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 Lower back pain (LBP) affects the worldwide population and can be attributed to 

the degeneration of the intervertebral disc (IVD). The IVD is composed of a central 

nucleus pulposus (NP), a peripheral annulus fibrosus (AF), and adjacent cartilage 

endplates (CEPs). IVD degeneration is characterized by proteoglycan loss, tissue 

dehydration, and decreased hydrostatic pressure. In this work, the use of an injectable 

bioadhesive hydrogel composite for replacement of the degenerated NP was investigated.    

Results indicate that the composite exhibits similar mechanical properties to the NP, 

adheres to AF tissue, and supports encapsulated mesenchymal stem cell (MSC) 

differentiation toward an NP-like phenotype in vitro. Additionally, the composite restores 

biomechanical properties such as range of motion and stiffness and resists expulsion from 

the injured porcine IVD ex vivo. Lastly, the composite was able to retain viable 

MSCs which displayed region-specific deposition of biomimetic matrix within the 

degenerated bovine IVD ex vivo. Tissue engineering scaffolds will play an important 

clinical role in restoring biomechanical function and prevent transplanted cell leakage, 

yet none have been designed with adhesive properties to secure the implant in situ. This 

work is significant in that it represents the development of a novel adhesive that 

potentially meets the mechanical and adhesive requirements for achieving cellular 

compatibility, scaffold function, and tissue integration.  
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Chapter 1 

 

Introduction 

 

1.1 Motivation 

 The motivation of this research centers on the repair of the degenerated 

intervertebral disc (IVD), which is frequently associated with lower back pain (LBP). 

IVD degeneration is characterized by several changes in morphology such as internal 

disruption, peripheral tearing, loss in disc height, dehydration, and herniated tissue 

fragments [1,2,3]. These morphological changes cause nerve root compression, spinal 

canal narrowing due to stenosis or spondylolisthesis, or facet joint impingement, which 

ultimately lead to clinical symptoms of neurological deficits, disability, and pain.  

 At any given time, LBP affects approximately 4 – 33 % of the United States 

population annually [4]. Approximately 70 – 85 % of individuals will experience some 

type of LBP within their lifetime [5,6,7]. The estimated mean global lifetime prevalence 

for LBP is 38.9 % [8,9,10,11]. This type of associated pain is considered one of the 

leading causes of absence from work compared to any other injury or disease [12,13] and 

has the greatest impact on the United States health care system due to its high prevalence 

and influence on disability [14]. Approximately 700,000 spine procedures are performed 

each year and the rate of these procedures is increasing [15,16,17]. Health care 

expenditures range from $50 to $90 billion annually [18,19]. Health care demand for 

treating LBP is on the rise, however disability rates are not improving [20,21]. 

1.2 Project Summary 

 The IVD is an avascular and alymphatic structure that resembles cartilage tissue. 

After injury, there is little to no repair activity due to the lack of blood vessels and 
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immune cells. Further, the tissue is unable to repair itself as the number of viable disc 

cells declines. Maintenance of the extracellular matrix by disc cells begins to shift from 

an anabolic to catabolic profile. IVD degeneration is notably characterized by 

proteoglycan degradation and subsequent dehydration of the nucleus pulposus. Excessive 

stress is then exerted on the annulus fibrosus leading to the formation of fissures. 

Consequently, herniation of the nucleus pulposus occurs and impinges on local nerve root 

endings resulting in radiculopathy. 

 Treatment for the degenerated disc is dependent on the severity of tissue 

deterioration. During early stages of degeneration, a conservative approach is 

implemented to reduce pain and strengthen surrounding back and abdominal muscles to 

lessen the mechanical demand on the IVD. Conservative treatment typically involves the 

use of non-steroidal anti-inflammatory drugs or steroidal injections in combination with 

physical therapy and rest. During moderate stags of degeneration when pain management 

and rehabilitation become ineffective, fissures in the annulus fibrosus form resulting in 

nucleus pulposus herniation and ensuing compression of peripheral nerve root endings. A 

discectomy is performed to remove invading tissue in order to alleviate radiating pain. 

Late stage degeneration is denoted by a complete loss of biomechanical function and 

tissue structure and often requires invasive surgery. To stabilize the afflicted joint, a 

spinal fusion is performed and entails removing the severely degenerated disc tissue and 

implanting a titanium cage containing a bone graft, thus allowing for the bridging of 

adjacent vertebrae together. Currently, total disc arthroplasty and nucleus pulposus 

replacement devices are being investigated as alternative strategies to replace IVD 

tissues. While these treatment strategies provide some level of pain relief, they are 
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considered extremely invasive and do not aim to restore natural mechanical or biological 

function to the joint. 

     There is an obvious need to improve treatment strategies for repairing the 

degenerated disc. Tissue engineering is a relatively new area of research that has shown 

promising results in both animal models and clinical trials in terms of tissue regeneration 

and functional recovery. Protein delivery can be an effective treatment if disc cells are 

abundant and present a healthy phenotype, though that is not the case for degenerated 

tissues. Alternatively, biological function can be substituted by transplanting viable cells 

into the degenerated disc. The appropriate cell type and origin remains to be determined. 

Regardless, cell displacement occurs upon injection into the disc. To combat this issue, 

hydrogels have been proposed as carriers that can encapsulate and deliver cells. Hydrogel 

carriers are also injectable and can be implanted into the disc in a minimally invasive 

manner. However, injectable replacements are also prone to dislocation from their 

implanted site. Therefore, imparting adhesive properties to the cell carrier may have an 

important impact in the clinical setting and prevent herniation of implanted material.   

1.3 Dissertation Summary 

 This work focuses on the evaluation of a bioadhesive hydrogel composite as a 

tissue engineering replacement for degenerated disc tissues. Chapter 2 describes relevant 

background information pertaining to LBP and IVD physiology. Existing treatment 

modalities to repair the degenerated disc and alternative tissue engineering strategies 

based on protein and cell delivery are also discussed in greater detail. Overall objectives 

and specific research aims of this project are addressed in Chapter 3.  
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 Chapter 4 focuses on the synthesis and characterization of the bioadhesive 

hydrogel composite for nucleus pulposus replacement. Composite properties are assessed 

as a function of microparticle concentration and size. Properties such as swelling, 

microstructure, degradation, adhesive strength, compressive stiffness, and shear modulus 

are quantified. Composites that exhibited similar properties to native nucleus pulposus 

tissue moved on for further biological testing.  

 Chapter 5 discusses the feasibility of the composites to support the in vitro 

differentiation of encapsulated adipose-derived mesenchymal stem cells toward a nucleus 

pulposus phenotype. Cellular viability, metabolic activity, extracellular matrix deposition, 

and protein and gene expression are analyzed to determine the extent of stem cell 

differentiation. The composite that exhibited superior mechanical properties from 

Chapter 4 and supported the differentiation of viable stem cells moved on for further 

biomechanical testing.     

 Chapter 6 describes the biomechanical performance of the composite upon 

injection into an injured ex vivo porcine disc model. Denucleated and mechanically 

fatigued disc specimen are treated with composite and exposed to cycles of compression-

tension. Range of motion and stiffness of the injured and treated disc specimen are 

analyzed and compared to that of the intact disc. The composite’s resistance to expulsion 

in a denucleated disc during lateral bending is also evaluated.   

 Chapter 7 highlights the use of the composite as a carrier for the delivery of 

adipose-derived mesenchymal stem cells into a degenerated ex vivo bovine disc model. 

First, stem cell viability within the composite after implantation into the degenerated 

bovine disc is quantified. Site-specific differences in stem cell behavior are compared 
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between the nucleus pulposus and annulus fibrosus regions. The extent of stem cell 

differentiation is assessed based on changes in cell morphology and protein expression. 

Chapter 8 completes the dissertation by providing a summary of conclusions that were 

drawn from each of the previous chapters.     
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Chapter 2 

 

Background 

 

2.1 Spinal Anatomy 

 

 The human body is composed of over 200 bones, 33 of which belong to the spine 

[22]. The spinal column is a complex musculoskeletal structure that is composed of 

alternating fibrocartilage joints and bony vertebral bodies, which encase and protect the 

delicate spinal cord. There are five distinct regions of the spinal column: cervical, dorsal 

(thoracic), lumbar, sacral, and coccygeal (Figure 1). The cervical, dorsal, and lumbar 

regions each contain 7, 12, and 5 independent vertebrae, respectively. During normal 

growth and development, the 5 sacral and 4 coccygeal bones fuse together and form the 

inferior distal units otherwise known as the sacrum and coccyx (Figure 2). When viewed 

laterally, the spine is an average length of approximately 2 feet and 2 inches and has 

notable curvatures facing either inward or outward. The shape of the spine also allows for 

dissipation of compressive load and uniform distribution of body weight [22].  

 The vertebral bodies of the spine are designed to provide stability under 

compressive loading. Each vertebral body is unique in that it contains an anterior region 

called the body and a posterior region called the arch (Figure 3) [22]. Additionally, each 

arch consists of two pedicles and two laminae which support 7 processes: 4 articular, 2 

transverse, and 1 spinous. Bodies of each vertebrae are stacked along the spinal column 

which support the head and torso. Arches form a hollow cylindrical passageway which 

allows houses the spinal cord. Vertebrae are connected together by the articular processes 

and intervertebral discs (Figure 4), while the surrounding back muscles attach to the 

spinous and transverse processes thus allowing for movement of the trunk (Figure 5) 
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[23]. Facets joints, also known as zygapophyseal or synovial joints, are formed by the 

adjacent inferior and superior articular processes. Each of the articular surfaces are 

covered by a thin layer of hyaline cartilage which permit a sliding motion. The facet joint 

also contains an inner synovial and outer fibrous membrane, which further lubricates the 

joint and facilitates movement [24].    

 Vertebrae are composed of both cortical (compact) and cancellous (trabecular or 

spongy) bone. Cortical bone is dense, stiff, and provides mechanical strength to support 

human body weight. Cancellous bone is soft, flexible, and allows for the redirection of 

applied loads. Vertebral bone is highly vascularized and allows for the diffusion of 

nutrients to nearby fibrocartilage joints in the spine. Blood supply originates form the 

aorta and stems from segmental and intercostal arteries [25,26]. Each segmental artery 

passes through the intervertebral foramina, divides into posterior and anterior radicular 

arteries, and extends toward the adjacent vertebral body and region of spinal cord. The 

spinal cord is also supplied by a pair of posterior spinal arteries and a single anterior 

spinal artery, which originate from the vertebral arteries. These arteries run the length of 

the surface of the spinal cord [25,26].  

2.2 Intervertebral Disc Anatomy and Biochemistry 

 

 The major constituents of disc tissue are proteoglycans, collagen, and water. 

Proteoglycans in the IVD are bottlebrush-like structures that contain both 

glycosaminoglycans (GAG) and aggrecan. GAGs are long chains of unbranched 

polysaccharide units composed of repeating disaccharide units of an amino acid sugar (N-

acetyl glucosamine or N-acetylgalactoseamine) and an uronic acid (D-glucuronic acid or 

L-iduronic acid). The amino acid sugar unit is usually substituted with a sulfate group, 
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thus imparting a highly negative charge within the GAG chain. The most common types 

of GAGs found within proteoglycans of the IVD are chondroitin sulfate, keratin sulfate 

and heparan sulfate. Aggrecan is a predominant, cartilage-specific protein core that can 

covalently bond to multiple GAG molecules. The aggrecan core protein has a molecular 

weight of approximately 250,000 Da and has a high affinity to sequences in hyaluronan 

and bind via a link protein [27]. Hyaluronan or hyaluronic acid (HA) is a non-sulfated 

GAG present in connective tissues that exists freely and does not covalently bond as a 

side chain in proteoglycans [28]. Hyaluronan is an important extracellular matrix 

component that serves as a ligand for cartilage link protein and aggrecan [29]. A larger 

proteoglycan complex can form when multiple proteoglycan structures aggregate 

together and link to a single HA molecule. These complexes increase water retention and 

provide volume within the ECM to permit diffusion of small molecules and nutrients. 

Aggregates of PGs can be up to 4 mm long and provide resistance to deformation in load-

bearing joints [27]. 

 Collagen is one of the most abundant, insoluble fibrous proteins (25 %) found in 

mammalian tissues [30]. There are at least 28 types of collagen proteins that have been 

identified, but roughly 80 – 90 % of collagen in the human body is Type I, II, and III 

[31]. The collagen proteins are rich in glycine, proline and hydroxyproline amino acid 

residues. Before the collagen protein is secreted from the cell, the three polypeptide 

chains twist around one another to form a triple helix secondary structure. Type I 

collagen is the most abundant protein found in extracellular matrix and is commonly 

found in skin, tendon, bone and ligaments. The fundamental unit of type I collagen is 

approximately 300 nm long and 1.5 nm in diameter [32]. Many of these collagen 
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molecules pack together to form fibrils with a diameter of 50 – 200 nm. Type II collagen 

is the major fibrous protein found in cartilaginous tissues. Type II fibrils are smaller in 

diameter compared to Type I and are randomly organized alongside proteoglycans in the 

ECM. Collagen helices can covalently crosslink through lysine residues, which 

contributes to changes in mechanical properties and stiffening with age.    

 The IVD joint is comprised of three tissue regions with distinct biochemical, 

mechanical and cellular properties (Figure 6) [33]. Each IVD is conjoined to both the 

superior and inferior vertebral bodies via the cartilage endplates (CEP). In the center of 

the joint is the nucleus pulposus (NP). The peripheral annulus fibrosus (AF) surrounds 

and contains the central NP. The IVD is responsible for transmitting loads resulting from 

body weight or physical activity, while also allowing for flexible motion in bending and 

twisting. In general, IVDs in the lumbar region are between 8 – 10 mm tall and 4 – 5 cm 

in diameter [34,35,36]. IVDs constitute approximately one-third of the total spinal 

column length [37].  

 The superior and inferior CEPs are responsible for joint attachment and help 

distribute load evenly across the disc [38]. CEPs are essentially thin layers of cartilage 

that range from 0.6 to 1 mm in thickness [35]. The CEP covers the entirety of the NP but 

does not completely interface with the peripheral AF. Proteoglycans, type I and type II 

collagen have all been identified in the CEPs, with higher proportions of GAG compared 

to hydroxyproline residues [39]. Due to the avascularity of the disc, the tissue must rely 

on diffusion of small molecules such as glucose for survival [40]. Nutrient transport and 

waste removal are hindered processes since the CEPs act as barriers between the 

vertebral bone and the NP and AF. Blood vessels near the peripheral AF and through 
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vertebral bone are believed to be important routes for nutrient transport to cells within the 

IVD [41]. More specifically, disc health strictly relies on diffusion of nutrients from the 

vascular budding through the subchondral bone to the CEP and into nearby NP and AF 

tissues [42]. Diffusion can be influenced by factors including solute properties and tissue 

characteristics such as hydration or calcification [43]. IVD chondrocytes in the CEP are 

like hyaline cartilage because they are rounded and reside within a lacunar space 

surrounded by a pericellular matrix. The average density of chondrocytes within the CEP 

is 15 x 106 cells/cm3 [40].  

 The NP is a jelly-like viscoelastic tissue that transmits load radially when engaged 

under compression. NP tissue is roughly 70 – 90 % water and gradually decreases with 

age [44]. The ECM of the NP is approximately 50 % (dry wt.) proteoglycans and 25 % 

(dry wt.) collagen. The NP contains a loose network of Type II collagen fibers with 

interwoven proteoglycan molecules [45]. Type II collagen expression gradually declines 

moving radially outward from the center of the disc. The NP contains other forms of 

collagen such as types III, IV, and VI [46] as well as other non-collagenous proteins like 

elastin [47], versican [48], decorin [49,50], biglycan [49,50], fibronectin [51] and laminin 

[52], but mainly aggrecan [53,54].  

 Disc tissue is hypoxic, where oxygen concentration is highest at the periphery and 

lowest at the center of the NP [55]. Cells closet to the CEPs deplete the oxygen before it 

reaches cells in the NP. Additionally, lactate concentrations are highest at the center of 

the NP [55]. Due to the acidic environment within the NP, the proteoglycan content may 

decrease. NP cells are characteristically chondrocyte-like with varying roundness in 

shape and exist in discrete clusters. NP cells are highly vacuolated at an early age during 
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childhood and by adolescence these cells become less swollen and shift toward a more 

chondrocyte-like population [56,57]. The cytoplasm of NP cells tends to be larger and 

their shape is more complex compared to AF cells. The cell density of the nucleus 

pulposus is approximately 4 x 106 cells/cm3 [40].  

 The AF is composed of concentric lamellae of collagen fibers that are orientated 

at opposing angles. Approximately 50 % of the layers are discontinuous around the 

circumference of the disc [58]. Fiber bundle thickness tends to increase with increasing 

distance from the periphery of the disc. The average number of lamellae in the disc can 

range from 15 to 25. Fiber bundle orientation ranges from 65 to 70 ° and alternates 

direction with respect to the sagittal plane. Spaces between lamellae are filled with 

proteoglycan gel, which help bind the collagen fibers together [58]. The uniquely 

patterned structure provides increased resistance to tensile forces. Tensile properties of 

the AF are highly dependent on the radial location within the IVD, where the greatest 

strength is observed along the outer periphery [59,60].  

 Water content in AF tissue can range from 65 – 80 % and does not appear to 

change with age [44]. The inner and outer AF contain 60 – 70 % collagen (dry wt.) and 

25 % proteoglycans (dry wt.). Collagen fibers are composed of both type I and type II 

collagen fibers, which help maintain tensile properties of the IVD [61]. Type I collagen is 

highly expressed in the outer AF and gradually decreases moving radially inward towards 

the NP. Conversely, the least amount of type II collagen is found at the periphery and 

increases moving radially inward toward the NP. The outer AF also contains the most 

densely packed collagen fibers. Cells in the AF are large and oval-shaped with small 

nuclei packed with rich chromatin. The size of the cells become smaller and flattened 
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approaching the interior of the IVD [62]. The AF contains approximately 9 x 106 

cells/mL and resemble long, thin fibroblasts that align with the collagen fiber bundles 

[40]. 

 2.3 Intervertebral Disc Biomechanics 

 

 The NP, AF, and CEPs each play an important role in weight-bearing activities 

and biomechanics of the IVD joint. The human disc is considered a flexible, viscoelastic 

tissue structure that maintains stability and mechanical equilibrium within the functional 

spinal unit, while also permitting complex combinations of movement. Compressive 

loads are transferred from adjacent vertebral bodies to the IVD tissues. The CEPs act as 

mechanical mediators and uniformly distribute load across the entire disc [38]. Both the 

NP and AF work symbiotically to redirect compressive loads toward the vertebral bodies. 

Overall this mechanism of action helps to transmit loads along the vertebrae of the spinal 

column with the discs acting as shock absorbers. Discs are able to protect surrounding 

vertebrae  from excessive loading by slowly diverting compressive forces.     

 The AF participates in withstanding compressive forces exerted on the disc [63]. 

