

rRNA, ribosomes, biogenesis, cell cycle 

6 

MSN2 31 

YAP1 29 

HOG1 28 

GCR1 20 

SKO1 18 

SFP1 17 

YOX1 16 

CAD1 16 

MSN4 0.939 

USV1 0.937 

RGM1 0.936 

GIS1 0.889 

MSN2 0.881 

Stress related, Cell Growth, Metabolism, Relocalization to 

cytosol. 

7 

MSN2 25 

HOG1 22 

YAP1 15 

SFP1 13 

YHP1 12 

GCR1 11 

CAD1 11 

YOX1 10 

REI1 0.789 

MSN4 0.788 

OAF1 0.785 

SUT1 0.764 

PDR3 0.759 

Activated Under Stress, Biogenesis, Metabolism. 

8 

SOK2 20 

CUP9 20 

YAP6 19 

SFL1 19 

YAP1 18 

HOG1 16 

GCR1 16 

YHP1 15 

STB5 0.699 

NRG2 0.694 

HAP1 0.680 

SUT1 0.676 

PDR3 0.664 

mitochondria. regulation of growth. stress. 

9 

MSN2 29 

HOG1 28 

YAP1 25 

SOK2 21 

TEC1 21 

CUP9 20 

GCR1 18 

SKO1 18 

GIS1 0.748 

USV1 0.745 

RGM1 0.729 

COM2 0.698 

RSF2 0.645 

Cell Growth, Responsive in stressful conditions, Gene 

Regulation 
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Appendix 

Table S1 

A table of Gene Numbers Identifying Gene Names is an attached Excel format 

spreadsheet, and contains one biosynthetic pathway per worksheet, following the same 

order as the Figures contained within this document. 



