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Abstract 

Ahmed Saidi 

LABORATORY EVALUATION OF COLD IN-PLACE RECYCLING ASPHALT 

MIXTURES USING A BALANCED MIX DESIGN APPROACH  

2018-2019 

Yusuf Mehta, Ph.D., P.E. 

Master of Science in Civil Engineering 

 

The objective of this research study is to present a procedure for designing Cold-

In Place Recycling (CIR) mixtures through balancing cracking and rutting for these 

mixtures. Eight CIR mixtures were prepared using two recycling agents (foamed and 

emulsified asphalts), then cured for three days at two temperatures (140oF and 50oF), and 

compacted at two gyration levels (30 and 70 gyrations). The CIR mixtures were prepared 

at constant dosages of water and cement, 3% and 1%, respectively. Air void of each CIR 

performance test specimen was determined using the CoreLok device. The rutting 

susceptibility of these mixtures was then evaluated using the Asphalt Pavement Analyzer 

(APA) and Dynamic Complex Modulus (|E*|) while resistance to cracking was evaluated 

using the Indirect Tensile Strength (ITS) test and Fracture Energy was determined using 

the Semi-Circular Bend (SCB-FE) test. The developed balanced mix design approach 

was used successfully in selecting the optimum binder content for each CIR mixture. 

Experimental and statistical evaluations were also conducted on CIR mixtures prepared 

with optimum binder contents. The results showed that using a higher compaction level 

or higher temperature of curing leads to increasing both foamed and emulsified asphalt 

CIR mixtures’ ability to resist rutting. In terms of cracking, SCB-FE results showed that 

emulsified asphalt CIR mixtures were better at resisting cracking than foamed asphalt 

CIR mixtures.  
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Chapter 1 

Introduction 

Background 

Cold In Place Recycling (CIR) is a rehabilitation technique that involves milling 

an existing asphalt pavement surface layer, processing millings through particle size 

screening and reduction; introduction of a binding material (i.e., asphalt emulsion or 

foamed asphalt); and introduction of additional aggregates (i.e. virgin aggregates) if 

necessary. Finally, the cold recycled asphalt mix is placed and compacted using standard 

paving equipment. The placed cold recycled asphalt mix is then allowed to cure for a 

period of time (up to a week) depending on the binding agent utilized. Once cured, the 

pavement is overlaid with a wearing surface course layer that is about 1.5-inch (38.1 mm) 

thick. 

CIR rehabilitation technique has shown success in extending the service life of 

pavements up to 15 years through improving structural strength of rehabilitated 

pavements (Kim et al, 2011). The main cold recycling techniques that have been 

successfully used to treat distressed pavements are presented below: 

- Full-depth Reclamation FDR (depth from  4.9 to 11.8 in. (125 to 300 mm)) 

known as full-depth reclamation, using a pulverizer to eventually obtain a mixture 

of recycled asphalt pavement, and a considerable portion of the underlying layer 

(base material and asphalt binder) (Morian et al., 2012; Cox and Howard, 2013). 
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- Partial-depth CIR (depth from 2.55 to 4.9 in. (65 to 125 mm)) reuses only the 

existing asphalt concrete layer. This process is generally performed on thicker, 

uniform asphalt pavements. The recycling is carried out with multi-functional 

recycling equipment (Cox and Howard, 2013). 

Rehabilitating deteriorated pavements using CIR has a number of construction, 

environmental, and economic benefits. This technique will be the best choice to construct 

pavements in remote locations such as the Arctic where the construction materials are 

obtained from the existing pavement. As a result, CIR will provide substantial savings 

regarding fuel consumption and the number of trucks needed to haul materials. Further, 

CIR is regarded as an ecofriendly technique since it does not require any heating and 

does not release carbon dioxide (CO2) in the air. Also, traffic disruption is remarkably 

minimized when using CIR, compared to other conventional techniques, which improves 

the construction conditions (Kim et al., 2011; Kit Black, 2013; Turk et al., 2016; Sanger 

et al., 2017). 

Problem Statement  

Researchers have conducted extensive studies to enhance mechanical and 

engineering properties of cold in-place recycling mixtures. Different mix designs were 

developed and utilized by researchers, agencies and state DOTs on CIR projects. 

However, the following points have not been considered in previous CIR-related studies: 

- CIR rehabilitation technique was generally performed on asphalt pavements 

with low to medium traffic conditions. 
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- CIR mix design procedures did not account for air void measurements of the 

prepared CIR mixtures. 

- Performance based mix design developed for CIR consisted of selecting 

optimum binder contents of CIR mixtures based only on cracking 

performance measures (i.e. indirect tensile strength). 

- Studies investigating the curing process of CIR mixtures focused on high 

temperatures (i.e. 77oF and above) 

Therefore, additional research should be conducted to extend the use of CIR in 

different regions in the world (i.e., remote locations) and seasons (i.e., autumn – 

winter). In addition, different compaction levels of CIPR mixtures representing 

the level of traffic subjected on roadways should also be considered.  

Research Hypothesis  

This study was conducted to investigate the hypothesis that a balanced mix design 

approach can be followed to successfully design CIR mixtures with optimal rutting and 

cracking performances. Rutting measures (i.e., APA rut depth and dynamic modulus |E*| 

at high temperatures) and cracking measures (i.e., indirect tensile strength ITS and semi-

circular bend fracture energy SCB-FE) can be used to select optimum binder contents of 

foamed and emulsified asphalt CIR mixtures.  

Significance of Study 

This study is conducted to evaluate the impact of recycling agent (emulsion and 

foamed asphalt), compaction level (30 and 70 gyrations), and curing process (50oF (10oC) 

and 140oF (60oC), for three days) on CIR laboratory performance, in terms of the rutting 
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and cracking. The CIR mixture is designed using a balanced mix design (BMD) approach 

to meet heavy loading generally subjected to airfield pavements. If CIR balanced mix 

design is found to be successful, the following benefits will be offered to US Department 

of Defense (DoD): 

- Improved service life of airfield pavements, 

- Update current specifications related to cold in-place recycling, 

- Feasible construction in remote locations (i.e. Arctic region), 

- Extension of construction season: CIR construction is possible in relatively 

cold temperatures, 

- Expedite construction time, 

- Environmental and economic benefits (less gas emission and reuse of existing 

material).  

Goal & Objectives 

The goal of this study is to utilize a balanced mix design (BMD) approach to 

select optimum binder contents for emulsified and foamed asphalt CIR mixtures. The 

BMD method was used to prepare CIR mixtures capable of withstanding heavy traffic 

levels and cold curing conditions (i.e. arctic region). In fact, the focus was on balancing 

the cracking and rutting performances when selecting optimum binder contents of CIR 

mixtures. This study involved the following objectives to accomplish the overall goal of 

this study: 

 Developing a design procedure for CIR asphalt mixtures using a balanced mix 

design approach to select optimum binder contents of these mixtures. 
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 Evaluating, experimentally and statistically, the impact of binding agent type, 

compaction level, and curing process on rutting and cracking performances of 

CIR mixtures. 

 Comparing rutting and cracking performances of CIR mixtures prepared at 

optimum binder contents and selecting three CIR mixtures: (1) cracking 

resistant mixture, (2) rutting resistant mixture, and (3) and BMD mixture.  

Research Approach 

The approach utilized to meet the overall goal of this study consisted of the 

following tasks: 

Task 1: Conduct a comprehensive literature review pertaining to CIR by reviewing 

domestic and international previous CIR-related studies. This task will present the 

currently available mix design procedures for designing CIR asphalt mixtures in the lab 

and in the field. In addition, the best practices typically implemented for rehabilitating 

asphalt pavements using CIR will be discussed. This task will also cover the main 

distresses and challenges that have been identified for CIR rehabilitated pavements, as 

well as the major factors affecting the long-term performance of these pavements. 

Task 2: Identify and select representative materials that will be used in preparing 

mixtures for the laboratory mix design of CIR mixtures. RAP is obtained from Rowan 

University Accelerated Pavement Testing Facility (RUAPTF) and characterized in terms 

of gradation, maximum specific gravity, and existing binder content. Types and contents 

of binding agents and recycling additives are selected based on literature.  
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Task 3: Develop an experimental program utilized in this study to prepare eight CIR 

mixtures: combination of two types of recycling/binding agents, two compaction levels, 

and two curing processes. These mixtures are designed using a balanced mix design 

approach in which cracking and rutting performance measures are used to select an 

optimum binder content of each CIR mixture. This task also discusses the cracking and 

rutting performance tests that will be used to characterize the prepared mixtures.  

Task 4: Conduct performance tests on CIR mixtures and analyze the results of each test. 

Correlation between binder contents and cracking and rutting performance measures is 

evaluated prior to selecting optimum binder contents of CIR mixtures. This task also 

investigates the impact of recycling agent type, compaction level, and curing process on 

rutting and cracking performance of CIR mixtures. The significance of the effects of 

these factors also statistically evaluated using Analyses of Variances (ANOVA) on 

performance measures results. 
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Chapter 2 

Literature Review 

Introduction 

Cold In-Place Recycling (CIR) is a rehabilitation technique that involves 

processing and treating deteriorated Hot Mix Asphalt (HMA) pavements using recycling 

agents (asphalt-based) and/or chemical additives. As the name implies CIR does not 

require heat when restoring a damaged pavement layer (AASHTO, 1998) because the 

CIR mix is produced at ambient site temperatures. CIR has been successfully used to 

rehabilitate all kinds of pavements such as city and county roads, and highways with 

different traffic volumes (Lewis and Collings, 1999; Forsberg et al., 2001; Fiser and 

Varaus, 2004; Mondares et al., 2014). The use of CIR offers several construction, 

economic, and environmental advantages over other conventional rehabilitation 

techniques (Kim et al., 2009; Chen et al., 2010). For instance, CIR involves milling the 

existing deteriorated pavement and reusing the reclaimed millings in producing a 

stabilized base pavement layer. This leads to shortening construction time and eliminates 

the need to use virgin aggregates; thus, persevering resources.  

In this chapter, the results of a comprehensive literature review pertaining to CIR 

asphalt mixtures are presented. The following subsections provide information relevant to 

the CIR process, the various CIR mix design methodologies, the best CIR field 

construction practices, and the reported laboratory and field performance of CIR mixtures 

and pavements. 

. 
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General Cold In-Place Recycling Process 

Overall, CIR consists of milling the existing pavement to a certain depth, width, 

and length, then sizing the RAP material to an evenly graded aggregate mix with a 

maximum size of 25 mm. Recycling agents such as emulsified asphalt and foamed 

asphalt are then added to the graded RAP to obtain a homogeneous and uniformly coated 

recycled pavement mixture. This material must be put in place, then compacted in 

conformance with the plans and specifications. The construction procedure steps are 

illustrated in Figure 1 (Davidson and Croteau, 2013; ARRA, 1992; Hicks et al., 1987). 

The CIR construction and practice guidelines are discussed in the following subsections 

providing information pertaining to the successful construction of a CIR pavement layer 

(Lane and Kazmierowski, 2014). 

 

Figure 1. Cold in-place recycling equipment (LA Department of Public Works, 2018) 
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Step 1: Project selection and CIR requirements. Prior to selecting CIR as the 

method for repairing a deteriorated pavement, a field survey is required to examine the 

degree of existing distresses and identify their exact locations. This facilitates 

determining if CIR is the appropriate technique for this project. In general, the following 

information is collected during a field survey aiming to repair a deteriorated pavement 

structure (Stroup-Gardiner, 2012):  

 Records review: assessment of construction/maintenance information and review 

of past condition surveys; 

 Visual inspection: determine mode and severity of pavement distresses; and,  

 Pavement investigation: additional information on the nature and condition of the 

asphalt pavement and the extent of the distresses. 

CIR technique is generally performed on cracked asphalt pavements with sound 

structure and well-drained bases. CIR technique is also applicable on pavements featuring 

the following load and non-load associated distresses: transverse cracks, longitudinal 

cracks, fatigue cracks, rutting, raveling, potholes, and polished surface. It is important to 

note that deteriorated asphalt pavement layer should be treated at early stages (i.e., when 

ruts and cracks begin to appear) using CIR technique to ensure a satisfactory service life 

of CIR rehabilitated pavement (FHWA, 2018). 

Step 2: Mix design of Cold In-Place Recycling. The second major step in the 

general CIR process is the design of CIR mixture by determining the optimum binder 

content. For this purpose, a portion of the pavement section is milled with the reclaimed 

asphalt pavement (RAP) collected for further analysis. The millings (or RAP) are then 
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used in design methods suggested by researchers (Kim and Lee, 2011). The mix design 

process also involves determining the percentages of water and chemical additives to be 

used in the mixture. For additional details about the various methods of designing CIR 

mixtures the reader is referred to Section 2.4 of this chapter. 

Step 3: Milling of deteriorated surface pavement layer. The field portion of the 

CIR process begins after having finalized the mix design. For this purpose a train of 

equipment (Figure 1) is used to complete the process in site (or In-Place). A milling is 

machine is the first piece of equipment used for milling the deteriorated surface pavement 

layer, as shown in Figure 2. The milling machine mills from 2 to 4 in. of the top surface 

layers of deteriorated pavements. 

 

Figure 2. CIR Milling Process (Roadtec, 2019) 

Step 4: Millings sizing and mixing with recycling agent. Milling and screening 

equipment are then utilized to reduce the RAP size to desired sizes (maximum size of 1 

in. (25 mm)) (Kim and Lee, 2011; Wirtgen, 2016). After crushing and sizing, the RAP 
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millings are treated in a mixing unit using a selected recycling agent (e.g., emulsified 

recycling agent) with water/additives added into the mix (Figure 3). It is also noted that 

certain CIR practices call for spreading the chemical additives (e.g., Portland cement) on 

top of the existing pavement and before milling. 

 

Figure 3. CIR Mixing Process (Suit-Kote, 2019) 

Step 5: Placement of the CIR mix. The CIR mixture is then placed over the 

milled pavement and graded to the desired thickness. Conventional asphalt paver or self-

propelled pavers are then used to place the CIR mixture (Figure 4). It important to note 

that the lift thickness for CIR mixture is typically 2 in. (50 mm) minimum especially 

when millings present relatively large maximum aggregate size.. The paver wings are 

also emptied regularly to avoid accumulation and reduce the segregation (Wirtgen, 2012). 
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Figure 4. CIR Mix Placement (Suit-Kote, 2019) 

 

Step 6: Compaction. Once the CIR mix is placed, a primary compaction is 

applied on the CIR layer using traditional compaction equipment such as self-propelled 

rollers, vibratory-steel drum and pneumatic tired rollers (Figure 5). In general, 

compaction operations should start 15 minutes after placement of CIR layer, when the 

ambient temperature is above 60oF (15.6oC). In case the ambient temperature is below 

60oF, a waiting time of 10 minutes is recommended for each 5oF below 60oF (15.6oC). 

Nuclear density testing (ASTM D 2950) is regularly conducted throughout the 

compaction process until achieving a desired density (Wirtgen, 2012). 
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Figure 5. Compaction Process (ForConstructionPros.com, 2019) 

Step 7: Cure and maintenance. The compacted CIR layer is open to traffic when 

this layer is sufficiently cured. Prior to placing the surface layer (i.e. HMA overlay), the 

CIR layer must remain in-place: (a) at least for 2 days and until there is no more than 2.0 

% moisture in the recycled pavement mix, or (b) at least for 10 days without rainfall 

(Tario, 2010). A fog seal is also applied on top of the CIR layer so as to coat, protect, 

enrich, and rejuvenate the existing asphalt binder (emulsion or foamed, as shown in 

Figure 6 (Davidson and Croteau, 2013). Additional compaction can be performed on CIR 

layer when the curing and maintenance processes are completed. Density of the recycled 

pavement must be carefully checked using nuclear density gauge (nuclear density test 

ASTM D 2950). 
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Figure 6. Fog Sealing (The Gourman Group, 2019) 

Step 8: Secondary compaction. Additional compaction can be performed on 

CIR rehabilitated pavement when the curing and maintenance processes are completed. 

