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Abstract 

 

Demiyan Smirnov 

EMOTION RECOGNITION USING FACIAL FEATURE EXTRACTION 

2013-2018 

Ravi Ramachandran, Ph.D.  

Master of Science in Electrical Engineering  

 

Computerized emotion recognition systems can be powerful tools to help solve 

problems in a wide range of fields including education, healthcare, and marketing. 

Existing systems use digital images or live video to track facial expressions on a person’s 

face and deduce that person’s emotional state. The research presented in this thesis 

explores combinations of several facial feature extraction techniques with different 

classifier algorithms. Namely, the feature extraction techniques used in this research were 

Discrete Cosine/Sine Transforms, Fast Walsh-Hadamard Transform, Principle 

Component Analysis, and a novel method called XPoint. Features were extracted from 

both global (using the entire facial image) and local (using only facial regions like the 

mouth or eyes) contexts and classified with Linear Discriminant Analysis and k-Nearest 

Neighbor algorithms. Some experiments also fused many of these features into one 

system in an effort to create even more accurate systems. 

 The system accuracy for each feature extraction method/classifier combination 

was calculated and discussed. The combinations that performed the best produced 

systems between 85%-90% accurate. The most accurate systems utilized Discrete Sine 

Transform from global and local features in a Linear Discriminant Analysis classifier, as 

well as feature fusion of all features in a Linear Discriminant Classifier. 
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Chapter 1 

Introduction 

Problem Statement 

The concept of emotion has a place in evolutionary history and it even predates the 

rise of human beings (Darwin, 1899). This piece of knowledge corroborates the idea that 

some emotions are innate in humans, rather than just socially constructed (Ekman, 1998). 

While processing emotions may come naturally to most people, computers, on the other 

hand, have struggled with the execution of this concept for decades. Much research has 

been gathered in fields like computer vision and machine learning in the effort to use 

computers to accurately classify emotions portrayed by a human. This effort includes 

analyzing human speech, gestures, and facial expressions. The work presented here will 

address one of these challenges.  Specifically, this study aims to answer the following 

question: How can the principles of engineering and mathematics be applied to create a 

system that can recognize emotions in given facial images (with over 90% accuracy)?   

Hypothesis 

1. Using simple features (Discrete Sine/Cosine Transform coefficients) and classifiers 

(Linear Discriminant Analysis and k Nearest Neighbor) can lead to a reasonably 

accurate facial emotion recognition system. 

2. Breaking up the facial image into frames/patches and selecting specific 

frames/patches based on certain criteria will positively impact the system accuracy. 

3. A sub-system for automated point placement on facial landmarks can benefit from 

a frequency-based search criterion. 
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4. A simplified version of the Facial Action Coding System can be used to extract 

features from a facial image by taking distances between key points on the face. 

5. Fusing multiple feature sets and classifiers into one system will produce a 

comparably more accurate system. 

Significance of Research 

Many areas offer potential for the application of automated human facial expression 

recognition. Such fields include education, marketing, security, and medicine. Essentially, 

wherever a human is present to evaluate emotion, a computer can also aid in the analysis. 

In an educational setting, emotion recognition can be applied to classrooms to gauge 

student interest in learning material (Saneiro, Santos, Salmeron-Majadas, & Boticario, 

2014). If the faces of students start to show disinterest or frustration, a computer system 

can alert the teacher to reconsider the teaching approach. Similarly, in marketing, 

advertisement agencies can present a participant with commercials and track their 

emotional states to see if the presented materials elicit the desired responses (Shergill, 

Diegel, Sarrafzadeh, & Shekar, 2008). Live monitoring of people’s expressions can also 

provide vital security information. If people are exhibiting fear or disgust, an alert 

generated by a computerized security system informs a responder of the event (Butalia, 

Ingle, & Kulkarni, 2012). Lastly, an emotion recognition system can aid medical 

professionals as well. The system can be part of a tele-presence package that informs a 

doctor or psychologist of a patient’s mental state. When something is detected as going 

awry, the professional can change their approach to helping the patient. 

 The initial motivation for this research was the development of a tool to help 

acclimate autistic children to processing emotion. Many people with autism struggle when 
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expressing their own emotions and have a difficult time understanding the emotions of 

others (Losh & Capps, 2006). A computer-based emotion recognition tool would feature 

small puzzles for autistic children that would prompt them to mimic different expressive 

faces during varied scenarios. The tool would track their expressions and classify their 

emotions as correct or incorrect, given the prompt. Ultimately, these exercises would 

condition the children to understand what kind of responses are typically appropriate in 

certain situations.  

Research Approach 

In order to create the emotion recognition system, an iterative approach was taken. 

Many experiments were performed with varying parameters and the results were recorded 

and compared. An emphasis was placed on trial and error, where changes that contributed 

positively to system accuracy were adopted for future iterations. The system was built 

gradually, with each parameter refined to an optimal value. The system evaluated seven 

emotions (neutral, angry, disgusted, fearful, happy, sad, and surprised) from two data sets 

(Extended Cohn-Kanade and JAFFE). The two datasets were not mixed in any 

experiments, only one was focused on at a time. 

Literature Survey. Prior to starting any system development, topics central to 

emotion recognition were examined, including the concept of emotions (including how 

they are presented through facial expression) and the different types of approaches that 

have already been attempted in the effort to solve the problem of automated emotion 

recognition. 
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With insight on human emotion, the classifications of each emotion became clearer. 

More specifically, the literature survey revealed a deliberate methodology to annotate 

facial movements for various regions on the face (like brows, eyes, and mouth) and 

correlate them to emotion (Ekman, Friesen, & Tomkins, Facial Affect Scoring Technique: 

A First Validity Study, 1971). Each methodology had direct implications on the developed 

emotion recognition system because the system took specific regions of interest into 

account.  

Learning about prior approaches in automated emotion recognition aided in two 

respects. First, providing a landscape of methods that were already attempted aided in 

avoiding the occurrence of repeat experiments. In other words, research of the prior feature 

extraction and classification combinations guaranteed that the work presented in this thesis 

was novel. Second, the surveyed literature provided insight on approaches that had not 

been considered before. While more extensive information on alternate methods will be 

presented later in this document, the leap from global facial features to local ones was a 

decision made due to papers that explained the benefits of a system using local features.  

Applied Software. After establishing the current state of automated emotion 

recognition through the literature survey, the platform on which to build an emotion 

recognition system was needed. MATLAB was chosen for several reasons. The platform’s 

scripting language allows for fast prototyping, offering extensive libraries of pre-written 

and well-documented signal processing functions which are useful in the creation of the 

proposed system. Therefore, MATLAB was properly equipped to handle the entire end-to-

end flow of the emotion recognition system. Tasks performed in MATLAB included 

reading in the image files, isolating the face from the rest of the image, pre-processing the 
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face image, performing feature extraction, classifying the emotion, and assessing the 

system accuracy.  A system like this could have also been written in Python (which is also 

a scripting language with pre-written libraries of functions) or in a C language using image 

processing libraries like OpenCV, but MATLAB was chosen based on the benefits of fast 

prototyping, the program’s library of well documented functions, and prior experience with 

MATLAB.  

The scope of this project also encouraged the selection of a software like 

MATLAB. The emotional recognition system was created primarily for exploring different 

feature extraction methods and classifiers. Rather than designing a user-friendly product, 

the intention was to determine frameworks and potential algorithms that could possibly be 

used for different applications in the future. As a result, creating graphical user interface 

elements or easy-to-use executable files was not a priority. Moreover, since there was no 

expected end-user for this particular research, there were also no specifications that such 

elements could be tailored to. Much of the code exists as scripts with hardcoded variables 

that need to be manually run with MATLAB. Ultimately, the research did not need to ‘look 

nice’ for other people to physically use and instead, only needed to exist to prove image 

processing concepts. As a result, the prototypical and scripting nature of MATLAB was a 

good fit for this research. 

Feature Extraction. To a computer, an image is a signal. The pixel values of the 

image determine how bright each pixel is displayed. As with any signal, there are a 

multitude of ways to interpret and manipulate it to learn more about it. The process of 

feature extraction, in the context of the emotion recognition system, was used to normalize 

each image into a format where hidden patterns could emerge. Throughout the process of 
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developing the system, different feature extraction techniques were applied on facial 

images in order to determine which algorithms produced the most valuable information. 

Techniques included frequency domain transforms, principle component analysis, and 

biological geometry analysis. 

Classification. Extracted features acted as input for a classification system. The 

purpose of classification is to compare an unknown entity with groups of known entities, 

and ultimately assign the entity in question to one of those groups. Technically speaking, 

the groups are called classes. In this case, the unknown and known entities were facial 

images, and the classes were emotions. Each emotion had a collection of corresponding 

facial images in a format dependent on the type of features that were extracted. Classifiers 

(such as Linear Discriminant Analysis, k-Nearest Neighbor, Neural Networks, and Vector 

Quantization) created mathematical models of each emotion class using the library of 

known extracted features. The mathematic models generated from these classifiers could 

then take features from new facial images, perform classifier-dependent functions, and 

output a label for the emotion that the input features most closely resembled.  

Accuracy Assessment. With so many varying parameters, such as different feature 

extraction algorithms and classifiers, organizing all of the results was imperative. Extensive 

accuracy assessments were carried out after each experiment. The results of these 

assessments influenced the course of the work in the development of the system. If a 

particular combination of feature and classifier were producing more accurate results, they 

were explored further. To determine how accurate a trial was, the correct number of 

classifications was divided by the total number of classifications. For a trial, each emotion 

had its own ‘class accuracy’ and these values could be averaged together to get a ‘trial 
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accuracy.’ Since multiple trials were run, the trial accuracies could be further averaged to 

get an overall ‘system accuracy.’ This final value was used when determining if the 

feature/classifier combination was successful. The specifics of system accuracy are 

detailed further in Chapter 3.  

Thesis Structure 

This thesis is divided into 5 main parts, which are the chapters of this work. In this 

chapter, some background is provided on the concept of emotion and the rest provides 

information on previously explored methods for facial emotion classification. After this 

introduction (Chapter 1), the literature survey is further detailed in Chapter 2. Chapter 3 is 

entitled Methods and Experimental Procedure. With the basic concepts established in the 

prior chapter, specific application of these concepts in this research is explained. All of the 

different feature extraction methods used are explained and the way that experiments were 

conducted is also discussed. The last two chapters are: Results and Discussion, and the 

Conclusion. The detailed outcomes from each experiment are presented in Chapter 4 along 

with in-depth implications and explanations. In Chapter 5 the claims from the Hypothesis 

are compared to the actual results and some possibilities for future work are provided as 

well. 
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Chapter 2 

Literature Survey 

Emotion: What is it? 

As with most topics being studied, an appropriate place to start is with a definition 

of terms. In this thesis, the primary term in question is: emotion. Naturally, the first place 

to look would be a dictionary, and Merriam-Webster’s entry for the word emotion is as 

follows: “the affective aspect of consciousness, a state of feeling” (Merriam-Webster, 

2015). At their core, emotions are feelings. They are reactions and states of being that 

people experience every day. The prolific psychologist Dr. Paul Ekman, who has spent 

most of his career understanding the physical and social nuances of emotion, attributes the 

function of emotion to mobilizing an organism to deal quickly with important interpersonal 

encounters. Moreover, emotions play a role when people are around others as much as 

when they are alone (Ekman, Basic Emotions, 1999). Emotions are elicited by triggers in 

our environment and serve as a way to acknowledge and compartmentalize those triggers. 

A common method of cataloging the wide array of emotions that people feel is by 

placing those emotions on a 2D plot, with pleasantness on one axis and severity on the 

other. An emotion like anger would be rated as unpleasant and quite severe while boredom 

would be close to the center: neither pleasant/unpleasant nor severe. According to Dr. 

Ekman, there is a set of 7 basic emotions which then produce the rest of the spectrum of 

possible emotions, either through composites or ranging severities (Ekman, Afterword: 

Universality of Emotional Expression? A Personal History of the Dispute, 1998). The 

seven basic emotions are neutral, angry, disgusted, fearful, happy, sad, and surprised.  
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The scope of this research concentrates on one way that emotion can be manifested 

physically in the human body: through facial expressions. The human face features 42 

muscles (Jack, Garrod, & Schyns, 2014), which can be activated voluntarily or 

instinctively. As with other parts of the body, the face is capable of making gestures. This 

includes sticking out a tongue or winking. However, these voluntary actions of the face 

were not of interest. Rather, the system was developed in order to analyze the instinctive 

responses that the face makes when an emotion is triggered.  

Universality of vs. Cultural Influence on Facial Expressions. A long debate 

exists on the topic of facial emotion expression. Are the faces that people make as they 

emote innate in all humans or are facial expressions exclusively something people learn 

through their culture? The first scientifically significant answer to this question came from 

Charles Darwin, the progenitor of the idea of evolution through natural selection. Several 

years after he wrote his well-known work entitled Origin of Species, he produced another 

work entitled The Expression of the Emotions in Man and Animals in 1872. In the latter, 

he postulated that emotion had an evolutionary basis and therefore facial expressions were 

programmed into human beings from the beginning of the species. However, this theory 

soon came under harsh scrutiny as cultural relativists began to make their counter-claims 

(Ekman, Afterword: Universality of Emotional Expression? A Personal History of the 

Dispute, 1998). 

 The backlash to Darwin’s ideas came during a time when the concept of an Aryan 

Race in Nazi Germany and the practice of eugenics emerged as dangerous movements that 

threatened the world at large. These ideologies claimed that the innate differences in 

humans were cause for discrimination amongst people, since some qualities were viewed 
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as superior to others. The resulting opposition and repulsion to these ideas became so strong 

that it caused the scientific community to heavily favor nurture in the “nature versus 

nurture” debate. Any acknowledgment of universal traits in humans was feared to lead to 

racism (Ekman, Afterword: Universality of Emotional Expression? A Personal History of 

the Dispute, 1998).  

 In the facial expression debate, specifically, prominent cultural relativists included 

Margaret Mead and Ray Birdwhistell. To cultural relativists like them, all facial 

expressions that were used to display emotions were learned from the surrounding society 

and did not arise without deliberate effort. Any similarities in facial expression responses 

(like smiling to portray happiness or frowning when sad) were voluntary consequences and 

not hardwired responses (Ekman, Afterword: Universality of Emotional Expression? A 

Personal History of the Dispute, 1998). These ideas presented a rejection of Darwin’s 

theory of universal expressions. Much of the evidence for cultural relativism in terms of 

facial emotion came from the idea that there was no accidental expression, only 

communication between two people. All the different contortions of the face were a method 

of non-verbal communication that were deliberately enacted by the individual. This idea 

was the founding principle behind kinesics, which was a theory created by Birdwhistell in 

1952, and was the leading explanation of human emotion at the time (Birdwhistell, 1952). 

 In 1965, Paul Ekman was a young psychologist that entered the scene with the hope 

of settling the debate once and for all. In his approach, he used carefully constructed 

experiments to acquire tangible evidence. He did not have a specific claim (universal or 

culture relativism) before starting his research; he was merely aiming to let evidence lead 

him to a conclusion. Moreover, he would not let trends or fear of being labeled as a racist 
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skew his findings. For the next five years he devised several experiments that helped shape 

his most influential hypothesis on the matter (Ekman, Basic Emotions, 1999). 

 One of Ekman’s experiment involved visiting pre-literate tribes in New Guinea and 

telling them a story. Afterwards, tribe members were given three images of facial 

expressions, from which they had to choose a facial expression that was most relevant to 

the story. The accuracy with which the people picked emotions were important data in 

confirming ideas about universal expressions. The pre-literacy state of the subjects was a 

control for the experiment because this ensured the tribe members did not pass along ideas 

of culturally acceptable expressions through mass media. 

In another experiment, a control was set in place that isolated subjects as they 

watched two films. In this case, the participants could not be influenced to emote 

differently by people around them. The first film was meant to elicit disgust, fear, and 

sadness while the other was a neutral film. Using a system that will be described in Section 

2.2.4, the facial responses of the subjects were annotated and ultimately lead to the finding 

that the subjects displayed universal reactions. Since the group of people consisted of 

remotely different cultures, American and Japanese, the case for universality was further 

substantiated (Matsumoto, 1991). 