A healthy AF can tolerate large bulk forces because of its unique ECM structure that 

contains thick collagen bundles. These collagen proteins vary throughout the AF and lead 

to differences in mechanical properties, where the inner lamellae are less stiff compared 

to the outer lamellae [64]. This tissue can work independently and in unison with the NP 

core. If the NP were to be removed from the disc, the AF is still able to withstand the 

same axial forces [63]. However, prolonged weight-bearing can be detrimental to the 

joint. Sustained pressures can cause the AF tissue to buckle and the proteoglycan gel that 

adheres the lamellae together will no longer hold.  
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 The NP plays an important role in neutral zone mechanics and dampening forces 

applied to the disc [36]. Since the NP is mainly composed of water, it can be considered 

an incompressible semi-solid material. Therefore, when a compressive load is exerted on 

the NP, the tissue will primarily deform radially against the AF rather than change in 

volume. Radial expansion causes tension of the AF lamellae and an equal and opposite 

reactive force is reverted to the NP. Similarly, as the NP vertically deforms, the CEPs and 

trabecular bone bow into the superior and inferior vertebrae. If the CEPs did not exhibit 

this type of behavior, the disc would experience decreased height, increased radial 

bulging, and increased tensile strain on the AF [65,66]. Since the NP is completely 

encompassed, it will remain highly pressurized during compression. The NP will also 

migrate to the opposite side during bending motions. Segment stability relies on the pivot 

point of the joint, which is controlled by the NP’s ability to migrate during bending [67].   

Radial deformations are much smaller compared to vertical deformations and are 

indicative of a healthy hydrostatic intradiscal pressure [68].  

 Maintaining hydrostatic intradiscal pressure is a function of static and dynamic 

loading and key to healthy biomechanical performance of the IVD [69,70,71,72]. During 

daily activities such as standing, sitting, or walking, the disc is under continuous 

compression resulting in disc height loss [70,71,73]. Applying a compressive force will 

also increase both intradiscal pressure and disc diameter [74]. Other studies have shown 

that the swelling properties of the NP and AF are affected by loading history and 

externally applied stresses [75]. During compression, as water diffuses from the tissues to 

its surroundings, the disc will decrease in volume. Fluid loss is also influenced by the 

duration of the load and the disc’s biochemical composition [76]. Proteoglycans in the 
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NP tissue are primarily responsible for the retention of water. Monovalent ions are also 

retained in the disc tissues, which help draw water back into the disc and allow for 

swelling and disc height recovery [77]. Recovery of disc height after deformation is 

dependent on fluid exchange within the disc and the removal of load [37]. For example, 

when the human body lays supine during rest, the disc can relax and imbibe water from 

its surroundings [73,78,79]. This process of diffusion continues to repeat itself depending 

on the diurnal events of the day, so long as the disc maintains physiological intradiscal 

pressure.  

 While under compressive loading, an IVD joint can bend in multiple directions. 

IVDs allow for flexion and extension or the forward and backward bending of the spine 

[80]. The spine’s range of motion is greater in flexion compared to extension. Flexion 

causes compression and tension of the anterior and posterior AF, respectively, whereas 

extension causes the opposite mechanical effect [81]. Compressive and tensile forces 

cause a shift in the stress profiles throughout the disc [74]. Therefore, surrounding 

posterior ligaments and muscles maintain joint balance during flexion or extension by 

counteracting applied torques. Disc hydration influences the bending motion of the IVD. 

While laying supine during rest, water diffuses into the disc tissue and improvise the 

joint’s resistance to forward flexion. As the disc is slowly loaded throughout the day, 

resistance to forward flexion decreases and range of motion increases [82]. The disc’s 

bending mechanical properties exhibit time-dependent behavior. Both repetitive and 

sustained flexion can lead to reduced resistance to bending [83]. Rapid movements of 

flexion increase peak bending moments, while creep loading reduces the resistance to 

bending and increases the range of flexion. The disc is also able to bend laterally from 
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side to side. Lateral bending, flexion, and compression all cause shear strain on the disc 

tissue [84]. Lateral bending and flexion place the disc at a greater risk of injury, 

especially when both motions are combined.  

 The IVD also permits rotational range of motion in the form of torsion and lateral 

shear both forward and backward [80]. Torsion applies compressive and tensile forces on 

different regions of the disc resulting in a distribution of disc height in the anterior, 

posterior, and lateral sides [85]. Torsional strength is dependent on disc shape, annular 

integrity, state of degeneration, and loading rate [86]. Discs that are severely degenerated 

exhibit higher torsional rotation before failure compared to nondegenerate discs. Other 

surrounding structures also appear to fail before the disc yields to failure, suggesting that 

torsion alone does not cause severe mechanical trauma [87]. Approximately 35 % of the 

joint supplies resistance to the applied toque, while 65 % is attributed to the articular 

processes, capsules, ligaments [86]. Frequent twisting while lifting heavy objects can 

place a disc at a greater risk of mechanical injury. Torsion places an additional strain on 

the AF fiber bundles while under compression, thus tensile forces are compounded [88]. 

Lateral shearing is not one of the predominant motions of the spine but can still occur. 

Excessive shear loading can cause failure of posterior bony elements, ultimately leading 

to separation of the AF from the CEPs and vertebral slip [89]. 

 2.4 Lower Back Pain and Disc Degeneration 

 

 Lower back pain (LBP) is a broad term used to classify several diseases or 

conditions that plaque the lumbar region of the spine [5]. Pain can be associated with 

either the vertebrae or disc. For example, spinal stenosis is defined as the narrowing of 

the spinal canal or IVD foramen that causes compression of spinal nerves or nerve roots, 
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thus leading to LBP or neurogenic cramping [90]. Narrowing is linked to the 

hypertrophic cellular behavior of local bone or ligaments. Surgical intervention is highly 

dependent on the region of narrowing and can include procedures such as laminectomy or 

facetectomy. Another pain-related condition is spondylolisthesis or the movement of one 

vertebra slipping over an adjacent vertebra [91]. The motion of slipping can be either 

forward or backward and results from a degenerated IVD or facet joints. Other causes of 

spondylolisthesis include congenital abnormalities, lesion in the pars interartciularis, 

acute fractures in the bone such as the pedicles allowing for instability of the motion 

segment, bone disease, or aggressive resection of the facet joints or IVD. Treatment 

options include restriction of physical activities, repair of the pars defect, decompression, 

or fusion.  

 Physical injury can initiate a pathway that leads to degenerative disc disease 

(DDD) resulting in clinical symptoms of LBP and disability [92]. Disc tissue herniation is 

one of the most common medical issues associated with LBP in the lumbar region of the 

spine. Herniation can be classified by the subsequent stages of bulging, protrusion, 

extrusion, and sequestration. Initial depressurization of the NP and weakened AF fibers 

signal the beginnings of a bulging disc. Protrusion of disc material occurs when the NP 

tissue seeps through the damaged AF. NP tissue is classified as extruded once the tissue 

surpasses the outer AF boundary. If the NP becomes dislodged, fragmented from the 

inside of the disc, and impinges on nearby nerve roots or spinal cord, then the tissue is 

considered sequestered.    

 LBP is believed to be associated with the gradual degeneration of the IVD [93]. 

Healthy IVDs exhibit distinct regions of permeable CEP barriers, aligned AF lamellae, 
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and a hydrated NP core. However, the morphology and biochemistry of the CEP, NP, and 

AF dramatically change with age [94]. As the IVD progressively degenerates, disc 

nutrition and cellularity decline, which lead to alterations in ECM structure and 

biomechanical properties [95,96]. Degeneration is hastened by additional factors 

including calcification, shifts in metabolic activity, ECM degradation, and tissue 

dehydration [97]. The NP loses an appreciable amount of water, shrinks in volume, and 

can no longer maintain a hydrostatic swelling pressure while under compression (Figure 

7) [98]. Degenerated discs contain less water compared to normal discs of the same age 

and therefore do not maintain hydration when under load [99]. Consequently, the AF 

bears excessive loading resulting in abnormal tensile stretching and buckling of the 

lamellae. Therefore, dehydrated disc tissues bulge, decrease in disc height, and lose fluid 

more rapidly [100]. Additionally, osteophyte formations develop along the periphery of 

the disc near the vertebrae. Late-stage degeneration is characterized by a complete loss of 

NP tissue, irregular AF structure, disc thinning, and continuing fusion of adjacent 

vertebrae [98].    

 One of the primary causes of disc degeneration is thought to be associated with 

nutrition of IVD cells [41,42,43]. The disc tissue is large, avascular, and must rely on 

nearby blood vessels in the CEP and peripheral AF to supply vital nutrients and remove 

waste [101]. The CEP undergoes several biochemical changes in the matrix structure, 

gradually thins, and is eventually replaced by bone. Diffusion of nutrients is ultimately 

hindered by this mineralization process. Even if the blood supply remains undisturbed, 

nutrients may not reach the inner NP if the CEP calcifies [42,43]. Endplate calcification, 

mineral deposition, and decreased vascularity can contribute to the beginnings of IVD 
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degeneration [102,103]. Intense calcification of the endplate has been identified in 

scoliotic discs and influences the curvature and morphology of the spine [104]. 

Additional changes including sclerosis (hardening), fracture or vascularity can all be 

detected through magnetic resonance imaging (MRI) [105]. Biochemical changes such as 

increasing collagen content, but declining proteoglycan and water content are also signs 

of disc degeneration, which can lead to the formation of Schmorl’s nodes [35]. These 

nodes occur when the soft NP tissue protrudes through the weakened CEP and into 

adjacent vertebrae, thus negatively impacting disc biomechanics and furthering 

degeneration.  

 Calcification of the CEP hinders the diffusion of nutrients and waste to and from 

the NP. As a result, cells are unable to obtain nutrients to properly maintain regular 

metabolic activity. With a build-up of lactic acid in the NP, pH decreases, and cell 

necrosis occurs. An acidic pH has been found to decrease cellular proliferation and 

viability, while also upregulating the expression of pro-inflammatory cytokines and pain-

sensing factors [106]. Exposure to low pH or glucose concentrations have also shown to 

be detrimental to native NP cells in vitro [107]. Additionally, the rate of matrix synthesis 

by disc cells also declines when exposed to low pH and hypoxic conditions [108,109]. 

The combination of decreasing matrix synthesis and increasing expression of catabolic 

enzymes result in further degeneration of the disc. Degraded proteoglycan and decreased 

GAG content are the most identifiable biochemical changes in the degenerated IVD, 

predominantly in the NP [99]. Chondroitin sulfate and polyanion content decrease 

throughout the IVD with increasing age and corresponded with decreased water content 

and increased compressive stiffness [110]. Loss of proteoglycans leads to tissue 
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dehydration and ultimately depressurization of the NP [76]. Aside from the structural 

breakdown and loss of proteoglycans and GAGs in the NP, collagen protein expression 

shifts with degeneration. The overall quantity of collagen changes very little with 

degeneration, however the type and distribution can vary. Increased type I collagen and 

denatured type II collagen in the NP have been detected and identified in degenerated 

human lumbar IVDs [111,112].  

 The mechanical role of the AF becomes more demanding, once the NP has lost its 

ability to resist compressive loading. Effects of age-related degenerative changes cause a 

decline in intradiscal pressure, thus shifting compressive stress distributions from the 

central NP to the peripheral AF in vitro [113]. Excessive axial strains are distributed 

along the AF in severely degenerated discs, most likely resulting from the 

depressurization of the NP [114]. Changes in loading pattern were also detected in 

patients with degenerated discs who experienced discogenic pain, indicated significantly 

lower osmotic pressure in the NP, and exhibited a physiologically wider posterolateral 

annulus [115]. Abnormal loading along the AF can cause changes in the biochemical 

composition and structure of the native tissue. Although proteoglycans begin to degrade, 

the presence of collagen within the lamellar structures remains relatively constant [76]. 

As the AF gradually degenerates, remodeling of the collagen network is only partially 

retained due to changes in collagen fiber orientation, proportions of expressed collagen 

proteins, and collagen crosslinking [116,117,118]. 

 Morphological alterations in the AF ultimately lead to inferior mechanical 

properties. Tensile properties are site dependent and weakened by the inadequately 

remodeled collagen network [119]. The greatest reductions in tensile stiffness and 
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strength of severely degenerated human AF tissue were observed in the outer periphery 

[120]. Decreased tensile properties could potentially be linked to the lack of proper fiber 

reorientation while under loading [121]. Excessive mechanical loading disrupts the disc’s 

structure and tearing in the AF is considered irreversible [122]. Radial, transverse, and 

concentric tearing of the AF can occur, which has been diagnosed using magnetic 

resonance imaging techniques [123]. Radial ruptures in aged human discs are 

predominantly found in the posterior AF and most frequently occur in the lowest two 

levels of the lumbar region [62]. One study concluded that the type of AF tearing was 

linked to either mechanical trauma or natural nuclear degeneration and may be associated 

with discogenic LBP [124]. It’s important to note that alterations in the CEP, nuclear 

degeneration and annular disorganization progress in tandem and supersede tear and cleft 

formation in the AF [125].  

 Healthy IVDs contain degradative enzymes to breakdown matrix and allow for 

the synthesis of new proteins. On the other hand, degenerated IVDs contain elevated 

levels of enzymes compared to healthy IVDs.  Proteolytic enzymes that exist in the IVD 

include matrix metalloproteinase (MMP) and aggrecanse, also known as a disintegrin and 

metalloproteinase with thrombospondin motif (ADAMTS) [126]. MMPs are classified as 

calcium-dependent zinc-containing endopeptidases. The most commonly active MMPs 

that become upregulated in the degenerated IVD are MMP-1 (collagenase), MMP-2 

(gelatinase), and MMP-3 (stromelysin) [127,128]. Collagenase predominantly cleaves 

fibrillar collagens. Gelatinase degrades any denatured collagens, laminins, and gelatins. 

Stromelysin can breakdown not only collagens and gelatins, but proteoglycans as well. 

The mechanism in which MMPs catabolize collagen is still known, but several protein 
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domains can unwind triple helices, cleave triple helices, and cleave collagen polypeptide 

chains [129]. ADAMTSs are classified as multi-domain matrix-associated zinc 

metalloendopeptidases. The most commonly active ADAMTSs that become upregulated 

in the degenerated IVD include ADAMTS-1, -4, -5, -7, -9, -12, and -15 

[130,131,132,133,134]. Aggrecanses can degrade multiple domains along the aggrecan 

core protein, thus leaving fragments of the proteoglycan within the disc [135]. Other than 

the presence of proteolytic enzymes, pro-inflammatory cytokines such as tumor necrosis 

factor-α (TNF-α) and interleukin-1β (IL-β) are believed to be involved in the progression 

of DDD [136]. These cytokines play an important role in the natural resolution of 

herniated tissue, however long-term exposure can negatively impact cell survival and 

functionality as well as promote a catabolic expression profile. 

2.5 Strategies for Treating Lower Back Pain 

2.5.1 Conservative treatments. A conservative strategy is first implemented 

when treating patients showing signs of acute LBP or early stages of disc degeneration. 

Physicians will typically recommend a combination of physical therapy and medication 

to combat pain, depending on the severity of symptoms. A variety of physical therapies 

are available which include, but are not limited to yoga, inversion, and aquatic exercise. 

Common forms of medication such as general analgesics, non-steroidal anti-

inflammatory drugs (NSAIDs), muscle relaxants and opioids are routinely prescribed. 

Epidural steroid injections may also be administered to alleviate pain.   

 Yoga is a physical activity that entails performing postures, breathing exercises, 

and meditation. If properly and regularly practiced, yoga can impart many beneficial 

effects for those suffering with LBP. Patients will often notice an immediate 
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improvement in pain intensity and pain-related disability [137,138,139,140]. An 

individual’s quality of life (QOL) can also vastly improve after performing yoga exercise 

therapy [139,140]. Pain medication usage can be reduced after 16 weeks of practice 

[137]. Improvements in sleeping patterns and reduced stress, anxiety, and depression 

have also been reported [139]. While yoga may improve a patient’s psychological and 

neurological health, other physical benefits have been reported in literature. Flexion and 

extension of the back are involved in many poses and can increase spinal flexibility after 

7 days [138,139]. Yoga can strengthen surrounding muscle tissues, while also enhancing 

respiratory and cardiovascular function [139]. Yoga can decrease the number of absences 

from work and is likely to be a cost-effective therapy for treating LBP and other 

musculoskeletal conditions [140]. This type of physical therapy is also associated with 

maintaining proper tissue hydration and preventing premature degeneration of the IVDs. 

Based on MRI readings, those that regularly practiced yoga for more than 10 years 

showed significantly less DDD in both the cervical and lumbar regions of the spine 

compared to non-practicing individuals [141]. 

 Another commonly prescribed physical therapy is aquatic exercise. This type of 

exercise focuses on stretching, walking, and strengthening back, leg, and abdominal 

muscles while in a pool. The aquatic environment counteracts gravitational pull on the 

human body by providing a buoyancy force, thus allowing for low-impact exercise and 

minimizing pressure on joints. Ariyoshi et al. reported that 90 % of patients felt their 

physical performance improved after 6 months of participation in the program and had 

less LBP symptoms [142]. Additionally, individuals who practiced two or more days per 

week showed a significant improvement in their physical performance compared to those 
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who only exercised once per week. Like yoga, aquatic exercise can reduce LBP and 

disability, while improving health-related QOL [143,144]. Aquatic exercise can also help 

patients recover and gain strength after undergoing back surgery [145]. Increasing 

strength appears to correlate well with other observations such as decreasing body mass 

index, body fat percentage, waist to hip ratio, and increasing trunk muscle mass [144]. 

Lastly, an overwhelming number of studies have reported increased strength in 

individuals who performed aquatic exercises multiple times per week for several weeks 

[142,143,144,145]. 

 Inversion is another type of physical therapy that does not require any bodily 

movement. Gravity-facilitated traction, otherwise known as inversion, has been found to 

increase separation between the posterior, anterior, and foraminal elements of the IVD 

[146,147,148]. Inversion can counteract the constant compressive forces that are exerted 

on the disc and may play a role in relieving LBP. A patient is simply held and positioned 

upside down to stretch the spine. Intradiscal pressure is subsequently reduced as a result 

of traction. While in the inverted position, a patient will experience decreased heart rate 

and increased blood pressure [148]. However, these physiological parameters remain 

relatively unchanged before and after inversion [147, 148]. Electromyography (EMG) 

can also be measured to assess neuronal activity of skeletal muscle cells before and after 

inversion. One study found that traction reduced EMG activity indicating relaxed lower 

back muscle motor function and less LBP [147]. Inversion therapy can improve a 

patient’s flexibility and significantly increase range of motion in flexion 

[147,149].Additionally, inversion has been found to reduce the mass size of herniated 

disc tissue and can improve the odds of avoiding surgery for treating lumbar disc diseases 
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[149,150]. However, it is important to note that inversion may not be suitable for all 

patients as it may cause persistent headaches or blurred vision due to increase intracranial 

pressure [148].     

 One of the main goals of pain treatment for acute LBP is to stay as active as 

possible. During the chronic stages, pharmacological intervention is crucial in providing 

pain relief and improving physical function. If severely disabled with chronic LBP, 

individuals will discontinue exercising. Patients are typically prescribed a variety of 

medications to combat LBP depending on the severity of their symptoms or dysfunction, 

preferences, contraindications, and side effects. Prescribed medications include 

analgesics, nonsteroidal anti-inflammatory drugs (NSAIDs), muscle relaxants and 

opioids.   