The secondary compaction is generally performed using pneumatic or/and steel drum 

rollers (Wirtgen, 2012). Density of the recycled pavement must be carefully checked by 

the means of nuclear density gauge (nuclear density test ASTM D 2950). Similarly to 

primary compaction (section 2.2.5), this test is repeated to check if a maximum density 

was attained. It is important to avoid over-compacting the recycled mat to prevent rutting 

formation (Wirtgen, 2012). 

General Laboratory CIR Mixture Design Approach 

Prior to treating deteriorated asphalt pavements using CIR technology, it is 

necessary to determine the optimum contents of the recycling agents/additives used in 

preparing CIR mixtures. The goal of a mix design is to prepare a mixture of aggregates 

and binder that can achieve desired levels of performance in the field performance. 
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Laboratory mix designs are generally developed following CIR construction practices. It 

is also important to mention that there is no standard for designing CIR asphalt mix 

(Ozer, 2015). Prior to preparing CIR mixtures, CIR materials should be selected and 

characterized, and then the performance of the prepared mixtures is evaluated. This 

section discusses the materials generally used in previous CIR projects and detail a 

general laboratory procedure for designing and evaluating CIR mixtures. 

Overview of CIR mix design methods. Several mix design procedures were 

developed by various researchers, agencies, and state departments of transportation 

(DOTs) to select the optimal binder content and/or optimal water content for CIR projects 

(Berenice, 2017, Ozer, 2015, Buss et al., 2017). The process of designing a CIR mix 

involves obtaining representative RAP materials from existing pavements, which would 

then be mixed, at ambient temperatures, with a binding agent (either asphalt emulsion or 

foamed asphalt) at varying binder contents, and/or water contents. For each binder 

content, test specimens are prepared to conduct performance testing (e.g., indirect tensile 

strength, ITS, or semi-circular bend, SCB). The optimum CIR binder content (and/or the 

optimum water content) could then be determined as the binder content (and/or the water 

content) at which the highest ITS (or fracture energy) is obtained (Kim and Lee, 2011). 

Additional details are provided in the following subsections. 

Step 1. Collect samples from field. Reclaimed asphalt Pavement (RAP) samples 

are collected from the milled pavement surface to be analyzed and characterized in the 

laboratory before use in CIR mix. A CIR milling machine is used to mill deteriorated 

asphalt pavement surfaces (i.e., from 2 to 4 in. (50 to 100 mm). Random sampling 

techniques (AASHTO T2) are generally used to collect representative samples from the 
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pavement to be rehabilitated. The collected millings are then dried, at room temperature, 

for ten days until the moisture contents of RAP millings was below 0.3% (Epps, 1998; 

Kim and Lee, 2011).  

Step 2: Determine RAP properties. Several studies focused on determining the 

characteristics of RAP materials to be used in preparing CIR mixtures. These 

characteristics included the existing asphalt content of RAP (i.e., penetration and 

viscosity of the recover asphalt content), gradation, moisture content, and density 

measurements (i.e., Maximum specific gravity). Additional RAP properties were 

assessed such as permeability and abrasion resistance of RAP. It is important to note that 

both RAP gradation and extracted aggregates gradation are two of the main properties in 

deciding whether virgin aggregates are needed (Kandhal and Mallick, 1997; Bennet and 

Maher, 2005; Alam et al., 2010; Bleakley and Cosentino, 2013). A brief summary of the 

quality assessment and performance requirement of materials followed by different state 

DOTs (i.e., WSDOT, NYSDOT) is presented in Table 1 (ARRA, 2016). 

Step 3: Add aggregate (optional). In general, virgin aggregate are added to CIR 

mixtures in order to improve the strength of CIR mixtures, and minimize the creep of 

RAP (Bleakley and Cosentino, 2013). In fact, the RAP gradation is usually affected by 

the fines generated during the milling process or due to contamination from the 

underlying layers. Therefore, the gradation of RAP (as received from milling) may not be 

suitable for the intended recycled base course. In this case, virgin aggregates are added to 

satisfy the graduation requirement or structural improvement of the recycled mix (Epps, 

1980, ARRA, 2016). 
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Table 1 

Example of Main Specifications for CIR asphalt mix design (ARRA, 2016). 

Test Properties Requirements 

AASHTO T308 
Existing binder content of 

RAP 

 Maintain binder ± 0.2% (i.e. 

WSDOT), or  ± 0.3% (i.e. ADOT) (Tario, 

2010). 

AASHTO T11-T27 Gradation of  RAP 

 1.25 inch maximum 

 Passing 1.5 inch (i.e. NYSDOT) 

(Tario, 2010) 

AASHTO T209 

Bulk Specific gravity of 

compacted cured 

specimen 

 1.4-inch diameter mold 

compaction based on either 75 blows 

Marshall each side or gyratory compactor 

at 30 gyrations 

AASHTO T269 
Maximum Theoretical 

Specific Gravity 

 Measurement on specimens after 

140°F (60°C) curing to constant weight for 

no less than 16 hours and no more than 48 

hours. 

AASHTO T283 
Air Voids of Compacted, 

Cured Specimens 

 Recycling agent content should not 

be adjusted to meet an air void content. 

AASHTO T245 Indirect Tensile Strength  Minimum 45 psi 

AASHTO T283 Marshall Stability  Minimum 1,250 lbs 

ASTM D7196 

Tensile Strength 

Ratio/Retained Marshall 

Stability based on 

Moisture Conditioning 

 Minimum 0.70 

ASTM D7196 

Tensile Strength 

Ratio/Retained Marshall 

Stability based on 

Moisture Conditioning 

 Minimum 0.70 
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Step 4: Select type, amount, and grade of recycling agents/additives. The most 

commonly used recycling agents are: emulsified asphalt and foamed asphalt. Various 

types of polymer are also utilized to reduce rutting, increase early strength, and reduce 

thermal cracking of CIR mixtures. Recycling additives can also be added to CIR mixtures 

such as Portland cement and lime slurry. These additives are used at small amounts so as 

to enhance mix cohesion, shorten the curing time, and increase the moisture susceptibility 

of the CIR materials. The commonly used recycling agents in CIR are: asphalt emulsions 

and foamed asphalt description of CIR recycling agents and additives is provided below 

(ARRA, 2016): 

Asphalt emulsions. Cationic and anionic are the most commonly considered 

asphalt emulsions in CIR. Dense-graded aggregate (or RAP) gradation containing fines 

require slow setting emulsions. The asphalt emulsion is also selected based on 

compatibility with the RAP milling. Emulsions are also selected based on other 

properties such as the binding properties, coating, initial strength, and breaking time of 

emulsion. It is important to note that field coating test (AASHTO T 59) is highly 

recommended to determine whether asphalt emulsions (anionic or cationic emulsified 

asphalt) are compatible with the RAP and new aggregate (Division of Construction, 

2009; Mitchell, 2009). A summary of the recommended combinations is presented in 

Table 2 (Asphalt Institute, 1986 
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Table 2 

Guidelines for Selection of Emulsified Asphalt Binders for CIR. 

Emulsion Type Aggregates 

Anionic 

(AASHTO M140) 

MS-2, MS2h Open-graded aggregates 

HFMS-2, HFMS-2h 

HFMS-2s 

SS-1, SS-1h 

Dense-graded aggregate, 

sand, and sandy soil 

Cationic 

(AASHTO M208) 

CMS-2, CMS-2h 

CSS-1, CSS-1h 

Open-graded aggregate 

Dense-graded aggregate, 

sand, and sandy soil 

Foamed Asphalt. The use of CIR foamed asphalt is increasing because it offers 

several economic and construction benefits. As the name indicates, foamed asphalts are 

produced using a foaming machine by injecting hot asphalt binder (e.g., PG 64-22) with 

cold water. The expansion ratio and half-time values are determined to characterize 

foamed asphalts and determine optimum foaming water content (Kim et al., 2011; Kuna 

et al., 2014). The water content resulting in highest values of expansion rate and half-time 

is used in production of foamed asphalt for CIR mixtures. 

Recycling additives. Portland cement and lime slurry have showed effectiveness 

when used as additives in preparing CIR mixtures. These chemical additives provide 

improved early strength, enhanced rutting resistance, and improved moisture damage 

protection. Cement and lime have been used very successful in combination with asphalt 

emulsions (Division of Construction, 2009; Mitchell, 2009; Kim et al., 2011). 
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Step 5. Determine the moisture content required for mixing. Water is regarded 

as a key element in CIR mixes since it contributes to coating RAP millings with the 

recycling agents, and also, facilitates compaction in the field (Anderson et al., 1985). In 

general, the typical water content for standard CIR is in the range of 2 to 5% (Scholz et 

al., 1991; Kim et al., 2011; ARRA, 2016). Optimum moisture content of CIR mix is 

determined using Proctor compaction which can produce a very high moisture content. 

Other methods  (e.g., 75 blows Marshall Compaction at room temperature, or gyratory 

compaction via the Superpave Gyratory Compactor (SGC) ) can also be used to select the 

optimum moisture content of CIR mixtures (Carter et al., 2010; Bang et al., 2011; Cox 

and Howard, 2015). 

Step 6. Determine bulk and rice specific gravity.  CIR mixtures consisting of 

emulsions or foamed asphalt, and sometimes low dosage of cement or lime (e.g., 1%), are 

allowed to cure in an oven for a given period of time (e.g., seven days at 140°F). (Cox 

and Howard, 2015). Table 3 presents compaction and curing procedures adopted by 

different agencies and DOTs (Apeagyei and Diefenderfer, 2013). Once the curing process 

of CIR specimens is completed, these test specimens are tested for bulk specific gravity 

(Gmb) and the theoretical maximum specific gravity (Gmm) for each CIR emulsion 

specimen using ASHTOO T331 (CoreLok Method). Cox and Howard (2016) determined 

the Gmm of RAP in accordance with ASTM D6857 (AASHO T209). The tested CIR 

specimens consisted of a mixture of RAP and cement (4.5%), 2% emulsions with 2.3% 

cement, or 4% emulsions with 1% hydrated lime of total mix weight. 
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Table 3 

Examples of Compaction and Curing Procedures for CIR Mixes 

Compaction Method Description References 

Marshall 75 blows 
Wirtgen, 2006 

Fu et al. 2010 

Gyratory 

25 gyrations 
Buss et al. 2017 

Kim et al. 2011 

30 gyrations Kim and Lee, 2006 

300 gyrations Martinez et al., 2007 

Curing Temperature Curing Time References 

104oF (40oC) 2 days 
Kansas DOT, New Mexico 

DOT 

113oF (45oC) 7 days Kim et al. 2011 

160oF (71oC) 3 days 
Wirtgen, 2006 

Buss et al., 2017 

77oF (25oC) 7 days Saleh, 2006 

77oF (25oC) 14 days Kim et al. 2011 

77oF (25oC) 28 days Bessa et al. 2016 

Step 7: Determine the optimum binder content. A set of test trial mixtures with 

different properties (initial curing properties, final curing properties, and moisture 

sensitivity) are prepared in order to determine an optimum content for CIR recycling 

agents/additives. the indirect tensile strength (ITS) test is generally used to determine the 

optimum binder content for CIR test specimens prepared (compacted at 30 gyrations in 

SGC or 75 blows by Marshall hammer) at various binder contents (i.e., 0.5 through 3% 

with 0.5% increments) and using a constant moisture content (e.g., 4%) (Kim et al., 

2007). Previous studies showed that the optimum binder content varies from 1.5% to 3%, 

the optimum water content varies from 1.5% to 4%, and optimum cement content from 

0.5% to 2% (Niazi and Jalili, 2009; Brovelli and Crispino, 2012; Berthelot et al., 2013; 
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Gao et al., 2014; Bessa et al., 2016; Graziani et al., 2018). It is important to note that 

when CIR mixtures are prepared using virgin aggregates, higher ranges of recycling 

agents/additives contents are recommended (Cox and Howard, 2015; ARRA, 1996; Lee 

et al., 2016). Finally, a job mix formula can be established and used to reproduce CIR 

mixtures in the field. 

Best Practices of CIR Field Construction 

CIR technology has the ability to increase the service life of asphalt pavements by 

approximately 11 years, provided that certain best practices are employed (Chen et al., 

2010; Warren et al., 2011). When CIR technology is performed on pavements with light 

deterioration, the service life of such pavements is approximately extended by 50% more 

than damaged pavements rehabilitated with CIR technology (Warren et al., 2011). 

Several construction factors affect the long-term CIR performance as well as the service 

life of rehabilitated pavements (Chen et al., 2010; Cross et al., 2010). The following 

subsections provide details of best CIR construction practices. 

Best practices for CIR mix production 

 The type and amount of binder, recycling additives: Anionic and cationic 

emulsions, recycling additives, and water should not be added to CIR mixtures in 

excessive amounts. Excessive amount of binder, additives, or water cause asphalt 

bleeding or flushing before compaction (ARRA, 2016). 

 Mixing of the materials: When there is an inadequate mixing of RAP with binder 

and additives, or there is insufficient asphalt coating of the RAP, a mix segregation 

can occur. In order to prevent this, all CIR materials should be sufficiently held in 
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the mixing chamber until the mixture is homogenous (up to 2 minutes) (ARRA, 

2016). 

 RAP gradation: When CIR is operating and there is a variation in depth of the 

milled materials (some of the subbase is also milled), RAP behind the recycling 

unit is likely different and poorly graded. Therefore, depth of milling should be 

regularly checked and adjusted (ARRA, 2016).  

 Size of RAP: During CIR milling process, RAP materials can be oversize if the 

screen bar (or breaker) is not properly operating. Therefore, the screen bar as well 

as all the equipment should be carefully checked prior to CIR construction 

(ARRA, 2016). 

 Emulsion content: After compaction, raveling can occur to the surface of the CIR 

rehabilitated pavement when low emulsion content (e.g., 0.5%) is added to the 

mix. While a shiny black mat can appear after compaction when high emulsion 

content is added (e.g., 5%). In this case, virgin aggregates can be added to the mix 

to reduce the amount of emulsions. 

Environmental and other considerations: Additional challenges can be 

encountered by road engineers during the early implementation of CIR technique with 

respect to the design approach and construction methodology (Harun et al, 2010; ARRA, 

2016). The main challenges are: 

- Weather: Rain during CIR operations or during the curing process can have 

multiple effect on CIR mixture. 

- Equipment Failure: At least one of the contractor’s equipment fails to meet the 
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requirements. 

- Storage of recycling agents/additives: Maintaining additives (i.e. cement) in 

suspension inside the slurry feed tank. 

- Fabric/Geosynthetic incorporation into CIR layer: Presence of foreign materials in 

the existing pavements (e.g. rubberized crack filler, pavement markers, loop 

wires, thermoplastic markers…) can affect the performance of CIR pavement by 

inhibiting its placing and its compaction. 

- Curing time: Slow curing problems may occur when work takes place in damp or 

cold weather conditions (Tabakovic et al., 2015).. 

- Moisture: Some CIR materials are susceptible to moisture which make them more 

likely to crack. These materials can also be shoved to the sides causing a 

breakdown of the pavement under heavy trafficking (Tabakovic et al., 2015). 

- Drainage system: Inadequate/poor drainage system can also aggravate failure of 

rehabilitated pavement. 