 Through research, facial expression were determined to arise from a combination 

of universal and cultural factors. There are two influences related to a facial expression 

manifesting from an emotion. 

Focusing on universal factors that all human beings share, there is an innate 

response that triggers the muscles in the face when a basic emotion is evoked. Perhaps the 

most relevant evidence that facial expressions are hardwired into humans is that even blind 
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people, who were born blind, show the same expressions for the same emotions. There is 

no way that they could have learned the facial expressions from their culture because it 

would not have been visually communicated to them (News Editor, 2015). The universal 

expressions that Paul Ekman identified were amusement, anger, contempt, contentment, 

disgust, embarrassment, excitement, fear, guilt, pride, relief, sadness, satisfaction, pleasure, 

and shame (Ekman, Basic Emotions, 1999). A shorter version of this list highlights the 

emotions evaluated in this research: anger, disgust, fear, happiness, sadness, and surprise. 

From an evolutionary standpoint, universal outside markers for unseen inner thoughts 

provide human beings with many benefits.  

 On the other hand, there is also a strong cultural element that influences the way a 

face can be shaped when expressing emotion. For example, a number of ‘display rules’ can 

be taught to people to alter their expressions. Display rules include: exaggerating or toning 

down an expression, neutralizing an expression by forcing the muscles back to a neutral 

pose, reacting to an emotion with another emotion (e.g., getting angry and then feeling 

disgusted by the initial anger response), and reacting to an elicitor with two emotions at 

once. In all of these cases, the face will create an emotion that can be considered a ‘blend.’ 

Blends are harder to recognize across cultures because different cultures may have different 

display rules. An example of a situation that can be interpreted in different ways by 

different cultures involves reacting to a coworker’s promotion. In some cultures, sadness 

can freely be displayed on the face as a sign of defeat while other cultures may encourage 

showing happiness for the coworkers. In this second case, a composite expression could be 

displayed and may not be universally recognized because it would contain a unique blend 
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of sadness masked by happiness (Ekman, Universals and Cultural Differences in Facial 

Expressions of Emotion, 1971).  

 Display rules were the biggest obstacle that researchers had to overcome when 

navigating the topic of universality of facial expressions. When the rules were not taken 

into account, all expressions appeared relatively different with no consensus on what 

universal expressions would look like. Several conditions had to be met in order to dig out 

the true universal expressions from underneath the avalanche of display rules. First, it was 

important to isolate subjects when capturing their emotions. Since display rules are a 

cultural influence, subjects are more likely to use them in company. Next, it was important 

to use a high speed camera (with a high frame rate) to capture the entire sequence of 

emotion. As a result, the initial primal response could be captured first, followed by the 

subsequent triggering of display rules. Lastly, rather than asking the subjects to pose an 

expression, their responses were elicited naturally as a response to videos that were shown 

to them. These three factors finally allowed Dr. Ekman to conclusively confirm the 

existence of universal facial expression (Ekman, Afterword: Universality of Emotional 

Expression? A Personal History of the Dispute, 1998). 

Varied Approaches to Emotion Recognition 

Prior to starting the literature survey, universality of facial expressions was adopted 

as an underlying assumption. For the emotion recognition system, such an assumption 

would not necessarily be helpful or harmful. The system is flexible enough to be adapted 

for use with specific cultures if their expressions are different from other cultures. An 

emotion recognition system is a highly variable construction and the literature survey 

further revealed the wide diversity of techniques that can be implemented.  
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 Multiple paradigms exist when it comes to emotion recognition approaches. Some 

methods involve holistic systems that focus solely on facial musculature while other 

methods involve mathematical models with predictive capabilities. Further still, systems 

can examine the full face (a global feature), separate parts of the face (local features), or 

even a mixture of the former and the latter. The modular nature of the emotion recognition 

problem leads to an assortment of solutions, each striving to achieve an accuracy that rivals 

or surpasses human proficiency. 

Principle Component Analysis. During the literature survey, Principle 

Component Analysis (PCA) was found to be a process used in many emotion recognition 

systems. In applications relating to facial images, PCA can also be correlated with 

‘eigenface’ methods. PCA is a dimensionality reduction tool that can find common modes 

of variation amongst multiple input signals (Principle Component Analysis, 2015). These 

modes can be referred to as ‘eigenvectors,’ and when the input signals are facial images, 

the term eignfaces serves as a clever way of describing the modes. Several factors are 

interesting to note about PCA: the resulting lowered dimensionality cuts down on 

processing time, eigenfaces can contain many variations in one mode which reduces the 

need to do analysis on segments of the image (Paithane, Hullyalkar, Behera, Sonakul, & 

Manmode, 2014), and PCA has even been shown to mimic recognition behaviors of the 

human brain. The latter item has been demonstrated in a number of papers and is 

particularly beneficial in respect to two areas: PCA performs better when faces with more 

distinct features are classified (and by extension, with caricaturizations of a face) and PCA 

classifies more accurately intra-racial faces (from the same race) rather than inter-racial 

faces (from different races) (Calder, Burton, Miller, Young, & Akamatsu, 2001). 
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In order to get a better understanding of PCA, explaining how PCA is performed 

can be helpful. The first required ingredient for PCA is an Input Data Matrix (IDM). Each 

row of the matrix represents an instance of a signal in this matrix. An instance of a signal 

is represented by all of the pixel values of an image condensed down to a single long vector. 

Typically, each row of the image can be scanned and concatenated to the resultant vector. 

The Input Data Matrix takes in all of the images, regardless of what their classification is 

(i.e., regardless of which emotion is being displayed). Lastly, when the Input Data Matrix 

is built, the mean is taken and subtracted from each row. Imagining that each row is a point 

in n-space (n = number of columns, or vector size), subtracting the mean from the entire 

set essentially centers each point about the origin of the n-space. Equation 2.1 outlines how 

to create a proper Input Data Matrix. 

 

 

 

𝐼𝐷𝑀 =  [
𝐼𝑚𝑎𝑔𝑒1 𝑝𝑖𝑥𝑒𝑙 1 ⋯ 𝐼𝑚𝑎𝑔𝑒1 𝑝𝑖𝑥𝑒𝑙 𝑛

⋮ ⋱ ⋮
𝐼𝑚𝑎𝑔𝑒𝑚 𝑝𝑖𝑥𝑒𝑙 1 ⋯ 𝐼𝑚𝑎𝑔𝑒𝑚  𝑝𝑖𝑥𝑒𝑙 𝑛

] − 𝐼𝐷𝑀 

Equation 2.1. Forming the Input Data Matrix (IDM) 

 

 

 

The next step is calculating the covariance matrix. Mathematically, a covariance 

matrix is the result of multiplying the transpose of the input data matrix with the original 

data matrix. However, the covariance matrix produced in this case would be of size n x n. 

For images, n is the total number of pixels in the image (length multiplied by width). 

Considering even a modestly sized image (256 pixels in height and 256 pixels in width), 

the covariance matrix would balloon to a size of 65536 by 65536. A matrix of this size is 
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inconvenient to work with due to its size; it may even exceed the allotted memory of a 

computer. Fortunately, a shortcut is available to obtain a matrix that is more manageable. 

Rather than using the input data matrix, the matrix’s transpose can be used (denoted as a 

matrix named A in Equation 2.2). Then, using A, another matrix (named L in Equation 2.3) 

can be computed to be of size m by m, where m is the number of images used in the input 

data matrix. This size is more desirable as the number of images used is often a couple 

magnitudes lower than the number of pixels in each image.  

 

 

 

𝐶𝑜𝑣 = 𝐼𝐷𝑀′𝐼𝐷𝑀 = 𝐴′𝐸 𝐴 

Equation 2.2. Computing the Covariance Matrix of the Input Data Matrix (IDM), where 

E = a diagonal matrix of the eigenvalues of the IDM and A = IDM’. 

 

 

 

𝐿 = 𝐴′𝐴 

Equation 2.3. Computing a matrix that is more manageable than the covariance. 

 

 

 

The matrix L is thus a type of covariance that is more manageable to work with 

because of its smaller size (m by m instead of n by n). Finding the eigenvalues (denoted as 

v in Equation 2.4) of this simplified covariance matrix will result in eigenfaces, which is a 

matrix also of size m by m. When the eigenfaces are multiplied with A (the transposed 

input data matrix), all of the modes of variation become apparent (matrix U in Equation 

2.5). Each column of U is a collection of pixels that describe common features of all the 

images in the input data matrix. The rightmost column of U is an image that contains the 
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most common features amongst the input data while the leftmost column contains the least 

significant features of each image (usually random image noise). Due to this fact, a further 

reduction of data size can be achieved by flipping U horizontally (so the most significant 

variation mode is first rather than last) and by considering the first M columns. The optimal 

value of M can be determined through experimentation. The resulting matrix will be 

denoted as R in Equation 2.6, and contains the first M modes of variation for the input data 

matrix rather than using all of the modes. 

 

 

 

𝐿𝑣 = 𝑣𝐸 

 

Equation 2.4. Finding the eigenvectors (v) for the simplified covariance matrix (L), 

where E are the eigenvalues of L. 

 

 

 

𝑈 = 𝐴𝑣 

Equation 2.5. Finding all of the modes of variation (U) for the IDM. 
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Figure 2.1. The modes of variation (eigenfaces) of the Cohn-Kanade dataset. 

 

 

 

One more step remains in the process of retrieving features of a facial image using 

PCA. If the transpose of R is multiplied by a column vector containing the pixel values of 

a facial image, a vector containing M features is generated. The values in this vector are 

essentially the scalar values each mode needs to be multiplied by in order to reconstruct 

the input image. Reconstruction is possible because each mode of variation contains pixel 

values that, in some way, describe commonalities in the input data matrix. In fact, 

reconstructions that are very aesthetically close to the original image are possible if the 

image used was from the original input data matrix (as seen in Figure 2.2), because the 

modes of variation are ‘familiar’ with the image and its data is already imprinted in the 

eigenfaces to some capacity.  
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𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 = 𝑅′𝐴 

Equation 2.6. Extracting facial features from the IDM for each image, where R is the first 

M columns of U. 

 

 

 

𝑅𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 = (𝑅′)(𝐼𝑚𝑎𝑔𝑒 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠) 

Equation 2.7. Reconstructing an image using the extracted PCA features. 

 

 

 

 
Figure 2.2. A reconstruction of a test image using images from a training set. 

 

 

 

By extension, the modes of variation can also be applied to images that were not in 

the IDM. Depending on how representative the original IDM was and what the new input 

image is, the modes of variation do their best to describe the new image. If the new image 

is something that the was not accounted for in the IDM (like an image of a car when the 
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IDM was pictures of faces) the modes of variation will still describe the image based on 

what they learned from the IDM, but the reconstruction of the features will produce an 

image that looks mostly like a face but with a hint of the car.  

In the case of emotion recognition, the IDM should contain faces with all ranges of 

expressions. This can be considered the training set, and the testing set should be comprised 

of facial emotions displaying images that are not in the training set. Using the steps 

described in this section, the features of each training and testing image can be extracted 

as a single vector of length M. Each of the training vectors should also have a label 

associated with them, which denotes the emotion that the features are supposed to 

represent. At this classification step, the aim is to give the testing vectors a label based on 

what was learned during the training stage. The classification step offers a wide range of 

options in terms of algorithms, and these different approaches account for the diversity in 

papers found during the literature survey. 

The simplest method of classifying testing images using PCA features is by 

implementing a distance criterion. Imagining that the M-length vector of the test image 

exists as a point in M-space, and all of the training image vectors are points as well in the 

same space, the training point that is the closest to the test point (using Euclidean distance, 

for instance) can be assumed to share a label with the test point (Paithane, Hullyalkar, 

Behera, Sonakul, & Manmode, 2014). The proximity of the two points is what drives the 

assumption that they are from the same class. This method can be extended to look at the 

k-nearest neighbors of the test point, as well.  

In fact, k-Nearest Neighbor (kNN) is another valid classification method that is 

noted in the literature (Busso, et al., 2004). Rather than taking the first nearest training 
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point to the test point, the closest k points can be taken. The labels of these k points are 

then examined and the most common label (the arithmetic mode) is used as the class label 

for the test point. Due to this majority voting, an odd value for k is recommended.  

Linear Discriminant Analysis (LDA) was also applied to PCA features for 

classification. However, one paper in particular included an extra step in the pre-processing 

phase for the input images that improved their recognition accuracy. The extra step 

addresses a problem that PCA has with diverse IDMs. To lower the variance in facial 

proportions amongst the training samples, each face was morphed to have the same mean 

shape. Even though the faces were showing emotion, factors that did not contribute to the 

expression (like face outline shape, nose location, and eye width) were slightly distorted in 

a way that created a consistent face shape (Calder, Burton, Miller, Young, & Akamatsu, 

2001). 

Discrete Cosine Transform. The Discrete Cosine Transform (DCT) is a frequency 

transform (similar to the Fourier Transform) that also compacts a signal (Bhadu, Tokas, & 

Kumar, 2012). In fact, it is commonly used for JPEG image compression. However, the 

DCT also has applications in image feature extraction, as it is referenced in many papers 

regarding emotion recognition using facial images. It can be applied in any number of 

dimensions, but the focus here will be on the 2D DCT. 

 

𝑋𝑘1,𝑘2 = ∑ ∑ 𝑥𝑛1,𝑛2 cos [
𝜋

𝑁1
(𝑛1 +

1

2
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𝑁2−1

𝑛2=0

cos [
𝜋

𝑁2
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2
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𝑁1−1
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Equation 2.8. Formula to calculate DCT on a 2D matrix. 
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 In the equation above, Equation 2.8, there are several variables that need to be 

explained. Xk1,k2 is the resulting DCT coefficient, with k1 and k2 being the coefficient’s 

position in the resulting 2D DCT matrix. N1 and N2 are the length and width (although the 

order does not matter) of the original image. Lastly, xn1,n2 is the pixel value of the image at 

position n1 and n2. The same result Xk1,k2 can also be obtained by first taking the 1D DCT 

of each row and then taking the 1D DCT of each column of the first matrix.  

 

 

 

 

Figure 2.3. A sample transformation matrix after a 2D DCT was applied to an image. The 

intensity of the pixel is proportional to the corresponding matrix cell value. 

 

 

Since the DCT is a signal compaction tool, it would be expected to find the most 

important information at the beginning of the coefficients rather than the end. In fact, many 

of the trailing coefficients can be truncated and the reconstructed signal (using an inverse 



 

23 

 

DCT) from the remaining coefficients would be unaltered, up to a point (Guney). This is 

how the compaction happens: by eliminating the latter coefficients (the low frequency 

information) of a DCT transformed signal. In Figure 2.3, most of the information is in the 

upper left corner of the matrix. As a result, most of the matrix can be ignored as long as 

the coefficients in the upper left are preserved. 

In applications for this research, a 2D DCT matrix was not an appropriate form to 

express the features of an image. Rather, the DCT coefficients needed to be in a 1D vector 

to be usable by classification algorithms. To convert the 2D DCT coefficients into 1D DCT 

coefficients, a zig-zag scanning method was used. A visual representation of how this 

method collects coefficients can be seen in Figure 2.4. The rules for a zig-zag scan are 

such: Start at the upper left corner cell of the matrix, if the current coefficient is at the top 

row/last column, the next coefficient should be the coefficient to the right of it/below it and 

the scan should continue diagonally down. If the current coefficient is in the first 

column/last row the next coefficient should the coefficient directly below it/to the left and 

the scan should continue diagonally up. This process is repeated until the last coefficient 

at the bottom right is reached. Along the way, each coefficient is recorded in a new column 

in the 1D DCT vector. Since the upper left coefficients are scanned first, the leading 

coefficients of the newly formed vector will have the important high frequency content.  
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Figure 2.4. The process of collecting 2D DCT coefficients to form a 1D DCT 

feature vector. 