 NSAIDs such as aspirin and ibuprofen are commonly prescribed to patients 

suffering from chronic LBP. Arachidonic acid, a polyunsaturated omega-6 fatty acid 

synthesized in cells, enters the cyclooxygenase (COX) or lipoxygenase pathways to 

produce prostaglandins. Prostaglandins are cyclic, fatty acid molecules that are 

implicated in many biological functions like inflammatory processes [151]. NSAIDs 

subdue the immune system and inhibit the synthesis of prostaglandins by selectively 

binding to COX-1 or COX-2 [152]. Several types of NSAIDs have been investigated to 

treat LBP which include, but are not limited to valdecoxib, etoricoxib, and piroxicam 

[153,154,155]. Valdecoxib, a COX-2 specific inhibitor, provided rapid relief within 1 

week and sustained relief for a total of 4 weeks [153]. Improvement in function and 

decreased disability were observed, yet the number of adverse effects did appear to be 

significantly higher for those receiving treatment compared to the placebo group. 
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Etoricoxib, a COX-2 specific inhibitor, was investigated for its efficacy in treating LBP 

and disability in a 3-month trial [154]. Low and high dosages were both effective relative 

to the placebo group. Significant relief of symptoms and disability were observed after 

the first week of treatment, maximized after 4 weeks, and maintained for 3 months. A 

patch containing piroxicam, a non-selective COX inhibitor, can be applied to the lower 

lumbar and deliver a continuous dosage of NSAID [155]. After 8 days, pain was reduced 

by approximately 40 %, while the placebo patch group reduced pain by nearly 25 %.  

 Muscle relaxants are also prescribed to patients to decrease muscle function and 

alleviate symptoms of pain and spasms. One study reported that nearly 50 % of patients 

will utilize muscle relaxants for acute LBP, yet this type of medication alone does not 

appear to be associated with a faster functional recovery [156]. Muscle relaxants appear 

to be more effective when paired with NSAIDs. In terms of pain relief, patients taking 

both types of medication had the best outcomes after 1 week [157]. Patients that report 

more severe symptoms or dysfunctions are more likely to receive opioids. Prior exposure 

to taking opioid medications for chronic LBP increases both opioid and non-opioid 

medication use compared to first time users [158]. Prior opioid users were also found to 

have scored higher with respect to mental health disorders, chronic pain, and insomnia, 

indicating detrimental side effects of the medication. In a survey administered to U.S. 

adults, it was found that opioids are the most commonly prescribed pain medication for 

chronic LBP and lead to addiction [159]. Opioid misuse continues to be a major public 

health crisis in the United States. Aside from addiction, prolonged use of NSAIDs or 

opioids can lead to extensive kidney, liver, gastrointestinal, or central nervous systems 

problems. There is also increasing evidence that opioids are no more effective than non-
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opioid medications when treating either acute or chronic LBP [160]. Psychological 

factors should also be considered when pursuing a pharmacological treatment. Many 

studies showed improvements in pain for control groups, suggesting that the placebo 

effect plays a role in treatment strategies.   

 Corticosteroids are a class of organic molecular compounds that suppress the 

immune system and provide an anti-inflammatory effect. Patients can receive these 

corticosteroid injections for a variety of health issues including bulging, herniation, 

stenosis, spondylolisthesis, or general degeneration. Those suffering from LBP caused by 

nerve root irritation can benefit from epidural steroid injections. Patients experiencing 

acute radiculopathy respond better to this type of treatment compared to those with 

chronic symptoms [161]. Upon receiving a steroid injection, more than 70 % of patients 

will experience immediate pain relief within one week [162,163,164,165]. However, less 

than half of these individuals will experience lasting pain relief ranging from six months 

to one year [162,163,165]. Multiple injections tend to provide pain relief, but some 

patients may report no improvement and will need to undergo decompression or spinal 

fusion surgery [163,164,165]. Epidural steroid injections can end the need for pain 

medication [163]. With regards to radicular pain due to IVD herniation, a long-term 

follow-up revealed that a majority of patients will still experience recurring symptoms 

within five years after treatment with steroids [165]. Some studies have compared steroid 

injections against saline or water injections. Vad et al. compared transforaminal epidural 

steroid injections to saline injections when treating lumbar radiculopathy [166]. After 

more than one year of treatment, the use of steroids has a higher rate of clinical success 

(84 %) compared to saline (48 %). Injecting water or saline may provide similar pain 
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relief yet does not act as quickly as steroids [164]. Saline injections may flush pain-

related substances out of the disc and create a guided path through herniated tissue into 

the epidural space, allowing phagocytes to clean up debris, damaged tissue, or dead cells 

hence reducing pain [167]. Steroid injections are not a cure for LBP and solely serve to 

mitigate and alleviate pain. 

2.5.2 Discectomy. When pharmacological intervention does not prove to be 

successful and disc herniation occurs, surgery may be required. Herniated disc tissue 

compresses nearby nerve roots and can cause radicular pain. Discectomy is a surgical 

technique that involves removing imposing disc tissue and alleviates pressure on 

surrounding nerve processes [168]. One of the first approaches to performing standard 

lumbar open discectomy (OD) was described by Love in 1939 [169]. First, a large 

unilateral 5-cm incision is created and the intertransverse space is exposed. Then, the 

intertransverse fascia is removed and both herniated disc tissue and nerve root are 

exposed. The hernia is excised or ablated, and the incision is closed.  

 The surgical technique of performing discectomy has dramatically improved by 

decreasing the size of the incision to gain access to the herniated disc, minimizing trauma 

to back muscle tissue, and improving field of vision. A minimally invasive technique of 

lumbar microdiscectomy (MD) was described by Caspar [170] and Williams [171] in 

1977. The disc space is accessed through a smaller 3-cm incision and a guide wire is 

inserted to locate the herniated disc under fluoroscopy. A dilator is inserted over the 

guide wire to expand the viewing area. A microscope is used to illuminate the disc space 

and remove herniated tissue. Then, in 1988, a percutaneous endoscopic discectomy 

(PED) was performed by Kambin and Sampson [172]. The endoscope contains a canal 
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that allows for the introduction of forceps and an irrigation system to rinse away blood. In 

1997, microendoscopic discectomy (MED) was employed by Foley and Smith [173] to 

remove all types of disc herniations. A 2-cm incision is made, and a series of tubular 

retractors are used to push apart the muscle tissue to gain a clear field of vision of the 

herniated tissue using a light source.  

 Due to the significant advancements in discectomy, a few reviews have sought to 

identify a superior technique amongst the different approaches. He et al. [174] compared 

the outcomes of studies that performed OD or MED on patients with lumbar disc 

herniation and found no significant differences in visual analog scale (VAS) for pain, 

Oswestry Disability Index (ODI), or complications between both groups. However, MED 

was associated with less blood loss, shorter length of hospital stays, and longer operation 

times. Ruan et al. [175] compared MD to PED and could not identify significant 

differences in terms of functional outcomes, complications, or reoperation rates, although 

PED was associated with shorter operation times and length of hospital stay. Zhang et al. 

[176] also found no significant differences in leg pain improvement, functional recovery, 

or incidence of complications between individuals that received MD or PED. However, 

PED was superior to MD in terms of length of hospital stay. Rasouli et al. [177] 

compared OD and MD to other minimally invasive techniques of interlaminar or 

transforaminal discectomy, transmuscular tubular MD, and automated PED, but findings 

weren’t profound. There were no clear superior differences between techniques with 

respect to functional disability or persistence of motor or sensory neurological deficits. 

Minimally invasive strategies in performing discectomy may be advantageous in terms of 
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a lower risk of surgical site infection and shorter hospital stays, but each technique still 

provides the same level of pain relief. 

 Since the 1980s, rates for performing lumbar discectomy in the United States 

have continued to increase [178,179]. Even though discectomy provides immediate pain 

relief, the procedure is associated with inferior, long-term consequences. Once the 

offending tissue is removed, the biomechanics of the afflicted disc and adjacent segments 

are altered [180]. Disc degeneration is further hastened [181,182], and scar tissue can 

form near the epidural space and nerve roots, thus causing recurrent radicular pain [183]. 

If a partial discectomy is performed, residual tissue can herniate once more requiring 

revision surgery. On a national scale, the rate of revision discectomy after primary 

discectomy has been estimated to range from 5.1 % to 7.9 % [184,185,186]. Additionally, 

patients who had received a lumbar discectomy are approximately three times more likely 

to undergo a lumbar fusion compared to patients who had a lumbar diagnosis but did not 

undergo discectomy [187]. 

2.5.3 Spinal fusions. During advanced stages of degeneration, a spinal fusion is 

performed when the disc tissue can no longer be repaired, or the vertebral bodies become 

damaged. Spinal fusion aims to eliminate pain associated with degenerated discs by 

removing the diseased tissue, decompressing nerves, and restrict segment movement. 

Lumbar interbody fusion (LIF) was first described by Cloward et al. in 1953 [188]. 

Today, LIF is performed through anterior, posterior, transformainal, lateral and oblique 

approaches [189]. First, an incision is made through tissue to reach the spinal segment. 

The joint is decompressed, and a laminectomy may be performed to remove arthritic 

bone. Once the disc space is accessible, herniated disc tissue is excised. A titanium or 
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polyether ether ketone (PEEK) cage containing natural or synthetic bone graft material is 

inserted between the vertebral bodies and the joint is stabilized using plates, rods, and 

screws [190]. The graft promotes the bridging of the superior and inferior bone together.  

 Biologically-derived bone grafts are isolated from different sources and each have 

their own advantages, disadvantages, and limitations on bone healing for spinal fusion 

[191,192,193]. An autograft is bone harvested from the iliac crest of the hip, distal radius, 

or tibia and implanted into another site within the same individual [191,192]. Autologous 

grafts are advantageous in that they lack immunogenicity or disease transmission, contain 

living cells and osteogenic proteins that promote bone formation, and are efficient 

mechanical structures that support implanted devices. One major disadvantage of using 

an autograft is performing additional surgery resulting in increased operation time, blood 

loss, and risk of infection. Bone tissue is also limited in supply and donor site pain and 

morbidity are common [191,192]. Allografts are obtained from cadavers or living donors 

and implanted into an individual of the same species [191,193]. Allogeneic material can 

be fresh or preserved in tissue banks, cortical or cancellous bone, and vary in shape or 

form. Allografts are readily available and avoid the need to sacrifice host tissue, however 

they have limited osteogenic properties, lack viable cells, may induce an immune 

response, and carry the risk of transmitting bacterial infections or viral diseases 

[191,193]. Xenografts are obtained from the donor of a particular species and implanted 

into a recipient of a different species [191,193]. Xenogeneic material could be potentially 

harvested from an unlimited number of sources but pose a more serious threat to the 

transmission of diseases and immune response. Naturally-derived polymers such as 

collagen, elastin, chitosan, alginate, and cellulose or synthetic compounds such as 
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calcium sulfate, calcium phosphate ceramics, and bioactive glass have also been 

commonly used as bone graft substitutes [191,193].     

 Many studies have compared the different approaches in performing LIF surgery 

in order to determine if there is a superior technique. In 1997, Hacker et al. [194] 

compared the clinical outcomes of patients who underwent anterior or posterior LIF. A 

higher fusion rate was observed for the posterior LIF group compared to the anterior 

approach. In addition, blood loss, operation time, hospital stay, and total costs were all 

significantly lower for posterior compared to anterior LIF. Over the years, surgical 

technique was improved and differences in these clinical outcomes became minimal.  

Kim et al. [195] compared the clinical outcomes of patients who underwent 

transforaminal or anterior LIF for treatment of spondylolisthesis. Overall, VAS and ODI 

scores were not significantly different. At the L5-S1 level, anterior was superior to 

transformainal LIF in restoring disc height, lumbar lordosis, and sacral slope. Similar 

radiographic evidence was reported in a previous study by Hsieh et al. [196]. Other 

studies by Humphreys et al. [197] and Park et al. [198] reported a higher complication 

rate for patients receiving posterior compared to transformainal LIF. Audat et al. [199] 

and Sakeb et al. [200] reported similar findings but observed no significant differences in 

fusion rates between posterior and transformainal LIF. Lateral LIF is relatively new and 

may provide several advantages over other approaches, which include preserving 

posterior or anterior ligamentous structures, reduced risk of vascular injuries, dural 

tearing, or perioperative injections [201]. Lateral LIF also appears to equally improve 

sagittal contour compared to other approaches and is superior to the posterior approach 

with respect to disc height restoration [202]. Clinical results for the oblique technique are 
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also promising and potentially present several advantages over other LIF approaches but 

require further investigation [203].  

Although spinal fusion is an accepted approach to treating degenerated joints or 

herniated discs, LIF procedures are not always successful and may produce inferior 

outcomes resulting in revision surgeries. One of the most significant issues associated 

with LIF is the increased risk of adjacent segment disease (ASD). ASD is the accelerated 

degeneration of the superior or inferior IVDs relative to the fused joint due to stiffness of 

the interbody fixtures and bone graft cage. Lee et al. [204] performed a retrospective 

study in which risk factors associated with ASD after lumbar fusion were investigated. 

Out of 1,069 patients who underwent fusion, 28 (2.62 %) required revision surgery 

because of ASD. Facet degeneration was found to be a significant factor and the 

incidence of proximal ASD was significantly higher compared to distal ASD. Heo et al. 

[205] also confirmed that facet degeneration increased the risk of ASD, as well as other 

factors including low segmental lordosis and laminectomy-treated isthmic 

spondylolisthesis. Additionally, authors concluded that there is an approximately 25 % 

greater risk of ASD following 10 years post-surgery. Pseudoarthrosis, also known as the 

improper healing of bone across the spinal motion segment due to the misalignment of 

the vertebra, can also occur. Suh et al. [206] performed a retrospective study on patients 

receiving posterior LIF revision surgery due to complications associated with ASD or 

pseudoarthrosis. Fusion rates after revision surgery were 71 % and 95 % successful for 

the pseudoarthrosis and ASD groups, respectively. This study demonstrated that 

pseudoarthrosis can be a tenacious clinical symptom to resolve.  
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 Additional clinical issues have been reported to arise after performing LIF 

surgery. Since LIF requires removing the IVD, joint flexibility is lost and range of motion 

decreases [207]. Wang et al. [208] performed a retrospective study and determined that 

persistent LBP had an incidence rate of 7.2 %. Bai et al. [209] reported that 3.8 % of 

patients developed contralateral neurological symptoms after performing LIF. Symptoms 

of numbness or pain may be linked to the malposition, loosening, and migration of the 

bone graft cage or metal fixtures, and subsequent mechanical compression and damage to 

surrounding nerves. In fact, bone graft migration continues to be a problem and has been 

reported in several cases over the past 30 years [210,211,212], which can lead to 

perforation of the colon or misdirected bone formation. Implant subsidence is yet another 

inferior clinical outcome [213]. The metal interbody cage needs to maintain space 

between vertebra to allow for bone fusion and subsequent foraminal decompression. 

2.5.4 Total disc replacements. One alternative to spinal fusion is total disc 

replacement (TDR). This type of procedure aims to conserve the natural biomechanics of 

the joint by replacing the entire diseased lumbar disc with an artificial disc prosthesis 

[214]. Compared to LIF, TDR can restore physiological motion, balance, and curvature 

of the lumbar spine by mimicking the mechanical properties of the native NP and AF. 

Prosthetic devices must bond to the adjacent vertebra, restore disc height, accommodate 

high loads without breaking, reduce wear under fatigue, and enable flexible motion. Due 

to the numerous inventions of TDR devices, only FDA approved implants will be 

discussed hereon [214].  

 One of the first designed lumbar TDRs was the SB Charité artificial disc (DePuy 

Spine, Raynham, MA) (Figure 8A). In 1982, Schellnack and Büttner-Janz developed the 
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SB Charité I in Berlin, Germany at the Charité Hospital [215]. Following mechanical 

testing, the artificial TDR was implanted into patients. In 1985, the TDR underwent axial 

migration, which led to the development of the SB Charité II. The stainless-steel 

endplates were enlarged to improve contact with the vertebral bodies. However, the 

endplates were prone to fractures and subsidence. In 1987, Waldemar Link marketed the 

SB Charité III outside of the US and DePuy Spine acquired the product rights in 2004 

[215]. The current design of the TDR contains an ultra-high molecular weight 

polyethylene core positioned between two metal endplates [216]. The core is 

unconstrained and allowed to freely move during bending. The endplates are composed 

of a cobalt chromium molybdenum alloy with three anchoring teeth positioned on both 

the dorsal and ventral side of each endplate. To promote the mineralized connection 

between the vertebra and device, the endplate surfaces are sprayed with a porous coating 

of titanium and calcium phosphate [216]. The SB Charité III was approved by the US 

FDA in 2004 and introduced to the US market in 2006.  

 The SB Charité III has a long history of use in the clinical setting. One of the first 

clinical experiences with the TDR was reported by Griffith et al. [217]. The TDR was 

implanted into 93 patients suffering from DDD. After one year, patients noted a 

significant improvement in pain intensity, walking distance, and lumbar mobility. Only 6 

patients exhibited signs of device failure, migration, or dislocation. Cinotti et al. [218] 

also reported short-term results of 46 patients who received TDR after a two-year follow 

up period. Many patients were satisfied with the procedure and experienced pain relief; 

however, seven patients underwent posterolateral fusion without TDR removal and two 

patients required removal of the prosthesis.  
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Long-term evaluations are essential in determining the efficacy of TDR devices in 

resolving DDD and LBP. Findings from a 10-year follow-up of 100 patients who 

received the SB Charité III were first reported by Lemaire et al. [219]. Clinical outcomes 

were reported as “excellent” or “good” by 90 % of patients and 91.5 % returned to work. 

ASD and facet joint degeneration were observed in 2 % and 11 % of patients, 

respectively. Another 10-year follow-up retrospective study was performed on 106 

patients [220]. Clinical outcomes were reported as either “excellent” or “good” by 82.1 % 

of patients and 89.6 % returned to work. Eight patients required fusion and other minor 

complications occurred including facet arthrosis (4.6 %), subsidence (2.8 %), ASD (2.8 

%), and implant dislocation (1.9 %). Putzier et al. [221] provided outcomes after 17 years 

for 53 patients implanted with the SB Charité types I - III. Interestingly, 32 patients (60 

%) exhibited signs of spontaneous ankylosis or joint stiffening due to bone fusion, 

regardless of implant type.  

Results from these earlier clinical trials are polarizing. Ultimately, long-term 

outcomes for TDR should be compared to spinal fusion. Therefore, Guyer et al. [222] 

compared the use of the SB Charité III to anterior LIF and published findings from a 

prospective, randomized, multicenter FDA investigational device exemption study. 

Authors concluded that both procedures produced similar clinical outcomes. Patients that 

received a TDR were statistically less disabled and more likely to return to full-time 

employment. Recently published findings from China [223] and Australia [224] support 

the notion that TDR provides satisfactory clinical results, reduce pain and disability, 

maintain intradiscal height at both surgical and adjacent levels, and potentially reduces 

the risk of ASD.   
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Another example of a lumbar TDR is the ProDisc (Synthesis Spine, West Chester, 

PA). The first prototype of the ProDisc was developed in the 1980s in France. The 

ProDisc has two titanium endplates with notched keels to allow for mechanical 

interlocking with the vertebra. The surfaces of the endplates are sprayed with titanium to 

allow for bony ingrowth and attachment. An ultra-high molecular weight polyethylene 

core is inserted between the two plates, which permits motion. ProDisc I was first 

implanted into a total of 64 patients from 1990 to 1993 and proved to be a safe and 

effective treatment for symptomatic DDD [225,226]. Since then, the ProDisc I evolved in 

design resulting in the production of ProDisc II and ProDisc-L (Figure 8B). The endplate 

material for the ProDisc-L was changed to a cobalt chromium molybdenum alloy. Unlike 

the free-floating core of the SB Charité III, the ProDisc-L contains a fixed core that 

permits partial movement which minimizes the risk of subsidence or fracturing [227].  