There are ways to prevent the above-mentioned challenges regarding the 

construction of CIR rehabilitated pavement:   

- Weather: CIR operations is performed when the pavement temperature is above 

50°F (10 °C) with overnight ambient temperatures above 35 °F (2°C) (Tario, 

2010). 

- Equipment Failure: Prior to construction: all CIR construction equipment is 

checked. In addition, pavements to be rehabilitated are evaluated in order to 

identify areas where materials properties are not uniform. This can cause damage 
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to construction equipment (ARRA, 2016) 

- Storage of recycling agents/additives: Cement/lime slurry storage need to have 

agitators or similar equipment to keep the recycling additives in suspension when 

held in the slurry feed tank as well as during transport (ARRA, 2016). 

- Fabric/Geosynthetic incorporation into CIR layer: Contractor should conduct field 

investigations and prevent the incorporation of shredded materials into CIR 

materials (ARRA, 2016). 

- Curing time: In addition to the ambient temperature being above 50oF, 3% of 

moisture content, or less, is recommended for faster curing (ARRA, 2016). 

- Moisture: Portland cement and/or lime slurry are added to CIR mix so as to 

provide an enhanced moisture damage protection (ARRA, 2016; Tabakovic et al., 

2015). 

- Drainage system: It is important to strengthen the drainage system of the 

rehabilitated pavement by selection the appropriate CIR material prior to the mix 

design (ARRA, 2016). 

Laboratory CIR Mix Design Methods 

Several agencies and departments of transportation have successfully established 

mix design procedures for CIR technology. For example, Asphalt Recycling and 

Reclaiming Association (ARRA) proposed three methods to design mixtures for CIR 

projects: Modified Marshall mix design, Modified Hveem mix design, and Oregon mix 

design (ARRA, 2016). Other agencies (i.e. Wirtgen, Asphalt Institute), Departments of 

Transportation (i.e. Rhode Island, Pennsylvania, New Jersey, and Florida), and the US 
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department of defense have developed their own mix design procedures which have 

many similarities with certain differences (i.e. Number of gyrations, type of binder, RAP 

gradation). This section presents the available mix design procedures utilized by several 

agencies and DOTs for preparing CIR mixtures. 

Unified Facilities Guide Specifications (UFGS) mix design procedure for 

CIR. The current mix design procedure developed by US DoD (Unified Facilities Guide 

Specifications UFGS-32-01-17, 2018) consists of obtaining RAP from milling existing 

asphalt concrete pavement. UFGS specifies that the maximum particle size of RAP 

millings should be less than half the thickness of the compacted CIR pavement 

(maximum of 1-1/2 inch and a minimum of 90% of the RAP passing 1 inch (25 mm) 

sieve) (UFGC, 2008). UFGS-32-01-17 focuses on determining the properties of RAP 

millings and existing asphalt in the RAP. RAP is then mixed with Asphalt cement such as 

recycling agents: cationic emulsions of type CSS-1h or SS-1h conforming to ASTM 

D977. The military mix design presents the amount of asphalt binder (tolerance of 0.3%) 

and specifies the amount of water (0.5 % intervals, from 0 to 2.5 %) to add to CIR 

mixture. This design procedure should guarantee an optimum compaction condition. 

Once the optimum contents of asphalt binder and water are determined using indirect 

tensile strength test, samples are compacted at 250°F (121oC) with 75 blows of typical 

Marshall Hammer according to COE CRD-C 649 and COE CRD-C 650 (UFGC, 2008). 

The compacted CIR specimens are then placed in an oven at 140°F (60oC) for 96 hours. 

Then, dry density of samples is determined. It is also worth mentioning that (UFGC, 

2008) specifies that CIR construction should not happen in bad weather conditions (rain, 

storms, fog…etc.) or on a layer containing free water. CIR projects should be employed 
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when the ambient air temperature is above 50°F (10oC). Nevertheless, these 

specifications for CIR mix design are considered outdated and should be revised and 

ameliorated. 

Modified Marshall mix design. This mix design procedure was developed for 

CIR mixtures using 3% of moisture content (including: emulsion water, water remaining 

in RAP, and water added into mixture). Emulsions are added to the mixtures at desired 

contents in 0.5 % increments. CIR Mixtures are then compacted with 50 blows (per face) 

of the Marshall compacting hammer and, afterwards, allowed to cure in an oven at 140oF 

for 6 hours. The cured CIR specimens are tested for bulk specific gravity, stability at 

140oF (60°C), and flow at 140oF (60°C). The maximum specific gravity for each binder 

content is also determined using equation (1) below. CIR specimens’ properties (air voids 

(AV), volume of asphalt binder (VB), voids in mineral aggregate (VMA), and voids filled 

with asphalt binder (VFB)) are determined using the following equations (2) through (5) 

(Epps, 1986; Asphalt Institute, 1986). Marshall Stability test is then used to determine the 

optimum binder content of the produced CIR mixtures. When CIR mixtures present high 

stability and low flow value, this will have negative impact on CIR rehabilitated 

pavements (likely to develop cracks under heavy moving loads). 

Gmm = 
𝑊𝑚

𝑊𝑚−𝑊𝑤
      (1)  

AV = 
(𝐺𝑚𝑚−𝐺𝑚𝑏)×100

𝐺𝑚𝑚
             (2)  

  

VB = 

𝑊𝑏
𝐺𝑚𝑏

𝑊1+𝑊2+𝑊3+𝑊𝑏

𝐺𝑚𝑚

     (3) 

VMA= 𝐴𝑉 + 𝑉𝐵    (4) 
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VFB = 
𝑉𝐵 ×100

𝑉𝑀𝐴
     (5) 

Where: 

Gmm = Maximum specific gravity of mix 

Wm= Weight of mix in air, g 

Ww= Weight of mix in water, g 

W1= Weight of coarse aggregate, g 

W2= Weight of fine aggregate, g 

W3= Weight of filler in the total mix, g 

Wb= Weight of bitumen in the total mix, g 

Gmb= Specific gravity of bitumen 

Modified Marshall mix-design used for Superpave mix design. Lee and al. 

(2016) developed a new mix design using RAP obtained from different locations in the 

United States. The purpose of their study was to evaluate the effectiveness of CIR 

materials compaction using the SGC instead of the Marshall hammer (Lee et al., 2016). 

This new mix design procedure consists, approximately, of same steps discussed in 

Modified Marshall mix design. However, the cured CIR specimens are compacted with 

52 gyrations at 77°F (25oC), and then allowed to cure for 6 hours at 140°F (60oC). 

Finally, one can determine the optimum emulsion content OEC or OWC (if the water 

content was not considered constant prior to mixing) (Lee et al., 2016). 

Modified Hveem mix design. This method of specimen preparation is same as in 

Modified Marshall Method. In this method, the Marshall compactor is replaced by 

kneading compactor, applying around 20 tamping blows at 1.725 MPa pressure to 

achieve a semi-compacted condition. Afterwards, the compaction pressure is raised to 

3.45 MPa and 150 tamping blows are applied to complete the compaction. Then, the 

specimen is subjected to a leveling-off load with a testing machine at 5.6 kN at a head 

speed of 1 mm/minute. All the parameters (RAP properties, optimum binder/water 
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contents) described in Modified Marshall Method are also determined in this method 

(Epps, 1986, Asphalt Institute, 1986). 

Mix Design developed for Oregon State. This method aims to select an initial 

asphalt emulsion content to be added into the recycled mix containing 100 % RAP (no 

virgin aggregates are required). The procedure consists of adjusting a base emulsion 

content of 1.2% (by weight of RAP) on the basis of properties of aggregate and asphalt 

binder recovered from RAP. The method is applicable only when the recycling agent is 

either a cationic medium setting or anionic high float medium setting type (HFE-150) 

emulsion (Asphalt Institute, 1986). The gradation of RAP millings is determined only for 

½-in., ¼-in., and 5/64-in. sieves. Next, the estimated asphalt emulsion content is 

determined using equation (6). 

ECEST = 1.2 +  AG +  AAC +  AP/V    (6) 

Where: 

ECEST = Estimated added emulsion content  

 1.2 = Base emulsion content  

AG = Adjustment for milling gradations 

AAC = Adjustment for milling residual asphalt content 

AP/V = Adjustment for millings penetration or viscosity 

  In the Oregon mix design method, specimen is achieved gradually using a 

hydraulic compaction device with a load of 25,000 psi (172,400 kPa). In this process, the 

stress level is increased to achieve 20,000 psi (137, 900 kPa) for the first one minute, and 

then additional 5,000 psi (34,500 kPa) is applied for next thirty seconds to attain final 
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load of 25,000 pai (172,400 kPa). 

 Wirtgen mix design. Wirtgen mix design procedure requires determining the 

engineering properties of RAP millings such as grading (sieves analysis), plasticity, and 

density in accordance with ASTM D422, D4318, and AASHTO T180, respectively. RAP 

gradation is as follows: 53.6% passing No.4 sieve (4.75 mm), 18.7% passing 0.5 in. sieve 

(13.2 mm) and retained on No.4 sieve (4.75 mm), and 27.7 % passing 3/4 in. sieve (19 

mm) but retained on 0.5 in. sieve (13.2 mm). Afterwards, the Hygroscopic moisture 

content (W air-dry) of selected RAP is determined by placing RAP samples in an oven at 

temperature rannging between 221 and 230°F (105 and 110oC). W air-dry is determined 

using the equation (7) below (Wirtgen, 2012) 

W air-dry = 
(𝑀𝑎𝑖𝑟−𝑑𝑟𝑦− 𝑀𝑑𝑟𝑦)

𝑀𝑑𝑟𝑦
   (7) 

Where: 

W air-dry= hygroscopic moisture content (% by mass) 

M air-dry= mass of air dried material (g) 

M dry= mass of oven dried material (g) 

 

The prepared CIR mixture is allowed to cure for 7 days in an oven at a 

temperature ranging between 60 and 70°F (21oC). Also, an accelerated curing can be 

achieved by placing CIR mixtures in sealed bags and let them cure in an oven at 170 to 

180°F (77 to 83oF). However, when cement is added to the mix, the curing period is then 

to 45 hours and the oven temperature is dropped to 140°F (60oC). The optimum binder 

content of CIR mixtures is generally determined by conducting ITS test on CIR 

specimens prepared with varied binder contents (Wirtgen, 2012). 
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Mix design developed for Rhode Island DOT. The university of Rhode Island 

(URI) developed mix design method that consists mainly of mixing RAP, obtained from 

milling a construction site of Route 3, Rhode Island, with emulsions (CSS-1h). The 

appropriate number of gyrations for compactions was investigated so as to better 

represent field conditions (Lee and Mueller, 2014). The URI procedure determines the 

appropriate number of gyration for field density reproduction (Lee and Mueller, 2014). 

CIR mixtures were compacted with 175 gyrations using a superpave gyratory compactor. 

The estimated bulk specific gravity was determined: (1) after each gyration, and (2) after 

175 gyrations. CIR specimens were then allowed to cure in an over at 140oF (60°C) to 

cure for one day (Lee and Mueller, 2014). Finally, CIR specimens were tested for indirect 

tensile strength and creep compliance, in accordance AASHTO T 322, at temperatures of 

-4, 14 and 32°F (-20, -10, and 0oC, respectively).  

Mix design developed for Iowa DOT. The Iowa DOT mix design procedure 

developed by Kim and Lee (2012) consisted of mixing 100% RAP, collected from 

different CIR projects in the state, with emulsions type CSS-1h and HFMS-2P at different 

contents (0.5%, 1%, 1.5%, 2%, and 2.5%), and with constant water content (3%). Prior to 

mixing, RAP is dried until obtaining a final RAP moisture content between 0.1 and 0.2%. 

Then, RAP gradations are designed through dividing, into six stockpiles, the materials 

retained from the following sieves: 25, 19, 9.5, 4.75, 1.18 mm and passing 1.18mm. 

Millngs with size bigger than 1 in. (25 mm) are discarded. After mixing the graded RAP 

with emulsions and water, the CIR mix will be compacted using SGC with 25 gyrations. 

Then, the compacted mix is then allowed to cure in an oven at 104°F (40oC) for three 

days. The optimum binder content of CIR mixtures is determined using wet indirect 
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tensile strength (Kim and Lee, 2011). 

Other mix design procedures. Table. 4 presents a brief summary of mix design 

methods developed by other states in the US (i.e. Pennsylvania and Minnesota) and in 

Canada (i.e. Ontario). These procedures are different in the binder type (anionic or 

cationic emulsions), the binder content range, compaction method, curing time, and target 

volumetric (Salomon and Newcomb, 2000). 

Table 4 

Additional Examples of Mix Design Procedure. 

State/Province Pennsylvania Minnesota Ontario 

Binder Type CMF-2 or CSS-1h 
CSS-1h, HFMS-2s, 

or HFMS-2p 
HF-150 

Binder Content 
2 to 3.5%, with 0.5% 

increments at OWC. 

[1, 1.5, 2, and 3%] 

and determine OEC 

0.5 to 2.5%, with 

0.5% increments 

Water Content 

3 to 7%, with 1% 

increments at 2.5% 

binder. Determine 

OWC. 

Varying water 

content until 

obtaining 4% total 

liquid content 

Varying water 

content until 

obtaining 4.5% 

total liquid content. 

Compaction 

75 blows with 

Marshall Hammer at 

73°F. 

40 or 150 gyrations 

using SGC, 

depending on 

experiments. 

50 blows in the 

Marshall. 

Additional 25 

blows after curing 

in the molds for 

24h. 

Curing Up to 96h at 104°F From 24h to 168h 72h at 140°F 

Volumetrics 

Resilient Modulus 

and Bulk Specific 

Gravity must be 

determined. 

Resilient Modulus, 

Bulk Specific 

Gravity, and 

Maximum Specific 

gravity must be 

determined. 

Air voids between 8 

and 12%. Min 

Marshall Stability 

of 2000 lbs at 72°F. 
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Laboratory and Field Performance of CIR 

The laboratory and field performance of CIR mixtures in terms of rutting 

susceptibility and cracking resistance have been investigated by several researchers  like 

(Doyle and Howard, 2013; Buchanan et al., 2004; Cox and Howard, 2015b). This section 

presents an overall review of both laboratory and field performance of CIR mixtures in 

previous studies. 

CIR Laboratory Performance Tests 

Asphalt Pavement Analyzer test. The asphalt pavement analyzer (APA) test was 

conducted in accordance with AASHTO T340 “Standard Method of Test for Determining 

Rutting Susceptibility of Hot Mix Asphalt (HMA) Using the Asphalt Pavement Analyzer 

(APA)”, to determine the rutting potential of CIR mixes.  A vertical load of 101 lbs (449.2 

N) is applied with pressurized rubber hoses (pressure of 100 psi (689 kPa)) on top of CIR 

specimens. This test specifies whether a CIR mixture, subjected to 8,000 passes at 147oF 

(64oC), is susceptible to rutting. Each state specifies the maximum rut depth allowed in 

their pavements. For instance, New Jersey specs does not allow rut depth values above 

0.2 in. (5 mm), while in Mississippi, rut depth values should range between 0.16 and 0.24 

in. (4 and 6 mm) for high traffic (Doyle and Howard, 2013; Buchanan et al., 2004; Cox 

and Howard, 2015b). 

Dynamic Modulus testing. The dynamic modulus |E*| test is commonly 

conducted according to AASHTO T62-03 “Determining Dynamic Modulus of Hot Mix 

Asphalt Concrete Mixtures”, in order to evaluate the stiffness of CIR mixtures under 
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different loading frequencies (e.g., 0.1 Hz, 10Hz, and 25Hz)  and at various testing 

temperatures (e.g., 4oC, 37oC, and 54oC). The dynamic modulus |E*| is determined by 

dividing the maximum dynamic stress by peak axial strain, obtained for CIR mixtures at 

given loading frequency and testing temperature. The result of dynamic modulus test is a 

|E*|-master curve developed based on the time-temperature correspondence approach. 