 

 

 

Fast Walsh-Hadamard Transform. The Walsh-Hadamard Transform is another 

frequency-based feature extraction method used in this research. It is in the same vein of 

Fourier transforms although it uses a different basis function. Rather than the sinusoids 

previously seen in the DCT, WHT utilize square waves with peaks/troughs of ±1 (Hassan, 

Osman, & Yahia, 2007). The transform had shown up in literature ( (Hassan, Osman, & 

Yahia, 2007) and (Faundez-Zanuy & Fabregas, 2007)) that discussed using it as a feature 

extraction method for facial recognition systems. This prompted the exploration of the 

WHT in the facial emotion recognition domain. 

  The key component of the WHT is the Walsh/Hadamard Matrix. It is a self-

repeating sequence constructed by Equation 2.9 and contains only 1’s and -1’s. The most 

important property of the matrix is that its rows are orthogonal to each other. Since it only 

contains two simple numbers, the Walsh/Hadamard matrix can be easily generated and 

applied without using too much memory. The benefits of using the Walsh/Hadamard 
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matrix come from its lowered computational complexity and speed (Faundez-Zanuy & 

Fabregas, 2007).  

 

 

 

𝐻𝑚 = (
𝐻𝑚−1 𝐻𝑚−1

𝐻𝑚−1 −𝐻𝑚−1
) 

Equation 2.9. Formula for producing a Walsh/Hadamard Matrix (Hadamard Transform, 

2016).  

 

 

 

H(1) =    H(2) =    H(3) =  

Figure 2.5. Walsh Matrices of different sizes (Hadamard Transform, 2016). 

 

 

 

 The input image must be of size 2m by 2m in order to perform the transform (it can 

be zero padded to meet this requirement). The m is used to determine how many recursions 

are required to generate the Walsh/Hadamard matrix. To get the transformed image, 

Equation 2.10 is used (Faundez-Zanuy & Fabregas, 2007). The transform is orthogonal, 

symmetric, involutive, and linear (Hadamard Transform, 2016) and produces a result that 

is the same size as the original image. The product is also zig-zag scanned because of the 

way that data is arranged in the output matrix. 

 

 



 

26 

 

 

𝑇 = 𝐻𝑚𝑈𝐻𝑚 (where U = input image) 

Equation 2.10. Formula for performing the Walsh-Hadamard Transform (Faundez-Zanuy 

& Fabregas, 2007).  

 

 

 

Facial Action Coding System. Paul Ekman’s body of work can be referenced 

again when exploring the Facial Action Coding System (FACS). Through the use of Action 

Units (AUs), each possible facial expression is given a label. Since an emotion is a 

combination of multiple facial movements, FACS allows for emotions to be described by 

these universal measures (AUs). The underlying methodology for annotating the 

movements comes from physiology. Muscles under the skin of the face drive facial 

expression, and FACS accounts for all of the muscles on the face and their possible 

movements. The AUs specifically label these muscle positions. As a result, FACS is not a 

mathematical process as much as it is a holistic approach to represent emotions based on 

universal facial expressions (Ekman, Friesen, & Tomkins, Facial Affect Scoring 

Technique: A First Validity Study, 1971). 

Forty-six of the AUs deal specifically with facial muscle movements. The AUs 

consider movements at sites like the inner and outer brows, the eyelids, cheeks, the nose, 

all parts of the lips, and the jaw. The entire range of motions for each body part is captured 

with Action Units. For instance, the lips are capable of pulled by the corners, funneled, 

depressed, tightened, puckered, and stretched. More importantly, these motions directly 

correspond to muscle activity under or near the lips like the Zygomaticus major, Labii 

superioris, and Orbicularis oris (Facial Action Coding System, 2016). This level of 

attention to detail is seen in throughout FACS, for all of the possible movements that facial 
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features can make. On top of that, there are additional AUs outside of facial muscles which 

include the neck and the eyeballs.  

The main focus of using Action Units is to fully describe how emotions are 

manifested on a face. Therefore, each facial image can be described as a composite of 

several AUs. In the case of the prototypical happy face AU 6 and 12 are most commonly 

observed. This correlates to a cheek raiser motion and lip corner puller respectively. The 

full list can be seen in Table 2.1.  

 

 

Table 2.1 

Emotions annotated using the Facial Action Coding System (Facial Action Coding 

System, 2016). 

Emotion Action Units 

Happiness 6+12 

Sadness 1+4+15 

Surprise 1+2+5B+26 

Fear 1+2+4+5+7+20+26 

Anger 4+5+7+23 

Disgust 9+15+16 

 

 

 

FACS has several applications in varied fields of study. Most prominently, FACS 

aids with the analysis of emotion in psychology. It provides a standardized measurement 

and allows for accurate descriptions of facial gestures amongst researchers. FACS also 

shows up in animation disciplines. Specifically, 3D animation studios rely on FACS to 

generate convincing expressions for computer-generated faces (Villagrasa & Susin, 2009). 
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In the criminal justice system, FACS can give clues to a person’s honesty. The system is 

robust enough to describe microexpressions: the involuntary and hardly noticeable gestures 

on a face. Microexpressions often occur when the face wants to display an emotion but the 

person actively attempts to conceal it. Commonly, this practice occurs during lying, and 

criminologists who can detect and document them benefit from the knowledge 

(Microexpressions, 2016). 
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Chapter 3 

Methods and Experimental Procedure 

Basic Approach to Emotion Recognition 

There is a general methodology that can be followed when performing emotion 

recognition on human faces. Such a framework is mirrored in many of the papers reviewed 

in the literature survey. The methodology can be seen as a series of steps that end with a 

system that classifies emotion based on facial expression. These steps may seem trivial, 

but they offer a wide array of possible experimentation, of which this thesis only touches 

on some of those combinations. The system flow can be seen as: choosing an appropriate 

facial image database, isolating the face from the rest of the image, preprocessing the 

cropped result, extracting features from that image, and classifying the features. This 

“Methods” chapter will examine these steps, providing both the background and 

application of each. However, before starting the methodology discussion, it is important 

to consider the three fundamental approaches to facial emotion recognition. 

As previously stated, there are many available possibilities when choosing ways to 

extract features or classifying data relating to facial expressions. Those choices are best 

informed when taking into account the type of data that the emotion recognition system 

will work with. Specifically, the systems can take a geometric, appearance, or 3D based 

approach. Each has its own strengths and weaknesses, which will be discussed now. 

A geometric approach to emotion recognition involves setting landmarks on a face 

and tessellating lines amongst them. The locations of the points and lengths of the lines are 

used as a model to represent the face. These models will vary from person to person given 

different facial structures, but an even greater variation will be seen given different 
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expressions on those faces. Already, a weakness presents itself in the fact that person-to-

person differences need to be filtered out in order to have more accurate classifications. 

Furthermore, if the face is partially obscured in any way, the geometry at the covered region 

may not reflect real life. 

Instead of using points and lines, the actual appearance of the face can also be used 

for feature extraction in an emotion recognition system. In this second approach, the pixel 

values of the image are used. The pixels create a 2D matrix, and a vast range of transforms 

can be applied to the matrix to extract information. The image as a whole can be 

transformed (global feature), or it can be broken into parts (like mouth and eyes, creating 

local features). The effectiveness of this method is dependent on the implemented 

algorithm the downsides include possibly higher computational times than the previous 

geometry-based approach.  

The previous two approaches consider 2D images as inputs, but a third option takes 

this one dimension further. There are several ways to catch a human face in three 

dimensions. Some methods include using cameras at various angles to create a composite 

3D reconstruction (Zheng, 2014) while others create a 3D model by bouncing infrared light 

off of the face (like Microsoft’s XBOX Kinect peripheral) (Wang, et al., 2010). Regardless 

of the capture process, the result is a 3D wireframe representation of a face. The downsides 

are already present: higher capture complexity and more computational intensity due to 

higher volume of data points. However, the benefits include important details that are 

sometimes hidden in 2D images, like brow or cheekbone location.  
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Facial Image Database 

Selecting a facial image database is an important step in the creation of an emotion 

recognition system. The factor to consider when choosing a database are application. 

Application is the answer to the question: what will the emotion recognition be used for? 

In cases like security system, lower resolution images are more permissible to use because 

it would be expected that the security cameras would capture faces that are farther away. 

If the setting is outdoors, training sets should include faces that are lit in a multitude of 

different ways and from different angles. In applications like medicine and marketing, 

databases that feature high resolution images with even lighting are appropriate. In terms 

of approach, if the system will utilize 3D models, then a respective database needs to be 

implemented.  

Regardless of the application, a database needs to meet several criteria to be 

considered a useful training set. Since the topic of discussion is emotion, the images need 

to show a variety of expressions. They should reflect how people emote in natural 

circumstances. In cases where the emotion images are derived from organic sources like 

surveillance footage or photo-albums, they are known as ‘unposed’ expressions. 

Otherwise, actors are used to create ‘posed’ expressions by re-enacting them in front of a 

camera. Ideally, ‘unposed’ expression databases hold more value because they are better 

representations of real life. On the other hand, posed expressions are much easier to attain 

and can be near-genuine if the actors are skilled enough. 

Databases should also offer discrete labels for their training images. These labels 

are often in the form of the basic emotion being portrayed by the subject (like neutral, 

happy, sad, or angry). This allows for straightforward class creation because each label can 
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be a distinct discrete number. Outside of images and labels, anything else that a database 

can offer is an added bonus. Some databases offer annotated landmark positions. This 

means that each picture contains x and y coordinates of points placed in the same spots 

across all faces (like around the eyes, nose, and mouth). Other databases could also contain 

FACS information for each face. These are items that could make emotion classification 

more versatile if implemented.  

Cohn-Kanade Database. For this thesis, a 2D facial image database was used. 

Since the application was research-based, such a database provided an undistorted setting 

to test different algorithms. The name of the chosen database is the Extended Cohn-

Kanade. It was compiled between the Robotic Institute at Carnegie Mellon University and 

the Department of Psychology at the University of Pittsburgh. The database features facial 

images from both men and women (123 subjects) with a diversity split of 81% Euro-

American, 13% Afro-American, and 6% other. In total, 593 sequences were recorded 

across all of the subjects. In the context of the database, a ‘sequence’ refers to a set of 

images where the subject started with a neutral facial pose and ended with the requested 

emotion. The sequences were short video recordings that were decomposed into individual 

frames for the database. The emotions portrayed in the dataset are: Neutral, Angry, 

Contempt, Disgusted, Fearful, Happy, Sad, and Surprised (Lucey, Cohn, Kanade, Saragih, 

& Ambadar, 2010). 

As for the individual images, they came in sizes of either 640 by 480 or 640 by 490 

pixels. The majority were in a grayscale while a select few were in color. Each image came 

with a set of landmarks: 68 points placed on specific locations on the face, which move 

with those locations as the face morphs between emotions. These points were placed 
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automatically on the face using Active Appearance Modeling (AAM). The Extended Cohn-

Kanade database also featured labels for each sequence, which were visually inspected by 

humans to make sure the performed emotion was the same as the requested one. Lastly, 

each end image in a sequence was coded using FACS. To get the Action Units for the face, 

the AAM landmarks were used in conjunction with a Support Vector Machine (SVM) 

classifier (Lucey, Cohn, Kanade, Saragih, & Ambadar, 2010). 

 

 

 

 
 

Figure 3.1. 68 landmark points used in Extended Cohn-Kanade database (Lucey, 

Cohn, Kanade, Saragih, & Ambadar, 2010). 

 

 

 

In the context of this work, the Extended Cohn-Kanade database was used with 

several considerations. First, the Contempt emotion was not used due to the small sample 

size. This resulted in the remaining seven emotions being used: Neutral, Angry, Disgusted, 

Fearful, Happy, Sad, and Surprised. To get samples for these emotion, the first and last 
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images from each sequence were taken. Since each sequence starts with a neutral pose and 

ends with a fully posed emotion, the number of neutral samples was the size of all the other 

emotions combined. This disparity in sample size is addressed in a future section, 3.4 

Synthetic Minority Oversampling Technique. Lastly, errors in labeling were found in some 

sequences after a manual inspection. For those sequences, the labels were updated to more 

accurately reflect the emotion being displayed. The below table, Table 3.1, shows the final 

sample sizes for each emotion after all of these considerations were made. 

 

 

 

Table 3.1 

Breakdown in sample size for each emotion in Cohn-Kanade database. 

index emotion sample size 

0 netural 526 

1 anger 41 

2 contempt 0 

3 disgust 41 

4 fear 19 

5 happiness 61 

6 sadness 22 

7 surprise 75 

8 unclassified 267 

 

 

 

JAFFE Database. The second facial expression database used in this research is 

the Japanese Female Facial Expression (JAFFE) dataset. This database was created at 

Ritsumeikan University in 1997 and features 10 subjects who are, as the name implies, 

Japanese females. Emotions portrayed in this database are: Neutral, Angry, Disgusted, 

Fearful, Happy, Sad, and Surprised and there are around 1-3 samples of each emotion per 
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subject. There is a total of 213 images, sized at 256 by 256 pixels. Unlike the Cohn-Kanade 

database, there was no FACS coding for the faces and no landmark points were present. 

 The JAFFE database was used to test the robustness of implemented algorithms in 

terms of cultural differences. It was apparent that some of the ways that the Japanese 

portrayed emotion was different compared to Americans. Namely, puffed cheeks were 

much more common when displaying anger for the former. JAFFE also provided a blank 

slate to build the automatic facial point annotator, since there were no annotated landmark 

points for the faces. This automated point placement utility was tested on this database, 

which is explained in future section, Section 3.7 (Automated Point Placement of Facial 

Landmarks).   

 

 

 

Table 3.2 

Breakdown in sample size for each emotion in JAFFE database. 

 
index emotion sample size 

0 netural 30 

1 anger 30 

3 disgust 29 

4 fear 32 

5 happiness 31 

6 sadness 31 

7 surprise 30 

 

 

 

Facial Detection 

After choosing the right database, the next stage in an emotion recognition system 

is facial detection. Since it is not always the case that the facial images will be framed 

perfectly in such a way that only the face is present with no background, there needs to be 
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a facial detection step. This was the situation with both the Cohn-Kanade and JAFFE 

databse. The goal is to a have a facial image that is free of extraneous information. If this 

is not the case, unwanted features in the image’s background may be extracted and 

classified along with important information, resulting in error. A widely used algorithm 

that can extract a face out of a scene is the Viola-Jones algorithm. This algorithm was 

further chosen for the research because of its readily available implementation in 

MATLAB.  

The Viola-Jones algorithm is a robust process that can detect any object that it is 

trained on, not just faces. Furthermore, it performs the detection in real-time. It was first 

introduced in 2001 by Paul Viola and Michael Jones in a paper submitted to the Second 

International Workshop on Statistical and Computational Theories of Vision – Modeling, 

Learning, Computing, and Sampling. In this paper, a 4-step approach to object detection 

was explained. The steps are Haar feature selection, integral image creation, Adaboost 

training, and cascaded classifiers.   
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Figure 3.2. Feature types used by Viola-Jones Algorithm (Viola-Jones object detection 

framework, 2015). 

 

 

 

In the above image, these rectangular patterns are placed on various locations on 

the image, and the sum of the pixel values in the light regions are subtracted from the pixels 

in the dark regions. Feature types A and B are for vertical and horizontal features, 

respectively, while type C can be used to represent areas like the nose and type D for 

diagonal features. A mathematical trick in the Integral Image stage allows for the 

computation of the features to be hastened. Since the feature types are only of size 24 by 

24 pixels, a high magnitude of computation would have to take place to cover the entire 

image. However, Adaptive Boosting (Adaboost) learns from rejected regions and 

concentrates on those that give better results (Viola & Jones, 2004). 

Lastly, the cascade structure puts several of these processes in series. The stages 

can separately have lower detection accuracies because their serialization contributes to an 

overall increase in the final detection accuracy. Since a face will tend to make up a small 

portion of the image, these stages throw out most of the information and only focus on true 
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and false positives. Each additional stage chisels away more false detections until only 

mostly accurate data is left (Viola & Jones, 2004). 

 

 

 

  
Figure 3.3. Viola-Jones algorithm cropping out faces in an image. 