 Preliminary clinical studies compared the efficacy of TDR using the ProDisc and 

spinal fusion to treat DDD. Delamarter et al. [228] found that patients that received TDR 

reported significantly less pain and disability compared to fusion, however these 

differences were insignificant after 6 months. Zigler et al. [229] found that implantation 

of the ProDiscII was superior to spinal fusion in that the procedure allowed for quicker 

recovery times and decreased hospital stay, operation time, and intraoperative blood loss. 

Both studies were able to conclude that TDR was more effective in preserving motion 

compared to spinal fusion. 

The ProDisc-L was US FDA approved in 2006 and several clinical trials were 

performed thereafter. One clinical trial performed in Plano, Texas showed excellent 

outcomes using the ProDisc-L after 2 and 5 years [230,231]. TDR was considered non-
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inferior to fusion and both treatments observed significant improvements in disability and 

decreased pain scores. None of the devices developed spontaneous ankylosis and segment 

range of motion remained within the normal physiological range. Many FDA trials 

reported mixed results after comparing the outcomes of single-level to multiple-level 

TDR in patients. The ProDisc-L has also been implanted at two adjacent levels in patients 

and showed similar success as single-level replacement TDR [232,233,234]. Multiple-

level TDR preserves motion and can provide similar levels of pain relief and decreased 

disability compared to single-level TDR. Other studies have reported that multiple-level 

TDR is inferior to single-level TDR due to significantly higher complication rates, even 

though similar trends in functional scores were observed [235,236]. 

 The activL Artificial Disc (Aesculap Implant Systems, Breinigsville, PA) is a 

next-generation motion-preserving TDR that was approved by the US FDA in 2015 

(Figure 8C) [237]. The endplates are composed of a cobalt chromium alloy coated with 

titanium and dicalcium phosphate. There are spikes that protrude perpendicular to the 

endplates and allow for fixation to the vertebra. The endplates are designed in a variety of 

sizes and lordotic angles to accommodate anatomical differences in patients. The core is 

composed of an ultra-high molecular weight polyethylene that is available in different 

height sizes [237]. Compared to SB Charité and ProDisc-L, the activL was the only TDR 

that provided an ideal implant size for 87 % of patients in a recent clinical trial [238].  

 ActivL has been mechanically tested in vitro [237]. While under axial 

compression, a maximum shear force of 1,259 ± 60 N caused activL to dislodge from a 

simulated dense bone substrate. The activL exhibited enough resistance to endplate 

expulsion based on the maximum shear force of 400 N, which is encountered in the 
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lumbar spine [239]. The maximum observed subsidence load into the simulated dense 

bone substrate was 5,761 ± 391 N, well above the accepted in vivo axial force of 3,400 N 

[240]. ActivL also surpassed accepted values of static and dynamic compressive shear 

based on in vivo loads [240,241]. The maximum observed displacement after exposure to 

creep-like conditions of 3,000 N cyclic loading was 0.5 mm, which are below the diurnal 

changes exhibited by the IVD of 1.5 mm [242]. The average cumulative wear produced 

by the activL after 1 million cycles of fatigue was 2.7 mg of polyethylene debris.  

Due to the recent US FDA approval, the activL has very few reported outcomes 

from clinical trials. Garcia et al. [238] assessed the use of the activL in patients with 

symptomatic DDD. Patients in the control group received either the ProDisc-L or SB 

Charité III. Both treatment groups reported improved mean back pain severity and 

decreased ODI scores, but no significant differences were detected. Patient satisfaction 

was over 90 % for both treatment groups and those that received activL TDRs returned to 

work approximately 1 month sooner versus the control group. The number of device-

related adverse effects and surgical reinterventions were not significantly different 

between both groups. ActivL is considered a safe and effective device for treatment of 

DDD compared to other FDA approved TDRs. 

2.5.5 Nucleus pulposus replacements. Early intervention and treatment of 

degenerative discs can avoid the need for invasive surgeries of discectomy, LIF, or TDR. 

The gradual breakdown of NP tissue significantly contributes to disc degeneration. 

Therefore, much research has led to the development of acellular devices for replacing 

NP tissue [243,244,245,246,247]. There are several requirements that must be met for the 

implant to successfully restore mechanical function to the degenerated disc. The 
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replacement must have similar mechanical properties to the native NP. Exerted 

compressive stresses produced by the device should not exceed the failure strength of the 

adjacent CEPs, otherwise subsidence may occur. The device must be well integrated with 

the surrounding CEPs and AF to promote proper load transfer, thus minimizing device 

migration or extrusion. Implant durability and fatigue life are important to evaluate as the 

disc undergoes cycles of diurnal loading. The device should generate as little material 

debris as possible and should not elicit a host immune response. NP replacement devices 

can be classified as either mechanical or elastomeric in nature. Mechanical devices are 

further subdivided into single or multiple component devices. Elastomeric devices are 

naturally-derived hydrogels or synthetic compounds that are either injected or pre-formed 

and inserted into the disc space.     

 The NuBac (Pioneer Surgical Technology, Marquette, MI) is a two-piece, 

unconstrained device composed entirely of polyether ether ketone (PEEK), and designed 

with an internal articulation and endplates that prevent movement inside the disc (Figure 

9A). The rigid implant was biomechanically assessed in a human cadaver IVDs under 

compression, torsion, and bending [248]. Disc height was restored and there was no 

statistical difference in range of motion between the implant and intact conditions. One 

out of six implants failed due to specimen failure and a few showed signs of slight 

migration. Regardless, all constructs completed 100,000 cycles without extruding or 

causing damage to the CEPs. Devices were proven to be biodurable after exposure to 

gamma irradiation, accelerated aging using oxygen, and physiological saline solution at 

supraphysiological temperatures [247]. The biocompatibility of implants was also 

evaluated in a rabbit model and PEEK debris elicited a mild immune response compared 
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to surgical controls [249]. Bao et al. reported excellent device biocompatibility, 

restoration of disc height and range of motion in a human cadaver disc, and no adverse or 

local or systematic tissue reaction in a baboon model [250]. Furthermore, 39 patients 

were implanted with the device and examined after 2 years [251]. No complications arose 

and a significant decrease in ODI and VAS scores were observed.  

 Another type of rigid implant designed for NP replacement is Regain (EBI 

Medical Systems, Parsippany, NJ). Regain is a one-piece device made of a graphite 

compound coated with pyrolytic carbon (Figure 9B). The geometric profile of the Regain 

was optimized using an electromagnetic motion tracking system [243]. Upon insertion 

into a spinal motion segment, changes in the implant position during dynamic bending 

cycles were recorded. Regain has convex outer surfaces in order to conform to the shape 

of the vertebral bodies [246].  

 The prosthetic disc nucleus (PDN) is an example of a pre-formed synthetic 

hydrogel, which has a long-standing clinical history [252,253,254]. The PDN 

(RayMedica, Minnetonka, MN) is a hydrogel pellet composed of polyacrylonitrile and 

polyacrylamide encased in a polyethylene jacket (Figure 9C) [253]. This device is 

implanted in a dehydrated state, absorbs 80 % of its weight in water, and maintains a 

swelling pressure within the disc. The polyethylene jacket prevents excessive swelling 

that can cause damage to the CEPs and minimizes horizontal spreading allowing for disc 

height retention when compressed axially. The device also contains platinum-iridium 

markers wires that allows for visualization using radiography [253]. Eysel et al. evaluated 

the biomechanical performance of the PDN in human cadaver lumbar spinal motion 

segments and found that the device restored disc height after nucleotomy [255].  
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 In 1996, the PDN was first implanted in ten patients in Germany [252,256]. Eight 

patients returned to full working capacity, whereas two patients experienced adverse side 

effects of implant migration or sensory disturbances. Four patients exhibited disc height 

loss and implant subsidence into the CEPs. After a two-year follow up, all ten patients 

showed excellent clinical and functional outcomes with reduced disability and increased 

range of motion. From 1996 to 1997, an additional eight patients from Sweden and five 

patients from South Africa were implanted with the same PDN [252]. However, from 

1997 to 1998, a group of 17 patients received a new iteration of the PDN. To prevent 

implant migration or subsidence, the shape of the device was angled to conform to the 

curvature of the CEPs and the hydrogel’s stiffness was decreased by altering water 

absorptivity. However, only a 62 % success rate was reported for this clinical trial due to 

the high rate of device migration and revision surgeries. From 1998 to 1999, twenty-six 

patients were implanted with devices varying in both shape and size. The success rate for 

this group of patients increased to 79 %. The evolution in the design of the PDN has 

emphasized the importance of minimizing damage to the AF, improving surgical 

technique, and device conformity within the intradiscal space [252,253,254]. 

 Another example of a pre-formed hydrogel is the Aquarelle. Unlike the PDN, the 

Aquarelle (Stryker Howmedica Osteonics, Allendale, NJ) is composed of pre-hydrated 

poly (vinyl alcohol) (PVA) that is allowed to freely swell within the disc (Figure 9D). 

Aquarelle was effective in maintaining disc height under axial loading in an ex vivo 

human cadaver model [257]. The device was also implanted in baboons that underwent 

lumbar discectomy [258]. Five out of fifteen devices extruded from the disc space and 

either compressed nearby nerve roots or slipped within the spinal canal. Implants were 
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difficult to image using X-ray but showed increased water content. The biomaterial was 

deemed non-cytotoxic; however, hydrogel particulates were in the subchondral bone, thus 

producing an inflammatory reaction. Damage to the CEPs occurred, which may have 

been associated with the incorrect sizing of the implants.    

 The Newcleus (Centerpulse Orthopaedics, Winterthur, Switzerland) is another 

uniquely shaped intradiscal implant. The device is a polycarbonate urethane elastomer 

that is curled into a spiral and absorbs water up to 35 % of its weight (Figure 9E). 

Biomechanical testing showed that the implant restores cranio-caudal distance of the 

lumbar facet joint and the cranio-caudal distance between adjacent endplates [259,260]. 

Endplate deformations between the spiral implant and the intact conditions were not 

statistically different. In addition, the Newcleus was implanted into five patients. After 24 

months, patients experienced decreased radicular pain and device migration was not 

observed.  

 Another pre-formed NP replacement is the NeuDisc (Replication Medical, 

Cranbury, NJ), which is composed of hydrolyzed polyacrylonitrile and reinforced with a 

polyester Dacron mesh (Figure 9F). NeuDisc is implanted in a dehydrated state and 

swells primarily in the axial direction with limited radial expansion upon absorbing 

water. Bertagnoli et al. [261] evaluated the NeuDisc in an ex vivo extrusion model using 

discs from human cadavers. Discs received an annular incision and NP tissue was excised 

using rongeurs. Specimen were tested until failure in compression, lateral bending, and 

flexion. Implant extrusion was observed for one specimen during compression (n = 12), 

one specimen during lateral bending (n = 12), and none during flexion (n = 8). Device 
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biocompatibility was tested in vivo using New Zealand rabbits and did not elicit a 

cytotoxic response [243,244].  

 The DASCOR Disc Arthroplasty System (Disc Dynamics, Eden Prairie, MN) is 

an example of an injectable synthetic polymer that cures in situ. The device consists of a 

catheter-based polyurethane (PUR) balloon that conforms to the intradiscal space and is 

filled with a PUR core optimized for resilience, flexibility, and mechanical strength 

(Figure 9G) [246,247]. A two-part pre-polymer system is mixed and injected into the disc 

space using a custom injection system. Once the polymer cures, the PUR balloon adheres 

to the polymer. Tsantrizos et al. [262] evaluated the mechanical properties of the 

DASCOR and its biomechanical performance in discs from human cadavers. The static 

compression and shear moduli of the devices were between 4.2 – 5.6 MPa, and 1.4 – 1.9 

MPa, respectively. The maximum axial fatigue strength of the tested device is 

approximately 3 MPa. Overall, the device restores segment flexibility to a level 

comparable to the intact condition and produces a uniform contact stress along the CEP.  

 NuCore Injectable Disc Nucleus (Spine Wave, Shelton, CT) is another injectable 

polymer that is composed of synthetic silk and elastin (Figure 9H). The copolymer cures 

within minutes, restores disc height under load, and resists extrusion during mechanical 

testing in a cadaver model [263]. Additionally, the NuCore was implanted in several 

animal species and showed no evidence of irritation, cytotoxicity, or neurotoxicity [264]. 

The NuCore injectable implant was evaluated in a 2-year long pilot clinical study [265]. 

Patients experienced significantly less leg and back pain upon receiving microdiscectomy 

and implantation with the NuCore. No adverse events were reported, and radiographic 

measurements confirmed implant stability within the intradiscal space.  
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 There are several additional examples of injectable polymers that have been 

developed for NP replacement [246,247]. For example, the Biodisc (Cryolife, Kennesaw, 

GA) is a protein hydrogel consisting of albumin crosslinked with glutaraldehyde that 

polymerizes within 30 seconds, solidifies after 2 minutes, and restores disc height and 

motion to the IVD. The risk of transmitting diseases is reduced since the protein polymer 

is created through DNA bacterial synthesis fermentation and does not contain biological 

compounds from a human or animal species. SINUX ANR (J&J DePuy, Raynham, MA) 

is a liquid polymethylsiloxane (silicone) that cures in approximately 15 minutes. Hydrafil 

(Synthes, West Chester, PA) consists of hydrophilic polyvinyl alcohol (PVA) and 

polyvinyl pyrollidine (PVP). Each of these devices are still being investigated using pre-

clinical models.  

2.6 Tissue Engineering Strategies 

 Tissue engineering can be defined as “an interdisciplinary field that applies the 

principles of engineering and the life sciences toward the development of biological 

substitutes that restore, maintain, or improve tissue function [266]. This field aims to 

replace, repair or regenerate damaged tissues depending on the desired approach and 

application. The triad of tissue engineering and regenerative medicine includes the use of 

cells, scaffolds, and signals. The limitations and consequences of using autologous, 

allogeneic, or xenogeneic cells should be carefully considered when repairing human 

IVD tissue. The choice of cell line can vary from using stem cells, progenitor cells, or 

even fully differentiated cells. The scaffold used to deliver cells can be a synthetic 

biomaterial or a naturally derived extracellular matrix component or a combination 



 

45 

 

thereof. Signaling with growth factors, chemotactic factors, or mechanical stimuli can be 

utilized to direct a desired cellular response. 

 IVD tissue engineering has evolved over the decades to improve strategies for 

treating the degenerated joint. Spinal fusion can be considered one of the most proven 

surgical treatments to eliminate joint pain. Although pain subsides several months post-

surgery, the patient’s range of motion is potentially lost. Therefore, disc replacements 

have been investigated as potential implants to restore joint function and mobility. 

Additionally, acellular replacements, specifically for the nucleus pulposus, have been 

designed to treat patients with low grade degeneration. All the aforementioned 

procedures are considered invasive, which has led to the growing number of minimally 

invasive tissue engineering strategies in repairing the NP or AF with a cell-seeded 

biomaterial or growth factor injections.   

 There are several factors to consider when applying a tissue engineering strategy 

to the degenerated IVD. Metabolic activity of native disc cells and overall composition 

and structure of surrounding ECM tissue dictate the type of treatment strategy whether 

delivering steroids, cells, proteins, or a scaffold [267]. Tissue engineering strategies 

should be implemented during early stages of degeneration when the AF tissue is still 

competent to sustain swelling pressure [268]. Increased intradiscal pressure will lead to 

restoration of disc height and AF tissue will undergo tensile strain allowing for fibril 

repair. Protein therapy may serve as a viable option if native disc cells are still responsive 

and metabolically active. Injection of proteins into the NP can stimulate endogenous 

ECM formation and improve tissue hydration. Alternatively, introducing new cells into 

the disc space could provide a means of generating new tissue. Due to the low cell 
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density and senescent state of degenerated IVD tissues, autologous cell transplantation 

may prove to be a challenge and should be avoided [269]. Therefore, stem cells may 

serve as an alternative cell source for regenerative therapies. The use of a biomaterial 

scaffold can also play an important role in the retention and delivery of stem cells and 

growth factors to the degenerated disc.  

2.6.1 Protein-based therapies. Growth factors are known to influence 

morphogenesis or the biological process of forming musculoskeletal structures by 

controlling the growth and differentiation of cells and tissues. Moreover, disc cells 

modulate their activity through a variety of signals using growth factors, cytokines, 

enzymes, and inhibitors [270]. Protein administration has been studied to stimulate native 

disc cells and upregulate the production of key ECM molecules such as aggrecan and 

collagen. The transforming growth factor-beta (TGF-β) superfamily is responsible for 

regulating cell growth, proliferation, differentiation, and apoptosis. Bone morphogenetic 

proteins (BMPs) and cartilage-derived morphogenetic proteins (CDMPs) are cytokines 

within the TGF-β superfamily. BMPs are known to initiate, promote, and sustain 

osteogenesis and chondrogenesis. CDMPs were identified as critical proteins involved in 

cartilage and joint morphogenesis and stimulate proteoglycan synthesis [271]. BMPs and 

CDMPs are often referred to by other names such as osteogenic proteins (OPs) or growth 

differentiation factors (GDFs). Other biologics have also been used to downregulate pro-

inflammatory cytokines such as TNF-α [272,273,274,275,276] and interleukin (IL) 

[272,273,274,277], or matrix-degrading enzymes such as MMPs [274,276,277,278,279] 

and aggrecanases [276,277,278,279,280] to slow the degenerative cascade.  
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2.6.1.1 In vitro studies. Many in vitro studies have demonstrated the influence of 

growth factors and other biologics on cells derived from disc tissues. For example, 

human AF cells were isolated, expanded and encapsulated in alginate and agarose [281] 

or grown in micromass [282] and cultured in conditioned media containing TGF- β1. 

Gruber et al. identified newly synthesized type I and type II collagen as well as 

chondroitin sulfate and keratin sulfate [281,282]. Two additional studies also isolated and 

cultured degenerated NP cells in alginate [283] or healthy NP cells in micromass [284] in 

the presence of TGF- β3. Healthy NP cells showed an upregulation of type I, II, III, IX 

collagen and aggrecan [283]. Degenerated NP cells exhibited an anti-catabolic gene 

expression profiles with a decrease in ADAMTS-5, MMP-1, type I collagen, type III 

collagen and an increase in SRY Box 9 (SOX9) [284]. Interestingly, another study was 

able to culture viable degenerated AF cells in a three-dimensional mesh but failed to 

stimulate an anabolic response with TGF-β1 [285]. Therefore, growth factors may not be 

a suitable treatment for patients with severely degenerated AF tissue. Additionally, 

several of these studies showed increased cell proliferation over time [281,283,284].        

 BMPs have also been extensively studied as a potential therapeutic agent for 

human disc cells. Kim et al. encapsulated human IVD cells in alginate beads and exposed 

cells to recombinant human BMP-2 [286]. Cultures treated with BMP-2 exhibited a dose-

dependent response and protein concentration is directly correlated with proteoglycan 

synthesis. Aggrecan, type I, and type II collagen were upregulated, while osteocalcin did 

not. In this study however, both NP and AF cells were seeded together and the effects 

BMP-2 on each cell type were not studied. Another study aimed to identify region 

specific responses of BMP-2 on IVD cells in the NP, AF, and transitional zone [287]. 
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Cells were isolated from each region and encapsulated in alginate beads. In response to 

BMP-2 administration, NP cells showed a significant increase in proteoglycan synthesis, 

yet AF cells only proliferated and did not produce significant amounts of ECM. 