The master curve for a CIR mixture help evaluate the rutting susceptibility (i.e. at high 

testing temperature and low loading frequency) and cracking resistance (i.e., low testing 

temperature and high loading frequency) of these mixtures (Kim et al., 2009; 

Diefenderfer, 2016). 

Flow Number Testing. The flow number (FN) test is commonly conducted in 

accordance with AASHTO T79 “Standard Method of Test for Determining the Dynamic 

Modulus and Flow Number for Asphalt Mixtures Using the Asphalt Mixture Performance 

Tester (AMPT)”. The FN test characterizes the rutting potential of asphalt mixtures 

subjected to haversine loading. The cumulative deformation is then determined as a 

function of load cycles. In this test, load is generally applied for 0.1 s, then released for 

0.9 s, to form one cycle. This process is repeated up to 10,000 loading cycles. The results 

of the FN test are presented as a cumulative permanent deformation curve (El-Basyouny 

et al., 2005; Kim et al., 2009). 

Indirect Tensile Test. The indirect tensile (ITS) test is generally conducted 

according to AASHTO T283 “Standard Method of Test for Resistance of Compacted 

Asphalt Mixtures to Moisture-Induced Damage”. The IDT test is typically performed at 

77oF (25°C) with a loading rate of 50mm/min. When conducted at lower temperatures 

(i.e., 32oF (0oC)), the loading rate is reduced to 1in. /min. In this testing, a cylindrical CIR 
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specimen is subjected to compressive loads creating a vertical stress (tensile) within the 

vertical plane causing the specimen to break in two halves. Different studies showed that 

the fracture energy obtained from the IDT stress-strain curve can characterize the 

cracking behavior and the cracking potential of CIR mixtures (Koh and Roque, 2010; 

Doyle and Howard, 2013; Cox and Howard, 2015b). 

Semi-Circular Bend Test. The semi-circular bend (SCB) test is conducted on cut 

and notched CIR specimens, in accordance with AASHTO TP-105 “Standard Method of 

Test for Determining the Fracture Energy of Asphalt Mixtures Using the Semicircular 

Bend Geometry (SCB)”. Similarly to ITS test, SCB test is performed at 77oF (25oC) or at 

32oF (0oC), with loading rates of 2 and 1 in. /min (50 and 25 m/min), respectively. This 

test characterizes the cracking resistance of CIR mixtures to loading by evaluating the 

fracture energy of these mixtures. For instance, Charmot et al. (2017) evaluated the 

cracking behavior of CIR mixtures prepared with varying contents of emulsion and 

cement, at low temperature (32oF (0oC)) to optimize these mixtures (e.g., determining the 

optimum binder/water content that correspond to the maximum SCB fracture energy). 

CIR laboratory performance evaluation 

Asphalt Pavement Analyzer test: Cox and Howard (2015b) conducted APA 

testing on CIR specimens with different properties according to typical Mississippi specs 

for asphalt mixtures (i.e. at 147oF for 8,000 cycles with a 100 lbs load applied by 

pressurized rubber hoses of 100 psi). Results showed that CIR specimens prepared with 

cement showed higher rutting resistance than those mixtures prepared with just emulsion. 

Therefore, APA test was recommended for evaluating rutting susceptibility of CIR 
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rehabilitated pavements (Cox and Howard, 2015b). 

Dynamic Modulus testing. Kim and Lee (2012) also conducted dynamic modulus 

test, in accordance with AASHTO T 79 on CIR emulsion mixes at 3 different 

temperatures (40°F, 70°F, and 100°F) and six different frequencies (0.1, 0.5, 1, 5, 10, and 

25 Hz). Similarly to FN testing, Kim and Lee (2012) reported that CIR cationic mixtures 

(i.e. CSS-1h) presented higher dynamic modulus values than CIR anionic mixes (i.e. 

HFMS-2P). Kim and Lee (2012) also stated that |E*| of CIR emulsion mixtures was not 

affected by temperature or loading frequency. Thus, the dynamic complex modulus was 

recommended by the authors to evaluate the stiffness of CIR mixtures at high and low 

temperatures (Kim and Lee, 2012). 

Flow Number testing: Previous studies conducted the flow number test on CIR 

mixtures with different properties (i.e., binder type and content, curing process) to assess 

CIR rutting resistance (Kim and Lee, 2012; Rodezno et al., 2015). Kim and Lee (2012) 

conducted a flow number test on CIR mixtures prepared with emulsions (CSS-1h and 

HFMS-2P) to evaluate rutting susceptibility of asphalt emulsion CIR mixtures. The FN 

test consisted of applying a 20.3 psi (140 kPa) loading stress on CIR emulsion mixtures at 

104°F up to 20,000 passes until 5% of cumulative permanent strain is achieved. The 

results of the FN test conducted by Kim and Lee (2012) showed that CSS-1h emulsion 

CIR specimens presented higher FN values than those of HFMS-2P emulsion CIR 

specimens. In addition, an increase in emulsion content from 0.5% to 1.5% caused CIR 

specimens to fail. Therefore, the FN test was recommended by Kim and Lee (2012) to 

select optimum binder content (typically emulsions) to be used when designing CIR 
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mixtures. 

Indirect Tensile test: The indirect tensile (IDT) testing is generally conducted at 

77oF (25°C) with a load rate of 2 in. /min (50mm/min) in accordance with AASHTO 

T283. Different studies showed that the fracture energy obtained from the IDT stress-

strain curve can characterize the cracking behavior and the cracking potential of CIR 

mixtures (Koh and Roque, 2010; Doyle and Howard, 2013; Cox and Howard, 2015b). 

Recently, Lee et al., (2016) developed a volumetric-based CIR mix design procedure 

using the Superpave gyratory compactor. In this study, CIR specimens were prepared 

using RAP obtained from different geographic locations and emulsified asphalt. The CIR 

mixtures were then compacted to densities similar to those obtained in the field. The 

tensile strength (ITS) and creep compliance of CIR specimens were then determined 

using the indirect tensile (IDT) strength test. This study also focused on testing a full-

scale CIR test section located in Arizona. Lee et al. (2016) reported that the IDT results 

were satisfactory and, therefore, this test was recommended for cracking characterization 

of CIR mixtures. 

Semi-Circular Bend test: Charmot et al. (2017) evaluated the cracking behavior 

of CIR mixtures prepared with varying contents of emulsion and cement, at low 

temperature (32oF (0oC)). Results of SCB low temperature fracture test showed that there 

is a strong correlation between fracture energy and emulsion contents (positive trend), 

and fracture energy and cement content (negative trend). In addition, SCB fracture energy 

measure was efficient in predicting CIR cracking performance and determining optimum 

contents of emulsion and cement. Therefore, Charmot et al., (2017) reported that SCB 

test, conducted at low temperature, was successfully used to evaluate CIR cracking 
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performance as well as to select optimum contents for recycling agents/additives. 

Field performance evaluation  

The laboratory experimental program helps establish a job mix formula (JMF) to 

follow when producing CIR mixtures. This JMF needs to be validated when constructing 

CIR rehabilitated pavements, in the field, through evaluating the resistance of these 

pavements to various distresses (i.e. cracks, rut, raveling…). In fact, CIR pavements are 

generally monitored with respect to functional and structural performances after the 

completion of construction. The functional performance of pavements is evaluated using 

the International Roughness Index (IRI) (percentage of cracks and rut depth), while the 

structural performance is measured using non-destructive methods (i.e. falling weight 

deflectometer (FWD)) (Harun et al., 2009; Kevin, 2015; Buss et al., 2017). A discussion 

of CIR pavements’ performance evaluation is provided next. 

General pavement surveys. A study conducted by (Buss et al., 2017) aimed to 

investigate all the factors that can affect the long-term performance of CIR rehabilitated 

pavements, to estimate the viability and the effectiveness of CIR technique on pavements 

with different levels of deterioration. The pavement management information system 

(PMIS) of Iowa DOT provided the pavement performance data of approximately 100 

CIR projects previously conducted in different pavements within the state of Iowa. Buss 

et al., (2017) carried out statistical analysis to investigate the different types of pavement 

distresses likely occurring on CIR rehabilitated pavements. The study of Buss et al., 

(2017) focused on the following distresses: 

Transverse Cracks: A previous study of (Huang, 2004) revealed that the variation 

of temperature (from hot summer to very cold winter) is one of the reasons of transverse 
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cracking formation in asphalt pavements. In general, three types of transverse cracking can 

be seen on asphalt pavements’ surfaces, depending on the width of cracks (Miller and 

Bellinger, 2003):  

- Low transverse cracks: when the mean width of a crack is less than 6 mm; 

- Medium transverse cracks: when the mean width of a crack is between 6 and 19 

mm), and; 

- High transverse cracks: when a mean width of a crack is higher than 19 width.  

Buss et al., (2017) reported that, a year after construction, there was no visible 

transverse cracks in any of the cold recycled pavements. Twelve years after construction, 

low to medium transverse cracks were observed in several CIR pavements.  

Longitudinal Cracks: This type of cracks is generally found under one of the 

following levels of severity (Miller and Bellinger 2003):  

- Low-severity longitudinal cracks: when the mean width of a crack is less than 0.23 

in. (6 mm); 

- Moderate-severity longitudinal cracks: when the mean width of a crack is between 

0.23 and 0.75 in (6 and 19 mm), and; 

- High-severity longitudinal cracks: when a mean width of a crack is higher than 0.75 

in. (19 mm) width. 

Buss et al., (2017) investigated longitudinal cracks present in two levels: non-wheel 

path and wheel path. Analysis conducted on Iowa CIR rehabilitated pavements showed 

that only low-severity cracks were present in non-wheel path throughout the analysis 

period. Eight years after construction, low-severity cracks appeared and tended to increase 
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in the following years, while medium to high-severity longitudinal cracks were found in 

significant amounts in the wheel path (Buss et al., 2017). 

Fatigue cracks: Also known as alligator cracks. This pavement distress is generally 

generated when pavements are subjected to heavy load (Huang 2004). Cold recycled 

pavements in Iowa showed a significant decrease in alligator cracking rate, which started 

to appear as low-severity cracking, 9 years after CIR construction (Buss et al., 2017). 

Rutting: This type of pavement distress is generally created in the wheel path as a 

longitudinal depression on the pavement surface (Huang, 2004). Prior to constructing CIR 

pavement, rutting was observed in constant rates. After construction, the rutting did not 

start to increase progressively to the original rutting depth until the year 12 (same condition 

as before constructing CIR) (Buss et al., 2017). Buss et al., (2017) concluded that CIR 

technology significantly improved rutting in most of CIR rehabilitated pavements, 10 years 

after construction. 

Pavement functional performance. In general, the International Roughness Index 

(IRI) indicates the riding quality of roadways. Harun et al., (2009) conducted a study to 

evaluate the riding quality of different Malaysian roadways constructed via CIR 

technology. Sixty months after construction, IRI testing was performed on several locations 

of the CIR rehabilitated roadways. Harun et al., (2009) found that the IRI values were 

ranging from 2.5 m/km to 3.5 m/km, indicating a poor riding quality of the tested roadways. 

Table 5 presents brief guidelines for evaluating the performance of CIR rehabilitated 

pavements using IRI values, Cracks’ rate and rut depth (Harun et al., 2009). 
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Table 5 

Pavement Functional Performance criteria (Harun et al., 2009) 

IRI (m/km) Rut Depth (mm) Crack (%) Performance 

< 2 < 5 < 5 Good 

2 – 3 5 – 10 5 – 10 Fair 

> 3 > 10 > 10 Poor 

Pavement Structural Performance. The structural performance of CIR 

rehabilitated pavements is generally evaluated by means of central deflection data 

measured by Falling Weigh Deflectometer (FWD). The outcomes of this test help 

determine the quality of structural condition of CIR rehabilitated pavements. In addition, 

the elastic modulus of CIR pavements can also be determined using FWD so as to evaluate 

pavement’s resistance to deformation under traffic load (Harun et al., 2009). In a recent 

study, da Silva et al., (2013) conducted FWD test on CIR test section during rainy and dry 

seasons, for two years (2009 and 2010) to study both seasonal and traffic effects. da Silva 

et al., (2013) reported that a significant difference in deflections was observed between 

rainy and dry seasons (around 20%). With regard to traffic effects, deflections also 

increased up to 15% per year, then continued increasing during the rainy season and the 

following dry season (da Silva et al., 2013). 

Marshall Stability testing (strength and durability tests). A trial section of full-

scale pavement, subjected to low volume traffic, was constructed in Israel via CIR 

technology using emulsions type HFMS-1 (high floating anionic emulsion). The CIR mix 

was designed in the lab following the modified Marshall Mix design procedure while it 

was modified so as to meet the climate conditions in Israel (140°F). The CIR mix consisted 
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of 70% RAP, 20% Virgin aggregates, and 10% quarry sand and HFMS-1. Twelve months 

after the construction of the CIR section, strength test (Marshall stability test) at 140oF and 

durability tests were performed on cores obtained from the cold recycled section, in 

accordance with ASTM D1559 (Cohen et al., 1987). Cohen et al. (1987) reported that the 

CIR layer showed a satisfactory performance by attaining an acceptable resistance to 

deformation, cracking, and rutting after one year of service. Furthermore, the results of 

durability tests showed a high durability potential as well as a high resistance of the cold 

recycled layer to the damaging effects of high/low temperature and water (Cohen et al., 

1987). 

Summary 

Overall, CIR technique has been used successfully to treat deteriorated asphalt 

pavements in a short period of time, with low cost, and without harming the environment. 

The use of CIR method was generally confined to low and moderate trafficked pavements, 

while no case of heavy trafficked pavements (i.e. airfields) was reported. For instance, 

some agencies restricted the use of CIR technique when rehabilitating pavements with 

traffic is greater than 4,000 ADT, while in few cases, CIR was performed on pavements 

with significantly higher traffic (around 16,000 ADT) (Tario, 2010). In addition, mix 

design procedures developed for CIR mixtures often considered the cracking parameters 

(i.e. ITS, fracture energy, fracture index) when selecting optimum contents of binding 

agents, recycling additives, and/or water of CIR mixtures. The rutting performance of CIR 

mixtures was generally disregarded. 
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Therefore, there is a need to extend the CIR practice on heavy traffic loading / 

aircraft loading pavements with a concurrent consideration of appropriate materials’ 

selection and modified construction process. Since the performance at the post-

construction stage is the most important  consideration of CIR practice from low and 

medium to heavy traffic condition, a preliminary study of materials is required that should 

include a comparison between the structural requirements for heavy traffic condition and 

the structural properties achieved by CIR technique. The deficits of structural strength of 

CIR for heavy traffic loading will be identified and compensated by the materials selections 

and construction procedure developed using a balanced mix design approach. Thus, 

considering both cracking and rutting performance measures when selecting optimum 

binder contents of CIR mixtures. It is envisioned that this study will deliver a 

comprehensive information of CIR balanced mix design for heavy traffic conditions with 

the quality control and quality insurance of materials and performance tests. 
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Chapter 3 

Description of Cold In-Place Recycling (CIR) Materials Used 

In this study, a hundred percent of reclaimed asphalt pavement was used in 

preparing cold in-place recycling mixtures, without adding virgin aggregates. Two 

recycling agents were used in this study such as CSS-1h emulsified asphalt and neat PG 

64-22 foamed asphalt. With regard to additives, Portland cement was added to CIR 

mixtures to increase the strength of these mixtures. Water was also added to CIR 

mixtures to enhance the process of coating RAP with Portland cement as well as to 

facilitate the compaction process of these mixtures. Prior to mixing, the characteristics of 

RAP, recycling agents and additives were identified to meet the requirements specified 

by AASHTO/ASTM standards when preparing CIR mixtures. This section discusses the 

materials acquired for this study and presents the characteristics for each one of them. 