 

 

 

 The result is a region in the image that most likely contains a face. This is informed 

by the area where the feature types closely resemble trained data. The figure above shows 

the usual output: a bounding box surrounding the region of interest ready for cropping.  

Synthetic Minority Oversampling Technique (SMOTE) 

An important aspect of training a machine learning system is to ensure that each 

class is well represented. In the case of this research, the classes are the different emotions 

to be recognized. As previously mentioned, the samples gathered from the Extended Cohn-

Kanade database showed a disparity in sample size amongst the emotions. In some cases, 

the neutral sample size was an entire magnitude larger. One way to deal with unevenness 

in datasets is to under-sample the majority data. However, Synthetic Minority 
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Oversampling Technique (SMOTE) addresses the problem by inflating minority data to 

match sample sizes with majority data (Chawla, Bowyer, Hall, & Kegelmeyer, 2002). 

 The primary purpose of SMOTE is to create new samples for a dataset using data 

that is already in that dataset. There is a wide range of ways to accomplish this without 

SMOTE, like taking real data and rotating or scaling it slightly to create new samples 

(Bunke & Ha, 1997). While these samples may be ‘synthetic’ they are still representative 

of normal conditions for the class. SMOTE, on the other hand, is a method that involves 

artificially creating data from existing samples. 

 The primary inputs for the SMOTE algorithm are as follows: the minority data as 

a 2D matrix where each sample is a row vector, a value of k for the k nearest neighbor that 

is used, and an integer N by which the size of the data will be inflated by. If this value of 

N is 1, the sample size for the minority data will stay the same. If N is 2, the sample size 

will double, and so on. The value of N can also be between 0 and 1, but that will result in 

an under-sampling of the data. The output of SMOTE will produce a new 2D matrix that 

features the old minority data along with new synthetic samples.   

 The process takes one original minority sample at a time. It evaluates that sample’s 

distance (typically a Euclidean distance metric) to all other original minority points and 

takes the k nearest neighbors. With this cluster of samples, it takes the central sample and 

a randomly chosen neighbor to create a synthetic point between them. Specifically, the 

difference between the two points is multiplied by a random number between 0 and 1 and 

this value is added to the central sample. The new vector is a synthetic sample.   

 



 

40 

 

𝑠𝑦𝑛𝑡ℎ𝑒𝑡𝑖𝑐 = 𝑐𝑒𝑛𝑡𝑒𝑟 + 𝑟𝑎𝑛𝑑(0,1) ∗ (𝑐𝑒𝑛𝑡𝑒𝑟 − 𝑛𝑒𝑎𝑟 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟) 

Equation 3.1. Formula for creating a synthetic point using two other points (Chawla, 

Bowyer, Hall, & Kegelmeyer, 2002). 

 

 

 

 Equation 3.1 is the technical representation of how a synthetic point is generated. 

Another way to consider how the new sample is made is to think of a straight line that 

stretches between the central point and its kth nearest neighbor. On that line is an infinite 

amount of possibilities, and SMOTE randomly chooses one of them to create the synthetic 

sample. As a result, the new sample is still representative of the original data and does not 

create new outliers since it is contained between two points. The process is repeated until 

there are no more nearest neighbors for a central point at which time a new central point is 

chosen. That new point is still part of the original minority data and its kth nearest neighbors 

are used to create more synthetic data. The process is over until enough synthetic data has 

been generated to meet the size established by N in the input (Chawla, Bowyer, Hall, & 

Kegelmeyer, 2002). 

Preprocessing 

The pre-processing step is one that enhances data by making various adjustments 

to it. The aim of pre-processing is to minimize variability of all aspects except those that 

relate to emotion being displayed on the face. Such aspects could be lighting differences, 

skin tone, image resolution, or face size. For this research, preprocessing was performed 

on images of faces that were already cropped using the Viola-Jones algorithm. In the 

preceding section it is assumed that the input is strictly a face with minimal background.   
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Scaling. Depending on the camera placement and size of the subject’s face, the 

resulting cropped image from Viola-Jones will not be a consistent image size. In this pre-

processing operation, each newly cropped image is scaled to be a standard size. While 

scaling is not a major issue for frequency transforms like the DCT, it was important to have 

the images be the same size for Principle Component Analysis. To generate the Input Data 

Matrix, each row needs to be the same length or else the IDM cannot be generated. If the 

images are not all uniform in size, then each row will have a different length. Several 

standard image sizes were tested: 256 by 256, 128 by 128, and 64 by 64. Since the pre-

processed training images were used for both systems (DCT and PCA), the scalings were 

implemented in both to see the effects. Further discussion of the results can be found in the 

next chapter. 

Patching. During the course of this research, local features were investigated to see 

if they aided in system accuracy. These local features were manifested through the use of 

patching. It was necessary to have automatically placed localized facial points for this step. 

Patching involved sampling the picture at these points using a predefined window. 

Specifically, each facial landmark was used as a center for a square that cropped itself out 

of the original image. As a result, the original facial image could be broken up into ‘frames’ 

and the frames could be analyzed separately. Examples of what these frames/patches 

looked like can be seen in the preceding figure, Figure 3.4.  
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Figure 3.4. Examples for facial patches. 

 

 

 

Each patch was a size of 35 by 35 pixels. Due to the uniformity of image size 

ensured by the previous scaling step (Section 3.5.1), the amount of data captured by each 

patch was roughly the same. This means that a patch centered at an eyebrow corner 

contained roughly the same amount of eyebrow across all samples. Aside from eyebrow 

corners, the following were also used for patching: lip corners, eye corners, and lip centers. 

The philosophy behind using these locations goes back to lessons learned in the literature 

survey. These particular locations on the face show the most variability between emotions. 

As a result, concentrating on just those regions would allow for a more detailed description 

of how the emotion is displayed on the face. In the subsequent experiments that utilized 

them, the patches were treated as separate images and they were given labels that were the 

same as the parent image that they were taken from.  

Normalization. Whether the input at this pre-processing step was a full face or a 

patch, normalization was performed to tweak the brightness of the image. The reason 

behind changing the brightness was to compensate for differences in lighting conditions 

and skin tones amongst images. A variety of skin tones were represented in the Extended 

Cohn-Kanade database which increased the variability of the data to an unwanted degree. 

To correct the brightness of each image, a constant value, c, was either added to or 

subtracted from the original. This constant c was calculated by first taking the mean of the 

pixels in the image twice to get a scalar: the overall mean brightness. Since the images 
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were 8-bit grayscale (ranging from values of 0 to 255), the desired mean brightness should 

be 127. Thus, the constant c was obtained after the mean brightness was subtracted by 127. 

If the image was too bright, c would be positive number, and each pixel value would be 

subtracted by that amount. Conversely, dark images were brightened after c was added to 

each pixel. The result was a 2D matrix with mean brightness of 127 for each image, 

effectively minimizing the influences of lighting and skin tone. Figure 3.5 below 

demonstrates the visual changes in the image when it was normalized. 

 

 

 

  
 

Figure 3.5. Effect of normalization on an image. 

 

 

 

Energy Thresholding. The last pre-processing step that an image went through in 

the emotion recognition system was the Energy Thresholding stage. The purpose of this 

step is to ensure only images that contain ‘information’ are used in training and testing. In 

the context of this research, ‘information’ is the energy of the image, where higher energy 

images are more visually complex. In Figure 3.6, the difference between a low energy 

and high energy can be seen. This step was only applied to facial patches because there 
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was the possibility that some patches did not catch any facial features, resulting in a 

relatively blank image. Blank images were not valuable to the system because 1) they did 

not contain features for the feature extraction phase and 2) their classification could have 

fallen into any category that also had blank images trained in it. Energy thresholding 

ensured that all samples were actually usable. 

 

 

  
Figure 3.6. High energy vs. low energy image. 

 

 

 

 To find the energy of a patch, the patch image was transformed into the frequency 

domain and the sum of the squared frequencies was taken. This procedure is reflected in 

Equation 3.2. In it, X(f) is the image after it has been transformed (using a DCT in this 

case) and turned into a 1D vector with length N. It was visually confirmed that images that 

were visually complex had a higher energy compared to bland images, so this calculation 

was valid. Lastly, a threshold had to be set to exclude low energy images. All possible 

patches from the Extended Cohn-Kanade were taken and their energies were calculated. A 

value was picked that would throw out up to 10% of all the patches, ensuring that a stable 

majority was still usable. A visual inspection of the denied patches confirmed that no 

visually complex samples were needlessly discarded. 
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𝐸 =  ∑ 𝑋(𝑓)2

𝑁−1

𝑓=0

 

Equation 3.2. Calculating the spectral energy density of a signal. 

 

 

 

Feature Extraction 

At this stage of the system, the input images have been pre-processed and are ready 

to have their features extracted. The goal of feature extraction is to represent each image 

as a single vector, where each dimension retains some important information about the 

original image. A useful method of feature extraction should ideally be able to reduce 

commonalities and noise in a dataset while emphasizing what makes the input unique. The 

facial images being used in these experiments can be viewed as two dimensional arrays of 

pixels, and feature extraction algorithms need to condense that information down to a 

single vector. This can be achieved in multiple ways, some of which will be detailed in the 

following sections. 

DCT/DST. The Discrete Cosine Transform (DCT) and Discrete Sine Transform 

(DST) were both used as feature extraction methods for this research. Either transform 

required just an image as input and both produced a 1D feature vector as output. It was 

previously discussed in the DCT section of the literature survey that these transforms move 

the image into the frequency domain and contain important high frequency information at 

the start of the vector. After a zig-zag scan is performed to convert the resultant 2D 

coefficient matrix into a 1D vector, experiments had to be carried out to determine the 

optimal length of the feature vector. 
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 Since the latter coefficients of a DCT/DST feature vector contain low frequency 

information, it is possible to truncate them without too many negative consequences on 

system accuracy. A determination had to be made, however, of how many of these low 

frequency coefficients could be thrown out before accuracy was impacted. To do this, 

images were transformed and only the first 5 coefficients were kept. The system was 

trained and tested with feature vectors of length 5 and the final accuracy was produced and 

recorded. Then, this procedure was repeated but with features vectors of length 10. Each 

time the procedure was repeated, the length of the feature vectors was raised by 5 until the 

length was 150. The accuracy from each experiment was recorded and a plot was generated 

that graphed accuracy versus feature vector length. The optimal coefficient length was 

chosen by locating the point on the graph where the coefficient length was the lowest before 

the accuracy began to plateau or decrease. Figures in this thesis like Figure 4.1 will be 

common and were used to find an optimal coefficient length. 

 The DST is a companion function to the DCT in the sense that it uses sines instead 

of cosines. Otherwise, they are set up identically as Equation 3.3 shows. The resulting 

transformations are similar, but with some differences. There was no literature that 

mentioned using a DST so an attempt was made to compare it to the DCT in this research.  
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Equation 3.3. Formula to calculate DCT on a 2D matrix. 

 



 

47 

 

MATLAB was used to implement all aspects of this feature extraction algorithm. 

The software provided a function that performed a 2D DCT to the specifications of this 

system. This meant that the function accepted an image (2D matrix containing pixel values) 

as an input and output a matrix of the same size which was the final transformation. 

Initially, only full faces were used as input. However, after facial patches were introduced 

into the system, they too were used as inputs for the frequency transformations. Although 

the two types of images differed in size, they still produced output vector of the same length 

due to zig-zag scanning. 

The zig-zag algorithm had to be coded from scratch but followed the simple rules 

that were previously explained in Section 2.2.2. As an input argument, the desired vector 

length was used along with the 2D DCT product and the output was a 1D vector version of 

the input. This simplicity in implementation was a big motivator for testing the DCT. 

Principle Component Analysis. Due to the prominence of Principle Component 

Analysis and Eigenfaces in both facial and emotional recognition literature, an attempt was 

made to implement it in this system and record the results. As previously stated in Section 

2.2.1 the goal of PCA is to find common modes of variation amongst a set of data and 

express each piece of data as a combination of those modes. The result is a dimensionally 

reduced feature vector that can be classified by comparing its modes with others. 

 MATLAB’s PCA function was not used, but rather the steps outlined in Section 

2.2.1 were used to perform the analysis. Each image was turned into 1D vector by scanning 

the rows in order. After all of the training images were shaped to that form, they were 

concatenated vertically into one matrix, the IDM (Input Data Matrix). In this IDM, each 

row was a 1D version of a training image. The IDM then had a number of transformations 
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that could be done to it to find different values, the most important of which was the matrix 

that contained all of the modes of variation.  

Experiments were carried out to reduce the number of columns of the modes to 

further reduce the dimensionality. Similar to the DCT experiments, several columns were 

added at a time and the accuracy was assessed. When the accuracy plateaued or decreased, 

the lowest number of columns at the start of the plateau was used as the final number of 

modes/length of the feature vectors. Both LDA and kNN (with a k value of 1) were used 

to classify the feature vectors. 

The feature vectors for all training images were instantly computed when the modes 

matrix was multiplied by the IDM. Each row in the result was a feature vector for each row 

that was in the IDM. The feature vectors were separated and each row went into the 

classifiers one by one to generate the respective models. To create feature vectors for the 

test data, each test image was also shaped into a 1D vector and that vector was multiplied 

with the same modes matrix. There was no separate modes matrix for the test data because 

the assumption was that the test images were visually similar enough to the training images 

that the modes for the training would be enough to express the testing as well. The result 

of the test image and mode matrix multiplication was a feature vector for the test image 

that could be used in a classifier to give the test image a label. 

PCA was not used on facial patches. There were not enough distinguishing features 

in facial patches for PCA to identify distinct modes of variation. Only full facial images 

were used as inputs for this process. 

X-Point Method. A novel approach was also attempted in this research to classify 

emotions from facial expressions. Using prior FACS knowledge, it was hypothesized that 
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merely looking at distances between key points on the face could simplify the process of 

feature extraction. For instance, during a smile, the corners of the lips are lifted, and the 

distance between these corners and the corners of the eyes is minimized. On the other hand, 

with a frown, the lip corners are pulled down, making the distance from the lip corners to 

the eye corners larger. It was hypothesized that perhaps only considering such distances 

was enough to create a reasonably accurate emotion classification system.  

 As a starting point, 14 points were chosen that corresponded to important locations 

on the face and 7 lines were drawn amongst them. This can be seen as the first configuration 

in Figure 3.7. To neutralize the variability of different image scalings, these distances were 

all divided by the same number: the distance between the eyes. It was assumed that this 

particular distance would remain the same despite different emotions being displayed.  
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Figure 3.7. All attempted configurations of the X-Point method. 
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Initial experiments placed 14 points but only used 7 lines drawn amongst them. 

They were chosen due to their variance between different emotions (such as how eyebrows 

rise or lower in respect to the eyes). However, there were many more possibilities for points 

and lines, so a process of gradually adding more points and lines took place. Each new 

point/line setup was a trial and error experiment. In some cases, the same number of points 

was kept while extra lines were drawn amongst them. In other experiments, new points 

were added and new lines were drawn for those. The most obvious lines were drawn first: 

those that instinctively felt as if they would change the most between expressions. Based 

on the results after each experiment, lines were either added or removed to see their impact 

on system accuracy. 

By the end of the experiments, a local optimal configuration of points and lines was 

found. Since not all points and lines were attempted (as time would not permit), the optimal 

configuration can only be designated as a ‘local maximum’ for the accuracy vs. 

dimensionality curve. As with most other feature sets, both kNN and LDA were used for 

classification and compared.  

Automated Point Placement on Facial Landmarks 

Over the course of the research, the need arose to have points automatically placed 

on key areas of the face. As previously stated, the Cohn-Kanade dataset provided 68 points 

as supplemental information for each image. The JAFFE dataset did not contain any 

landmark points, so a tool had to be implemented for automatic annotation of the facial 

images.  

The methodology behind the Cohn-Kanade database’s automatically placed points 

was examined to gain an understanding of how to reproduce it for this research. 
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Documentation in the database noted that Active Appearance Model (AAM) was 

implemented. Further research on the topic revealed that AAM was a more sophisticated 

version of ASM, Active Shape Model. In both cases, Principle Component Analysis was 

used to extract the dynamics of the placed points across the entire set. The points were first 

placed manually on the faces in order to train the system to place them automatically in the 

future. ASM used the position data of the points to find the different modes of variation 

amongst them (Cootes, Taylor, Cooper, & Graham, 1995). AAM also used the position of 

the points, but as the name would imply, also found modes of variation in the appearance 

of the images to guide correct point placement (Cootes, Edwards, & Taylor, 1999). 