Gene Number Gene Name Pathway

1 YCL040W Glycolysis

2 YDR516C Glycolysis

3 YFR053C Glycolysis

4 YGL253W Glycolysis

5 YLR446W Glycolysis

6 YMR105C Glycolysis

7 YKL127W Glycolysis

8 YKL035W Glycolysis

9 YPR160W Glycolysis

10 YPR184W Glycolysis

11 YIL099W Glycolysis

12 YFR015C Glycolysis

13 YBR196C Glycolysis

14 YMR205C Glycolysis

15 YGR240C Glycolysis

16 YLR377C Glycolysis

17 YKL060C Glycolysis

18 YDR050C Glycolysis

19 YJL052W Glycolysis

20 YJR009C Glycolysis

21 YGR192C Glycolysis

22 YCR012W Glycolysis

23 YDL021W Glycolysis

24 YKL152C Glycolysis

25 YOL056W Glycolysis

26 YOR283W Glycolysis

27 YGR254W Glycolysis

28 YHR174W Glycolysis

29 YOR393W Glycolysis

30 YPL281C Glycolysis

31 YMR323W Glycolysis

32 YKR097W Glycolysis

33 YGL062W Glycolysis

34 YBR218C Glycolysis

35 YKL029C Glycolysis

36 YEL071W Glycolysis

37 YML054C Glycolysis

38 YDL174C Glycolysis

39 YDL178W Glycolysis

40 YOR347C Glycolysis

41 YAL038W Glycolysis

42 YLR044C Glycolysis

43 YLR134W Glycolysis

44 YGR087C Glycolysis

45 YER178W Glycolysis

46 YNL071W Glycolysis



47 YBR221C Glycolysis

48 YFL018C Glycolysis

49 YAL054C Glycolysis

50 YLR153C Glycolysis

51 YBR145W Glycolysis

52 YMR083W Glycolysis

53 YCR105W Glycolysis

54 YDL68W Glycolysis

55 YOL086C Glycolysis

56 YMR318C Glycolysis

57 YGL256W Glycolysis

58 YMR303C Glycolysis

59 YOR37RW Glycolysis

60 YMR169C Glycolysis

61 YMR170C Glycolysis

62 YMR110C Glycolysis

63 YPL061W Glycolysis

64 YER073W Glycolysis

1 YLR304C TCA

2 YJL200C TCA

3 YDL066W TCA

4 YLR174W TCA

5 YNL009W TCA

6 YNL037C TCA

7 YOR136W TCA

8 YDR148C TCA

9 YIL125W TCA

10 YFL018C TCA

11 YER065C TCA

12 YGR244C TCA

13 YOR142W TCA

14 YNL117W TCA

15 YIR031C TCA

16 YKL141W TCA

17 YJL045W TCA

18 YDR178W TCA

19 YKL148C TCA

20 YLL041C TCA

21 YPL262W TCA

22 YOL126C TCA

23 YKL085W TCA

24 YOL078C TCA

25 YCR005 TCA

26 YNR001C TCA

27 YPR001W TCA

1 YDL085W ETC

2 YML120C ETC



3 YMR145C ETC

4 YBR003W ETC

5 YDR204W ETC

6 YGL119W ETC

7 YGR255C ETC

8 YLR201C ETC

9 YLR290C ETC

10 YML110C ETC

11 YNR041C ETC

12 YOL008W ETC

13 YOL096C ETC

14 YOR125C ETC

15 Q0105 ETC

16 Q0110 ETC

17 Q0115 ETC

18 Q0120 ETC

19 UBL045C ETC

20 YDR529C ETC

21 YHR001W-A ETC

22 YFR033C ETC

23 YGR183C ETC

24 YPR191W ETC

25 YEL024W ETC

26 YOR065W ETC

27 YJL166W ETC

28 YEL039C ETC

29 YJR048W ETC

30 Q0045 ETC

31 Q0250 ETC

32 Q0275 ETC

33 YBR024W ETC

34 YBR037C ETC

35 YDL067C ETC

36 YER141W ETC

37 YGL187C ETC

38 YGL191W ETC

39 YHR051W ETC

40 YIL111W ETC

41 YLL009C ETC

42 YLR038C ETC

43 YLR395C ETC

44 YMR256C ETC

45 YNL052W ETC

46 YPL132W ETC

47 YPL172C ETC

48 YBL030C ETC

49 YBR011C ETC



50 YBR085W ETC

51 YKL120W ETC

52 YMR056C ETC

53 YMR267W ETC

54 YNL083W ETC

55 Q0080 ETC

56 Q0085 ETC

57 Q0130 ETC

58 YBL099W ETC

59 YBR039W ETC

60 YDL004W ETC

61 YDL130W-A ETC

62 YDL181W ETC

63 YDR298C ETC

64 YDR322C-A ETC

65 YDR350C ETC

66 YDR377W ETC

67 YIL098C ETC

68 YIR024C ETC

69 YJL180C ETC

70 YJR121W ETC

71 YKL016C ETC

72 YLR295C ETC

73 YLR393W ETC

74 YML081C-A ETC

75 YMR098C ETC

76 YNL315C ETC

77 YNR020C ETC

78 YOL077W-A ETC

79 YPL078C ETC

80 YPL099C ETC

81 YPL271W ETC

82 YPR020W ETC

1 YMR300C Purine

2 YGL234W Purine

3 YDR408C Purine

4 YGR061C Purine

5 YOR128C Purine

6 YARO15W Purine

7 YLR359W Purine

8 YMR120C Purine

9 YLR028C Purine

10 YOR155C Purine

11 YLR209C Purine

12 YDR399W Purine

13 YNL141W Purine

14 YML022W Purine



15 YML035C Purine

16 YNL220W Purine

17 YJR105W Purine

18 YER170W Purine

19 YGR180C Purine

20 YIL066C Purine

21 YJL026W Purine

22 YER070W Purine

23 YKL067W Purine

24 YHR216W Purine

25 YLR432W Purine

26 YML056C Purine

27 YDL238C Purine

28 YJR133W Purine

29 YDR399W Purine

30 YDR454C Purine

1 YPL028W Egesterol

2 YML126C Egesterol

3 YML075C Egesterol

4 YLR450W Egesterol

5 YMR208W Egesterol

6 YMR220W Egesterol

7 YNR043W Egesterol

8 YPL117C Egesterol

9 YJL167W Egesterol

10 YHR190W Egesterol

11 YGR175C Egesterol

12 YHR072W Egesterol

13 YHR007C Egesterol

14 YNL280C Egesterol

15  YGR060W Egesterol

16 YGL001C Egesterol

17 YLR100W Egesterol