Reclaimed Asphalt Pavement (RAP) 

In this study, a portion of a HMA pavement section, located at Rowan University 

Accelerated Pavement Testing Facility (RUAPTF), was milled using a standard milling 

machine typically used in CIR projects, to collect RAP needed for preparing CIR 

mixtures (12 ft. wide by 15 ft. long by 4 in. deep) (Figure 7). It is important to mention 

that the millings were collected from an HMA section in RUAPTF because, once the 

laboratory analysis of CIR mixtures are completed, this section will be rehabilitated using 

CIR technology, thus, facilitating field validation of the developed Balanced Mix Design 

(BMD) procedure in the near future. In order to characterize the millings obtained for this 
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study, a number of tests were performed on dry RAP to gather more information 

regarding the gradation, the maximum specific gravity, and the existing binder content. 

  

Figure 7. RAP obtained from RUAPTF 

Sieve analysis. Dry sieve analysis was conducted in accordance with AASHTO 

T27 to determine the gradation of the RAP to be used in this study. It is also worthy to 

note that a significant quantity of CIR millings (approximately 450 Kg) was sieved to 

obtain a more representative gradation of the obtained RAP. A large sieve shaker was 

used to sieve RAP millings. Figure 8 shows the general gradation of the obtained RAP. 
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Figure 8. General Gradation of RAP materials 

In addition, washed sieve analysis was also performed on two replicates of the 

obtained RAP, in accordance with AASHTO T11, to determine the fine materials passing 

sieve no.200 (75 μm). The results, summarized in Figure 9, showed that the RAP millings 

collected for this study contained an average of 2.5% of particles passing sieve no.200, 

which is a good indicator of the permeability of the RAP. The CIR mixture will serve as a 

base layer.  
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Figure 9. Gradation of washed RAP materials 

Maximum specific gravity. The maximum theoretical specific gravity (Gmm) of 

sampled RAP was also determined using the CoreLok device, shown in Figure 10, in 

accordance with ASTM D6857. Three replicates of RAP batched to the general gradation 

(Figure 8), were allowed to dry overnight in an oven at 80oC to ensure that the moisture 

content of RAP is significantly reduced. The results of Gmm are presented in Table 6.  
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Figure 10. CoreLok Device Used to Determine Volumetric of CIR mixtures 

Table 6 

Maximum Specific Gravity Results of RAP 

Sample Gmm Average Gmm Standard Dev. 

RAP-1 
2.525 

2.527 0.002 
RAP-2 

2.529 

RAP-3 
2.528 

Existing binder content. In order to quantify and characterize the binder content 

utilized to construct the milled HMA pavement section, an extraction and recovery of the 

existing binder content of RAP was performed in accordance with AASHTO T319. Prior 

to initiating the extraction of the binder, three samples of RAP were blended to the 

general gradation and dried in an oven at 176oF (80oC) overnight. The results of the aged 
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asphalt binder content, presented in Table 7, show that the average content of the binder 

existing in RAP is approximately 5.5%. 

Table 7 

Existing Binder Content of RAP 

Samples 

RAP Weight 

before 

(g) 

RAP Weight 

after 

(g) 

Weigh of Aged 

Binder (g) 

Binder 

Content 

(%) 

RAP-1 
1881.6 1771.8 63.3 5.65 

RAP-2 
1870.6 1761.45 55.5 5.66 

RAP-3 
1788.1 1692.36 60.2 5.22 

Recycling Agent 

One of this study’s focuses was on evaluating the impact of different recycling 

agents on the laboratory performance of CIR mixtures. Two re-cycling agents were 

selected for this study based on the literature. These binders are: CSS-1h emulsified 

asphalt and neat PG 64-22 foamed asphalt. 

Emulsified asphalt. A slow setting cationic asphalt emulsion (CSS-1h) was used 

in this study. This emulsion was manufactured by the New Jersey-based Asphalt Paving 

Systems, Inc. and supplied in small quantities as required. The obtained emulsion was 

stored in 1-gallon plastic containers at room temperature to prevent emulsion from 

breaking. Before every use, these containers were gently agitated to prevent the 

settlement/separation of emulsion. Table 8 presents the main properties of CSS-1h 

emulsion used to prepare emulsified asphalt CIR mixtures. 
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Table 8 

Properties of CSS-1h Emulsified Asphalt 

Properties Results 

Sieve (%) 
0.00 

25oC SF Viscosity (sec) 
22.0 

25oC, 100G, 5 sec Penetration 
29.0 

pH 
5.0 

Residue (%) 
63.15 

Foamed asphalt. A neat PG 64-22 asphalt binder was used in this study to 

produce foamed asphalt. This asphalt binder was manufactured by Asphalt Paving 

Systems, Inc. and supplied in five-gallon buckets. Prior to preparing foamed asphalt CIR 

mixtures, the asphalt foaming process was tested at different contents of process water 

(2% - 3.5%, with increments of 0.5% of total foamed asphalt weight) so as to determine 

the optimum water content (OWC) required to create foam. At OWC, foamed asphalt 

exhibits maximum values of half-life and expansion ratio. Table 9 presents the properties 

of neat PG 64-22 foamed asphalt determined at three temperatures: 311, 329, 347oF 

(155oC, 165oC, and 175oC). 
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Table 9 

Foaming Properties Test Results 

Temperature Half-Life (s) Expansion Ratio OWC (%) 

155 
8 8 2.5 

165 
10.5 10 2.5 

175 
7.5 9 3 

As can be seen in Table 9, when the process temperature is increased from 155 to 

165°C, a significant increase can be observed in the values of expansion ratio and half-

life. However, these values are reduced when the process temperature is increased from 

165 to 175°C. This shows that, at 165oC, neat PG 64-22 foamed asphalt presented the 

highest half-life and the best expansion ratio values (10 seconds for half-life and 10.5 for 

expansion ratio). Therefore, foamed asphalt, to be used in this study, should be produced 

at 165oC using a process water content of 2.5% of total foamed asphalt weight, to ensure 

high quality foamed asphalt CIR mixtures. A Wirtgen WLB 2S foamed asphalt machine 

(laboratory –scale) was used to produce foamed asphalt by introducing cold water and air 

to hot asphalt binder of PG 64-22 (Figure 11). 
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Figure 11. Laboratory-Scale Foaming Machine 

Additives: Portland Cement  

In this study, a Type I Portland cement was used to improve the strength of the 

CIR mixtures to be prepared, as well as to achieve a rapid curing for these mixtures. The 

amount of Portland cement to be added to CIR mixtures was selected as 1.0% of total 

mix weight, based on literature (section 2.2.4). It is important to mention that: (1) 3.0 % 

(total mix weight) of water content was added to CIR mixtures to facilitate the process of 

mixing RAP with Portland cement, and (2) no virgin aggregates were used to prepare 

these CIR mixtures. 
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Chapter 4 

Balanced Mix Design Approach 

Overview of the Laboratory Experimental Program 

The Laboratory experimental program was established evaluate rutting 

susceptibility and cracking resistance of emulsified and foamed asphalt CIR mixtures 

compacted with different gyration levels and subjected to different curing processes. The 

goal of performance testing was to develop a CIR design using a BMD approach to select 

optimum binder contents of CIR mixtures with different design properties. This section 

discusses CIR specimen production methodology and performance evaluation program. 

CIR Samples Production using Balanced Mix Design Method 

The mix design method used in this study was developed based on the concept of 

balancing between cracking and rutting performances of CIR mixtures in order to select a 

relevant optimum binder content. The developed design method consisted of five steps 

(Figure 12). A discussion of each step is provided in the following: 

 

Step 1: Obtaining CIR materials. The obtained RAP material was allowed to 

dry, overnight, in an oven at 80oC. Prior to mixing, RAP was blended to the general 

gradation, as shown in Figure 8, to eliminate materials’ variability.  It is important to 

produce CIR mixtures with representative RAP from the pavement structure to be treated 

using CIR technology. A portion of the pavement, to be rehabilitated, was milled using a 

CIR milling machine to obtain representative RAP millings for CIR production in the lab. 

RAP was then characterized in terms of gradation, maximum specific gravity, and aged 

binder content (see section 3.1). In addition, CSS-1h emulsion and neat PG 64-22 foamed 
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asphalt were selected as the recycling agents to be used in preparing CIR mixtures in the 

laboratory. Portland cement was also selected because, besides lime, it is the most 

commonly used additive for producing CIR mixtures. Water was also required to 

facilitate the compaction process of CIR mixtures.  

 

Figure 12. BMD design approach of CIR mixtures 

Step 2: Select contents of recycling additives and water. The water content 

selected for this study was 3%, based on previous studies reporting that the optimum 

water content was generally ranging between 1.5 to 3%. With regards to recycling 

additives, the amount of Portland cement needed for CIR mixtures production was 1%, 

Step 1: Obtain Representative RAP 

Materials and Select Recycling Agent
 RAP Materials: mill or take cores. Determine 

general gradation and binder content of RAP 

materials.

 Recycling Agent: foamed or emulsified asphalt

• 1.0%, 2.0%, 3.0%, 4.0%, & 5.0%

Balanced CIR 

Design Approach

Step 2: Select Water Content and Dosage of 

Other Additives
 Water: constant content ranging between 1.5–

3%.

 Additives: cement or lime at a constant dosage 

ranging between 1–1.5%.

Step 3: Mix Components and Produce CIR 

Mixtures
 RAP, Water, and Additives: mix in a bucket 

mixer for 3–5 minutes.

 Recycling Agent: add recycling agent at 

varying contents (i.e., 1–5% with 1% 

increment). Mix components for 5–8 minutes.

 Note: for high contents (>=4%) of emulsified 

asphalt, mix the components thoroughly for up 

20 minutes.

Step 4: Compact, Cure, and Determine 

Volumetrics of CIR Samples
 Compaction: compact using the Superpave 

Gyratory Compactor (SGC) at 30 or 70 

gyrations.

 Curing: Dry curing for 3 days at 140oF (60oC) 

& cold curing for 3 days at 50oF (10oC). 

 Volumetrics: bulk and Rice gravities using 

CoreLok method

Step 5: Conduct Performance Testing and 

Determine Optimum Binder Content
 Rutting: APA and  |E*|.

 Cracking: ITS and SCB.

 Optimum Binder Content: one that balances both 

rutting and fatigue cracking.

Volumetrics 

Within Typical 

CIR Field 

Densities 

(i.e., 10– 20%)

No, evaluate RAP gradation Yes
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selected based on previous studies (Scholz et al., 1991; Cox and Howard, 2015; Kim and 

Lee, 2011; Lee et al, 2016).  

Step 3: Mix CIR components. To prepare CIR mixtures, batches of RAP were 

mixed with Portland cement and water, at the selected dosages, for up to 5 minutes using 

a stand mixer. Afterwards, one of the selected recycling agents (step 1) was added to CIR 

mix at varying amounts (1–5% of total mix with increments of 1%), and allowed to mix 

for up to 8 minutes. When emulsion was used at higher dosages (e.g., 4% and 5% of total 

mix), a longer mixing period was needed (up to 20 minutes) so as the emulsion is 

completely absorbed by RAP and to avoid having “watery” CIR specimens.  

Step 4: Compact CIR mixtures. Immediately after mixing, the CIR mixtures 

were compacted at one of the following compaction levels: 30 gyrations and 70 

gyrations, using the Superpave Gyratory Compactor (Figure 13). In fact, all CIR mixtures 

were compacted targeting different heights, depending on the performance test to be 

conducted on each test specimen. It is important to note that the gyrations levels used in 

this study were selected to simulate the level of traffic subjected on the roadway to be 

rehabilitated. For instance, roadways with low to medium traffic levels are generally 

compacted at 30 gyrations, while heavy trafficked pavements, such as airfields, can be 

compacted with 70 gyrations (Rushing et al., 2012). Therefore, the reason behind 

compacting the CIR mixtures with a higher number of gyrations (i.e., 70 gyrations) was 

to model the use of CIR on pavements under heavy traffic conditions. 
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Figure 13. Superpave Gyratory Compactor (SGC) 

 Step 5: Cure CIR mixtures. hot and dry condition, that is placing CIR 

specimens in an oven at 140oF for three days, and (2) cold condition, that is placing CIR 

specimens in a fridge at 50oF for three days. These curing conditions were selected in 

order to represent most of the environmental conditions during which the CIR process 

can be performed in the field. 

Step 6: Measure density of CIR Mixtures. In this step, the air void of each 

cured CIR mix was determined. In addition to the compacted samples, three replicates of 

loose CIR mixtures were also allowed to cure at one of the temperatures presented in 

Step 5. The maximum theoretical specific gravity (Gmm) of the loose mix and the bulk 

specific gravity (Gmb) of the compacted samples were then determined using CoreLok 

device so as to estimate the air voids of each CIR mixture (Figure 14). Air voids of CIR 

mixes should be similar to typical field CIR densities (i.e., up to 20% air voids; 

depending on binder content used). If CIR air voids does not meet these requirements, 
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additional testing should be conducted on multiple samples of RAP materials to better 

determine the gradation of the RAP millings (Step 1). Mineral filler (<0.075 mm) can 

also be added to ameliorate the gradation if a similar gradation if obtained after 

conducting the additional testing. 

In total, eight CIR mixtures were prepared using a combination of two recycling 

agents, two compaction levels, and two curing processes. Table 10 presents the 

designation of each CIR mixture based on design properties. For instance, if a mixture 

was prepared using emulsion, compacted at 30 gyrations, and allowed to cure in an oven 

at 140oF for three days, the mixture will be designated as CIR-E30H, where “E” stands 

for emulsion, “30” stands for 30 gyrations, and “H” stands for hot curing. 

 

(a) 

 

(b) 

Figure 14. Density Measurements using CoreLok: (a) Rice Specific Gravity; (b) Bulk 

Specific Gravity 
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Table 10 

CIR mixtures’ properties and designation 

Mixture Recycling Agent Gyrations Curing Process 

CIR-E30H 
CSS-1h emulsion 30 3 days at 140oF 

CIR-E30C 
CSS-1h emulsion 30 3 days at 140oF 

CIR-E70H 
CSS-1h emulsion 70 3 days at 140oF 

CIR-E70C 
CSS-1h emulsion 70 3 days at 140oF 

CIR-F30H 
PG 64-22 Foamed Asphalt 30 3 days at 50oF 

CIR-F30C 
PG 64-22 Foamed Asphalt 30 3 days at 50oF 

CIR-F70H 
PG 64-22 Foamed Asphalt 70 3 days at 50oF 

CIR-F70C 
PG 64-22 Foamed Asphalt 70 3 days at 50oF 

CIR Test Methods 

The purpose of conducting performance tests on CIR specimens was to utilize the 

performance measures (rutting and cracking), determined for each CIR mixture, to select 

optimum binder contents of these mixtures. In this step, Asphalt Pavement Analyzer 

(APA) rut depth and the Dynamic Complex Modulus (|E*|) were selected to quantify 

rutting in accordance with AASHTO T 340 and AASHTO T 342, respectively; while 

Indirect Tensile Strength (IDT) and Semi-Circular Bend Fracture Energy (SCB-FE) were 

used to quantify cracking resistance in accordance with ASTM D6931 and AASHTO 

TP124, respectively. 