For the sake of simplicity, the less complicated approach to automated point 

placement (ASM) was implemented for this system. There was no need to make the 

automated point placement overly accurate or computationally quick due to the scope of 

this work. As long as the points were close to where they needed to be, then ASM would 

be acceptable. The fact that ASM implemented PCA was another big benefit because PCA 

was already examined and understood as a method for feature extraction in this research. 

The overlap in methodology here minimized the time it took to implement an automatic 

facial landmark annotator. The rest of the discussion in this sub-section will revolve around 

how the annotator was constructed.  

The bulk of the automatic point placing tool comes from a 2004 paper written by 

T.F. Cootes and C.J. Taylor entitled ‘Statistical Models of Appearance for Computer 

Vision.’ However, as it will be later discussed, there was some room for a novel algorithm 

to be inserted into the process. ASM functions with three main algorithms: a fitting tool, a 

molding tool, and a search tool. These processes take a cloud of points and gradually guide 
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them to their appropriate positions on the face. For future reference in the context of this 

research, a point cloud is a set of 68 two dimensional points.  

ASM Fitter. The primary focus of the fitter is to align one set of points to another 

set using translation, scaling, and rotation operations. The fitter can also be used to find the 

mean face in a set of many faces. Using Equation 3.7, the x and y coordinates of individual 

points are transformed by three parameters: the scale factor s, the rotation factor θ, and a 

translation factor. The translation factor can be computed by taking the mean (�̅�) of all x 

coordinates in a point cloud and mean (�̅�) of all y coordinates, and subtracting �̅� from each 

x coordinate and �̅� from each y coordinate. This operation centers all of the points in that 

point cloud about the origin.   

 

 

 

(
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Equation 3.7. Operation to move a 2D point x1,y1 to x2,y2 (Cootes, Taylor, 

Cooper, & Graham, 1995). 

 

 

 

The scale factor, s, will uniformly shrink or expand the points about their center. 

Values of s between 0 and 1 will contract the point cloud while values above 1 will enlarge 

it. Lastly, the rotation factor, θ, will rotate the point cloud about its center. This factor uses 

radians, usually from π to -π. If two point clouds are centered at the origin, one can be 

manipulated by the factors until it most closely ‘fits’ with stationary cloud.  

The process of fitting uses Equation 3.8 to find the manipulated point cloud with 

the least amount of distance between each point to the stationary cloud. Ideally, the 
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manipulations (with varying, non-overlapping permutations of s and θ) of the first point 

cloud are saved in memory and each is compared to the second cloud. The respective points 

in each cloud are subtracted and the 68 differences are summed. The resulting error 

measurement is also saved in memory and corresponds to the particular s and θ that 

produced it. When all of the different scalings and rotations have been analyzed, the lowest 

calculated error will correspond to the point cloud that best ‘fits’ the stationary cloud. 

 

 

 

𝐸(𝑛) = ∑|(𝑥2(𝑛) − 𝑥1)| + ∑|(𝑦2(𝑛) − 𝑦1)|  

 

Equation 3.8. Calculating the error between two point clouds (Cootes, Taylor, 

Cooper, & Graham, 1995). 

 

 

 

This algorithm was also used to find the average face in the entire set of point clouds 

in the Cohn-Kanade database. It was iterated several times to get the best representation. 

In the first iteration, the first face in the set was used as a stationary cloud and all other 

facial point sets were fitted to it. After all of the faces were fit, the mean across the entire 

fitted set of point clouds was computed. This new mean was then used as the stationary set 

and all of the other faces in the Cohn-Kanade set were fit to it. Again, the mean of these 

newly fitted point clouds was calculated to get a more accurate representation of their true 

mean value. The process was repeated 3 more times, until the error between each new mean 

face was statistically significantly low.  

ASM Molder. The purpose of a molder is to bump some points in a cloud into 

different positions. These different positions are what give shape to different emotions. 

Once again, the modes of variation attained from a PCA-like process can account for all 
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the differences between shapes of point clouds in the set. This is required because the mean 

face that the fitter uses is only one expression, and the automatically placed points on a 

random image will not always be in a neutral configuration. 

 Prior to implementing the molder, some parameters needed to be optimized. 

Namely, the number of modes of variation had to be chosen and the degree to which each 

mode would be acceptably altered. To set these two limits, aspects of the molder needed to 

be built and tested. Equation 3.9 shows the formula used for obtaining the covariance 

matrix for the entire set of point clouds.  
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Equation 3.9. Calculating the covariance of the point could data set, where 𝑑𝑎𝑡𝑎̅̅ ̅̅ ̅̅  

is the mean of that data set. (Cootes, Taylor, Cooper, & Graham, 1995) 

 

 

 

 Both the eigenvalues and eigenvectors can be computed from the covariance 

matrix, S. The simplified version of the operation can be seen in Equation 2.4. As 

previously seen with PCA, the columns of the eigenvectors and eigenvalues are sorted so 

that the magnitudes of the eigenvalues are in descending order. The first parameter can be 

calculated at this step: the acceptable number of modes. Since each eigenvalue holds 

information on how much variance each mode contains, summing the first i eigenvalues 

and dividing by the sum of all eigenvalues can give a rate of variance for those i 

eigenvalues. Since almost 60% of the variance can be explained using only the first three 

eigenvalues, three modes of variation were chosen. As a result, only the first three 

eigenvectors are used and this new matrix is labeled R.  
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𝑚𝑜𝑙𝑑𝑒𝑑 ≈ 𝑑𝑎𝑡𝑎̅̅ ̅̅ ̅̅ + 𝑅𝑏 

Equation 3.10. Calculation for generating an expressive face using b (the varying 

eigenvalues) and R (the eigenvectors). (Cootes, Taylor, Cooper, & Graham, 1995). 

 

 

 

The final equation for creating the molder is above. It takes into account the mean 

point cloud, the first three modes of variation in the eigenvectors (which do not change), 

and a variable vector b. When the elements in b are all 0, then the molded face will be the 

same as the mean, but as the elements of b start to change, the molded face will start to 

warp. The last parameter for the automatic point annotator is decided here: the range of 

values that b should use.  

 The source paper defines the acceptable ranges for bi to be ±3√𝜆𝑖, where 𝜆𝑖 is 

the ith eigenvalue. Originally, the eigenvalues describe a certain dimension’s variance, so 

each dimension is given a capped range of values based on the variance. As with the 

fitter, multiple permutations of b are generated using these constraints. Each permutation 

was plugged into Equation 3.10 and then their errors in comparison to searched points 

were calculated using Equation 3.8. The next section will detail what searched points are. 

 

ASM Searcher. The searcher is the last piece of the annotator algorithm. The 

purpose of the searcher is to push placed points into the correct neighborhood. When the 

first mean face is placed on an image, it will not be in the correct location and the points 

will not be positioned optimally. The searcher works by creating a neighborhood for each 

point and then scanning that neighborhood to see the best location to re-place that point. 
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 Prior to discussing the specifics of the searcher, it is important to understand how 

the automated facial point annotator works. The following steps are taken: 

1. Put a generic mean face point cloud on the image, preferably as close to 

the actual face as possible. 

2. Use the searcher on each point to bump them in the generally correct 

direction. This generates a new point cloud with slightly more dispersed 

points. 

3. Use fitter tool to fit a new mean face on the newly created dispersed 

point cloud. 

4. Use the molder tool to mold the new mean face to the dispersed point 

cloud. 

5. Use the molded points as the new static point cloud, put a new generic 

mean face point cloud that will be molded and fit to the new static cloud, 

and repeat steps 2 through 4 until the annotator converges on a solution. 

The process needs a mean face to get started but it is iterative after that. It uses the 

searcher, fitter, and molder several times and stops when the molded faces do no exhibit 

significant change from the previous iteration. The searcher generates point clouds that 

don’t always look like faces in the earlier iterations. This is why a new mean face is always 

inserted and fitted, so the point clouds don’t end up diverging into alien-looking faces. The 

specifics of the searcher will now be discussed. 

Rather than using the literature’s implementation of a search algorithm, a novel 

approach was taken. The searcher in this process is based on previously explored 

technique: DCT/DST patches. The patches were a way to quickly compare two feature sets: 
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one set that came from the neighborhood of a point and the other set that was representative 

of the point across all of the dataset’s images.  

The training set consisted of two elements for each of the 68 points: a mean DCT 

vector of length 120 and a covariance matrix. To retrieve this information, each point of 

each face in the Cohn-Kanade database was used as training. Across all faces, the first point 

was taken, patched, and transformed. The resulting feature vectors for the first point across 

all faces were then used to compute their mean and to generate a covariance. This process 

was repeated for the remaining 67 points and resulted in 68 total means and covariance 

matrices.   

The searcher works by taking a neighborhood of pixels around a point and 

generating a patch for each pixel of that neighborhood, where that pixel is the center of the 

patch. These patches are also transformed into DCT vectors of length 120. As a result, each 

point generates N feature vectors, where N is the area of the neighborhood (the total number 

of pixels in that neighborhood that generate the patches). Since each point also had a mean, 

�̅�, and covariance, Sg, that was previously calculated in the training set, each feature vector 

in the neighborhood can be compared to those values to see how closely they resemble the 

true location for where the point should be placed. The patch that generates the lowest error 

in the neighborhood signifies that the point should be moved to that specific patch’s center 

since it most closely resembles patches from the training set. Equation 3.11 shows the error 

calculation. 
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𝐸(𝑁) = (�̅� − 𝑔(𝑁))𝑆𝑔(�̅� − 𝑔(𝑁))′ 
 

Equation 3.11. Calculation for finding the error between a patch, g(N), and the 

training set. 

 

 

 

Classification 

The goal of classification is to label unknown incoming inputs based on previously 

observed inputs. This requires the data to be split into a set that trains the classifier and a 

set that tests the classifier. A classifier will only label the input as a class that it was trained 

on, so the expected output for this research was one of the seven emotions present in the 

Extended Cohn-Kanade set.  

Linear Discriminant Analysis. Linear Discriminant Analysis was one method 

used in this research to perform emotion classification on facial images. There was a 

MATLAB function that allowed for minimal coding of the classification algorithm, but the 

philosophy behind it will be discussed now. To perform linear discriminant analysis there 

are several concepts that need to be understood: posterior probability, multivariate normal 

density, and cost. 

The only required inputs for the ClassificationDiscriminant.fit() function in 

MATLAB are the training samples (arranged in a matrix where each row is a separate 

sample) and their respective labels (where each row is the label for the corresponding 

sample). In simpler terms, LDA functions by drawing lines between the classes in an 

attempt to separate them. It later uses these barriers to best predict labels for incoming test 

points in the predict() method. 
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The predict() method produces a label for a test point using the model generated by 

ClassificationDiscriminant.fit(). Specifically, the equation that predict() implements to 

arrive at the concluding label is seen in Equation 3.12. In that equation, �̂�(𝑘|𝑥) refers to 

the posterior probability of class k for observation x, and 𝐶(𝑦|𝑘) is the cost of classifying 

an observation as y when its true class is k. While the former will be discussed soon, the 

latter is a simple condition: the cost is 0 if the class of y is the same as class k and it is 1 

when they are different. The predicted label will be the one that has the lowest classification 

cost.  

 

 

 

𝐿𝑎𝑏𝑒𝑙 = arg min
𝑦=1,…,𝐾

∑ �̂�(𝑘|𝑥)𝐶(𝑦|𝑘)

𝐾

𝑘=1

 

 

Equation 3.12. Formula used to compute the label for a test point using the predict() 

method in MATLAB for discriminant analysis. (Discriminant Analysis, 2015) 

 

 

 

The equation is run K times (where K is the number of classes) since the minimum 

of those runs will be the resulting label. At each run, there are K-1 posterior probabilities 

that are summed up. Although the summation sign suggests K posterior probabilities to be 

summed up, at one point, the y value and the k value will be the same causing 𝐶(𝑦|𝑘) to 

equal 0. In all other cases, 𝐶(𝑦|𝑘) is 1, so essentially only the posterior probabilities are 

summed up. Each run considers a class for the unknown test point and then checks how far 

away it is from the other classes. The lower the value, the farther away it is from all other 

classes.  
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The next component to discuss is the posterior probability. Equation 3.13 displays 

the computation of posterior probability that MATLAB uses. It is the combination of the 

multivariate normal density 𝑃(𝑥|𝑘), the prior probability 𝑃(𝑘), and the normalization 

constant 𝑃(𝑥). The prior probability, much like the cost, is a simple computation. In the 

case of a uniform prior probability, it is a value of 1 over the total number of classes. If the 

empirical prior probability was used, it would be the number of samples for class k divided 

by the total number of samples used during training, although the uniform calculation is 

used by default. The normalization constant is similarly easy to compute: it is the sum over 

k of 𝑃(𝑥|𝑘)𝑃(𝑘). 

 

 

 

�̂�(𝑘|𝑥) =
𝑃(𝑥|𝑘)𝑃(𝑘)

𝑃(𝑥)
 

Equation 3.13. Formula used to compute posterior probability (Discriminant Analysis, 

2015). 

 

 

 

The multivariate normal density is perhaps the most complicated computation made 

during discriminant analysis prediction. It is detailed in Equation 3.14 and is responsible 

for calculating a test point’s relation to the class distributions. The equation is used for a 

point with respect to each class, and when the result is higher, there is a higher probability 

that the point belongs to the class it is being computed for. If the result is lower, then the 

point is not as likely to be part of that class’s distribution since it is technically farther 

away. In the equation, x denotes the test sample feature vector for which the label is being 

predicted. It is subtracted by the mean of all training samples for a class k (denoted as µk). 

Ʃk also appears in several areas of the equation and it represents the covariance matrix of 
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the training points of class k. However, |Ʃ𝑘| is the determinant of the covariance matrix 

while Ʃ𝑘
−1 is the inverse of the covariance matrix.  

 

 

 

𝑃(𝑥|𝑘) =
1

(2𝜋|Ʃ𝑘|)
1
2

𝑒(−
1
2

(𝑥−µ𝑘)𝑇Ʃ𝑘
−1(𝑥−µ𝑘))

 

 

Equation 3.14. Formula used to compute multivariate normal density (Discriminant 

Analysis, 2015). 

 

 

 

MATLAB offers some flexibility when it comes to Discriminant Analysis, 

presenting options for both linear and quadratic discriminant analysis. Conceptually, the 

key difference between the two approaches is how the classes are divided. Straight lines 

segregate the classes in LDA while conic sections like parabolas and ellipses separate the 

classes in QDA (quadratic discriminant analysis). Mathematically, QDA uses a slightly 

different formula than LDA for the posterior probability. 

Aside from the predicted label of the input test sample, predict() can also output the 

certainty score for each of the classes. These scores were normalized from 0 to 1 and 

whichever was the highest was used as the label for the sample. Although it is not necessary 

to further investigate these scores after the classification has been made for a simple LDA 

system, they can often hold some clues on how to push the system accuracy even further. 

This approach is discussed in the future section, Section 3.9.3. 

The scores were also used when patches and full faces were mixed together for 

training and testing. In the training phase, the full faces and patches were sent en masse to 

generate the math models for the classifier; only the labels mattered here. However, the 



 

63 

 

testing phase was conducted with more attention. As each test sample entered the predict() 

method, it essentially had a 2D matrix of features, where the first row was a feature vector 

for the full facial image and the preceding rows were patch feature vectors. The result from 

predict() produced a 2D matrix as well, where each row contained the class scores for the 

respective feature vectors (full face and patches). To get the final label of the input test 

sample, each column (one for each emotion) was averaged. This operation produced a 

single row of scores in the end, the high of which was used as the conclusive score for the 

test sample.    