Gilbertson et al. also showed that NP cells in monolayer produced proteoglycan, 

collagen, and other non-collagenous proteins when exposed to BMP-2 for two days, AF 

cells showed little activity in terms of ECM synthesis, and that growth factor efficacy is 

dose-dependent [288]. TGF- β has been shown to induce type I collagen deposition and 

re-differentiation of cells toward a fibroblast-like phenotype, whereas BMP-2 induces 

more type II collagen deposition [289]. Both grown factors were reported to increase 

proteoglycan deposition, increase cell number, and upregulate the Smad1 gene, which is 

an important transcriptional modulator.  

  BMP-7 was studied for its potential to stimulate ECM production and prevent 

apoptosis [290]. Apoptosis can be induced using tumor necrosis factor-α (TNF- α) or 

hydrogen peroxide. BMP-7 helped inhibit apoptosis and decreased the activity of 

caspase-3, a regulator for programmed cell death. Interestingly, NP cells produced ECM 

macromolecules even in an apoptotic environment. While TNF- α can upregulate 

catabolic enzymes like ADAMTS-4 and ADAMTS-5, BMP-7 can reverse this pathway 

and suppress phosphorylation and nucleus translocation of nuclear factor kappa-light-

chain-enhancer of activated B cells (NF-κB) protein p65 [291]. The NF-κB protein is 

involved in the transcription of DNA into messenger RNA (mRNA) and associated with 

inflammatory and immune response. The regenerative potential of BMP-7 is donor 

dependent and requires very high doses, which may increase the incidence of 

complications [292]. In general, these studies have demonstrated that BMPs specifically 
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support chondrogenic behavior and do not upregulate osteogenic expression 

[286,287,290].  

2.6.1.2 Animal models. The efficacy of growth factor administration, specifically 

the delivery of BMP-2, BMP-7, and BMP-14, has been studied in vivo [293]. Huang et 

al. [294] injected BMP-2 into discs of New Zealand white rabbits that received an 

annular stab injury with a width of 7 mm and a depth of 5 mm. Discs that were treated 

with growth factor were compared to a saline control. Radiographic images revealed 

more severe degenerative changes in discs that received saline versus BMP-2. 

Histological findings showed bone formation in both groups, however fibroblast 

proliferation and vascularization were highly evident in discs that received BMP-2. 

Authors concluded that BMP-2 may play a role in tissue repair after a disc has been 

injured and undesired stimulation of bone production may occur in vivo. Inoue et al. 

[295] also injected BMP-2 into discs of a rat tail. Two coccygeal discs from each rat were 

punctured with an 18-gauge needle and degeneration progressed for 4 weeks. Discs 

received an injection of either PBS or BMP-2 at 4, 6, or 8 weeks post-injury. Injection of 

BMP-2 significantly improved degeneration grade at the 4-week time point as evidenced 

by MRI. Additionally, improvements in disc height index were observed at 4 and 6 weeks 

for discs that received a BMP-2 injection. Immunohistochemical staining identified signs 

of cartilage-like tissue formation and cellular behavior.  

 Kawakami et al. [296] injected BMP-7, also known as osteogenic protein-1 (OP-

1), into discs of a rat tail. Disc were exposed to chronic compression to induce 

hyperalgesia (increased sensitivity to pain) for 4 weeks, followed by an injection of either 

saline or BMP-7. As a control, a sham group was also included where tails were 
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immobilized in the apparatus, but not compressed. Discs that received injections of BMP-

7 were either continuously compressed for an additional 4 weeks or released. Progressive 

mechanical hyperalgesia in all groups, except for discs that received BMP-7. Overall, 

compressed discs showed a decrease in NP size and a substantial loss of proteoglycans in 

the NP and CEP. However, BMP-7 was able to restore the morphology of the tissue in 

comparison to the control. NP cells in the saline group appeared spindle in shape, 

whereas BMP-7 caused NP cells to become swollen showing signs of increased ECM 

production. Authors concluded that BMP-7 may play a role in inhibiting pain-related 

behavior.  

 An et al. [297] delivered BMP-7 into uninjured discs of New Zealand white 

rabbits. Three consecutive discs in each rabbit received only injections of saline or BMP-

7. Disc heights were measured using lateral plain radiographs after 2, 4, and 8 weeks. 

DNA, proteoglycan, and collagen content were analyzed at the end of the study. After 2 

weeks, proteoglycan content was higher and disc height index was 15 % greater for discs 

that received BMP-7 versus the saline control group. After 4 weeks, there was a 

significant increase in DNA content of the AF in discs treated with BMP-7 compared to 

the saline group, however no significant differences were detected in the NP. Authors 

concluded that BMP-7 may act to stimulate protein synthesis in the NP and proliferation 

in the AF.  

 Masuda et al. [298] treated degenerated discs from New Zealand white rabbits 

with BMP-7. Degeneration was induced by puncturing the AF with an 18-gauge needle. 

Four weeks after injury, 5% lactose or BMP-7 was injected into the center of the NP. 

Disc height was measured radiographically for up to 24 weeks and spinal columns were 
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harvested for histological assessment, biochemical composition, and grading of disc 

degeneration. After 4 weeks, disc narrowing occurred following annular injury. Injection 

of BMP-7 induced a restoration of disc height at 6 weeks and was sustained. MRI grading 

indicated a significantly higher water content in the NP for discs that received BMP-7 

compared to 5 % lactose. Histological findings also revealed a significantly higher 

proteoglycan content in the NP and AF and lower degeneration grades in the BMP-7 

group compared to the 5 % lactose group.    

 Alternatively, Imai et al. [299] induced disc degeneration in New Zealand white 

rabbits through chemonucleolysis using chondroitinase ABC. Four weeks after enzyme 

injection, discs received either BMP-7 or 5 % lactose as a control. Disc heights were 

measured every 2 weeks and rabbits were sacrificed for histological and biochemical 

analyses. Disc space narrowing was observed for both groups; however, BMP-7 injection 

caused a significant increase in disc height index at 6 weeks and was sustained for up to 

16 weeks. Proteoglycan content was higher for the BMP-7 group, yet histologic changes 

after BMP-7 injection were not observed.   

 Walsh et al. [300] statically compressed discs to induce disc degeneration in a 

mouse model. This study tested the efficacy of several growth factors including BMP-14 

(GDF-5), TGF-β1, insulin-like growth factor 1 (IGF-1), and basic fibroblast growth 

factor (bFGF) with PBS serving as the control group. After 1-week, static compression 

was removed, and multiple groups of rats were treated immediately with a single 

injection of a growth factor or PBS. At the 4-week time point, discs received either a 

single injection or multiple injections of a growth factor or PBS. Disc morphology, AF 

cell density, cell proliferation, disc height, and gene expression for aggrecan and type II 
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collagen were assessed at 1 week or 4 weeks after treatment. Following static loading, NP 

volume and disc height were significantly reduced, and outward bulging of the AF and 

disorganization of collagen fibers were evident. Compared to the PBS group, a single 

injection of BMP-14 or IGF-1 at the 4-week time point showed abundant cluster of AF 

fibrochondrocytes. BMP-14 was the only growth factor that significantly increased disc 

height. Cells in the NP, and inner AF showed expression for both type II collagen and 

aggrecan. This study suggests that BMP-14 plays a major role in fostering mitosis of AF 

cells and recruitment into the degenerated NP.  

 Chujo et al. [301] reported similar findings with the use of BMP-14 to treat 

degenerated discs in a rabbit model. An annular puncture was performed using an 18-

gauge needle to induce degeneration. Two non-contiguous lumbar discs were injured 

while the IVD between injured discs was left intact as a control. Four weeks later, an 

injection of PBS or BMP-14 was administered into the disc space. Radiographs were 

taken every two weeks after the injury in order to calculate disc height index. MRI was 

performed to grade the level of disc degeneration. Histological sections of tissue were 

scored by a blind observer. Twelve weeks post-treatment, rabbits were sacrificed and 

IVDs were harvested for analysis. Overall, a single injection of BMP-14 into the NP 

resulted in a restoration of disc height, improved water content in the NP, and reduced the 

graded level of degeneration.  

2.6.1.3 Clinical trials. DePuy Spine has sponsored several clinical trials for 

treating early lumbar disc degeneration using recombinant human GDF-5 (rhGDF-5). All 

these phase I/II trials are completed and have not published results. Primary outcomes of 

clinical trials include a neurological assessment for motor function and reflexes and 
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determining adverse side effects. Secondary outcomes of clinical trials include 

assessment in changes of ODI, VAS pain scores, and QOL after 12 months from 

baseline.  

 Data for clinical trial NCT01158924 [302] was collected from multiple locations 

in Australia. A total of 40 subjects were enrolled in the study. Patients received either 1.0 

mg (n = 14) or 2.0 mg (n = 26) of rhGDF-5. None of the patients experienced 

neurological or motor function problems after 12 months. Both groups showed a decrease 

in ODI, VAS pain scores, and an increase in overall QOL. Five out of 40 patients 

reported some type of serious adverse side effects, which may or may not be associated 

with growth factor administration. No placebo control group was used in this study. The 

influence of growth factor dosage on pain relief remains unknown. 

 Clinical trial NCT00813913 [303] performed a similar study located at centers 

across the United States. A total of 32 patients received either 0.25 mg (n = 7) or 1.0 mg 

of rhGDF-5. None of the patients experienced neurological or motor function problems 

after 12 months. Four out of 32 patients experienced serious adverse side effects. Overall, 

both groups reported decreased ODI and VAS pain scores and increased QOL. 

Interestingly, more than half of the number of patients still reported LBP (19 out of 32). 

This clinical trial also did not have a placebo control group.  

 Clinical trial NCT01182337 [304] was performed in several areas of Korea. A 

total of 31 patients were enrolled. Patients received either 1.0 mg of rhGDF-5 (n = 22) or 

a vehicle control consisting of trehalose, glycine, HCl and water for injection (n = 9). 

Neurological or motor function symptoms were not reported. Both groups reported a 

decrease in ODI and VAS pain scores with growth factor administration showing slightly 
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larger reductions. Improvements in QOL were higher for the placebo group compared to 

the rhGDF-5 group. Two out of 22 patients experienced IVD protrusion and 9 out of 31 

patients still experienced LBP after 12 months. The clinical trial demonstrates that the 

placebo effect most likely plays a role in perception of pain relief.   

 Finally, data for clinical trial NCT01124006 [305] was collected throughout 

several centers in the United States. A total of 24 patients were enrolled and received 

either 1.0 mg of rhGDF-5 (n = 10), 2.0 mg of rhGDF-5, or water for injection (n = 10). 

Like the previous clinical trial, patients experienced similar levels of decreased ODI, and 

VAS pain scores compared to the placebo control group. QOL improved for all patients 

in the study, however 14 out of 24 subjects still experienced LBP.  

 Growth factor administration has proven to be an effective therapy for repairing 

the degenerated disc. In vitro models have shown that a wide variety of BMPs can 

promote cell proliferation and ECM production. Each growth factor plays a specific role 

in cellular response to repair. In the presence of growth factors, healthy disc cells produce 

discogenic ECM, whereas the catabolic behavior of degenerated disc cells is reversed in 

order to regain a healthy phenotype. Animal models have demonstrated increased disc 

height, water content, and proteoglycan synthesis after delivering growth factors to the 

degenerated disc. Additionally, growth factor delivery promotes discogenic phenotype. 

On the contrary, BMPs can also stimulate undesired bone formation in vivo. In the 

clinical setting, growth factor injections decrease patient pain or disability and improve 

overall QOL, however the placebo effect should not be overlooked. It is also difficult to 

determine the exact mechanisms in which human disc cells respond to protein therapy in 

vivo. Lastly, protein therapy relies on the presence of metabolically active NP and AF 
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cells to stimulate an anabolic response, which may not be effective if disc tissues are 

degenerated [306]. New cells may be implanted into the disc if there aren’t enough native 

disc cells to produce newly synthesized ECM.    

2.6.2 Stem cell therapy. Stem cell therapy has been investigated as an additional 

type of treatment for repairing the degenerated disc. Stem cells are self-renewing and 

have the potential to differentiate toward any cell type in the human body. Self-renewal is 

an important property in which a single stem cell can proliferate and generate daughter 

cells that are identical to the dividing parent cell [307]. These unspecialized cells do not 

perform any tissue-specific tasks, until instructed to differentiate through signaling 

pathways. Stem cells can be classified as totipotent, pluripotent, or multipotent. 

Totipotent cells are found in a zygote and form the beginnings of an embryo and 

placenta. Pluripotent cells such embryonic stem cells (ESCs) or induced pluripotent stem 

cells (iPSCs) can further differentiate to the three germ layers: endoderm, mesoderm, and 

ectoderm. Multipotent stem cells such as mesenchymal stem cells (MSCs) can 

differentiate toward an osteogenic, chondrogenic, myogenic, or adipogenic lineage. 

MSCs secrete extracellular vesicles such as exosomes as well as cytokines and growth 

factors that suppress immune system response [308]. Populations of MSCs are 

heterogeneous and exhibit varying degrees of multipotency, which are most likely 

controlled via autocrine or paracrine signaling mechanisms [309]. MSCs also exhibit 

plasticity, which is the ability to dedifferentiate or transdifferentiate from one cell 

phenotype into another [310].  

 Bone marrow-derived MSCs (BMDMSCs) have been isolated and evaluated for 

their differentiation potential [311,312,313]. Donor site morbidity or pain, and low cell 
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yield are all existing obstacles to overcome when isolated MSCs from bone marrow 

[313,314]. Therefore, alternative sources of tissue for MSC isolation have been explored 

which include, but is not limited to trabecular bone [315,316], muscle [317,318,319], 

adipose [320,321], articular cartilage [322,323,324], and skin [317,325]. Although MSCs 

show similar phenotypic behavior, many factors such as yield, proliferative ability, 

differentiation propensity, multipotency, and ease of accessibility and isolation can vary 

depending on the tissue source. Kern et al. [326] compared properties of MSCs derived 

from umbilical cord blood, bone marrow, and adipose tissue. This study demonstrated 

that all three stem cell populations exhibited differences in total yield, culturing duration, 

and proliferative capacity. Extracted MSCs were the highest and lowest in adipose and 

umbilical cord blood, respectively. Additionally, MSCs derived from umbilical cord 

blood showed the highest proliferative capacity, while bone marrow derived MSCs 

exhibited the lowest proliferative capacity. Sakaguchi et al. [327] found significant 

differences in differentiation potential amongst MSCs derived from bone marrow, 

synovium, adipose, skeletal muscle, and periosteum. Overall, bone marrow, synovium, 

and periosteum derived MSCs showed superior differential capacity for chondrogenesis 

compared to adipose and muscle derived MSCs.  

 Other contributing factors that may impact MSC properties are donor age and 

disease state. Quarto et al. [328] showed that MSC yield, proliferation rate, and 

differential ability decreased with increasing donor age. Bone marrow derived MSCs 

were isolated from osteoporotic women and showed significantly reduced ability to 

proliferate and differentiate toward an osteogenic lineage when compared to healthy 

donors of the same age [329]. Similar findings were observed by Murphy et al. [330] 
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when MSCs from patients with advanced osteoarthritis exhibited inferior properties in 

terms of chondrogenic and adipogenic activity. Although autologous tissue sources are 

considered ideal in the clinical setting, donor age and disease should be carefully 

considered as well as allogeneic cell sources.        

 Adipose-derived MSCs (ADMSCs) have gained much interest in the field of 

tissue engineering. One benefit of adipose-derived stem cells is that they are easily 

obtained in large quantities with minimal donor site morbidity [331]. In general, adipose-

derived MSCs have been proven to be feasible and effective in treating disease and injury 

in both the pre-clinical and clinical settings [332,333]. This stem cell type exhibits the 

ability to self-renew and proliferate based on telomere length and relative telomerase 

activity [334] and show immunosuppressive properties [335]. Stromal cells can be 

isolated from lipoaspirate with greater than 95 % purity [336]. Additionally, the number 

of fibroblast colony-forming units isolated from one gram of adipose tissue (5,000) is 

greater than from one milliliter of bone marrow (1,000) [337]. This result suggests that 

donor site morbidity plays a critical role in stem cell isolation and can limit the yield of 

viable cells. Adipose-derived MSCs have been shown to undergo adipogenesis 

[338,339,340], osteogenesis [341], chondrogenesis [341,342,343], myogensis 

[343,344,345], angiogenesis [346,347] and form pre-cursor neuronal cells [348] under the 

appropriate culturing conditions with growth factors, external stimuli, and three-

dimensional scaffold support or combination thereof.  

2.6.2.1 In vitro studies. The effects of MSCs on resident cells isolated from disc 

tissues have been well characterized in vitro. In general, proliferative capacity and ECM 

expression of disc cells are enhanced when co-cultured with MSCs 



 

58 

 

[349,350,351,352,353]. However, the ratio of co-cultured MSCs to NP or AF cells can 

either inhibit or promote disc cell growth and protein accumulation [350,352,354]. 

Watanabe et al. [351] compared the monoculture of NP cells to co-cultures of NP cells 

and MSCs with or without direct contact. NP cells that were in direct contact with MSCs 

showed significantly higher levels of proliferation and proteoglycan production compared 

to indirect co-cultures. Strassburg et al. [349] co-cultured non-degenerate or degenerate 

NP cells with MSCs in monolayers at a ratio of 1:1. Interestingly, non-degenerate NP cell 

phenotype did not change, however degenerate NP cells exhibited an enhanced matrix 

gene expression. Further, Shim et al. [353] demonstrated that MSCs can downregulate 

the expression of pro-inflammatory cytokines such as IL-1α, IL-6, and TNF-α in NP and 

AF cells.  

 Co-cultured disc cells can also influence MSC behavior. MSCs will undergo 

differentiation toward an NP [355,356] or AF-like [357] phenotype when in direct 

contact with the corresponding cell type. The proliferative capacity of MSCs increases 

when co-cultured with either NP or AF cells compared to monocultures [353]. MSCs 

have also been shown to produce significantly more proteoglycan when co-cultured with 

AF cells [358]. Several studies have identified increased expression in MSCs for trophic 

factors such as TGF- β [349,353], CDMP-1 [349], BMP-7 [353], GDF-7 [353], and IGF-

1 [304,353]. The release of these growth factors enables degenerate disc cells to regain a 

healthy phenotype. In addition, MSC matrix gene expression levels for type I collagen 

[354], type II collagen [308,354,357], type VI collagen [304,308,354], aggrecan 

[304,308,354,357], and versican [304,308] are elevated when in co-culture with disc 

cells. These findings suggest that MSCs may be able to stimulate the endogenous disc 
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cell population and initiate self-repair of disc tissue. Alternatively, MSCs can produce 

their own disc-like ECM and potentially restore biological functions within the IVD if 

degeneracy cannot be reversed or endogenous cell anabolism remains inadequate.  