 

Asphalt Pavement Analyzer (APA) test. The APA is a wheel tracking device 

that is typically used for evaluating the rutting potential of asphalt mixtures. This test was 
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conducted in accordance with AASHTO T340 (Figure 15). It involves applying a 100-lb 

force, using a steel wheel, on top of a pressurized hose (100 psi) which then transfers the 

load to the test specimens. The wheel moves back and forth on top of the hose and each 

movement from one side of the specimen to the other is considered one pass (or loading 

cycle). In this study, the APA was utilized to determine the rut depth values of all four 

CIR mixtures discussed above. The test was conducted at 147oF (64oC) with the 

specimens allowed to condition for a minimum of 6 hours at that temperature before 

testing. A total of three APA replicates (i.e., 6 SGC compacted specimens) were tested 

and the average rut depth is reported. It is noted that all CIR samples were compacted to a 

height of 75 mm and the test was terminated after completion of 8000 loading cycles.  

  

Figure 15. Asphalt Pavement Analyzer (APA) Test  

Dynamic Complex Modulus. The dynamic complex modulus (|E*|) is a test used 

to evaluate the performance of asphalt mixtures over a spectrum of temperatures and 

loading frequencies. As a result, this test provides a general overview of asphalt mixture 

stiffness under a range of traffic speeds and environmental conditions (Figure 16). At 

high temperatures and low loading frequencies, rutting is the predominant failure mode 

of asphalt mixtures (including CIR mixtures). In this study, the |E*| was conducted at the 
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standard temperature range of 4, 21, 37, and 54oC while also applying loading at 

frequencies 0.1Hz, 0.5Hz, 1Hz, 5Hz, 10Hz, and 25Hz. The dynamic modulus values 

obtained for high temperatures (37.8 and 54oC for this study) and at low frequencies (10 

Hz) were selected to determine the rutting potential of CIR mixtures. The frequency of 10 

Hz is used by researchers when interpreting |E*| results as it represents the speed at which 

traffic travels.  

  

Figure 16. Dynamic Complex Modulus Test  

 

All samples were first compacted to a height of 180 mm, dry cured, and then 

cored and cut to obtain cylindrical specimens having a diameter of 100 mm (4 in.) and a 

height of 150 mm (6 in.). Three replicates were tested for each mix. 

Indirect Tensile Strength. The ITS is a measure of asphalt mixtures’ tensile 

strength. Thus, it is a good indicator of asphalt mixtures’ ability to resist cracking. This 

test involves diametrically loading asphalt specimens at a rate of 50 mm/min (room 
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temperature or higher) or 12.5 mm/min (cold temperatures; 0oC and lower) and 

determining the stress at which a specimen breaks (using peak load). Higher ITS values 

are desirable as they indicate that the tested asphalt mixture is more resistant to cracking 

than lower ITS values. For this study, samples of all four CIR mixtures (previous section) 

were compacted to a height of 63 mm and tested at 0oC to determine the ITS of the 

mixtures. Three replicates were tested for each mix.  

  

Figure 17. Indirect Tensile Strength Test 

Semi-Circular Bend. The SCB is another test used for characterizing the 

cracking susceptibility of asphalt mixtures (Figure 18). Similar to the ITS, notched semi-

circular specimens are loaded diametrically, while being simply supported, using a 

loading rate of 50 mm/min. Using the recorded load versus displacement SCB curve, the 

fracture energy (FE) is computed as the area under that curve. The FE parameter is an 

indicator of an asphalt mixture’s ability to resist cracking; the higher FE is the more 

resistant is the mix. In this study, SCB specimens were notched, to simulate a crack in the 
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test specimen, using a 12.5 mm long and 1 mm wide notch. Testing was conducted at 0oC 

and three replicates per mix were tested according to the SCB protocol. A testing 

temperature of 0oC was selected, for both ITS and SCB, because it represents a more 

conservative temperature at which cracking will be more pronounced. This also falls in 

line with what was reported in literature by Charmot et al. (2018). 

 

Figure 18. Semi-Circular Bend Test Setup 

Determination of Optimum Binder Content 

Using rutting and cracking data obtained through conducting performance tests on 

CIR specimens, the optimum binder content of each mixture can be determined using the 

balanced mix design (BMD) approach. At optimum binder contents, CIR mixtures should 

present a maximum cracking resistance and a minimum rutting susceptibility. Figure 19 

(a) explains the method of determining optimum range of binder content balancing 

between rutting and cracking performances of CIR mixtures. Two cases are generally 

seen when optimizing CIR mixtures using the BMD approach: (1) when the binder 

content resulting in a maximum cracking resistance (i.e., at peak ITS or SCB-FE) is 
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lower than that resulting in minimum rutting susceptibility (i.e., APA rut depth 

threshold), the optimum binder content is selected as the binder content maximizing the 

cracking performance. (2) When the binder content resulting in a highest cracking 

resistance is greater than that resulting in lowest rutting susceptibility, the optimum 

binder content corresponds, in this case, to the mid-point of the shaded area (between 

both binder contents), as shown in Figure 19 (b). 

 

Case I 

 

Case II 

Figure 19. Example of how to select an OBC using CIR rutting and cracking 

performance measures. 
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Chapter 5 

CIR Balanced Mix Design: Results, Analysis, and Discussion 

Overview of CIR Balanced Mix Design Results 

One of the goals of this study was to evidence the practicality and applicability of 

the introduced CIR balanced mix design method. Therefore, a thorough understanding of 

the performance tests, to be conducted on CIR test specimens, was required. These 

performance tests should be able to capture the effect of the variation of CIR binder 

content on rutting and cracking performance measures. If a strong correlation is found 

between performance measures and the binder content, then the selected performance 

tests can be used to determine an optimum range of binder content of CIR mixtures using 

the BMD approach. Finally, the impact of recycling agent type, compaction level, and 

curing process on CIR rutting and cracking performance measures was evaluated at 

optimum binder contents. The significance of this impact was then validated using 

statistical analyses (i.e. ANOVA). 

Volumetric Results 

Prior to conducting performance testing on CIR test specimens, density 

measurements were determined for all CIR mixtures so as to evaluate the impact of 

binder content on CIR volumetrics.  In addition, the results of CIR laboratory densities 

were also used to evaluate the effect of recycling agent type, compaction level, and 

curing process on CIR air voids. 
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(a) CIR-E30H 

 

(b) CIR-E70H 

 

(c) CIR-E30C 

 

(d) CIR-E70C 

Figure 20. Volumetric analyses of Emulsified Asphalt CIR mixtures 
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(a) CIR-F30H 

 

(b) CIR-F70H 

 

(c) CIR-F30C 

 

(d) CIR-F70C 

Figure 21. Volumetric analyses of Foamed Asphalt CIR mixtures
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Thus, CoreLok method was selected to determine both maximum and bulk 

specific gravities for all CIR specimens, in accordance with ASTM D6857 and AASHTO 

T331, respectively. Figures 20 and 21 summarize the air void levels obtained for 

emulsified and foamed asphalt CIR specimens with different design properties in terms of 

gyration level and curing temperature. As can be seen from Figures 20 and 21, an 

increase in the binder content of CIR mixtures resulted in a decrease in air voids of these 

mixtures (drop by up to 4% for every increase of 1% of binder). In terms of recycling 

agent type, emulsified asphalt CIR mixtures presented slightly higher air voids than 

foamed asphalt (up to 2% difference for same binder content). Compaction level also 

presented a significant effect on CIR volumetrics. In fact, CIR mixtures compacted with 

70 gyrations presented lower by up to 4% air voids than those compacted with 30 

gyrations. With regard to the effect of curing temperature, CIR mixtures subjected to hot 

curing (three days at 140oF) presented lower air void levels than those subjected to cold 

curing. The results of volumetric analyses were expected because adding more binder to a 

mixture would fill more voids within the RAP matrix and also increase lubrication to 

facilitate compaction causing measured air voids to drop. In addition, increasing the 

compaction level and the curing temperature enhances the process of asphalt coating of 

RAP, and thus, reduces the air void. In summary, the results of volumetric analysis 

showed that all CIR samples presented air void levels similar to those typically found in 

CIR layer in the field. 

Binder Content as a Predictor of CIR Performance Measures 

In order to select performance measures capable of determining optimum binder 

contents of CIR mixtures with satisfactory accuracy, the correlation between rutting and 
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cracking measures and binder content was evaluated using regression analysis method. 

Figure 22 and 23 present the relationships developed between rutting measures (i.e., rut 

depth, |E*|) and cracking measures (i.e., ITS, and SCB-FE) and binder content of CIR 

mixtures (i.e., CIR-E30H). As can be seen from the figures, the effect of varying the 

binder content on CIR performance can be identified. In terms of rutting, as illustrated in 

Figure 22 (a), an increase in the binder content resulted in increasing the CIR rut depth 

values; therefore, indicating the ability of APA rut depth measure to seize the impact of 

CIR binder content on CIR rutting performance. In addition, a strong correlation (R2 = 

99%) was found between APA rut depth measure and CIR binder content, signifying that 

CIR binder content can be a strong predictor of CIR rutting performance. Figure 22 (b) 

presents the relationship between dynamic modulus (|E*|), obtained at high temperatures 

(i.e., 37oC and 54oC) and 10 Hz loading frequency, and CIR binder content. A weak 

correlation was found between dynamic modulus rutting measure and CIR binder content 

(constant tend; R2 = 26.46% and R2 = 29.52%). Based on these observations, the 

dynamic modulus |E*| measure of CIR was discarded and only APA rut depth measure 

was considered for developing a balanced mix design procedure for CIR mixtures.  
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(a) 

 

(b)  

Figure 22. Correlation between Rutting Measures and Binder Content (CIR-E30H) 

In this study, CIR binder content presented a significant impact on APA rut depth 

while had little to no impact on |E*| of CIR mixtures. The reason that lies behind these 

observations is that in the case of APA test, CIR specimens are conditioned for at least 8 

hours and tested at 147oF (64oC) for 8,000 loading cycles. While for |E*|, specimens are 

only conditioned for two hours (98oF (37oC) or 129oF (54oC)) and tested with only 550 

cycles. In addition, |E*| test is a non-destructive test (both stress and strain levels are low) 

and is generally sensitive to binder content changes when performed on hot mix asphalt 

(HMA) mixtures. However, emulsified asphalt is only made of 65% residual binder (for 

example, if emulsified content is 1% of total mix weight than the residual binder content 

is 0.65% of total mix weight), which makes |E*| unable to capture the binder content 

change in the case of CIR mixtures.  

With regards to cracking performance measures, Figure 23 (a) and Figure 23 (b) 

show that both ITS and SCB fracture energy increased as CIR binder content increased 

until reaching a peak, generally corresponding to highest cracking resistance of CIR 

Rut Depth (mm) = 0.0645(Binder Cont. %)2 + 0.314(Binder Cont. %) + 3.13

R² = 0.9938

2.00

3.00

4.00

5.00

6.00

7.00

0 1 2 3 4 5 6

R
u

t 
D

e
p

th
 (

m
m

)

Binder Content (%)

   APA @ 64°C vs. CIR Binder Content

|E*| @ 54oC = 18.947(Binder Cont. %)2 - 49.517(Binder Cont. %) + 716.65

R² = 0.2646

|E*| @ 37.8oC = 29.635(Binder Cont. %)2 - 71.73(Binder Cont. %) + 1458.3

R² = 0.2952

0

500

1000

1500

2000

2500

3000

0 1 2 3 4 5 6

D
y
n

a
m

ic
 M

o
d

u
lu

s,
 |

E
*
| 
(M

P
a
)

Binder Content (%)

   |E*| @ 54°C & 10 Hz

   |E*|  @ 37.8°C & 10 Hz



70 
 

mixtures. Once the peak is attained, any increase in CIR binder resulted in a decrease of 

ITS and SCB-FE values. The reason behind the decrease of cracking measures after 

reaching the peak was that CIR mixtures tend to become softer with the increase of 

binder (becoming more lubricant). This resulted in a drop in the strength of CIR mixtures. 

Furthermore, a strong correlation was found between cracking measures and CIR binder 

content (ITS vs Binder content: R2 = 92%; SCB-FE vs binder content: R2 = 80%). Based 

on these observations, both cracking measures (ITS and SCB-FE) were able to capture 

the effect of varying the binder content on CIR mixtures’ resistance to cracking. It is also 

important to note that the obtained trends of cracking measures were similar to previous 

studies that aimed to select an optimum binder content of CIR mixtures using only 

ITS/SCB-FE peaks. Therefore, both ITS and SCB-FE measures were considered for 

developing a balanced mix design procedure for CIR mixtures. 

  

Figure 23. Correlation between Cracking Measures and Binder Content (CIR-E30H) 

Demonstration of the CIR Balanced Mix Design Approach  

After selecting rutting and cracking performance measures (in the previous 

section), balanced optimum binder contents of CIR mixtures can be selected using the 
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BMD approach. Figure 24 through 26 illustrate the relationships between CIR binder 

contents, and CIR rutting measures (i.e., APA rut depth) and both cracking measures (i.e., 

ITS, and SCB-FE). This relationship will help establish a range for selecting an optimum 

binder content using two main parameters: (1) maximum CIR cracking resistance (peak 

of either ITS or SCB-FE), and (2) CIR rut depth threshold (5 mm). Based on CIR BMD 

results, three main cases, demonstrated in Figures 24 through 26, for selecting balanced 

optimum ranges of binder contents can be identified depending on the rutting and 

cracking measures’ trends. A discussion of each case is provided in the following 

subsections. 

 

Case I: Both performance measures are relevant. This case is presented in 

Figure 24 for mixtures CIR-E30H and CIR-F70H. As illustrated in these figures, the 

trend for rutting performance measure (APA rut depth) is constantly increasing while 

cracking performance measures (ITS and SCB-FE) presented peaking trends, as CIR 

binder increases. Therefore, both performance measures were considered relevant for 

determining optimum ranges of CIR binder content. In this study, the APA rut depth 

threshold was considered as 5 mm (maximum rut depth allowed in New Jersey asphalt 

pavements). The binder content optimizing rutting resistance of CIR mixtures can be 

determined as illustrated in Figure 24 (i.e., 2.0% and 2.2% for CIR-E30H, shown in 

Figures 24 (a) and (b); and 3.8% for CIR-F30H, as shown in Figures 24 (c) and (d)). In 

the other hand, both peak values of ITS and SCB-FE were also used to determine the 

optimum binder content corresponding to a maximum cracking resistance of CIR 

mixtures. As can be seen from Figure 24, the optimum binder contents of CIR-E30H can 

be selected as 3.0% (using ITS peak) and 3.2% (using SCB-FE peak), while regarding 
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CIR-F70H, the optimum binder contents can be selected as 2.8% (using ITS peak) and 

2.9% (using SCB-FE peak). Based on these observations, ranges of optimum binder 

contents, balancing between rutting and cracking performances, can be established for 

both CIR mixtures, using both cracking measures (ITS and SCB-FE). As mentioned 

chapter 4, there are two ways of selecting an optimum binder content of CIR mixtures. 

The first case is illustrated in Figures 24 (a) and (b): the optimum binder content of CIR0-

E30H can  be selected as the average of mid-point of CIR binder content ranges, 

established using APA rut depth vs. both cracking measures (ITS and SCB-FE). 