Kth Nearest Neighbor. The kth Nearest Neighbor algorithm is perhaps one of the 

simplest classification algorithms available. The ease of understanding and implementing 

it were factors for choosing it for this research. This classification algorithm operates by 

essentially treating each feature vector (all training samples) as a point in N-space, where 

N is the length of the feature vectors. When a new feature vector (a test sample) is added, 

the distances between that sample and all other points are computed. There are several 

different distance calculations available including: Euclidean, Mahalanobis, and 

Chebychev. These distances are ordered from smallest to largest, and the top k (a user 

defined variable) are picked. The assumption at this step is the new feature vector will 

most likely have a label that is the same as the points in its proximity. Therefore, the 

labels of the top k closest training samples are collected and the most common (the 

mathematical mode) label is used as label for the test sample. An odd value for k is used 

to eliminate tie events.  

 There are two variable aspects to kNN: the value of k and the distance metric. 

Experiments were run with the k value changing each time. Since odd values of k are 
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used, the tested values were 1, 3, 5, and 7. In terms of distance measures, Euclidean 

(which is expressed in Equation 3.15) was chosen. Since performing extra experiments to 

deduce which distance measure was most optimal would have used up more time, 

Euclidean was chosen for its ubiquity and to save that time. 

 

 

 

𝑑(𝑋𝑡𝑟 , 𝑋𝑡𝑒) = √(𝑋𝑡𝑟1 − 𝑋𝑡𝑒1)2 + (𝑋𝑡𝑟2 − 𝑋𝑡𝑒2)2 + ⋯ + (𝑋𝑡𝑟𝑁 − 𝑋𝑡𝑒𝑁)2 

 

Equation 3.15. Formula to compute Euclidean distance between to vectors (Xtr being a 

training vector and Xte being a test vector) that are N dimensions long. 

 

 

 

 Similar to the LDA output, a test sample has a confidence score associated with 

each class that kNN was classifying for. For each class, the score is equal to the amount of 

neighbors of that class divided by the total number of neighbors being evaluated. If three 

out of the five nearest neighbors are labeled with neutral, then the neutral score for the test 

sample would be 0.6. The class with the highest score is used as the final classification for 

the test sample. 

 

Experimental Procedure 

Due to the high number of experiments that needed to be performed, it was crucial 

to have standardized methods of execution and evaluation. This section will discuss the 

way each experiment was performed and how the accuracy was derived and compared to 

previous runs. The methodology listed here allowed system tests to be highly repeatable 

and offer valuable information on how components in the system were behaving. The 
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system’s accuracy was an aggregation of several different values that originated from how 

the data and results were organized. 

Data Partitioning. The purpose of Data Partitioning was to equally divide the data 

into blocks of testing and training sets. The input to this stage required that all of the 

features had been extracted and added to the IDM along with their labels. After this was 

created, the next step was to pick a value for N, the number of blocks that the data should 

be divided into. The blocks needed to be roughly the same size along with the same number 

of samples from each class. With this setup, the first block was used as the testing set while 

the remaining N-1 were the training set. A value of 7 was used for N to create 

approximately a 20/80 split in the data, where 20% of all of the data was for testing and 

80% was for training.  

 The experiment did not end with the classification of the samples in the first block. 

The next block was used as the test block while the remaining N-1 blocks were training. 

This procedure was repeated N times, where each block was eventually used as a test set 

once while the remaining blocks were used as training. Data partitioning served to cross-

validate the data and get a comprehensive sense of the system accuracy. It is also important 

to note that each time a new instance of the system ran, the IDM was randomly permutated 

resulting in different blocks between runs. The blocks still had consistent sample sizes of 

each class contained within, but the samples themselves were randomly chosen each time. 

The system therefore did not produce the same results each time and could be run multiple 

times to get more aggregate accuracies.  
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Top-N Ranking. The confidence information from classification algorithms like 

kNN and LDA contain valuable information that can be exploited to further increase the 

accuracy of an emotion recognition system. Each classification has some confidence 

associated with it – a value between 0 and 1 where higher values represent higher 

confidence. Since the algorithms model multiple classes at once (rather than doing a one 

vs. all approach) then each class has a confidence score associated with the test sample in 

question. The class with the highest score is the one that is used as the label for the sample. 

However, some experiments were run to see how often the correct label was in the top N 

results of the scores. 

 The key alteration necessary to perform the Top N experiments was to register 

classifications as correct if the right label was in the Top N (a user-defined variable) 

confidence scores for a test sample. The scores were ordered from lowest to highest and 

the top N were chosen. At first, N was equal to 1, so only the highest score was picked 

(thus no change to the recognition system) but the value of N was increased by 1 in each 

run. When N was two, the two highest scores were examined, and if the correct answer was 

between them, the classification was counted as a success. At the end of each run, the 

overall system accuracy was calculated and stored in a table.  

 The motivation behind performing the Top N experiments is to understand how 

‘close’ to the real answer the classification systems were. In many cases, the disparity 

between the top two scores was very low, and could have arrived at the correct answer 

given some extra information. It was posited that if the correct answer was amongst the top 

3 highest confidences at least 85% of the time, then it was worthwhile to start using patches 

to further bump the scores into producing the correct classification. The Top N experiments 
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were run on a recognition system that only used full face images. The success of the 

experiments (detailed in Section 4.2.6) was what actually led to the investigation of facial 

patches to supplement full faces for emotion classification.  

Feature Fusion. One of the stated goals for this research was to explore the effects 

of fusing multiple feature sets into one system that classified emotions. There were many 

ways that this problem could have been met, but ultimately, only one was implemented. 

This decision came from the conclusion drawn from previous work. Out of the three 

decision-level feature fusion methods (borda count, decision voting, and score averaging) 

the latter was chosen. Score averaging generated the highest results when it was tested in 

a previous work (Smirnov, Muraleedharan, & Ramachandran, 2015).  

 The implementation of score averaging feature fusion was very similar to how local 

features (frames) were added to global features (face only). The basic premise involved the 

aggregation of scores from separate classifiers. It was expected that each classifier 

produced a standardized output: a row vector of length 7 where each value was the 

likelihood that a test sample belonged to that particular class (7 dimensions for 7 classified 

emotions). More importantly, the values in the row had to add up to a value of 1 as a 

normalization measure. Since the classifiers (both LDA and kNN) met these criteria, their 

output scores were fused by concatenating their output class scores vertically and averaging 

along the columns. The resulting averaged row vector was also of length seven, and the 

element with the highest value was used as the final classified emotion. 

 In a system that used feature fusion, each classifier saw its own training data but 

the testing samples were synchronized. The same input image was fed into all of the 

classifiers to produce the scores to be fused.  
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Calculating System Accuracy. The labels of all the samples were known for the 

duration of the research. Even though the goal of classification was to classify input data, 

the answer was already known since all samples in the Extended Cohn-Kanade and JAFFE 

database were labeled. The results from the classification algorithms could then be 

compared to the actual labels from the databases to see if they were classified correctly. As 

a result, the accuracy of the system could be assessed with these two pieces of data. 

 However, there are several steps required before calculating the overall system 

accuracy. Along the way, different kinds of accuracies are averaged together to obtain the 

overall accuracy. The first of such accuracies is known as the ‘fold accuracy.’ As 

previously stated, the data is partitioned into N blocks and run N times. Each run is a ‘fold’ 

because the method of data partitioning is formally known as ‘k-fold cross-validation.’ To 

better understand how accuracy is tabulated and assessed, it is first necessary to understand 

confusion matrices. 

  A confusion matrix is a helpful tool that stores classification data. It is an N by N 

grid, where N is the total number of classes. Each row and each column represents one 

class, where the rows are actual classifications and the columns are predicted 

classifications. Refer to Figure 3.8 for a visual representation of this. After each input is 

labeled by the classifier, a value is added to the confusion matrix. First, the row that 

corresponds to the actual label value of that input is used and the classifiers predicted label 

is used as the column value. At the intersecting cell, a value of one is added to whatever 

the value was previously.  
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Figure 3.8. Typical confusion matrix. 

 

 

 

 Visually inspecting the above figure, it can be deduced that the diagonal values 

represent correct classifications while all other cells are misclassifications. Once again, this 

is because the diagonal cells represent inputs that were classified with the same label as 

their true label. The confusion matrix provides information on both the true positive and 

false positive detection rates. Dividing all cells in a row by the total number of samples of 

the given class generates percentages, which are the basis for accuracy values in this 

system. The overall fold accuracy can be calculated by averaging the class accuracies (the 

diagonal values).  

 After the fold accuracy comes the trial accuracy. One trial is equivalent to N folds, 

and the trial accuracy averages all of the folds together. To further verify the accuracy of 

the system, trials were run five times, resulting in a single ‘system accuracy.’ The system 

accuracy contains the averaged accuracies from the five trials. It can either be a single value 

known as the Overall Detection Rate or as N values (where N is the number of classified 

emotions), which is the System Class Detection Rate. When accuracies were stated broadly 

in this thesis, they were usually refereeing to the Overall Detection Rate.  
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Chapter 4 

Results and Discussion 

Basic Approach to Results and Discussion 

Much of the progression of this research was based on a central idea: experiments 

that yielded higher accuracies were explored further and added to the overall system. The 

result was a system that combined many finely tuned and successful elements. This chapter 

explores which decisions were made and, more importantly, why they were made.  

 

 

 

 
 

Figure 4.1. Initial set of experiments run on the original Cohn-Kanade Database using an 

LDA Classifier. 

 

 

 

 The preliminary results, see in Figure 4.1, did not look very promising. The basic 

layout for experiments can be seen here and will now be discussed before proceeding. A 

single experiment consisted several previously discussed steps. First, different pre-

processing measures used on the input images to prepare them for feature extraction. Next, 
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the feature extraction algorithm of choice was applied and retrieved a feature vector of 

some specific length to be used in a classifier. The classifier of choice ran the partitioned 

data through and kept track of average accuracies. After the 7 folds and 5 trials were 

complete, a single system accuracy could be determined for that particular experiment. 

Figure 4.1 displays a set of experiments, where different feature extraction algorithms 

(DCT, DST, and FWHT) and feature vector lengths (increments of 5 from 5 to 150) were 

attempted. This set of experiments will be the most common amongst most of the results, 

only differing by factors such as: pre-processing steps, SMOTE ratios, dataset 

considerations, and classifier.  

Cohn-Kanade Dataset Results 

Most of the experiments were performed on the Cohn-Kanade database first. The 

different pre-processing, feature extraction, and classification choices were tested on this 

database and it was assumed many of the same results would be mirrored in experiments 

performed in the next database: JAFFE. The following sections will detail each decision 

that was made and how it impacted the emotion recognition system. 

Case for Viola-Jones. In this initial set of experiments, the raw Cohn-Kanade 

images were used as input, there was no pre-processing step, no Viola-Jones facial 

detection separated the face from the background, and the LDA classifier was used. 

SMOTE was also not used to even out the disparate sample sizes amongst the emotions. 

As a result, even the best performing experiment (DCT feature vector of length 135) did 

not get the answer right even 35% of the time.  
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 The same set of experiment was carried out again, with one difference: Viola-Jones 

was applied to each image to isolate the face for feature extraction.  The results can be seen 

in Figure 4.2 below. 

 

 

 

 
Figure 4.2. Set of experiments detailing results with Viola-Jones applied to each input 

image. 

 

 

 

 The system accuracy for both DCT and DST more than doubled for all of the feature 

vector lengths. The best performing features were around 105-110, at a system accuracy of 

75%. FWHT features, on the other hand, did not see such a drastic boost in accuracy with 

the implementation of Viola-Jones. Regardless, this set of experiments demonstrated the 

importance of isolating the face from the rest of the picture. Otherwise, elements in the 

background will contribute noise to feature vectors and lead to a greater number of 

misclassifications. All experiments carried out after this one used Viola-Jones. 
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 It is also useful to point out that using feature vector lengths about 150 was not 

necessary. This is evident by the plateau of accuracies after a size of roughly 100 

dimensions. This plateau will be present in most of the preceding Figures, showing that 

virtually any dimension size past 100 will produce the same accuracy. Due to this, 120 is 

a commonly used vector length for single experiments that require a lot of time to perform 

(rather than performing the entire set of 30, starting from 5 and going to 150 in increments 

of 5).  

 

 

 

Table 4.1 

Breakdown in sample size after Cohn-Kanade Database was processed with Viola-Jones. 

index emotion Original sample size Viola-Jones sample size 

0 neutral 526 463 

1 anger 41 39 

2 contempt 0 0 

3 disgust 41 34 

4 fear 19 18 

5 happiness 61 52 

6 sadness 22 20 

7 surprise 75 73 

8 unclassified 267 241 

 

 

 

During the process of isolating faces from the facial images in the Cohn-Kanade 

set, a small discrepancy occurred. Not all of the faces were captured using Viola-Jones, 

and as a result, the original sample sizes for the emotions was no longer the case. Each 

emotion was negatively affected by losing a few samples. Rather than having 1052 total 

samples, only 940 remained. This means that wherever Viola-Jones was applied to the 
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Cohn-Kanade database, the new sample size breakdown seen in Table 4.1 was the actual 

breakdown. 

Case for Shrunken Images. The isolated faces from the Viola-Jones algorithm 

were not uniform in size. Depending on how far away the subject was from the camera, 

and their physical face size, the isolated results came in all different 2D matrix dimensions. 

A pre-processing step of scaling was added to normalize the height and width of all the 

cropped faces to 128 by 128 pixels. This was an arbitrary value, but to see the effects, other 

values were also tried: 64 by 64 and 32 by 32 pixels.  

 

 

 

 

Figure 4.3. Set of experiments detailing results with facial images scaled to 128 x 128 

pixels. 
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Figure 4.4. Set of experiments detailing results with facial images scaled to 64 x 64 

pixels. 

 

 

 

 A curious effect of scaling the facial images down to 128 by 128 and below was 

seen. Previously, FWHT feature vectors did not break 45% accuracy, but the scaling 

suddenly made the results comparable to both the DCT and DST. The accuracy was 

boosted for all three cases compared to not scaling, where accuracies floated around 76%-

79% for well performing vector lengths. This was most likely caused by the FWHT 

preference for square input matrices of size 2n by 2n. With that size requirement fulfilled, 

no zero-padding was necessary for the faces and the faces retained their original 

information. 

 32 by 32 results were more of the same. The results did not get any better or any 

worse compared to the other two scaling. A visual inspection of the 32 by 32 facial images 

seemed to show a significant loss of quality, but the frequency-based feature vectors were 

able to maintain their accuracy at such pixelated levels. Future experiments were carried 

out with 64 by 64 scaling. 
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Case for SMOTE. It is important to recall Table 3.1 to get a reminder of how 

unbalanced the original dataset was in terms sample sizes for each emotion. Since each 

emotion was a set of still images from a video of a subject going from a neutral pose to a 

posed expression, the number of neutral samples was equal to the sum of the other 

emotions. SMOTE was implemented to synthesize extra samples for all other emotions to 

bump their total available samples to match neutral’s. The assumption was that a more 

balanced dataset would produce higher accuracies because classifiers could separate the 

classes more accurately.  

 

 

 

 
Figure 4.5. Set of experiments detailing results with full SMOTE. 

 

 

 

  

Given Figure 4.5, it seems as if there was no appreciable change compared to not 

using SMOTE. The results still do not break past 80% system accuracy. However, the class 

average accuracies were also examined. The system accuracy is an average of all the class 
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averages and doesn’t reveal any information on which emotion is classified better or worse. 