2.6.2.2 Animal models. The benefits of intradiscal injection of MSCs into 

degenerated discs have been widely studied using animal models. For example, Feng et 

al. [359] injected autologous BMDMSCs into rabbit discs that received a nucleotomy via 

needle puncture and aspiration. After two weeks, degenerated discs received an injection 

of either cell culture medium containing 2 x 104 BMDMSCs or medium alone as a 

control. Disc tissues treated with BMDMSCs exhibited increased concentrations of 

sulfated GAG, significant improvements in disc height index, and elevated gene 

expression levels for aggrecan and type II collagen compared to the control group. Cai et 

al. [360] injected autologous BMDMSCs into rabbit discs that were degenerated via 

needle puncture. Two weeks post-injury, degenerated discs received an injection of either 

2 x 104 cells in saline or saline alone as a control. During the 10-week study, disc height 

decreased more slowly for discs that received cells compared to the control group. 

Additionally, discs treated with MSCs exhibited increased water content. Tissues also 

exhibited a significant increase in gene expression levels for aggrecan and type II 

collagen.  

 While the previous studies demonstrated beneficial outcomes of cell 

transplantation, it is important to note that MSC location nor survival were assessed. To 

gain a better understanding of cellular behavior in vivo, MSCs are labeled or stained with 

a marker to identify their location within the disc. Several animal models have observed 

cell leakage after MSC transplantation into IVDs.   
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 Wei et al. [361] transplanted fluorescently labeled human BMDMSCs into 

uninjured rat coccygeal discs. Discs injected with human MSCs did not contain any T or 

B cells, suggesting minimal immune system response in this xenogeneic transplantation 

model. Immunohistochemical staining of human MSCs was positive for SOX-9 and type 

II collagen, indicating that the microenvironment induced differentiation. After 42 days, 

labeled MSCs were detected in only 6 out of 9 discs.  

 Jeong et al. [362] injected human ADMSCs in a rat disc degeneration model 

induced by puncture with a 26-gauge needle. Two weeks later, discs were each treated 

with an injection of 5 x 104 cells. As a control, discs received an injection of saline. Discs 

that received an MSC injection exhibited a smaller reduction in height and a healthier 

inner AF morphology compared to the saline control group. MSCs were detected using 

anti-human nucleic monoclonal antibody at two weeks post-implantation, however 

staining was negative after 4 and 6 weeks. 

 Sobajima et al. [363] implanted 105 allogeneic BMDMSCs into healthy nucleus 

pulposi of New Zealand white rabbits. MSCs were retrovirally transduced with the lacZ 

marker gene for tracking purposes. Cells remained viable for 24 weeks after implantation.  

At 12 weeks post implantation, cells were in the NP and exhibited a round morphology. 

However, after 24 weeks, cells migrated toward the inner AF and exhibited an elongated 

morphology.  

 Ho et al. [364] explored how the severity of disc degeneration affects the 

regenerative capability of MSCs in a rabbit model. A 21-gauge needle was used to 

puncture the AF and the disc could degenerate for either 1 month or 7 months. At each 
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time point, 105 MSCs were labeled with bromodeoxyuridine (BrdU) and injected into 

degenerated discs. Transplanted cells were found in the AF or CEP, but not in the NP.       

 Vadala et al. [365] implanted 105 allogeneic BMDMSCs into degenerated IVDs of 

New Zealand white rabbits. Discs were stabbed in the AF with a 16-gauge needle to a 

depth of 5 mm and allowed to degenerate for 3 weeks. MSCs were transduced with 

retrovirus expressing enhanced green fluorescent protein (eGFP) for tracking purposes. 

Radiographic images and histological analysis revealed that MSCs had migrated toward 

the vertebral bone and formed osteophytes. Authors concluded that the disc’s high 

intradiscal pressure forced MSCs to leak from the central NP.  

   Marfia et al. [366] injected 8 x 104 human ADMSCs into bigylcan deficient mice. 

Over the course of 16 months, mice began to develop disc degeneration and was 

confirmed using MRI. Immunohistochemistry was performed to locate human ADMSCs 

using anti-human nucleic monoclonal antibody. ADMSCs survived 12 weeks post 

implantation and acquired a positive expression for biglycan. ADMSCs were identified in 

treated and adjacent discs, thus indicating cell migration. 

 Overall, the results of these animal models point toward the feasibility of cell 

transplantation and have led to insights into how to optimize the strategy as an approach 

in achieving disc regeneration. Injection of MSCs increases the disc’s water content, 

height, and gene expression of ECM. Furthermore, the disc microenvironment will 

induce MSC differentiation toward a specific phenotype as evidenced by changes in cell 

morphology and gene or protein expression. Despite these successes, cell retention has 

proven to be a common occurrence and can have negative clinical consequences. 

Implanted MSCs tend to migrate from the injection site toward the peripheral AF, CEP, 
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or vertebral bone. Osteogenic differentiation is an undesirable side effect of MSC 

transplantation and can lead to the formation of osteophytes instead of disc-like tissue.     

2.6.2.3 Clinical trials. Several clinical trials have investigated the efficacy of cell 

transplantation into degenerated discs. This type of treatment is considered relatively 

new; therefore, results are limited, and sample sizes are low. Different approaches were 

taken to repair degenerated discs with stem cells. Some studies expanded isolated cells in 

vitro prior to implantation, whereas others injected bone marrow aspirate directly into 

IVDs. A few cell types were selected for transplantation including hematopoietic stem 

cells, BMDMSCs, or reactivated NP cells after coculture with MSCs.   

 Haufe et al. [367] injected 1 mL of autologous bone marrow aspirate containing 

hematopoietic precursor stem cells into painful discs of 10 patients. Following stem cell 

injection, patients were provided a daily treatment of hyperbaric oxygen for two weeks. 

One year after surgery, none of the patients reported a reduction in VAS scores, 

signifying no pain relief. Authors hypothesized that stem cells were not able to survive in 

the degenerated discs due to the low oxygen concentration. Disc height and water content 

were also not evaluated using radiography or MRI. It is possible that stem cells should be 

expanded in vitro prior to delivering to the degenerated disc. Exposure to hypoxia may 

also better prepare stem cells to the disc’s low oxygen tension.   

 Orozco et al. [368] performed a cell therapy based clinical study on 10 patients 

who had disc pain with a preserved AF. MSCs were isolated from bone marrow aspirate 

and cultured in vitro for 7 days until confluent. A total of 107 BMDMSCs were injected 

into the NP with a 20-gauge needle. After 3 months, there was an 85 % improvement in 

pain and parallel improvements in disability and QOL.  
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 Pettine et al. [369] injected approximately 2 – 3 mL of autologous bone marrow 

concentrate into symptomatic discs of 26 patients. Bone marrow concentrate contained 

both hematopoietic stem cells and MSCs. ODI and VAS scores drastically decreased over 

a 12-month period. Discs appeared to be less degenerated and more hydrated as 

evidenced by improved Pfirrmann grading and MRI scores, respectively. It’s important to 

note that MSCs were not expanded in vitro prior to delivery in the degenerated disc, 

however bone marrow concentrate contains important cytokines and growth factors that 

may aid in tissue repair.    

 Mochida et al. [370] performed a 3 year-long study on 9 candidates who exhibited 

a Pfirrmann’s grade III disc degeneration. BMDMSCs from the iliac crest and NP cells 

from symptomatic discs were extracted from patients. NP cells were co-cultured with 

MSCs to reestablish a healthy phenotype. Approximately 7 x 105 NP cells were 

transplanted into the IVDs. Japanese Orthopaedic Association (JOA) scores increased, 

signifying improvement in (PAIN?) after receiving an injection of NP cells. Pfirrmann 

grading scores were maintained after a 3-year follow up. This study demonstrates that 

reactivated NP cells can also be used instead of MSCs.   

 Elabd et al. [371] treated 5 patients exhibiting signs of degenerative disc 

degeneration with an intradiscal injection of autologous BMDMSCs. Extracted MSCs 

were populated under hypoxic conditions prior to delivery into symptomatic discs. 

Approximately 15.1 – 51.6 million cells were delivered into each IVD. No adverse 

effects were reported from 4 – 6 years after injection. Four out of five patients reported a 

40 – 90 % improvement in strength and mobility. Interestingly, authors observed a linear 
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correlation between increasing cell number and increasing improvement, however 

conclusions cannot be drawn due to the study’s low sample size. 

 These clinical studies have shown promising results in treating disc degeneration 

using cell transplantation. The superior cell type used for transplantation, whether 

reactivated NP cells or MSCs, remains to be determined. MSCs may be advantageous as 

they can provide immunomodulatory mechanisms, promote anabolism, and stimulate 

native disc cells to regain a healthy phenotype. After receiving MSC transplantation, 

patients experienced decreased pain and disability, as well as increased strength and 

mobility. These clinical improvements may be associated with the rehydration of 

degenerated discs. It is believed that MSCs are responsible for the production of 

proteoglycans, which aids in water retention. Interestingly, the increased water content 

does not produce a sufficient hydrostatic pressure to restore disc height. Cell retention 

also continues to be a challenge in the field of IVD tissue engineering. To combat these 

potential issues, the use of an encapsulating polymeric biomaterial may prove useful in 

restoring disc height and ensuring the retention of delivered MSCs.   

2.6.3 Polymeric biomaterials and scaffolds. Use of a polymeric biomaterial that 

encapsulates and localizes cells within the disc is considered a beneficial addition to disc 

tissue engineering strategies. A carrier would provide a matrix for cell attachment, 

making them less prone to dislocation after injection. Injectable carriers represent the 

only practical option for intradiscal cell transplantation because they are implantable 

through small gauge needles. This lowers the degree of damage to the AF, thus helping to 

prevent cell leakage. In addition, polymeric carriers can aid in the restoration of disc 

height and reestablish intradiscal pressure. Polymeric materials are largely derived from 
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natural sources for reasons of biocompatibility. BMDMSCs and ADMSCs have been 

suspended in polymers based on hyaluronic acid (HA) 

[372,373,374,375,376,377,378,379], collagen [380,381,382,383], fibrin [384,385,386], 

alginate [387], chondroitin sulfate [388], and protein [389,390].  

2.6.3.1 Animal models. A strategy to locate and quantify enzymatic activity of 

transplanted MSCs was developed by Omlor, Bertram et al. [384]. A partial nucleotomy 

was performed on minipigs using a 16-gauge cannula equipped with suction. Fibrin 

hydrogel containing Al2O3 particles and autologous BMDMSCs retrovirally labeled with 

luciferase gene was injected into the denucleated disc. Al2O3 particles were added to 

identify the fibrin hydrogel with microCT. MSCs were transfected with the luciferase 

gene in order to gauge enzymatic activity. Three days post-injection, the volume of 

detected Al2O3 particles declined to 9 % of the original measured value upon 

implantation. Similarly, only 7 % of cellular luciferase activity was quantified. Authors 

hypothesized that the implant extruded from the injection site during motion. In a follow-

up study, Omlor, Fischer et al. [379] switched the hydrogel carrier from fibrin to an in 

situ forming albumin and hyaluronan hydrogel. The crosslinked hydrogel is designed to 

fill irregularly shaped defects in the disc and exhibits a higher compressive strength 

compared to fibrin. The same methods of tissue injury, cell transfection, and particle 

suspension were applied in this model. Three days post-injection, the volume of detected 

Al2O3 declined to 61 % of the original measured value. Implant retention was 

significantly improved compared to the previous study. Only 38 % of cellular luciferase 

activity was quantified after accounting for implant loss, therefore cellular viability or 

metabolic activity may have declined. These studies demonstrate that the mechanical and 
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adhesive properties of a hydrogel carrier must be high enough to endure loading and 

resist expulsion from the IVD.  

 Crevensten et al. [372] tested the feasibility of implanting BMDMSCs into rat 

coccygeal IVDs to test whether injected cells survive, differentiate, and produce disc-like 

ECM in vivo. To test this hypothesis, autologous BMDMSCs were suspended at a 

density of 107 cells/mL in a 15 % HA solution and injected into uninjured discs. MSCs 

were clearly localized in the central NP at the beginning of the study. After 7 and 14 

days, the cell number had reduced appreciably and MSCs were in the AF. After 28 days, 

MSCs were able to proliferate within the rat disc and exhibited 100 % viability. Authors 

concluded that the decrease in the number of injected cells may have resulted from the 

expulsion of NP tissue or HA carrier from the needle tract. Therefore, cell carriers must 

exhibit high viscosity to resist expulsion upon injection into the disc. This model also 

represents the best-case scenario in which disc degeneration has not occurred and MSCs 

are able to thrive in a healthy IVD microenvironment.    

 Revell et al. [373] evaluated the use of two different HA derivatives for 

autologous BMDMSC delivery into nucleotomized porcine discs. The D-glucuronic acid 

residues of HA were conjugated with an ester or dodecylamide, which facilitates self-

assembly and cell encapsulation. Cells were encapsulated at a density of 106 cells/mL and 

a total volume between 0.5 – 1 mL was injected into each disc. Discs that received no 

treatment after nucleotomy exhibited a loss in IVD structure with narrowing, fibrosis, and 

bony endplate disruption. Injection of the HA derivatives resembled the biconvexity of 

the native NP tissue and preserved disc architecture. Upon histological examination, 
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MSCs appeared chondrocyte-like in nature and produced ECM. Both HA carriers were 

effective in transplanting MSCs into the nucleotomized discs.  

Ganey et al. [374] evaluated the use of HA for autologous ADMSC delivery into 

nucleotomized canine discs. Three discs in each dog underwent a nucleotomy and 

received either an injection of HA containing ADMSCs, HA only, or no intervention. 

One year after transplantation, gene expression and protein deposition of type II collagen 

and aggrecan were significantly higher in discs treated with ADMSCs compared to those 

that received only HA or no intervention. Measureable differences in disc height recovery 

and water content assessed through MRI between the treated and untreated groups did not 

reach significance. Authors concluded that treatment with ADMSCs can potentially 

retard disc degeneration after nucleotomy and replace lost disc tissue.  

Ghosh et al. [375] treated degenerated ovine discs with mesenchymal precursor 

cells encapsulated in HA. Discs were enzymatically degenerated using chondroitinase 

ABC. Chondroitinase ABC specifically cleaves the glycosidic bond of chondroitin sulfate 

polymer chains found in the IVD. Sheep were treated with HA containing either a low 

(0.5 x 106) or high (4 x 106) dosage of cells. As controls for comparison, superior and 

inferior discs remained untreated or were injected with HA. Enzymatic degeneration 

caused disc height index to decrease by 45 – 50 %. Degenerated discs treated with cells 

exhibited improvements in MRI scores and disc height index recovered toward baseline 

values. Histopathology scores confirmed that discs treated with low and high doses of 

cells were significantly different compared to discs that remained untreated or received 

HA only. A higher cell dose can potentially hasten the regeneration of IVD-like tissue.  
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Chun et al. [376] transplanted ADMSCs into a degenerated lapine disc model. 

Discs in New Zealand white rabbits were degenerated via a 19-gauge needle puncture 

and was verified with MRI. Nineteen weeks post-injury, human ADMSCs were 

suspended in hyaluronic acid at a density of 2 x 106 cells/mL and injected into the disc. 

As a control, saline was injected into the adjacent injured disc. Eighteen weeks after 

treatment, discs injected with ADMSCs regained a lamellar structure between the NP and 

inner AF. Increased cellularity and a dense ECM rich in proteoglycan were also observed 

in treated discs compared to the untreated controls. Grafted ADMSCs were not rejected 

by the host and bone formation was not observed.  

Reitmaier et al. [377] used an ovine degeneration model to study the effects of 

MSC transplantation. Partial nucleotomies were performed on sheep discs and subjected 

to a variety of treatments. Discs received either an injection of HA containing 

BMDMSCs at a density of 106 cells/mL, HA alone, or no treatment. The AF defect was 

closed with sutures, sealed with 2-octyl-cyanoacrylate, and covered with a collagen 

sponge. Discs implanted with MSCs were not superior to untreated discs in terms of disc 

height recovery, biomechanics, and histology. Authors suggested that the implanted HA 

hydrogel may have extruded from the nuclear cavity, however MSCs were not tracked in 

this animal model. This study emphasizes the importance of minimizing annular damage 

to minimize the risk of extrusion.  

Barczewska et al. [378] emphasized the importance of cell retention upon 

delivering MSCs into a degenerated porcine disc model. Dehydration and subsequent 

degeneration of the IVD was induced through laser vaporization. Autologous BMDMSCs 

were encapsulated at a density of 1 x 106 cells/mL in HyStem. HyStem is a hydrogel 
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composed of modified components of hyaluronan and gelatin, which in the presence of a 

crosslinker, forms a biocompatible resorbable hydrogel. MSCs were labeled with 

superparamagnetic iron oxide nanoparticles for tracking purposes. After two weeks, 

transplanted MSCs were successfully confirmed within the central NP using both MRI 

and histological staining. While the technique used for tracking purposes is unique, the 

authors did not report the behavior of MSCs in vivo.  

Sakai, Mochida, Yamamoto et al. [380] hypothesized that maintaining the 

integrity of the central nucleus pulposus will preserve the structure of the AF and 

decelerate IVD degeneration. Authors suggested that NP tissue can be fortified by 

injecting a hydrogel carrier containing MSCs. Autologous BMDMSCs were isolated 

from New Zealand white rabbits and labeled with recombinant Adenovirus vector 

expressing E. coli lacZ gene to confirm the viability after transplantation. Discs were 

punctured and NP tissue was aspirated through a 21-gauge needle. Two weeks following 

NP removal, MSCs were embedded in Atelocollagen® matrices and transplanted into 

degenerated discs. Atelocollagen was selected as the hydrogel carrier for its anti-

immunogenic properties and potential degradability. Additionally, atelocollagen behaves 

as an injectable liquid at 4 °C and solidifies into a hydrogel at physiological temperature 

of 37 °C. Histology revealed significant structural changes in degenerated discs compared 

to normal control discs. Eight weeks following nucleotomy, cells in the NP were sparse, 

lamellae of the inner AF collapsed, and connective tissue formation occurred. In contrast, 

discs treated with collagen hydrogel containing BMDMSCs prevented the collapse of the 

inner AF and connective tissue invasion. Newly synthesized ECM replaced the 

previously removed NP tissue. Positive immunostaining for proteoglycans and beta-
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galactosidase were detected in discs treated with MSCs, thus indicating ECM synthesis 

and cell survival, respectively. Sakai, Mochida, Iwashina, Hiyama et al. [382] performed 

an identical study in which autologous BMDMSCs were implanted into degenerated 

rabbit discs. However, this study presented morphological findings as well as gene and 

protein expression analyses. After 24 weeks following MSC transplantation, authors 

reported a restoration in disc height and water content as shown by x-ray and MRI. 

Immunohistochemistry and gene expression analyses demonstrated that MSCs were able 

to replenish proteoglycan content in degenerated discs. In a similar study, Sakai, 

Mochida, Iwashina, Watanabe et al. [381] injected autologous BMDMSCs labeled with 

green fluorescent protein (GFP) into degenerated rabbit discs and results were evaluated 

after 2 and 48 weeks after transplantation. The percentage of GFP-positive cells located 

in the NP rose from 15 ± 8 % (2 weeks) to 55 ± 7 % (48 weeks). In addition, transplanted 

MSCs were positively stained for keratin sulfate, chondroitin sulfate, and type II 

collagen, but lacked expression for type I collagen. These studies suggest that MSCs 

differentiated toward an NP-like phenotype and were influenced by the surrounding IVD 

microenvironment. 