Therefore, the balanced optimum binder content of CIR-E30H was found to be 2.7%. The 

second case of selecting a balanced optimum binder content of CIR mixtures is illustrated 

in Figures 24 (c) and (d). The binder content maximizing the cracking resistance of CIR-

F70H was lower than that minimizing the rutting susceptibility of this mixture. Thus, the 

balanced optimum binder content of CIR-F70H is the same as the average binder content 

resulting in the peaks of ITS and SCB-FE (2.85%). 
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(a) CIR-E30H: APA rut depth vs ITS 

 

(b) CIR-E30H: APA rut depth vs SCB-FE 

 

(c) CIR-F70H: APA rut depth vs ITS 

 

(d) CIR-F70H: APA rut depth vs SCB-FE 

Figure 24. Balanced Mix Design Results for CIR mixtures (case 1)
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Case II: Only cracking measures are relevant. Another case was 

observed in some CIR mixtures (i.e. CIR-E70H) when using the BMD approach 

to select optimum binder contents for these mixtures. In fact, the APA rut depth 

values measured for CIR-E70H mix presented a relatively constant trend 

indicating that the increase in CIR content had no impact on APA rut depth of 

CIR-E70H. With regards to cracking performance, both ITS and SCB-FE of CIR-

E70H presented peaking trends indicating that the increase in CIR binder content 

has impact on the cracking performance of CIR-E70H mix. Therefore, only the 

cracking performance is relevant and considered for selecting a balanced optimum 

binder content for this CIR mixture. Figure 25 presents the BMD results for CIR-

E70 mix, as an example. The balanced optimum binder content is based on both 

peaks ITS and SCB-FE values as well as a slight 5% percent reduction in these 

peak values. It is important to note that this 5%reduction was proposed to select 

CIR optimum binder content because there would not be any significant change in 

cracking measures of CIR mixtures (For example: CIR-E70H peak ITS is 2.15 

MPa while the 5% reduction is at 2.04 MPa). Thus, the balanced optimum binder 

content of CIR-E70H mix is selected at 2.88% (average of binder contents 

corresponding to maximum ITS and SCB-FE values. 
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(a) CIR-E70H: APA rut depth vs ITS 

 

(b) CIR-E70H: APA rut depth vs SCB-FE 

Figure 25. Balanced Mix Design Results for CIR mixtures (case 2)

Case III: Both performance measures are showing increasing trend. In this 

case is illustrated in Figure 26, at least one of the cracking measures’ values presents an 

increasing trend (with no peak) with the increase in CIR binder content. The APA rut 

depth values also show increasing trend as CIR binder content increases. In order to 

optimize each CIR mixture belonging to case III, CIR optimum binder content ranges 

were established using APA rut depth threshold of 5 mm and maximum cracking 

performance. For instance, the balanced optimum binder content of CIR-E30C can be 

selected as the average of the mid-point of the CIR binder contents range established 

using SCB-FE vs. APA rut depth  (i.e. 2.75%) and ITS  vs. APA rut depth (i.e. 2.85%), as 

shown in Figures 26 (a) and (b). The balanced optimum binder content of CIR-E30C is 

2.8%. Additional examples of case III, presented in Figures 26 (c) and (d), show that 

CIR-F30C and CIR-F70C presents balanced optimum binder contents of 2.9% and 3.2%, 

respectively. 
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(a) CIR-E30C: APA rut depth vs ITS 

 

(b) CIR-E30C: APA rut depth vs SCB-FE 

 

(c) CIR-F30C: APA rut depth vs ITS 

 

(d) CIR-F70C: APA rut depth vs SCB-FE 

Figure 26. Balanced Mix Design Results for CIR mixtures (case 3)
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No clear peak was observed from cracking measure results of CIR 

mixtures subjected to cold curing (10oC (50oF) for three days). This means that 

the curing process at cold temperature was not sufficient for the samples to gain 

maximum strength even when increasing the binder content which falls in line 

with the findings of the study of Kim and Lee (2011). This can be proven by 

looking at the results of similar mixtures subjected to hot curing where a clear 

peak can be observed in cracking measures (Figure 27). 

 

Figure 27. Impact of Curing Process Type on Cracking Performance 
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CIR mixtures can be successfully designed following the BMD approach utilized 

as part of this study. This design method was found efficient since it yielded 
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processes. As this table shows, the variability of the selected balanced optimum 

binder contents varied for the eight CIR mixes. The lowest coefficient of variation 

within the data was 1.34% (CIR-F70C) while the highest coefficient of variation 

was 19.77% (CIR-F70H) indicating that the variability in the selected optimum 

binder contents is low. 

Table 11 

Optimum Binder Contents of CIR Mixtures 

Mixture OBC (%) Average STDEV. COV (%) 

CIR-E30H 3.20 2.40 2.50 2.70 0.44 16.14 

CIR-E70H 2.93 2.93 2.78 2.88 0.09 3.01 

CIR-F30H 2.70 2.55 2.60 2.62 0.08 2.92 

CIR-F70H 2.00 2.80 2.95 2.58 0.51 19.77 

CIR-E30C 2.80 2.95 2.70 2.82 0.13 4.47 

CIR-E70C 3.20 2.60 3.15 2.98 0.33 11.16 

CIR-F30C 2.95 2.75 3.00 2.90 0.13 4.56 

CIR-F70C 3.20 3.28 3.20 3.23 0.04 1.34 

Overall, the results of the balanced mix design developed for CIR 

mixtures presented similar results of optimum binder contents than those found in 

literature. However, foamed asphalt CIR mixtures optimum binder contents, 

ranging between 2.8 and 3.2%, were relatively higher than those typically found 

when using CIR mix design methods focusing just on cracking performance. This 

can be related to RAP millings properties (RAP binder content, binder PG grade, 

and gradation), presence of virgin aggregates, types and dosages of additives 

present in CIR mixture. For instance, a study conducted by Berthelot et al (2013) 
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reported optimum binder contents of 2%, however, Portland cement was used in 

2% of total mix weight.  

Performance Comparisons among All CIR Mixtures  

To better understand the impact of recycling agent type, compaction level, 

and curing process on the CIR laboratory performance,  Figures 27 (a) and (b) 

present the overall results of rutting measures (APA rut depth and |E*| at 54oC 

and 10 Hz) and cracking measures (ITS and SCB-FE at 0oC) determined at 

optimum binder contents of CIR mixtures. As can be seen from the figures, the 

rutting and cracking performance varied for the different mixtures. For instance, 

the range of APA rut depth values were between 1.89 mm (CIR-F70H) and 5.08 

mm (CIR-F30C), which indicates a satisfactory performance of CIR mixtures in 

terms of rutting (APA rut depth threshold is 5 mm). In addition, all CIR mixtures 

subjected to hot curing presented relatively lower APA rut depth values than those 

subjected to cold curing. In the other hand, all CIR mixtures presented similar 

moduli at high temperature (54oC) and low frequency (10Hz). The sigmoidal 

master curves developed for the eight CIR mixtures at optimum binder contents 

showed that, recycling agent type, compaction level, and curing process had no to 

little impact on CIR rutting performance. In fact, all CIR mixtures subjected to 

hot curing presented slightly higher |E*|values than those subjected to cold curing.  



  
 

80 
 

 

(a) APA results 

 

(b) Dynamic Complex Modulus results 

 

(c) ITS results 

 

(d) SCB-FE results 

Figure 28. General Comparison of CIR mixtures
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In terms of cracking, the tensile strength values (at 0oC) of CIR mixtures ranged between 

0.39 MPa (CIR-E30C) and 2.09 MPa (CIR-E70H), while SCB fracture energy values (at 

0oC) ranged between 174.8 and 622.3 J.m-2. Figure 27 (c) shows that CIR mixtures 

subjected to hot curing exhibited significantly higher tensile strength and SCB fracture 

energy than those with cold curing. In summary, CIR mixtures prepared with different 

types and levels of recycling agent types, gyration levels, and curing processes did not 

have similar performances in terms of rutting and cracking. Thus, there is a need to 

evaluate the impact of each factor (binding agent, compaction level, and curing process) 

on CIR rutting susceptibility and cracking resistance. 

Impact of binding agent on CIR performance (rutting and cracking). Figure 

28 and 29 presents the rutting and cracking performance measures determined at 

optimum binder content of emulsified and foamed asphalt CIR mixtures. In terms of 

rutting, both emulsion and foamed CIR mixtures presented similar APA rut depth values 

(within 1 mm) given the same gyration level and curing temperature, as shown in Figures 

28 (a) and (b). In addition, the results of complex dynamic modulus performed at high 

temperature (i.e., 54oC) and loading frequency of 10 Hz, as illustrated in Figures 28 (c) 

and (d), shows that emulsion and foamed asphalt presented similar rutting performances 

when these mixtures are subjected to hot curing (at 140oF for three days), as illustrated in 

Figure 28 (c). However, when allowed to cure at 50oF for three days, CIR mixtures 

prepared with foamed asphalt exhibited higher |E*| values than those prepared with 

emulsified, highlighting a better rutting resistance of foamed asphalt CIR mixtures at low 

temperatures of curing. Overall, emulsified and foamed asphalt presented similar effect 

on CIR rutting performance given the same gyration level and at high temperature of 
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curing (i.e. 140oF), while CIR mixtures, subjected to cold curing, presented lower rutting 

susceptibility when prepared with foamed asphalt. 

With regards to cracking performance, Figure 29 presents the results of ITS and SCB-FE 

of CIR mixtures. In fact, both emulsified and foamed asphalt CIR mixtures presented 

similar tensile strength results, when compacted with same gyration level and subjected 

to the same curing process. However, emulsified CIR mixtures presented higher SCB-FE 

values, by over 20%, than those prepared with foamed asphalt, when compacted at same 

gyration level and subjected at hot curing. However, at low curing temperatures (i.e. 

50oF), emulsified CIR mixtures present significantly higher cracking resistance, by over 

100%, than that of foamed asphalt CIR mixtures (Figure 29 (d)). In summary, CIR 

mixtures prepared with emulsified or foamed asphalt exhibited similar rutting 

performance, while emulsified asphalt CIR mixtures presented better cracking 

performance, given the same gyration level and curing temperature. In addition, SCB-FE 

measure highlighted efficiently the impact of recycling agent type on CIR cracking 

performance. 



  
 

83 
 

 

(a) APA rut depth measure at hot curing 

 

(b) APA rut depth measure at cold curing 

 

(c) |E*| measure at hot curing 

 

(d) |E*| measure at cold curing 

Figure 29. Effect of Recycling Agent Type on CIR Rutting Performance 
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(a) ITS measure at hot curing 

 

(b) ITS measure at cold curing 

 

(c) SCB-FE measure at hot curing 

 

(d) SCB-FE measure at cold curing 

Figure 30. Effect of Recycling Agent Type on CIR Cracking Performance 
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Impact of compaction level on CIR performance (rutting and cracking). 

Figures 30 and 31 illustrates the impact of compaction level on CIR rutting and cracking 

performance, given the same binder type and curing process. With regards to rutting, both 

emulsified and foamed asphalt CIR mixtures compacted with 30 gyrations presented 

higher APA rut depth values than those compacted with 70 gyrations, as shown in 

Figures 30 (a) and (b). Therefore, higher compaction level (i.e. 70 gyrations) of CIR 

mixtures can increase CIR rutting resistance by giving more stiffness to these mixtures 

and by reducing their air void levels. In the other hand, Figures 30 (c) and (d) presents the 

the results of dynamic modulus (|E*|) performed at 54oC and a loading frequency of 10 

Hz. As can be seen in the figures, both gyration levels (30 and 70) presented similar 

impact on the rutting performance of CIR mixtures subjected to the same curing process. 

Thus, only APA rut depth measure was efficiently able to seize the impact of gyration 

level on CIR rutting performance. In terms of cracking, both emulsified and foamed 

asphalt CIR mixtures compacted with 70 gyrations presented slightly higher ITS values 

than those compacted with 30 gyrations, as shown in Figures 31 (a) and (b). This 

indicates that ITS measure was not capable of capturing the impact of compaction level 

on CIR cracking resistance. Figures 31 (c) and (d) illustrates the SCB-FE results of CIR 

mixtures compacted with different gyration levels. In fact, both emulsified and foamed 

asphalt compacted with 70 gyrations exhibited significantly higher fracture energy than 

CIR mixtures compacted with 30 gyrations, giving the same curing process. 
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(a) APA rut depth measure at hot curing 

 

(b) APA rut depth measure at cold curing 

 

(c) |E*| measure at hot curing 

 

(d) |E*| measure at cold curing 

Figure 31. Effect of Compaction level on CIR Rutting Performance 
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(a) ITS measure at hot curing 

 

(b) ITS measure at cold curing 

 

(c) SCB-FE measure at hot curing 

 

(d) SCB-FE measure at cold curing 

Figure 32. Effect of Compaction level on CIR Cracking Performance 
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Therefore, an increase in compaction level of CIR mixtures can considerably 

improve the resistance of CIR mixtures to cracking. In addition, SCB-FE energy was 

capable of capturing the impact of compaction level on CIR cracking performance. 

Impact of curing process on CIR performance (rutting and cracking). Figures 

32 and 33 below present the impact of curing process on the rutting and cracking 

performance of CIR mixtures prepared with the same binding agent (emulsion or foamed 

asphalt) and compacted with same gyration level (30 or 70). As can be seen from Figure 

32 (a), CIR mixtures subjected to hot curing (at 140oF for three days) exhibited slightly 

better rut depth values than CIR mixtures subjected to cold curing (at 50oF for three 

days).   

When the gyration level increases from 30 to 70 (Figure 32 (b), the impact of 

curing process significantly increase. In fact, APA rut depth results of emulsified and 

foamed asphalt CIR mixtures subjected to hot curing exhibited almost 80% lower rut 

depth values than CIR mixtures cured at 50oF for three days. Therefore, higher curing 

temperature, associated with higher gyration level, improves the rutting resistance of CIR 

mixtures. In the other hand, the effect of curing process on CIR dynamic modulus was 

also evaluated. Figures 32 (c) and (d) present the effect of curing process on |E*| of CIR 

mixtures compacted at 30 gyrations and 70 gyrations, respectively.  As can be seen from 

Figure 32(c), both emulsified and foamed asphalt CIR mixtures exhibited relatively 

similar |E*| values at both curing conditions. However, when compacted at 70 gyrations, 

CIR mixtures subjected to hot curing presented significantly higher |E*| than those 

mixtures subjected to cold curing. Based on these observations, the curing process had a 
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significant impact on CIR rutting performance, when generally compacted with higher 

level of gyrations. 

With regards to CIR cracking performance, the effect of curing process on CIR 

cracking measures (ITS and SCB-FE) was also evaluated, as presented in Figure 33. 

Given the same binding agent and compaction level, the ITS values of CIR mixtures 

subjected to hot curing were significantly higher (by above 300%) than the ITS values of 

CIR mixtures subjected to cold curing (Figure 33 (c)). Similarly, emulsified and foamed 

asphalt CIR subjected to hot curing exhibited significantly higher fracture energy than 

that of CIR mixtures subjected to cold curing. These results indicate that the curing 

process of CIR mixtures present a significant impact on CIR cracking measures (ITS and 

SCB-FE). Therefore, both CIR cracking measures were successfully capable of capturing 

the impact of curing process on CIR cracking resistance. In fact, the reason behind the 

significant increase in cracking measures’ values when increasing the curing temperature 

(from 50 to 140oF), is that CIR mixtures have sufficiently cured and hardened at higher 

temperature (less moisture content remaining), thus increasing the strength of these 

mixtures. 
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(a) APA rut depth measure at 30 gyrations 

 

(b) APA rut depth measure at 70 gyrations 

 

(c) |E*| measure at 30 gyrations 

 

(d) |E*| measure at 70 gyrations 

Figure 33. Effect of Curing Process on CIR Rutting Performance 
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(a) ITS measure at 30 gyrations 

 

(b) ITS measure at 70 gyrations 

 

(c) SCB-FE measure at 30 gyrations 

 

(d) SCB-FE measure at 70 gyrations 

Figure 34. Effect of Curing Process on CIR Cracking Performance 
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Statistical Analyses 

Analysis of variance (ANOVA) were conducted on rutting and cracking measures 

results of emulsified and foamed asphalt CIR mixtures to statistically evaluate the effect 

of binding agent type, compaction level, and curing process on CIR performance. The 

interaction between these three factors (binder type, compaction level, and curing 

process) was also assessed to investigate if these interactions would have a significant 

impact on rutting and cracking performance of CIR mixtures.  The results of univariate 

ANOVA for each performance measures are discussed in the following subsections. 