The class averages for this set of experiments will be detailed in Section 4.2.4 and in Figure 

4.8. Before exploring those, some more sets of experiments will be discussed. 

 

 

Table 4.2 

Breakdown in sample size for each emotion after full SMOTE is applied. 

index emotion Viola-Jones sample size SMOTE sample size 

0 neutral 463 463 

1 anger 39 390 

2 contempt 0 0 

3 disgust 34 476 

4 fear 18 396 

5 happiness 52 520 

6 sadness 20 400 

7 surprise 73 438 

8 unclassified 241 241 

 

 

 

 The new breakdown of sample sizes for each emotion can be seen in Table 4.2. In 

the worst case, the 18 samples of fear had to be inflated by 22 times its original size. Since 

so much synthetic data was being generated during SMOTE, a slightly different sample 

distribution was tried that cut down on interpolated data. Table 4.3 details a distribution 

that cuts the neutral sample size by half and bumps the rest of the samples to that new 

maximum. Figure 4.6 shows the results of running a set of experiments with the ‘half 

SMOTE’ sample size regimen.  
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Table 4.3 

Breakdown in sample size for each emotion after half SMOTE is applied. 

index emotion Viola-Jones sample size SMOTE sample size 

0 neutral 463 232 

1 anger 39 195 

2 contempt 0 0 

3 disgust 34 238 

4 fear 18 198 

5 happiness 52 260 

6 sadness 20 200 

7 surprise 73 219 

8 unclassified 241 241 

 

 

 

 
Figure 4.6. Set of experiments detailing results with half SMOTE. 

 

 

 

 The half SMOTE data regimen did not produce any higher results. In fact, accuracy 

amongst all three feature sets, across all feature lengths, was a few percentage points lower. 

The takeaway finding from this set of experiments was that it is better to have more data 

for training and testing than less. Even if the dataset features high amounts of synthetic 
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data, the discriminatory functions in LDA perform better with larger quantities of 

information. 

Further Increasing the Natural Sample Sizes for Each Emotion. Two factors 

contributed to the decision of adding extra samples to the Cohn-Kanade dataset that was 

used for experiments. First, it was noted that some of the labeled emotions did not appear 

to be correct during visual analysis of training samples entering the classifier. Secondly, 

there was a large amount of unused data in the dataset. This data had a classification label 

of 8, and was always discarded during the experiments. In this set of experiments, the 

already-existing samples were double-checked and corrected if they were misclassified. 

The unused samples were also visually scanned and given classification labels if they met 

FACS criteria for a basic emotion. The new breakdown for sample sizes after this process 

are shown on the next page. 

 

 

 

Table 4.4 

Breakdown in sample size for each emotion after classification revision and extra samples 

were added. 
index emotion Viola-Jones 

sample size 
Extra 
sample size 

SMOTE 
sample size 

0 neutral 463 463 463 

1 anger 39 40 440 

2 contempt 0 0 0 

3 disgust 34 34 476 

4 fear 18 31 465 

5 happiness 52 63 504 

6 sadness 20 40 480 

7 surprise 73 75 450 

8 unclassified 241 194 194 
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The two emotions that previously had the lowest amount of samples benefited the 

most from this dataset revision. Fear and sadness were significantly under-represented and 

SMOTE had to generate much more synthetic data for them as a result. The new samples 

allowed for lower SMOTE multipliers and more representative synthetic samples. Anger 

and disgust did not see too many new samples, however. It was hard to distinguish between 

the two emotions using a manual visual analysis of unused samples. Moreover, many of 

the unused samples were blends of emotions, so their label could not be set for any one 

particular classification. In the end, the sample overhaul produced a net benefit to the 

emotional classification system, as Figure 4.7 shows below. 

 

 

 

 
Figure 4.7. Set of experiments detailing results with extra samples. 

 

 

 

With this set of experiments, the system accuracy was finally above 80%, and 

topped out at 84.3% with a DST feature vector of length 135. As the SMOTE tests 

previously showed, more samples mean better class segregation. This new set of 
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experiments further pushed that point by suggesting more real-world samples are vital to 

create higher system accuracies. 

This was the last set of experiments that dealt with global features using frequency-

related transforms. What needs to be examined at this time are the class averages for some 

of the previous experiments. While SMOTE did not make noticeable difference to the 

system accuracy, the individual accuracies for each emotion class may have been altered. 

Figure 4.8 was generated by using DST feature vectors of length 120 and the respective 

parameters detailed in the legend.   

 

 

 

 
Figure 4.8. Set of experiments detailing results with extra samples. 
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 In the no SMOTE regimen, the class average accuracies were representative of the 

sample sizes. Neutral had the highest accuracy because the system was trained heavily to 

recognize neutral compared to the other emotions. Emotions like anger and sadness were 

harder to distinguish from neutral expressions and they were often misclassified as neutral 

as well. Emotions like happiness and surprise also showed higher accuracies because of 

their higher distinction from a neutral expression. Unlike any other emotion, teeth were 

most often on display in happy samples, and wide open eyes/mouth were most often on 

display in surprised samples. 

 The addition of SMOTE mainly increased the accuracy for sadness at the expense 

of a few percentage points from other emotions. This can be expected since there were 

technically more points for the classifier to use for class segregation. Even though some of 

the emotions were negatively impacted in terms of accuracy, it is more important for the 

classes to have an even distribution of accuracies rather than having a few with high 

accuracies while the other were significantly lower. 

 This equity of class averages was achieved even further when extra natural samples 

were added to the dataset. The additional information went a long way in creating better 

class boundaries in the LDA classifier. Anger, fear, and sadness saw a significant increase 

in accuracy despite still being under-represented. With this particular regimen, the 

accuracies for each emotion were above 70%; the best performing set of accuracies from 

tests so far discussed. 

 Lastly, the half SMOTE setup underperformed with all classes. In the case of the 

figure, the half SMOTE was applied to the extra-sampled data and was compared to the 



 

83 

 

full SMOTE version of that data. It did not boost performance for any class, and showed a 

small negative percentage difference in all cases. 

Frequency Features with KNN Classifier. Similar experiments were also 

performed using kNN classifiers with k values of 1, 3, 5, and 7. Since previous cases had 

already laid it out, these experiments included Viola-Jones isolated faces that were cropped 

to 64 by 64 pixels, full SMOTE, and extra samples. The DST features were the best 

performing in previous experiments, so only they were evaluated in this new set of 

experiments to save on time.  

 

 

 
Figure 4.9. Set of experiments detailing results with DST features of length 120. 

 

 

 

 The figure above shows that kNN did not perform well with DST features. This 

was the case for all of the frequency-based features (DCT and FWHT). Oddly, there is a 

peak accuracy at feature vectors with length 20, and then a plateau for vectors of longer 
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length. The neighborhood size did not make a difference, as all permutations performed 

the same.  

Further Understanding of Accuracy. The results shown so far have illustrated 

only the performance of the system for the most probable answer. The closer that an LDA 

score for a class approaches a value of 1, the more likely the test sample belongs to that 

class. Systems up to this point only used the highest scoring class to make an assessment, 

but a set of experiments were also carried out to consider how ‘close’ the system was to 

the real answer. If the top 2 highest scoring classes were considered instead of just the 

single highest, would the correct label show up between the two? How often would it show 

up in the top 3? If the classifiers were able to compute the correct label in these cases, it 

would provide a good argument for continuing to explore feature extraction from the face 

(most notably from local facial features).  

 

 

 

 
Figure 4.10. Experiments detailing the results of using the Top N class scores for 

classification rather than Top 1st. 
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 The Top N experiments were run on an LDA classifier using DST vectors of length 

120. Since this experiment was performed earlier in this research, the faces were only 

shrunken to 128 by128 pixels and there were no extra samples present in the Cohn-Kanade 

Dataset at that time. SMOTE was still applied, but in the older proportions. This explains 

the noticeable 10% difference in accuracy for the Top 1 test in Figure 4.10 when compared 

to previous high-performing experiments. 

 However, the general trend in increasing accuracy is still relevant. When taking 

only the top 2 results into account, the correct label was present 90% of the time. This is 

compared to only 76.6% when the top 1st class is examined. In the top 3 results, the correct 

answer was present 96.1% of the time. As more classes were added to the Top N ranking, 

the results eventually tapered off to 100% since the correct answer would always be one of 

the 7 classes. 

 

 

 

 
Figure 4.11. Set of experiments detailing the results of using the Top N class scores for 

classification rather than Top 1st. 
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 The same trend in Figure 4.10 is reflected in Figure 4.11. In the latter, individual 

class accuracies were examined as the value of N in the Top N was increased. If the actual 

correct label was a neutral classification, and neutral was amongst the Top N results, it was 

counted as a true positive result. The class results for Top 1st mirror those of previous 

experiments. An appreciable rise in class accuracies occurred across all emotions going 

from the Top 1st to the Top 2 highest scoring classes. The same was true from moving from 

the Top 2 to the Top 3 with the exception of fear. This suggested that fear potentially would 

still struggle to be classified if extra information was supplied to the classifier. However, 

after the sample sizes for each emotion were tweaked, that discrepancy was diminished. 

Figure 4.12 details the updated results which feature 64 by 64 pixel sized shrunken facial 

images and extra samples. 

 

 

 

 

Figure 4.12. Set of experiments detailing the results of using the Top N class scores for 

classification rather than Top 1st with extra samples. 
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Such results indicated that the classification system had the potential to do better if 

some additional information was available to it. The full faces contained most of the 

discriminatory information needed for LDA to correctly classify an emotion. The logic was 

that perhaps local features from the same face (like lip corners displaying neutral or 

exaggerated creases from happiness or inner eyebrows coming together for an angered 

expression) could add enough unique feature information to push the scores in the correct 

direction. The next section discusses the results after global and local features were 

combined to produce a hybrid emotion classification system. 

Case for Local Features. In total, 12 local features were taken from each face. 

They came in the form of patches of pixels and those patches were processed with 

frequency transforms to create feature vectors. To lower the impact of wildly different 

feature vectors between global and local features, each respective group was passed 

through their own LDA classifier and their scores were combined at the output. The 

aggregate of the scores across each class were averaged to get a final score of those classes 

per test sample (a test sample being it’s global and local features). The highest score from 

these averages was chosen as the label for that sample. 
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Table 4.5 

Set of experiments detailing the LDA system accuracies for global and local features with 

all data provisions (Viola-Jones, 64x64 images, SMOTE, and extra samples). 

 
 

 

 

 To lower the amount of time spent on experiments, only DST feature vectors from 

length 90 to 150 were evaluated. The results are in the Table above. The typical pattern 

previously seen with frequency-based features and their accuracy relative to vector size 

was not present. Instead, the accuracies went up and down as the vector length increases. 

They do not go below 85% but there is a noticeable difference between global-only systems 

and global + local systems. 

In the end, using both global and local features performed roughly the same at the 

optimal lengths (120-140) when compared to purely global features. There was a 2% 

increase in the former compared to the latter. It is important to reiterate that the system 

accuracy hides important information, so getting the complete pictures requires examining 

the class accuracies. These will be discussed in Section 4.2.9 Best Performing Features 

using Cohn-Kanade. 
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Case for 20-Point Method. As previously detailed, the XPoint method was a novel 

approach to emotion classification. An experiment with this feature type consisted of 

passing a certain configuration of points and lines through a classifier (kNN), including 

data-fixing measures such as full SMOTE and extra samples. There was no need for pre-

processing on the images because the features came out of geometric properties of the face 

rather than pixel information from the images.  

 

 

 

 
Figure 4.13. Set of experiments detailing the results of different XPoint features in a kNN 

Classifier. 

 

 

 

 kNN produced accuracies that were higher than LDA for XPoint features. The 

reason that there are multiple instances for some dimension sizes is because different sets 

of points produced the same number of lines. The general trend in Figure 4.13 shows that 

more dimensions meant greater accuracy. At the higher dimensions, however, the accuracy 

began to plateau. Further dimensions were not added after 27 for two reasons: there would 
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likely be no appreciable change and there were no other imaginable configuration left for 

different point and line layouts.  

The most accurate result (with 20 points and 27 lines) was 74.5% accurate, which 

was lower than system accuracies in previous successful experiments. Considering that 

XPoint was an exploration into simplifying FACS, the less accurate results were expected. 

The dimension sizes may have not been big enough, and many dimensions did not contain 

great differences amongst emotions. This was most apparent with subtler emotions such as 

sadness, which was hard to distinguish from neutral in some cases. Anger and disgust were 

similar in that respect as well. Moreover, the normalization line may have fixed scaling 

issues for the XPoint method, but if a person’s face was sufficiently disproportioned, the 

lines were not reflective of their actual facial expression. The next section details the class 

averages from the most successful experiments so far and discusses them. 

Best Performing Features Using Cohn-Kanade. The overall system accuracies 

from experiments provided a quick way to compare different feature extraction methods. 

However, they do not provide insight on how well the separate emotions were classified in 

that system. Perhaps one emotion was greatly under-performing but it’s accuracy was 

averaged out by other high performing emotions. In this section, the three most distinct and 

best performing features sets were examined by comparing their class accuracies. 
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Figure 4.14. Class averages for best performing features from the Cohn-Kanade dataset. 

 

 

 

Table 4.6 

System accuracies for best feature extracted from Cohn-Kanade database. 

Features 
System 

Accuracy 

P20D27v001 74.51153 

DST, SMOTE, Extra Samples 83.76034 

DST, SMOTE, Extra Samples, w/ 
Frames 

86.76091 

 

 

 

 As expected, the fusion of global and local features (DST with Frames) yielded 

better results than using the face only. At the cost of a few percentage points from the 

neutral class, all other emotions performed better with frames. Anger saw the highest boost 

in accuracy, and sadness benefitted as well. In those instances, frames around the mouth 

gave the biggest clues for the emotion: the tightened lips of anger and the wrinkles at the 

corner of the pulled lips of sadness. When only the face was examined, these emotions 

would often be misclassified as neutral expressions. 
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 The P20D27v001 configuration for the XPoint method did not perform up to 

expectation. The one surprising result was its comparable performance for fear. The other 

difficult expression (anger, disgust, and sadness) underperformed in comparison to the 

frequency-based features. This was most likely due to not enough discriminant dimensions 

to distinguish them from the neutral expression. The most obvious drawback to the method 

is its inability to account for face morphology. Some faces will have naturally bigger or 

smaller mouths, higher or lower eyebrows, and wider or narrower eyes. All of these factors 

may be interpreted as expressive features to the classifier when they are actually just part 

of a neutral pose.  

PCA Results. Eigenfaces were another set of features that were tested to gauge 

their predictive capabilities when it came to classifying emotions on faces. Each face had 

a single PCA vector associated with it: a vector where each dimension detailed the amount 

that a corresponding mode of variation was present in the image. As with other 

experiments, these features vectors were placed in both a LDA and kNN classifier to 

compare their results. The LDA results are evaluated first. 

 

 

 

Table 4.7 

Set of experiments detailing the results of PCA features and an LDA classifier. 
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Unlike the frequency-based features, the vector length had to be greater to produce 

better results. The optimal length was found through trial and error, as detailed above. A 

vector length around 200 dimensions showed the highest accuracies in these experiments, 

compared to the 120 optimum for DST. At this size, the accuracy topped out at 80%; this 

was 5% lower than high performance features in previous tests. At a length of 200, it would 

seem, the latter modes of variation are describing mostly noise in the image. However, the 

results show there is still valuable discriminatory information at such high modes for facial 

images.  

The class accuracies with a vector length of 200 provided further discouragement 

for using PCA with LDA for future experiments. While all other class accuracies were 

above 70%, the neutral expression didn’t even perform better than random guessing (below 

50%). It was most commonly misclassified as anger and sadness. This is most likely due 

to the nature of Eigenfaces. Since the difference in skin textures, like wrinkles, between 

subtle emotions like neutral, angry, and sad are low, the feature vectors for each of those 

emotions would not show great differences. PCA performed exceptionally well for bolder 

emotions like disgust, happiness, and surprise. These three emotions saw class accuracies 

above 95%. 
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Table 4.8 

Confusion matrix for a PCA feature vector of length 200 in an LDA classifier. 

 netural angry disgusted fear happy sad surprised 

neutral 45.18359 17.42981 6.825054 6.933045 4.492441 14.42765 4.708423 

angry 0.37037 73.7037 20.18519 2.592593 0 3.148148 0 

disgusted 0 0.75 98.25 0 1 0 0 

fear 0.487805 0.487805 2.439024 77.31707 17.31707 0 1.95122 

happy 0 0 0.15625 0 98.90625 0 0.9375 

sad 0.487805 6.585366 7.804878 2.926829 3.902439 75.12195 3.170732 

surprised 0 0 0 0.526316 2.631579 0 96.84211 

  

 

 

The kNN results for PCA mirrored those of frequency-based features. In Table 4.9, 

The accuracies did not surpass 30% for most feature vector lengths. This was true for 

shorter lengths not shown in the table, too. Once again, kNN was shown to not work well 

for highly dimensioned feature vectors. 