Li et al. [383] implanted collagen microspheres containing autologous 

BMDMSCs into degenerated rabbit discs. Similar to other studies, discs were punctured 

with a 21-gauge needle and NP tissue was removed to induce degeneration. One month 

after injury, 2.5 x 105 MSCs were either suspended in saline or encapsulated in collagen 

microspheres and injected into the degenerated discs. Results demonstrated that the use 

of a collagen carrier for transplanting MSCs reduced the incidence of osteophyte 

formation, relative to the saline control. It is believed that the natural adhesive behavior 
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of the collagen helped to anchor the carrier within the disc space, thus aiding in cell 

retention. However, improvements could still be made to reduce that incidence even 

further. 

Allon et al. [385] studied the use of bilaminar coculture pellets (BCPs) combined 

with hydrogel carrier delivery for treating degenerated discs. In brief, human MSCs form 

the center of the BCP and NP cells isolated from adult bovine tails surround the MSCs. 

Each pellet contains a total of 250,000 cells with a 3:1 ratio of MSCs to NP cells. Rat 

discs were injured via stab and denucleation. Discs were treated with a single BCP 

encapsulated in a fibrin hydrogel. For comparison, the same number of total cells, MSCs, 

NP cells, or a mix, were suspended in fibrin and injected into degenerated discs. Control 

groups included injured discs that were untreated or treated with acellular fibrin. Disc 

height and grade, as determined by x-ray and histology, improved over time for discs that 

received fibrin hydrogel and a BCP. After 35 days, proteoglycan was only detected in 

discs treated with fibrin and a BCP. Cells were not traced nor assessed for viability in this 

study, however BCP appeared to retain more cells overall compared to other groups. 

Immunogenic response was not evaluated in this xenogeneic model which involved three 

different species. Pellet cultures may provide an improved means of retaining and 

sustaining cellular performance in vivo.    

Yang et al. [386] implanted autologous BMDMSCs into a degenerated lapine disc 

model. Disc degeneration was induced in New Zealand white rabbits by puncture with a 

21-gauge needle and NP tissue was aspirated. MSCs were suspended at a density of 108 

cells/mL in fibrin hydrogel carrier containing TGF-β1. Treated discs were compared with 

degenerated discs that received acellular hydrogel or no treatment. Discs that were 
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transplanted with MSCs exhibited a slower rate of decrease in both DHI and cell 

apoptosis. BMDMSCs were also able to synthesize type II collagen in vivo.   

Wang et al. [387] compared the regenerative properties of human BMDMSCs to 

MSCs derived from the NP, CEP, and AF in a rabbit degeneration model. Disc 

degeneration was induced by puncture with an 18-gauge needle to a depth of 5 mm and 

NP tissue was aspirated. Degenerated discs were treated with alginate solution containing 

MSCs derived from bone marrow, NP, CEP, or AF. MSCs were fluorescently labeled for 

tracking purposes. Calcium chloride solution was injected into the disc to crosslink the 

alginate hydrogel. Treated discs were compared to degenerated discs that received 

acellular alginate hydrogel or no treatment. Discs that were not manipulated served as a 

normal control group. Interestingly, MSCs derived from the CEP exhibited the greatest 

MRI signal intensity compared to all other treatment groups. After 6 months, there were 

no statistical differences detected between the discs treated with CEP derived MSCs and 

the normal control group. BMDMSCs and NP derived MSCs appeared to have similar 

regenerative capacity, whereas MSCs derived from the AF produced inferior results and 

resembled the untreated disc. The use of allogeneic MSCs derived from the IVD is 

appealing, however autologous isolation of cells from CEP may not be clinically feasible.  

Zhang et al. [388] utilized a semi-synthetic hydrogel carrier for the delivery of 

allogenic BMDMSCs in a caprine degeneration model. The hydrogel is composed of poly 

(ethylene glycol)-diacrylate, acrylated chondroitin sulfate, and HA. Crosslinking was 

achieved using a redox initiation system. Discs were stabbed with a scalpel blade to a 

depth of 15 mm in order to induce differentiation.  After one month, discs were treated 

with hydrogel containing 2.5 x 105 MSCs, hydrogel, or saline. Compared to the control 
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IVDs, discs treated with cells showed increased proteoglycan content in the NP, yet no 

statistically significant changes in collagen, MRI grade, or histology were detected. 

MSCs were not tracked nor was viability ascertained in this study. The presence of a 

redox initiator could potentially compromise MSC viability in vivo. 

Henriksson et al. [389] compared the delivery of MSCs into discs with and 

without the use of a hydrogel carrier. Puramatrix ®, a synthetic polypeptide sequence 

consisting of 16 amino acids, was used to encapsulate and deliver human BMDMSCs 

into degenerated discs of minipigs. NP tissue was aspirated from the disc using a 20-

gauge needle. Two weeks later, 0.5 x 106 MSCs were encapsulated in the peptide 

hydrogel and injected into each disc. For comparison, discs were also treated with MSCs 

suspended in culture media or left untreated. MSCs were detected in 90 % and 80 % of 

discs treated with a hydrogel and media carrier, respectively. Cells delivered in a media 

carrier were located within the transition zone and regions of the NP, whereas cells 

delivered in the peptide hydrogel were distributed throughout the NP and AF. MSCs 

differentiated toward a discogenic phenotype as evidenced by enhanced gene expression 

for SOX9, type I collagen, type II collagen, aggrecan, and versican, however this study 

did not quantify cell survival. The use of a hydrogel carrier can potentially facilitate cell 

differentiation and protein formation by providing a three-dimensional network.   

Bendsten et al. [390] compared the use of HA to PhotoFix, a protein-based 

hydrogel. Minipigs received a full thickness annular incision to induce disc degeneration 

over a 12-week period. Autologous BMDMSCs were isolated and labeled intracellularly 

with quantum dots. Discs were treated with cell-seeded hydrogels or left untreated as a 

control. Twelve weeks after treatment, MSCs were in the disc. Discs treated with MSCs 
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delivered in both HA or PhotoFix exhibited significantly higher signal intensities on MRI 

and significantly lower Pfirrmann scores compared to untreated controls.   

Hydrogel carriers are beneficial in that they entrap MSCs within a three-

dimensional network, thus improving retention. Once the carrier has successfully 

anchored to surrounding disc tissue, MSCs become localized within the disc and are able 

to replace lost tissue by producing new discogenic ECM. In addition, studies have noted 

that the microenvironment directs MSC differentiation toward an NP-like phenotype. 

Ultimately, the delivery of a carrier with MSCs can retard disc degeneration after 

nucleotomy. However, the carrier must demonstrate high viscosity, mechanical, and 

adhesive properties to endure loading and resist expulsion from the injection site. It is 

important to note that annular damage should minimized to reduce the risk of implant 

extrusion.  

2.6.3.2 Clinical trials. Few clinical trials have been published that describe the 

use of polymeric carriers for the encapsulation and delivery of cells to treat patients with 

degenerated discs and LBP. Since a superior cell line has yet to be identified for 

transplantation, various types have been utilized to treat DDD. The sources in which 

these cells have been derived from are strictly autologous or allogeneic, as xenogeneic 

origins pose potential risks of disease transmission and immune response. In addition, 

both synthetic and naturally-derived polymeric carriers have been evaluated as potential 

three-dimensional cultures systems for the delivery of cells in vivo.  

Autologous IVD cells can be potentially isolated from surgically removed tissue, 

expanded in vitro, and reinserted into the degenerated disc. Tschugg et al. [391] 

investigated the use of a product called Novocart Disc Plus, which contained 3 – 4 
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million autologous IVD cells encapsulated in a carrier (NDisc). The NDisc is a two-part 

injectable system. One solution is composed of modified human albumin, serum, 

chondroitin sulfate, and hyaluronic acid. The other solution is a bis thio-polyethylene 

glycol. When combined, the solutions polymerize in situ to form a hydrogel. Results from 

this study have yet to be published.  

 Another cell type that has been clinically investigated to treat DDD and LBP are 

chondrocytes. Coric et al. [392] performed a phase II clinical study to evaluate the safety 

and effectiveness of allogeneic juvenile chondrocytes. Chondrocytes were encapsulated 

in NuQu, a fibrin-based carrier, at a density of approximately 107 cells/mL. A total of 15 

patients were enrolled in this study. All functional scores significantly improved from 

pre-operative baseline readings. Out of thirteen patients, ten individuals exhibited 

improvements in MRI and three showed improvements in disc height and contour. None 

of the patients experienced neurological deterioration, infection, or adverse events. 

However, three out of 15 patients underwent TDR at the one-year follow-up due to 

persistent LBP. 

 Yoshikawa et al. [393] was one of the first to report implanting collagen sponges 

containing autologous MSCs into two patients with LBP. The MSCs were obtained from 

bone marrow isolated from the iliac crest. BMDMSCs were first expanded in culture for 

either 2 or 4 weeks in vitro and seeded onto collagen sponges at a density of 105 

cells/mL. Sponges were grafted percutaneously into the central region of the IVD. Two 

years post-surgery treated discs exhibited high moisture content and lumbar disc 

instability improved. While these results seem promising, the sample size for this study 

was small.     
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 Kumar et al. [394] performed one of the first phase I clinical studies to utilize 

ADMSCs combined with a hyaluronic acid derivative for the treatment of chronic LBP. 

A total of ten patients were enrolled in this study. Three weeks prior to delivery, MSCs 

were isolated from adipose tissue gathered via liposuction, expanded in vitro, and 

encapsulated within the hyaluronic acid hydrogel. The hyaluronic acid was derived from 

a nonanimal origin and is cross-linked with butanediol diglycidyl ether. Patients were 

split into two groups and received either 2 x 107 or 4 x 107 ADMSCs per disc. After one 

year, six out of ten patients, three from each cell dose group, exhibited significantly 

improved functional scores. Cell dosing did not cause any significant differences in 

improvements. Three patients also exhibited increased water content in the disc. Authors 

noted that other diseases that cause chronic LBP such as spondylolisthesis, spinal 

stenosis, facet joint arthritis, decreased disc height, and herniation may have prevented 

successful treatment. This study demonstrates that early intervention in treating disc 

degeneration is key to clinical success. The total number of delivered cells may be an 

important variable that impacts patient outcomes, however this study could not conclude 

whether a low or high dose was more effective.   

 Several clinical trials have been initiated by numerous companies around the 

world. Hydrogels based on fibrin [395] and hyaluronic acid [396,397,398,399,400] have 

been proposed as potential polymeric cell carriers. Hyaluronic acid is frequently selected 

over fibrin as the carrier of choice, most likely because it is a naturally occurring GAG 

within the IVD. Clinical trials have also proposed to isolate a variety of cell types 

including mesenchymal precursor cells [396,397], IVD cells [398], juvenile chondrocytes 

[395], BMDMSCs [399], and ADMSCs [400] from either allogeneic [395,396,397,399] 
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or autologous [398,399,400] origins. The status of each study has been deemed as 

completed [396], active, but not recruiting [397,398], unknown due to inactivity 

[399,400], or terminated due to changes in clinical approach [395]. Results from these 

studies have not been published but will potentially answer important questions 

concerning the advantages and disadvantages of cell origin, type, dosage, and use of 

polymeric carriers.  
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Figure 1. Lateral view of the human spinal column illustrating the cervical, dorsal, 

lumbar, sacral, and coccygeal regions. 
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Figure 2. The distal fused regions of the spine: sacrum (left) and coccyx (right). 
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Figure 3. Examples of the various vertebral bodies of the cervical (top), dorsal (middle), 

and lumbar (bottom) regions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

81 

 

 
Figure 4. Stacked arrangement of the dorsal vertebral bodies. 
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Figure 5. The intricate network of back muscles that attach to the spinal column of the 

human body. 
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Figure 6. Intervertebral disc. The disc resides between two adjacent vertebral bodies 

(left) and is composed of the cartilage endplates, annulus fibrosus, and nucleus pulposus 

(right). 
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Figure 7. Progressive degeneration of the intervertebral disc. (A) healthy IVD 

characterized by a hydrated NP and highly aligned, concentric AF, (B) degeneration 

begins with the dehydration of the NP, (C) NP volume dramatically decreases, collagen 

fibers in the AF begin to buckle inward, and osteophyte infiltration occurs, (D) complete 

loss of NP, disc thinning, and transverse bone fusion occurs during late-stages of 

degeneration.    
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Figure 8. Lumbar total disc replacements include the (A) SB Charité III, (B) ProDisc-L, 

and (C) activL.  
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Figure 9. Synthetic nucleus pulposus replacement devices including: (A) NuBac, (B) 

Regain, (C) PDN, (D) Aquarelle, (E) Newcleus, (F) NeuDisc, (G) DASCOR, and (H) 

NuCore. 
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Chapter 3 

 

Research Aims 

 

 This work focuses on the development and evaluation of a bioadhesive hydrogel 

composite cell carrier for the repair of degenerated IVD tissue.  

 The first objective was to synthesize an injectable adhesive composite consisting 

of a thermally sensitive hydrogel, poly(N-isopropylacrylamide)-graft-chondroitin sulfate 

(PNIPAAm-g-CS), and calcium-crosslinked alginate microparticles. Composite 

mechanical properties and adhesion to a tissue substrate were primarily evaluated and 

compared to native nucleus pulposus tissue. Additional scaffold properties such as 

swelling, porosity, degradability, shear stiffness, viscosity, and compressive stiffness 

were examined as a function of MP concentration and diameter.     

 The second objective focused on characterizing the differentiation of encapsulated 

ADMSCs toward an NP-like phenotype within the adhesive cell carrier in vitro. 

Cytotoxicity of PNIPAAm-g-CS and calcium-crosslinked alginate microparticles were 

primarily investigated to prevent cell death. Cells were then cultured and primarily 

assessed in terms of viability and metabolic activity. Lastly, extracellular matrix 

deposition and NP-specific markers on both the gene and protein level were evaluated.        

 The third objective was to evaluate the adhesive’s ability to restore biomechanical 

properties and resist expulsion after performing a partial nucleotomy in an ex vivo 

porcine disc. Two types of loading schemes were performed: compression-tension and 

lateral bending. Disc tissue and implant properties were measured throughout the 

different stages of mechanical testing. A histological approach was used to determine 

implant stability and adherence within the nuclear disc space.       
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 The fourth objective was to demonstrate that the adhesive supports the 

differentiation of transplanted ADMSCs in an ex vivo bovine disc. Intact and 

degenerative disc models were first established to determine the feasibility of implanting 

the adhesive. Finally, we investigated the site-specific differentiation and protein 

deposition by implanted ADMSCs within the composite.       

 

The specific aims of this project are as follows: 

 

Specific Aim 1: Engineer injectable copolymers based on PNIPAAm-g-CS combined 

with alginate microparticles that demonstrate adhesion to tissue and the requisite 

mechanical properties for nucleus pulposus replacement. 

 

Specific Aim 2: Demonstrate the in vitro differentiation of encapsulated ADMSCs 

toward nucleus pulposus phenotype in order to establish the feasibility of the adhesive as 

a three-dimensional culture system for IVD regeneration. 

 

Specific Aim 3: Test ex vivo the hypothesis that the adhesive, when used to fill defects in 

the nucleus pulposus, will restore biomechanics after partial nucleotomy without the risk 

of herniation.  

 

Specific Aim 4:  Test ex vivo the hypothesis that the adhesive supports differentiation of 

transplanted ADMSCs toward nucleus pulposus or annulus fibrosus phenotype and 

deposition of region-specific discogenic proteins in a degenerated microenvironment.  
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Chapter 4 

 

Synthesis & Characterization of the Bioadhesive Composite 

 

4.1 Introduction 

  

 The characterization of the bioadhesive NP replacement begins with the synthesis 

of the thermosensitive hydrogel composite. The hydrogel, poly(N-isopropylacrylamide)-

graft-chondroitin sulfate (PNIPAAm-g-CS), was developed in previous work and can be 

injected in a minimally invasive manner [401]. PNIPAAm-g-CS rapidly gels in situ and 

exhibits a phase transition above its lower critical solution temperature (LCST) and 

below physiological temperature [401]. Below the LCST, PNIPAAm-g-CS behaves as a 

hydrophilic liquid that retains water. Upon heating above the LCST, PNIPAAm-g-CS 

expels water and behaves as a compact, hydrophobic polymer network. In subsequent 

studies, calcium crosslinked alginate microparticles (MPs) were blended with PNIPAAm-

g-CS to improve adhesive strength to tissue [402,403]. Alginate was selected because it is 

an inexpensive, biocompatible, and hydrophilic polymer that can be easily crosslinked to 

form MPs without the use of toxic solvents. When combined, PNIPAAm-g-CS hydrogel 

and alginate MPs form a unique viscous bioadhesive composite.  

 The addition of MPs within a hydrogel can potentially impart new or enhanced 

characteristics upon forming a composite. Several studies have found that both MP 

concentration and diameter influence composite properties. For example, Holland et al. 

observed that the concentration of gelatin MPs in an oligo(poly(ethylene glycol) 

fumarate) hydrogel varied the swelling rate [404]. Qi et al. showed that incorporating 

alginate MPs within a thermosensitive chitosan hydrogel influences a scaffold’s 

topography by creating a rough surface [405]. DeVolder et al. demonstrated that 
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poly(lactic-co-glycolic acid) MPs exhibited interconnectivity and bonding with a 

collagen hydrogel phase [406]. Encapsulation of MPs in hydrogel systems has also been 

shown to increase a composite’s viscosity [405] and stiffness [406]. Subsequent changes 

in rheological behavior are correlated with the composite’s ability to adhere to tissue 

[407]. In the following work, composite properties were evaluated as a function of MP 

concentration and diameter and compared to PNIPAAm-g-CS. Properties such as 

scaffold swelling, porosity, degradation behavior, shear moduli, viscosity, adhesive 

strength, and compressive moduli were determined.   

4.2 Methods  

4.2.1 Purification of N-isopropylacrylamide. N-isopropylacrylamide 

(NIPAAm) (Acros Organics) monomer was purified to remove any stabilizers that 

prevent polymerization. Approximately 15 g of NIPAAm was combined with 500 mL of 

n-hexane (Sigma Aldrich) and heated to 60 °C until fully dissolved. The solution was 

allowed to recrystallize in a freezer overnight. A vacuum-filtration apparatus was used to 

remove excess solvent and the recrystallized monomer was dried for 24 h under vacuum. 

Purified NIPAAm monomer was ground and stored at 4 °C until further use.    

4.2.2 Methacrylation of chondroitin sulfate. Chondroitin sulfate (CS) (Sigma 

Aldrich) was substituted with methacrylate functional groups to impart reactivity through 

the presence of the vinyl bond (Figure 10). First, 6 g of CS was dissolved in 24 mL of 

deionized water to create a 25 % w/v solution. The solution was initially heated and 

stirred at 60 °C to facilitate solvation. The pH of the solution was adjusted to 10 using 50 

% w/w sodium hydroxide (NaOH). Then, 894 µL of methacrylic anhydride (MAA) 

(Sigma Aldrich) was added dropwise to the solution. The reaction proceeded for a total of 
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24 h at 60 °C under constant reflux and the pH was periodically adjusted to 10 with 50 % 

w/w NaOH. In parallel, 500 mL of acetone was chilled overnight in the freezer. After 24 

h, the solution was poured and precipitated into the chilled acetone. A vacuum-filtration 

apparatus was used to remove excess solvent and methacrylated chondroitin sulfate 

(mCS) was dried for 24 h under vacuum. Once dry, mCS was ground and stored at 4 °C 

until further use.  