Effect on APA rut depth measure. ANOVA analysis was conducted on three 

replicates of each balanced CIR mixture to statistically evaluate the effect of the binding 

agent, gyration level, and curing temperature on the CIR rut depth. As can be seen from 

Table 12, the results of univariate ANOVA performed on APA rut depth data showed 

that “binder type” presented p-value > α = 0.05, indicating that the recycling agent type 

(emulsion or foamed asphalt) did not have significant impact on CIR rutting 

susceptibility. Similarly, the curing process also had a minor impact on CIR rutting 

performance, presenting a p-value of 0.29. However, the compaction level of CIR 

mixtures presented a significant impact on APA rut depth values (p-value = 0.017). 

Therefore, compacting CIR mixtures with different gyration level would have an impact 

on CIR rutting performance. This observation validates, in fact, the findings presented in 

this chapter, that there is a strong dependence of the relationship between APA rut depth 

and CIR compaction level. In addition, the results of univariate ANOVA analysis showed 

that none of the interactions between the factors had significant effect on APA rut depth. 
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Table 12 

ANOVA analysis on APA Rut Depth Measure 

Source F p-value Significant(Yes/No) 

Binder (Bind) .449 .509 No 

Gyration (Gyr) 6.563 .017 Yes 

Curing (Cur) 1.177 .289 No 

Bind * Gyr .814 .376 No 

Bind * Cur .002 .969 No 

Gyr * Cur .131 .721 No 

Bind * Gyr * Cur .250 .622 No 

Effect on Dynamic Complex Modulus measure. ANOVA analysis was also 

performed sample obtained at high temperatures (37ºC and 54ºC) and loading frequency 

of 10 Hz, as presented in Table 13. The result of univariate ANOVA showed that both 

binding agent type (emulsion and foamed asphalt) and compaction level (30 and 70 

gyrations) had minor effect, at both temperatures of 37ºC and 54ºC, on CIR rutting 

performance. However, the curing temperature factor presented a significant effect on the 

rutting susceptibility of CIR mixtures, presenting p-values of 0.012 and 0.033 at 37oC and 

54oC, respectively. In addition, ANOVA results showed that all the interactions between 

recycling agent type, compaction level, and curing process, did not have any significant 

impact on CIR rutting performance except for one interaction, between CIR binder type 

and the curing process, at testing temperature of 37ºC, presenting a p-value of 0.027. 
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Table 13 

ANOVA analysis on |E*| Measure 

Source Temp F p-value 
Significant 

(Yes/No) 

Binder (Bind) 
54C .90 .371 No 

37C 5.19 .052 No 

Gyration (Gyr) 
54C .6 .813 No 

37C .00 .998 No 

Curing (Cur) 
54C 6.58 .033 Yes 

37C 10.46 .012 Yes 

Bind * Gyr 
54C .33 .577 No 

37C .59 .465 No 

Bind * Cur 
54C .49 .501 No 

37C 7.26 .027 Yes 

Gyr * Cur 
54C .69 .428 No 

37C .292 .604 No 

Bind * Gyr * Cur 
54C 1.437 .265 No 

37C 2.99 .122 No 

Effect on Indirect Tensile Strength Measure. Table 14 presents the results of 

ANOVA analysis conducted on ITS measure data of CIR mixtures. As can be seen from 

the table below, only the gyration level and the curing process had significant effect on 

CIR tensile strength (i.e., p-values of 0.002 for gyration level; and 0.0001 for curing 

temperature). The interaction between the different factors was also investigated. The 

results of p-values showed that none of the interactions presented significant effect on 

CIR cracking resistance. In summary, the binder type (emulsion or foamed asphalt) had 

no impact on the strength of CIR mixtures while gyration level and curing temperature 

had significant effect on the cracking performance of CIR mixtures. An increase or the 



  
 

95 
 

gyration level or in the curing temperature would yield significant increase in CIR 

strength, as discussed in this chapter. 

Table 14 

ANOVA analysis on ITS Measure 

Source F p-value Significant? 

Binder (Bind) .037 .849 No 

Gyration (Gyr) 11.660 .002 Yes 

Curing (Cur) 220.54 .000 Yes 

Bind * Gyr .001 .981 No 

Bind * Cur .596 .448 No 

Gyr * Cur 1.958 .175 No 

Bind * Gyr * Cur .082 .777 No 

Effect on Semi-Circular Bend fracture energy measure. Table 15 presents the 

results of ANOVA analysis conducted on SCB-FE measure data of emulsified and 

foamed asphalt CIR mixtures. As can be seen from the table below, the results of 

ANOVA showed that all the factors, recycling agent type, compaction level, curing 

process, had a significant effect on SCB-FE of CIR mixtures presenting p-values of 

0.011, 0.027, and 0.0001, respectively. However, ANOVA analyses showed that the 

interactions between these factors had no significant effect on CIR cracking performance. 

In fact, these observations are supported with the findings presented in this chapter: 

emulsion CIR mixtures presented higher cracking resistance than CIR mixtures prepared 

with foamed asphalt. An increase in the gyration level or the curing temperature resulted 

in an increase in SCB fracture energy of CIR mixtures. 
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Table 15 

ANOVA analysis on SCB-FE Measure 
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Source F p-value Significant? 

Binder (Bind) 7.620 .011 Yes 

Gyration (Gyr) 5.561 .027 Yes 

Curing (Cur) 25.942 .000 Yes 

Bind * Gyr 1.284 .268 No 

Bind * Cur 2.094 .161 No 

Gyr * Cur .001 .974 No 

Bind * Gyr * Cur .775 .387 No 
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Chapter 6 

Summary of Findings, Conclusions & Future Work 

Summary of Findings and Conclusions  

This study presented a method for designing emulsified and foamed asphalt CIR 

mixtures, through balancing between cracking and rutting performance of these mixtures. 

In order to evaluate the feasibility and practicality of the balanced mix design method, 

eight CIR mixtures were produced in the lab using a combination of two recycling agents 

(foamed asphalt and emulsion), two compaction levels (30 and 70), and two curing 

processes temperatures (50º F and 140ºF).  All the CIR mixtures were prepared constant 

dosages of Portland cement and water, 1% and 3%, respectively. Air void levels were 

then determined for each mixture using CoreLok device to ensure that these mixtures 

presented similar air voids to those typically found in CIR layer in the field. APA rut 

depth and |E*| measures were determined to evaluate the rutting susceptibility of CIR 

mixtures while ITS and SCB-FE measures were determined to assess the cracking 

resistance of these mixtures. Regression analysis was then conducted on rutting and 

cracking performance measures to evaluate the ability of CIR binder contents in 

predicting the rutting and cracking performances of CIR mixes. All performance 

measures presenting strong correlations with CIR binder content were then used to select 

optimum binder content of the eight CIR mixes.  The process of selecting optimum 

binder contents was demonstrated for all CIR mixes and presented as part of this study. 
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Rutting and cracking performances were evaluated for CIR balanced mix design 

(BMD) mixtures in order to assess the impact of the factors on CIR performance 

measures (i.e. APA rut depth, ITS, and SCB-FE) at optimum binder contents.  

Summary of Findings. The summary of the findings from this study were: 

 The volumetric analysis conducted using CoreLok showed that increasing the 

binder content of foamed and emulsified asphalt CIR mixtures resulted in a 

decrease in air void level by up to 4%, for every increase of 1% of binder. 

 The air void level of emulsified asphalt CIR mixtures was 2% higher than that of 

foamed asphalt, given the same binder content. 

 When the same binding agent was used, CIR mixtures compacted with 30 

gyrations presented higher air void, by up to 4% at the same binder content, than 

CIR mixtures compacted with 70 gyrations. 

 The air void level of CIR mixtures subjected to hot curing (three days at 140oF) 

presented lower air void, by up to 3% at the same binder content, than CIR 

mixtures subjected to cold curing (three days at 50oF). 

 Regression Analysis conducted on CIR cracking measures (ITS and SCB) and 

rutting measures (APA rut depth and |E*|) showed a strong correlation between 

both cracking measure (ITS vs Binder content: R2 = 92%; SCB-FE vs binder 

content: R2 = 80%), only one rutting measure (APA rut depth vs Binder content: 

R2 = 99%) and CIR binder content. A weak correlation was found between 

dynamic modulus rutting measure and CIR binder content (constant tend; R2 = 

26.46% and R2 = 29.52%). 
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 Using the BMD design approach, a balanced optimum binder content was 

determined for each of the eight CIR mixtures. The balanced optimum binder 

content of both foamed and emulsified CIR mixtures ranged between 2.6 and 

3.2%. 

 CIR performance measures were determined at optimum binder contents. The 

results showed that the range of APA rut depth values were between 1.89 mm 

(CIR-F70H) and 5.08 mm (CIR-F30C), while all CIR mixtures presented similar 

|E*| values at high and low temperatures. In terms of cracking performance, the 

tensile strength values (at 0oC) of CIR mixtures ranged between 0.39 MPa (CIR-

E30C) and 2.09 MPa (CIR-E70H), while SCB fracture energy values (at 0oC) 

ranged between 174.8 and 622.3 J.m-2. 

 ANOVA analysis conducted on CIR performance measures at optimum binder 

contents showed that the recycling agent type had significant impact only on SC-

FE (p-value = 0.011). Compaction level had impact on APA rut depth, ITS, and 

SCB-FE, presenting p-values of 0.17, 0.02, and 0.027, respectively. Curing 

process presented a significant impact |E*| at 37 and 54oC, ITS, and SCB-FE, 

presenting p-values of 0.012, 0.033, 0.000, and 0.000, respectively. It is also 

important to mention that only the interaction between the recycling agent type 

and curing process had significant impact on |E*| at 37oC (p-value = 0.027). 
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Conclusions. Based on performance testing results and the ANOVA analyses 

conducted on all rutting and cracking data of CIR mixtures, the following conclusions 

were drawn: 

 The balanced mix design approach was used successfully in designing eight CIR 

mixtures. This was evidenced with performance testing results that highlighted 

the importance of rutting measures, which generally was not considered in 

previous mix design methods for CIR mixtures, as well as its dependence on the 

binder content of emulsified and foamed asphalt binder content. Therefore, the 

developed balanced mix design method ensures a better design of CIR mixtures.  

 Three of the four rutting and cracking measures (i.e., APA rut depth, ITS, and 

SCB-FE) presented a strong dependence on CIR binder contents. Regression 

analysis conducted on CIR performance measures showed that there is a strong 

correlations between these measures (i.e., APA rut depth, ITS, and SCB-FE) and 

CIR binder content; therefore, indicating that these measures can be used 

successfully for developing a balanced mix design method for CIR mixtures.  

 The dynamic complex modulus, |E*|, conducted at high temperature (i.e., 54ºC) 

and a loading frequency of 10Hz was relatively constant for all CIR mixtures. 

This rutting measure was, in fact, unable to capture the change in CIR binder 

content; thus, |E*| measure was not considered when the balanced mix design for 

CIR mixtures. 

 Three cases for determining ranges of balanced optimum binder contents for CIR 

mixtures were observed. These cases were dependent on the type of trends 

obtained using the three performance measures (i.e. APA rut depth, ITS, and 



 

102 
 

SCB-FE) and CIR binder content. The BMD results also indicated that these cases 

can be dependent on the type of CIR binding agent, compaction level, and curing 

process used in designing CIR mixtures. 

 The recycling agent type (emulsion or foamed asphalt) showed a minor effect on 

rutting performance of CIR mixtures. This can be explained by the fact that, when 

compacted using the same compaction level, both foamed and emulsified CIR 

mixtures have similar ability to resist rutting. However, the SCB results at 

optimum binder contents showed that emulsion CIR mixtures presented higher 

fracture energy values than those of foamed asphalt CIR mixtures; indicating that 

emulsion CIR mixtures are better at resisting cracking than those prepared using 

foamed asphalt as the recycling agent. 

 The compaction level of both foamed and emulsified asphalt CIR mixtures 

showed a significant impact on both rutting and cracking performance of these 

mixtures. APA rut depth results at optimum binder contents showed that CIR 

mixtures compacted at 70 gyrations had lower rutting susceptibly and higher 

cracking resistance than those of CIR mixtures compacted at 30 gyrations.  

 The curing process also had a significant impact on rutting and cracking 

performance of both foamed and emulsified asphalt CIR mixtures. Performance 

tests’ results showed that CIR mixtures submitted to hot curing (i.e. 140oF for 

three days) had relatively lower rutting susceptibly (i.e., lower APA rut depths 

and higher |E*|) and higher cracking resistance (i.e., higher ITS and SCB-FE) than 

those submitted to cold curing (i.e. 50ºF for three days). 
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 The outcomes of this study showed that the BMD developed for CIR mixtures can 

be implemented for both hot and cold regions. However, more studies should be 

conducted to investigate ways to improve rutting and cracking performance of 

CIR mixtures in cold regions.  

Future Work.  This study focused on developing a mix design for cold in-place 

recycling mixtures prepared with emulsions or foamed asphalt, compacted at different 

gyration levels, and subjected to cure at high and low temperatures. The laboratory 

performance of these mixtures was evaluated in terms of rutting and cracking to select 

optimum binder contents using the BMD approach. The rutting and cracking performance 

results of the balanced CIR mixtures were considered satisfactory. Therefore, there is a 

need to validate the laboratory results in the field by conducting full-scale accelerated 

testing on pavement sections constructed using the CIR mix design developed as part of 

this study. This will be executed as follows: 

 Investigate the impact of different curing ages on the performance of CIR 

mixtures (e.g., 10, 20, and 30 days), mainly those subjected to cold curing. 

Extending the curing process will likely improve the strength of CIR mixtures by 

ensuring a complete reaction of the elements existing in Portland cement, thus, 

achieving a maximum strength of CIR mixtures. 

 Compare mix design methods typically used for CIR technique by certain 

agencies (i.e., Pennsylvania mix design, Military mix design, and Modified 

Marshal mix design) to the CIR mix design developed as part of this study 

following the BMD design approach.  
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 Prepare three CIR pavement sections using the laboratory results: (1) rutting 

resistant section, (2) cracking resistant section and (3) and balanced mix design 

section. All the section will be constructed at Rowan University Accelerated 

Pavement Testing Facility (RUAPTF) because the millings used to prepare CIR 

mixtures in the lab were obtained from this pavement. If the RAP used in APT 

and RAP used in preparing CIR mixtures in the lab do not have a similar source, 

the results cannot be comparable. RAP millings with different sources may 

present different properties: aggregate type, gradation, binder content, binder PG 

grade and presence of additives. In this project, samples will be taken from each 

CIR full-scale section to be tested in the lab. Each sample will be tested for air 

void level, binder content by performing extraction and recovery and mineral 

matter, APA rut depth, and ITS. This will make it possible to compare full-scale 

testing results to laboratory testing results. 

 Apply Heavy Vehicle simulator on each CIR pavement section at different 

loading frequencies (truck tire, aircraft tire). As loading progresses, the condition 

of each CIR pavement section will be characterized through several tests and 

visual inspections. 

 Instrument each CIR section with asphalt gauges, thermocouples, and pressure 

cells to evaluate stress and strain responses of CIR pavement section to determine 

threshold values for rutting and cracking performance measures. Air temperature 

will be controlled to ensure testing each section at low temperature (e.g., 32oF 

(0oC)), so as to simulate cold regions. 
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