 

 

 

Table 4.9 

Set of experiments detailing the results of PCA features and a kNN classifier. 

 
 

 

 

JAFFE Results 

The JAFFE dataset had advantages and disadvantages when compared to Cohn-

Kanade. The data distribution in terms of sample sizes for all of the emotions was much 

more even in JAFFE. There was no disparity amongst them. However, there weren’t as 
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many samples for each emotion. Compared to the extra-sampled Cohn-Kanade set, the 

least represented set (fear with 31 samples) is the same size as the most represented in 

JAFFE (fear and happiness with 31). SMOTE also had to be applied differently to the set, 

although the factors were easy to pick: each emotion was expanded 10-fold. This is 

reflected in Table 4.10 below.  

 

 

 

Table 4.10 

Emotion sample size distributions for the JAFFE database. 

index emotion Viola-Jones 
sample size 

SMOTE 
sample size 

0 neutral 30 300 

1 anger 30 300 

2 contempt 29 290 

3 disgust 32 320 

4 fear 31 310 

5 happiness 31 310 

6 sadness 30 300 

7 surprise 30 300 

  

 

 

The JAFFE dataset also lacked a crucial component of information: landmarks. As 

previously stated, the Cohn-Kanade dataset had 68 points placed on key points of the face. 

These points allowed for XPoint and frame-based (local) features extraction. JAFFE, on 

the other hand, only consisted of facial images. A tool needed to be implemented that 

placed those 68 points on all JAFFE faces to progress with the same feature extraction 

techniques. The following section details the outcomes from designing, implementing, and 

executing that tool for images in the JAFFE database. 
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Automatic Facial Point Annotator. The accuracy analysis of the automated point 

annotator was conducted on the Cohn-Kanade database. The output from the tool on Cohn-

Kanade faces was compared to the original points provided with the database to gauge how 

closely the tool placed points to their intended location. 100 faces from the database were 

chosen at random (with equal representation from all emotions) and used to assess the 

tool’s accuracy. 

 After the annotator placed the points on the 100 faces, the distance between those 

points and the actual landmark points from the database were examined. If a point placed 

by the tool was within a certain threshold distance (a few pixels in any direction), it was 

counted as a 100% correct placement. Otherwise, there was another larger region around 

the actual point that the placed point could reside in and still be counted as proportionally 

correct (going to 0% at the boundary of this region). The results were aggregated for four 

important regions of the face, seen in Table 4.11. The points that outlined the face were not 

counted since they were not used in any experiments.  

 

 

 

Table 4.11 

Accuracy of placed points from automated tool compared to Cohn-Kanade ground truth.  

Regions Accuracy 

Brows 79.41 

Eyes 94.21 

Nose 91.64 

Mouth 85.57 
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It is important to note that the accuracies would theoretically not remain as high 

when the tool was applied to the JAFFE images. Specifically, this is because the tool was 

trained on exclusively Cohn-Kanade images. As a result, the tool was trained to certain 

facial morphologies and lighting conditions. The textures and shapes varied between the 

two datasets because of racial and lighting differences. The point clouds were also less 

accustomed to the way that JAFFE subjects expressed anger: with a puffed cheek that 

distorted the mouth region in a way that was previously not observed in Cohn-Kanade. 

These factors had a demonstrably negative effect, apparent from the low accuracies yielded 

by XPoint experiments. Before this is discussed, the standard frequency-based experiments 

were run first and will be discussed first. 

Comparisons to Cohn Kanade. Several experiments that were performed on the 

Cohn-Kanade database were mirrored in the JAFFE database to see if the results would be 

similar. If that was the case, then assumptions about certain parameters can be made to 

avoid re-running experiments in JAFFE. Without testing to see if it was necessary, the 

images were cropped via Viola-Jones and scaled to 64 by 64 pixels. Although the dataset 

was balanced in terms of sample sizes for each emotion, there was still room for SMOTE 

to be applied. Namely, the effects of enlarging each emotion sample size by 10 times was 

explored. The experiments started at this stage: comparing the effects of either applying 

SMOTE or not to the dataset. 
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Figure 4.15. System accuracies for various feature extracted from JAFFE database, 

without using SMOTE. 

 

 

 

 Without SMOTE, a similar system accuracy curve (compared to Cohn-Kanade) 

was generated from the frequency feature experiments. Figure 4.15 details how higher 

dimensions generated higher accuracies up to a point. In fact, compared to similar Cohn-

Kande experiments (Figure 4.4), the JAFFE results produced higher accuracies. This is the 

result of having a well-balanced dataset.  

However, the highest accuracies on the curve appeared in a different range of 

dimensions for JAFFE. Rather than having an optimal dimension length for the features 

around 120, JAFFE frequency features performed better when they were around 100 

dimensions in length and dropped shortly after instead of plateauing. While the direct 

reason why this was the case may be unknown, it was postulated that the way some 

emotions were posed may have had some effect. In the database, the poses performed by 

the subjects did not look visually similar for emotions like anger, disgust, and fear when 
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compared to analogous American expressions. Moreover, the expressions in JAFFE were 

not presented as boldly as faces in the Cohn-Kanade set. More information per image 

(using higher dimensions) may have clouded the LDA classifier and made it less 

discriminant. 

 

 

 

 
Figure 4.16. System accuracies for various feature extracted from JAFFE database, with 

SMOTE. 
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included: using Viola-Jones, shrinking the image, and using frames for local feature 

extraction. 

Best Performing Features Using JAFFE. As with the Cohn-Kanade database, the 

best performing features from those experiments were replicated on JAFFE images. The 

results can be seen in Figure 4.17 and Table 4.12 below. The hierarchy in terms of accuracy 

were the same: XPoint produced the least accurate system, followed by face-only DST, 

and DST with frames as most accurate. Overall, the latter two systems produced almost 

identical system accuracies when compared to Table 4.6. The only exception was the poor 

performance of XPoint on JAFFE images. 

 

 

 

 
Figure 4.17. Class averages for best performing features from the JAFFE dataset. 
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Table 4.12 

System accuracies for best feature extracted from JAFFE database. 

Features 
System 

Accuracies 

P20D27v001 36.68713 

DST, SMOTE, Face Only 83.78641 

DST, SMOTE, w/ Frames 86.31052 

 

 

 

 There are two potential reason as to why P20D27v001 did not produce an accurate 

system. First, as previously stated, the images in the JAFFE database were did not feature 

posed emotions that were overly expressive. Many of them resembled a slight modification 

of the neutral pose. The 27 lines drawn from the 20 points may have been affected more 

by face morphology than facial expressions in that case.  

 The other more important issue is the point annotators accuracy. If the points were 

not correctly placed on JAFFE faces at the start of the experiments, then the performance 

of XPoint would suffer. The points placed on JAFFE images were visually inspected and 

it was concluded that, for the most part, the points were where they needed to be. However, 

there were a few images that had points partially or completely incorrectly placed. Since 

the sample sizes for each emotion were smaller than Cohn-Kanade sample sizes, those 

errors in placement would have a much stronger effect on XPoint accuracy. The tool cannot 

be completely at fault, since the training data came from a foreign dataset (Cohn-Kanade) 

which wasn’t highly representative of JAFFE images. 
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Fusion Results 

The last set of experiments dealt with fusing multiple feature extraction methods 

into one system. There were four sets used in fusion tests: a fusion of purely frequency-

based features (DST, DCT, and FWHT), a fusion of the previous three and the inclusion 

of DST frames, a fusion of DST, DCT, FWHT, and the P20D27v001 feature set, and a 

fusion of all of the above (DST, DCT, FWHT, DST Frames, and P20D27v001). In the case 

of Cohn-Kanade, each frequency feature had a dimension size of 120 (as it was found to 

be optimal in previous tests) and JAFFE utilized a dimension size of 95. Each feature had 

its own classifier but the training and testing data was synchronized across all of them. 

There was no fusion of databases in these experiments, and the details are separated in this 

section. 

 The first set of fusion experiments were on the Cohn-Kanade database images. 

Detailed in Figure 4.18 and Table 4.13, the results were not overly encouraging. There was 

a marginal increase in accuracy with the best performing fusion: all of the features 

produced a system that was 88% accurate. This was 2 percentage points higher than the 

best previous best performing feature set: DST with frames. The trend in Table 4.13 

suggests that adding additional features to the base fusion (DST, DCT, and FWHT) can 

have a positive improvement on system accuracy. Even though the accuracy of 

P20D27v001 was under 75%, it still provided the system with a net benefit. The only area 

where fusions did not increase the accuracy of the system was with images portraying 

sadness. Whereas previous experiments had all class accuracies above 80%, none of the 

fusions could get sadness to perform better. The reason for this will be explained later. 
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Figure 4.18. Class accuracies for Cohn-Kanade feature fusion experiments. 

 

 

 

Table 4.13 

System accuracies for Cohn-Kanade feature fusion experiments. 

Features 
System 

Accuracy 

DST, DCT, FWHT 84.84599 

DST, DCT, FWHT, P20D27v001 85.45215 

DST, DCT, FWHT, Frames 86.90329 

DST, DCT, FWHT, Frames, P20D27v001 88.74818 

 

 

 

 The JAFFE results did not mirror the Cohn-Kanade results. In fact, the fusion that 

contained all of the feature sets performed the worst (although the different fusion 

combinations mostly performed the same). In Table 4.14, the most accurate fusion was the 

most basic: the three frequency-based features. The explanation for this is mostly likely 

that the points placed on the face were not accurate enough. Recalling that P20D27v001 

produced less than 40% accuracy with JAFFE images, it was noteworthy to see that fusion 
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sets where P20D27v001 was present were not drastically impacted by the inaccuracy. Also, 

unlike the Cohn-Kanade results, the JAFFE fusions struggled more with the emotion of 

disgust than with sadness. This can be attributed to the way that disgust was posed in the 

JAFFE images, which did not differ greatly when compared to neutral expressions. 

 

 

 
Figure 4.19. Class accuracies for JAFFE feature fusion experiments. 

 

 

 

Table 4.14 

System accuracies for JAFFE feature fusion experiments. 

Features 
System 

Accuracy 

DST, DCT, FWHT, Frames, P20D27v001 86.64911 

DST, DCT, FWHT, P20D27v001 86.85931 

DST, DCT, FWHT, Frames 86.96334 

DST, DCT, FWHT 88.48287 
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 An important conclusion to draw from these fusion experiments is that the diversity 

of the features is important. The reason that sadness most likely could not break 80% 

accuracy in fusion tests was due to the similarity of the features. Most of them were 

frequency-based, and those types of features tended to misclassify sadness as neutral often. 

This misclassification was exacerbated by similarly acting feature sets, with only the 

chance of P20D27v001 offsetting the bias. For the same reason, the results were not 

impacted too much by P20D27v001 in JAFFE even though they were a detrimental feature 

given the point annotators faults. The redundant use of DST, DCT, and FWHT in the 

fusions pushed the systems to perform as if the same features was repeated three times.  

 The fusion experiments were helpful in increasing the overall system accuracy to 

its highest value in the research: 88%. While this did not break the 90% set up by the 

hypothesis, it came fairly close. This research shows the argument for feature fusion, as it 

has the ability to produce some double-checking measures for the classifier results and 

slightly fixes incorrect results. The fusion systems are not overly complicated or 

computationally demanding because they are a parallel arrangement of classifiers with 

most of the heavy computations happening offline in the training stage. The last chapter 

will take in all of the presented results and draw conclusions from them. 
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Chapter 5 

Conclusion 

Summary of Findings 

Re-examining the hypotheses proposed at the beginning of this thesis helps to 

elucidate whether the research presented here produced meaningful results. The first 

prediction from the hypothesis was that using simple frequency-based features would lead 

to a reasonably accurate emotion classification system. While the results from these 

experiments did not yield accuracies over 90%, the system accuracies for both Cohn-

Kanade and JAFFE images were above 80% when DST, DCT, and FWHT were applied to 

the face (without the use of frames). The mix of frequency-based features and an LDA 

classifier proved to be a promising place to start the investigation into facial emotion 

recognition systems. 

 The next prediction was that including frames (local features) would further raise 

the accuracy of a system. This point was demonstrably confirmed, as experiments showed 

that adding frames benefited the system as compared to a system that used the entire face 

as a single feature. The frames were extracted from feature-rich areas of the face, where 

contortions from different emotional expressions provided extra discriminant values that 

raised the accuracy of the system. 

 The third prediction, that a tool which automatically placed landmarks on a face 

could be made with a novel frequency-based search criterion, was partially confirmed. 

Specifically, the use of DST patches in the neighborhood of each point proved to be an 

effective means of pushing the point into the correct direction if it was out of place. The 
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tool worked almost as well as the original algorithm, given that the training data was an 

accurate representation of the images that the tool was applied to.  

 The XPoint method, while novel, was not as accurate as other methods used in this 

research for facial emotion feature extraction. While the method is easy to understand, is 

computationally simple, and can be analyzed with a simple kNN classifier, the resulting 

system accuracy was around 75%. A weakness of XPoint included the relatively poor 

detection of subtler emotions, and the feature extraction method did not have a way to 

compensate for naturally variant facial morphologies (such as naturally raised brows or 

smaller/larger mouths). Although XPoint did not yield comparably high accuracies, the 

method was still useful for providing diversity in the results concerning the last prediction 

from the hypothesis: feature fusion would further increase a system’s accuracy. 

 As the results have shown, when multiple features are fused to make a decision 

about a subject’s facial emotional expression, the overall system accuracy increases. The 

last set of experiments generated accuracy results of 88%, close to the 90% level of a 

‘reasonably accurate’ system. Systems that incorporated fusion were robust because 

multiple classifiers were available to compensate for discrepancies during their voting, 

even if one of their classifiers underperformed. As the thesis stands, most of the 

propositions have been proven true, and an accurate emotional classification system was 

created using knowledge of various feature extraction techniques. 

Recommendations and Feasibility 

The research presented here was intended to demonstrate the creation of an 

emotion recognition system through the employment of various feature extraction and 

classification techniques. Many of the choices made honored the intention of keeping 
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algorithms computationally simple in order to preserve the opportunity for production-

level deployment of the system. As there are many different specific applications for 

emotion recognition systems (as discussed in Section 1.3), these specific applications 

would also require different interfaces for the intended end-user. However, regardless of 

how the development of those interfaces is handled, this research aimed to provide the 

following: clear entry points into the system, explanations of the pre-processing, feature 

extraction, classification, and fusion, and the intended output. With those fundamental 

components, any other peripheral elements like cameras or graphical user interfaces 

would not be difficult to incorporate. 

Future Work 

Due to the expansive nature of the machine learning field, there are still many 

existing feature extraction techniques and classifiers that were not tested in this research. 

While the approaches presented in this thesis were comparatively more simplistic, these 

other existing methods bring into play mathematical principles that are much more 

complicated. Such methods include deep learning algorithms and neural network, which 

attempt to emulate the structure of the human brain in order to classify input data. Since 

the simple and effective solutions used in this research were demonstrated to be useful, 

future work may include the use of these other more complicated algorithms to further 

increase system accuracy. 

 There was some novelty in the approach to the Active Shape Model algorithm in 

this research, but future work may include examining Active Appearance Models as the 

main component for an automatic facial point annotator. Aside from potentially increased 

accuracy in placing points, these landmarks could also be used in a Facial Action Coding 
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System classification system. In such a system, the various microexpressions of a face 

could be classified as their correct Action Unit, and those AUs could then be classified as 

an emotion. Lastly, the use of local features during facial feature extraction offers some 

groundwork for solving the occlusion problem: faces that have objects that block or 

obscure parts from view.  

 There are many directions to take this research into, and the work in this thesis 

has shown that even solutions which are relatively simple can produce satisfactorily 

accurate results. The future for emotion recognition systems may be expansive, but it is 

also bright. Technological advances help man and machine have a symbiotic relationship, 

and the further comprehension of emotion from artificially intelligent partners offer even 

greater value to the human race.  
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