18 YML008C Egesterol

19 YMR202W Egesterol

20 YLR056W Egesterol

21 YMR015C Egesterol

22 YGL012W Egesterol

1 YOR375C Proline Serine Glycine

2 YAL062W Proline Serine Glycine

3 YDR300C Proline Serine Glycine

4 YOR323C Proline Serine Glycine

5 YPL111W Proline Serine Glycine

6 YLR438W Proline Serine Glycine

7 YER023W Proline Serine Glycine

8 YIL074C Proline Serine Glycine

9 YER081W Proline Serine Glycine



10 YOR184W Proline Serine Glycine

11 YGR208W Proline Serine Glycine

12 YFL030W Proline Serine Glycine

13 YEL046C Proline Serine Glycine

14 YLR058C Proline Serine Glycine

15 YBR263W Proline Serine Glycine

1 YDR213W HypoxiaSignalling

2 YLR256W HypoxiaSignalling

3 YDL091C HypoxiaSignalling

4 YOR223W HypoxiaSignalling

5 YOR358W HypoxiaSignalling

6 YOL073C HypoxiaSignalling

7 YKL034W HypoxiaSignalling

8 YLR113W HypoxiaSignalling

9 YLR228C HypoxiaSignalling

10 YIR033W HypoxiaSignalling

11 YLK109W HypoxiaSignalling

12 YMR070W HypoxiaSignalling

13 YPR065W HypoxiaSignalling

14 YOR051C HypoxiaSignalling

15 YGL237C HypoxiaSignalling

16 YKL020C HypoxiaSignalling

17 YBL021C HypoxiaSignalling

18 YER048W HypoxiaSignalling

19 YDL126C HypoxiaSignalling

1 YNL241C PentosePhosphate

2 YGR248W PentosePhosphate

3 YHR163W PentosePhosphate

4 YHR183W PentosePhosphate

5 YGR256W PentosePhosphate

6 YJL121C PentosePhosphate

7 YOR095C PentosePhosphate

8 YPR074C PentosePhosphate

9 YBR117C PentosePhosphate

1 YDR232W Heme

2 YGL040C Heme

3 YDL205C Heme

4 YOR278W Heme

5 YDR047W Heme

6 YDR044W Heme

7 YER014W Heme

8 YOR176W Heme

1 YJL130C Pyrimidine

2 YLR420W Pyrimidine

3 YKL216W Pyrimidine

4 YML106W Pyrimidine

5 YMR271C Pyrimidine



6 YEL021W Pyrimidine

7 YKL024C Pyrimidine

8 YKL067W Pyrimidine

9 YJR130CW Pyrimidine

10 YBL039C Pyrimidine

1 YLR027C Aspartate

2 YKL106W Aspartate

3 YPR145W Aspartate

4 YGR124W Aspartate

5 YER052C Aspartate

6 YDR158W Aspartate

7 YJR139C Aspartate

8 YHR025W Aspartate

9 YCR053W Aspartate

10 YEL046C Aspartate

11 YER086W Aspartate

12 YCL009C Aspartate

13 YMR108W Aspartate

14 YLR355C Aspartate

15 YJR016C Aspartate

16 YJR148W Aspartate

17 YHR208W Aspartate

18 YNL277W Aspartate

19 YLR303W Aspartate

20 YGR155W Aspartate

21 YER091C Aspartate

22 YAL012W Aspartate

1 YBR035C Pyridoxamine

2 YEL029C Pyridoxamine

3 YMR095C Pyridoxamine

4 YMR096W Pyridoxamine

5 YNR027W Pyridoxamine

6 YOR095C Pyridoxamine

1 YER055C HIstidine, Valine, Leucine

2 YCL030C HIstidine, Valine, Leucine

3 YIL020C HIstidine, Valine, Leucine

4 YBR248C HIstidine, Valine, Leucine

5 YOR202W HIstidine, Valine, Leucine

6 YIL116W HIstidine, Valine, Leucine

7 YFR025C HIstidine, Valine, Leucine

8 YLR089C HIstidine, Valine, Leucine

9 YCL009C HIstidine, Valine, Leucine

10 YMR108W HIstidine, Valine, Leucine

11 YLR355 HIstidine, Valine, Leucine

12 YJR016C HIstidine, Valine, Leucine

13 YJR148W HIstidine, Valine, Leucine

14 YHR208W HIstidine, Valine, Leucine



15 YOR108W HIstidine, Valine, Leucine

16 YNL104C HIstidine, Valine, Leucine

17 YGL009C HIstidine, Valine, Leucine

1 YDL131W Lysine

2 YDL182W Lysine

3 YDR234W Lysine

4 YIL094C Lysine

5 YBR115C Lysine

6 YNR050C Lysine

7 YIR034C Lysine

1 YDR035W Tyrosine, Phenylalanine, Tryptophan

2 YBR249C Tyrosine, Phenylalanine, Tryptophan

3 YDR127W Tyrosine, Phenylalanine, Tryptophan

4 YGL148W Tyrosine, Phenylalanine, Tryptophan

5 YKL211C Tyrosine, Phenylalanine, Tryptophan

6 YER090W Tyrosine, Phenylalanine, Tryptophan

7 YDR354W Tyrosine, Phenylalanine, Tryptophan

8 YDR007W Tyrosine, Phenylalanine, Tryptophan

9 YHR137W Tyrosine, Phenylalanine, Tryptophan

10 YGL026C Tyrosine, Phenylalanine, Tryptophan

11 YPR060C Tyrosine, Phenylalanine, Tryptophan

12 YGL202W Tyrosine, Phenylalanine, Tryptophan

1 YGR267C Folate

2 YNL256W Folate

3 YNR033W Folate

4 YMR289W Folate

5 YMR113W Folate

6 YOR236W Folate

1 YNR058W Biotin

2 YNR057C Biotin

3 YOL055C Biotin

1 YBL033C Riboflavin

2 YBR153W Riboflavin

3 YOLO66C Riboflavin

4 YDR487C Riboflavin

5 YOL143C Riboflavin

6 YBR256C Riboflavin

7 YDR236C Riboflavin

8 YDL045C Riboflavin
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