4.2.3 Synthesis and purification of PNIPAAm-g-CS. Poly(N-

isopropylacrylamide-graft-chondroitin sulfate) (PNIPAAm-g-CS) was synthesized by 

performing a free radical copolymerization with purified NIPAAm monomer and mCS 

(Figure 11). First, 10 g of NIPAAm and 2.2 g of mCS were dissolved in 192 mL of 

deionized water. Oxygen was purged from the solution by continuously bubbling with 

nitrogen. After 5 minutes of purging, the rate at which free radicals were generated was 

controlled by adding 976 µL of the accelerator, tetramethylenediamine (TEMED) (Sigma 

Aldrich). Polymerization was initiated by introducing 97.6 mg of ammonium persulfate 

(APS) (Sigma Aldrich). The reaction mixture was mixed for 30 seconds, blanketed with 

nitrogen gas, sealed, and allowed to polymerize for 24 h under fluorescent light. After the 

reaction reached completion, the hydrogel was placed in a 40 °C oven and allowed to gel. 

PNIPAAm-g-CS was submerged in pre-heated 0.01 M phosphate buffered saline (PBS) 

for 1 week. PBS was refreshed daily to remove unreacted components such as monomer, 

accelerator, or initiator. Once purified, the hydrogel was freeze dried, ground, and stored 

at 4 °C until further use.  
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4.2.4 Synthesis of calcium crosslinked alginate microparticles. A water-in-oil 

emulsion was performed to produce calcium-crosslinked alginate microparticles (MPs). 

First, 2 % w/v alginic acid (Acros Organics) and 2 % w/v calcium chloride (CaCl2) 

(Fisher Scientific) were prepared. Next, 100 mL of vegetable oil, 1 mL of surfactant or 

Tween 20 (Sigma Aldrich), and 10 mL of 2 % w/v alginate solution were combined and 

blended. Alginate droplet size within the emulsion was varied using low (400 rpm) and 

high (1,200 rpm) stir speeds, thus generating large and small MPs, respectively. After 5 

minutes of emulsification, 10 mL of CaCl2 was added dropwise to the mixture. The 

emulsion was stirred for an additional 5 minutes to allow for crosslinking of the MPs. 

Bulk vegetable oil was first removed by centrifugation at 500 x g for 2 minutes and 

decanting the top oil phase. MPs were purified by removing residual oil through a series 

of washing steps with 70 % v/v isopropanol and centrifugation at 500 x g for 2 minutes. 

Residual isopropanol was removed through a series of washing steps with deionized 

water and centrifugations at 500 x g for 2 minutes. An average size for each batch was 

calculated by measuring the diameters of 50 randomly selected MPs using inverted light 

microscopy. Alginate MPs were then frozen at – 80 °C, lyophilized until dry, and stored 

at 4 °C until further use.  

4.2.5 Formulations and factorial design. Freeze dried PNIPAAm-g-CS was 

dissolved in 0.01 M PBS at a concentration of 5 % (w/v) and blended with MPs to create 

different composites. The same batches of PNIPAAm-g-CS hydrogel and alginate MPs 

were used for each individual study. Batch consistency between studies was maintained 

by monitoring hydrogel viscosity and MP diameter. A 2 x 2 factorial design was 



 

93 

 

employed to study the effects of low and high MP concentration and diameter on scaffold 

properties compared to PNIPAAm-g-CS (P-0) alone (Table 1). 

4.2.6 Swelling properties. Formulations were evaluated for their swelling ability 

and water retention. Approximately 0.5 mL of each formulation (n = 5) were weighed in 

a vial, gelled, immersed in 0.01 M PBS at 37 ºC for 14 d. PBS solutions were refreshed 

every other day. Samples were weighed and freeze dried to obtain wet and dry masses on 

days 0 and 14. The swelling ratio for each sample was calculated as the wet weight 

divided by the dry weight. 

4.2.7 Scanning electron microscopy. Scaffold architecture and pore morphology 

were imaged using a Phenom Pure scanning electron microscope (SEM) (Nanoscience 

Instruments) equipped with a cryostage cooled to -20 ºC. Samples (n = 3) were formed in 

a 96 well plate, pre-heated on a slide warmer, submersed in 0.01 M PBS and incubated at 

37 °C. PBS solutions were refreshed every other day. Samples were removed from the 

wells, placed on pre-warmed foil wraps, flash frozen in liquid nitrogen, and stored at – 80 

°C. Cross sections were compared on days 0 and 14.  

4.2.8 Rheological characterization. The rheological properties of each 

formulation were characterized using a Texas Instrument DHR-3 rheometer. A 20 mm 

parallel plate configuration with a 500 µm gap (160 µL sample volume) was used for 

each test (n = 5). A strain sweep was first performed to confirm that the observed data 

was within the linear viscoelastic region. Temperature ramps were performed within the 

range of 25 to 37 °C using a rate of 1 °C/min at a constant 1 % strain and frequency of 1 

Hz. Gel points were identified as the crossover of the storage modulus (G’) and loss 

modulus (G’’). Frequency sweep tests were performed within the range of 0.01 to 15 Hz 
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with a constant 1 % strain and temperature of 37 °C to understand trends in G’, G’’, 

complex modulus (G*), complex viscosity (η*), and phase shift angle (δ).  

4.2.9 Enzyme degradation study. The degradation behavior of P-0 and S-50 

were examined in the presence of enzymes purchased from Sigma Aldrich. The wet and 

dry masses of formulations on day 0 were measured before and after lyophilization. An 

average water content was calculated to estimate the theoretical initial dry masses for day 

7 enzymatic samples by using Equation 1: 

 
Water Content (%) = 100 ∗

Mw − Md

Mw
 

(1) 

 

where, Mw and Md are the wet and dry masses of the sample on day 0, respectively.  

 

 

 Approximately 0.3 mL of each sample (n = 5) was immersed in 2 mL of 0.01 M 

PBS containing either 0.1 mg/mL collagenase P, 50 ng/mL aggrecanase 2, or 0.1 U/mL 

chondroitinase ABC. Enzyme solution was maintained at 37 °C and refreshed each day 

for 7 days. As a control, formulations were exposed to 0.01 M PBS without enzyme. The 

dry mass of samples on days 0 and 7 were compared for differences. The percent mass 

loss was also calculated using Equation 2:  

 
Mass Loss (%) = 100 ∗

Mi − Mf

Mi
 

(2) 

 

where, Mi and Mi are the initial and final dry masses of the sample, respectively.  

4.2.10 Mechanical characterization. All mechanical in vitro studies were 

performed on a Shimpo E-Force Test Stand. A 2 N load cell (FGV-0.5XY) was used for 

tensile, shear, and unconfined compression tests and a 200 N load cell (FGV-50XY) was 

used for confined compression tests. AF tissue was isolated from porcine IVDs (Tissue 
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Source, LLC, Lafayette, Indiana) and utilized for adhesion tests. The adhesive strength of 

each formulation was compared to a fibrin hydrogel, known for its high biocompatibility, 

but weak mechanical properties [408,409,410,411].  The fibrin hydrogel used in this 

study was formed from 100 mg/mL fibrinogen, 500 U/mL thrombin, and 5 mg/mL CaCl2 

[412]. All mechanical tests were performed at a rate of 5 mm/min in a 37 °C saline bath. 

4.2.10.1 Adhesive tensile tests. Adhesive tensile tests, as described by ASTM 

F2258-05, were performed to observe the adhesive behavior of the composites on a 

porcine AF substrate (n = 5). AF tissue was cut to dimensions of approximately 0.5 cm2 

and glued to the top and bottom fixtures. A sample volume of 25 µL was applied to the 

AF surface, spaced approximately 1 mm apart, and a preload of 0.01 N was applied for 5 

minutes. Ultimate tensile strength was determined from the data and normalized to the 

cross-sectional area of the AF tissue.  

4.2.10.2 Adhesive Lap Shear Tests. Adhesive lap shear tests, as described by 

ASTM F2255-05, were performed to observe the adhesive behavior of the composites on 

a porcine AF substrate (n = 5). 3-D printed fixtures composed of polylactic acid (PLA) 

were used to grip tissue samples for vertical shear movement. AF tissue was cut to 

dimensions of approximately 0.5 cm x 1 cm and affixed to the PLA fixtures. A sample 

volume of 50 µL was injected between both tissue substrates, spaced approximately 1 

mm apart, and gelled for 5 minutes. Ultimate shear strength was determined from the data 

and normalized to the cross-sectional area of the AF tissue.  

4.2.10.3 Unconfined compression tests. Unconfined compression tests (n = 5) 

were performed on pre-formed, cylindrical gels (n = 5) in a 48 well plate. A preload of 

0.05 N was applied to the composites for 5 minutes. Data was normalized to stress and 
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strain using the initial cross-sectional area and height of each composite. Tangential 

modulus was calculated at 25 % strain.    

4.2.10.4 Confined compression tests. Confined compression tests (n = 7) were 

performed using a custom-built apparatus. A vertical, stainless steel cylinder, mounted on 

a base plate, guided a TeflonTM coated piston to minimize frictional contact along the 

cylinder walls. To allow entrapped air to escape, a sintered stainless-steel metal filter 

(Mott 50 U-PXX-002-A-10, 0.2 µm pore size, ½” diameter, 1/16” thick) was cut and 

inserted onto the end of the piston. Based on ASTM F2789-10, a surrogate AF mold 

composed of RTV-630 silicone elastomer (Momentive Performance Materials Inc.) was 

inserted into the cylinder to allow for confinement of the composite. A false bottom in the 

base plate was created to allow for easy insertion and removal of the surrogate mold. The 

apparatus is encased in plexiglass to contain heated saline and maintain physiological 

temperature. Approximately 100 µL of sample was injected into the mold for testing. 

Data was normalized to stress and strain using the initial cross-sectional area and height 

of each composite. Tangential modulus was calculated at 25% strain.  

4.2.11 Adhesive bonding to tissue. The bonding interface between P-0, S-50, and 

fibrin hydrogel to porcine AF tissue was histologically assessed. AF tissues were first 

isolated from porcine IVDs and wrapped in saline soaked gauze to prevent dehydration. 

Formulations were applied to the surfaces of AF tissue and gelled at 37 °C. Samples were 

then embedded in frozen section compound (VWR), flash frozen in liquid nitrogen, and 

sectioned on a cryostat at 30 µm. Sections were stained with alcian blue and Wiegert’s 

hematoxylin to identify the adhesive and native porcine cells, respectively. Bonding 
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interfaces between the various adhesives and tissues were imaged on an upright light 

microscope.  

4.2.12 Statistical analysis. SPSS software was used to perform a statistical 

analysis between data sets. A one-way analysis of variance (ANOVA) was conducted to 

compare means over time or between formulations. Assuming equal variance, Tukey’s 

post-hoc test was applied for all comparisons. Significance was set at the 95 % 

confidence level (p < 0.05). All values are reported as the mean ± standard deviation 

(SD). 

4.3 Results 

4.3.1 Synthesis of PNIPAAm-g-CS. Methacrylation of chondroitin sulfate was 

performed to impart potential reactivity through the vinyl bond in the methacrylate 

functional group (Figure 10). In previous work, the degree of methacrylate substitution to 

CS was previously demonstrated to be 0.1 [401,402]. Free radical copolymerization of 

NIPAAm monomer and mCS yielded the thermosensitive hydrogel PNIPAAm-g-CS 

(Figure 11). At room temperature, approximately 25 °C, PNIPAAm-g-CS is soluble in 

water and behaves as a hydrophilic polymer network (Figure 12). Upon heating above the 

lower critical solution temperature (LCST) to a physiological temperature of 37 °C, the 

polymer behaves as hydrophobic compact polymer network. 

4.3.2 Characterization of calcium crosslinked alginate microparticles. 

Alginate MPs were successfully crosslinked with calcium chloride and visualized using 

inverted light microscopy. Both small and large MPs were generated using different stir 

speeds (Figure 13). A low stir speed (400 rpm) and high stir speed (1,200 rpm) generated 

MPs with a diameter of 120 ± 39.0 µm and 20.0 ± 5.9 µm, respectively (Figure 14). 
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There was a statistically significant difference between the mean diameters of each MP 

batch (p < 0.05).  

4.3.3 Swelling properties. Swelling study results (Figure 15) indicated 

differences in swelling ratio for formulations after 14 days in PBS. P-0 exhibited a 

significant decrease (p < 0.05) in swelling ratio by 37 %, thus indicating water loss. S-25 

and L-25 exhibited a slight significant increase (p < 0.05) in swelling ratio by 22 % and 

17 %, respectively, suggesting that the addition of alginate MPs combats the shrinking 

behavior of PNIPAAm-g-CS and imbibes water. Doubling the MP concentration causes 

(S-50 and L-50) further swelling of the composite scaffold by 152 % and 157 % (p < 

0.05). MP diameter did not significantly influence the swelling ratio (p > 0.05).  

4.3.4 Scanning electron microscopy imaging. SEM imaging (Figure 16) 

revealed microscopic features such as pore shape, size and number for each formulation 

and reinforced findings from the swelling study. Pore sizes ranged from approximately 

10 – 40 µm at the beginning of the study. No immediate differences in microscopic 

structure were observed between formulations. After 14 days, P-0 showed an appreciable 

decrease in porosity and pore diameter due to its hydrophobic behavior above 37 °C. 

Addition of 25 mg/mL of alginate MPs to PNIPAAm-g-CS (S-25 and L-25) counteracts 

shrinking and improves pore retention. Composites that contained 50 mg/mL of alginate 

MPs (S-50 and L-50) exhibited the greatest number of pores. MP diameter did not cause 

any obvious differences in scaffold porosity.  

4.3.5 Rheological characterization. The rheological behavior of each 

formulation was assessed under shear oscillatory loading. Temperature sweep tests 

(Figure 17A) revealed a gel point of 33.4 ± 0.4 °C for P-0. However, gel points for all 
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other formulations (Figure 17C) could not be identified by the crossover of G’ and G’’ 

due to their predominantly elastic behavior over the entire temperature range. Frequency 

sweep tests revealed typical viscoelastic behavior and strain-rate dependency for all 

formulations (Table 2). G’ and G’’ increased with increasing strain-rate over the entire 

frequency range for all sample types except P-0 (Figure 17B and D). In general, inclusion 

of MPs increases the drag force on PNIPAAm-g-CS, causes a resistance to flow, and 

significantly increased G* and η* compared to P-0 (p < 0.05). S-50 exhibited the highest 

viscosity and shear moduli due to the combined effect of high MP concentration and 

small MP size. 

4.3.6 Enzyme degradation study. Formulations P-0 and S-50 were each 

examined for potential to enzymatically degrade (Table 3). P-0 and S-50 showed no 

significant loss in dry mass between 0 and 7 days in PBS (p > 0.05). Exposure to 

enzymes such as aggrecanase or collagenase did not significantly degrade the samples 

compared to the PBS control (p > 0.05). These results were expected since these enzymes 

degrade the core protein aggrecan and collagen, neither of which are present within the 

hydrogel or MPs. However, chondroitinase ABC caused a significant mass loss of 7.6 ± 

0.8 % and 8.9 ± 0.8 % 1.0 % for P-0 and S-50, respectively (p < 0.05).  

4.3.7 Adhesive tensile and shear tests. Adhesive strength to AF tissue was 

evaluated for each formulation in tension and shear and compared to a fibrin hydrogel 

(Table 4). Only S-50 and L-50 outperformed the fibrin hydrogel in adhesive tensile 

strength (p < 0.05). S-50 exhibited the highest adhesive tensile strength (2.79 ± 0.23 kPa) 

but was not significantly different than E (2.62 ± 0.53 kPa) (p > 0.05). All formulations 

except for P-0 outperformed the fibrin hydrogel in adhesive shear strength (p < 0.05). S-
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50 presented the highest adhesive shear strength (7.43 ± 1.23 kPa) compared to all other 

formulations (p < 0.05). Increased concentration of smaller MPs caused a significant 

difference in adhesive tensile and shear strength (p < 0.05), while MP diameter did not (p 

> 0.05).  

4.3.8 Unconfined and confined compression tests. Compressive modulus was 

calculated for each formulation in unconfined and confined testing conditions (Table 5). 

P-0 exhibited the lowest unconfined (6.84 ± 1.27 kPa) and confined compressive moduli 

(203 ± 113 kPa) compared to all other formulations. S-50 exhibited the highest 

unconfined (15.15 ± 1.08 kPa) and confined compressive moduli (894 ± 78 kPa) 

compared to P-0 (p < 0.05). In general, increasing the concentration of alginate MPs 

results in increased compressive modulus (p < 0.05) in unconfined and confined testing 

conditions, regardless of MP diameter. MP diameter only caused significant changes in 

modulus for unconfined compression (p < 0.05) and not confined compression (p > 0.05).  

4.3.9 Adhesive bonding to tissue. Differences in flow characteristics of the 

formulations were immediately observed after applying to porcine AF tissue substrates 

(Figure 18). P-0 and fibrin hydrogel appeared thin and dispersed along the tissue surface. 

However, S-50 was thick and did not flow as easily. Each sample adhered to the tissue 

surface and filled irregular spaces. Aside from tissue adherence, S-50 appeared reinforced 

by the anchoring of PNIPAAm-g-CS to alginate MPs. Embedded MPs enhance the 

adhesive and mechanical properties of PNIPAAm-g-CS hydrogel by structurally 

interfacing with the network. Interaction between adjacent MPs with one another or with 

the tissue surface may also influence adhesive and mechanical properties.    
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4.4 Discussion 

 An ideal carrier for cell delivery should remain porous and hydrated to allow for 

the exchange of nutrients and metabolic waste products. In previous work, hydrophobic 

PNIPAAm was grafted with chondroitin sulfate to increase the LCST and allow for 

greater water retention [401]. Alginate MPs are hydrophilic and have been shown to 

uptake large proportions of water [413]. Therefore, alginate MPs were added to 

PNIPAAm-g-CS to further improve water retention and increase scaffold porosity. 

Degradation properties of the carrier should also be considered for IVD cell therapy. 

Although the composite is susceptible to degradation by chondroitinase ABC, this 

enzyme is not found in the human IVD. Formulations were not degraded by native disc 

enzymes such as collagenase or aggrecanase and may be considered non-degradable, 

however other factors such as low pH may cause acid hydrolysis of glycosidic linkages 

found in chondroitin sulfate or alginate. A non-degradable composite may be beneficial 

in the localization and retention of cells for delivery.   

 Overall, the shear mechanical properties of the composite are strengthened by the 

addition of alginate MPs. Decreasing the MP diameter while holding concentration 

constant increases the surface area to volume ratio, thus allowing for greater distribution 

of MPs throughout the PNIPAAm-g-CS phase. The rheological properties of the 

PNIPAAm-g-CS phase dominate at a low MP concentration of 25 mg/mL, independent 

of size (S-25 and L-25). However, at 50 mg/mL, a distribution of smaller MPs (S-50) 

resulted in a significantly higher increase in η* and G* compared to larger MPs (L-50) 

due to a higher particle surface area to volume ratio. Similar behavior has been reported 

for hydrogels with suspended MPs [405,406]. Vibrations within the tested frequency 
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range and below 1 % strain have been reported to induce degenerative changes in the 

IVD [414]. At high frequencies, the gel appears to be more elastic and less viscous. This 

stiffening at high frequencies is coincident with reported behavior for the native human 

NP [415] and indicates that the various formulations have potential to prevent or 

minimize degeneration that can occur at high frequencies and low deformation [416]. 

Only S-50 and L-50 approached the minimum measured value of G’ and G’’ that have 

been reported for NP tissue in shear at low frequencies, starting at 7 kPa [415]. 

Furthermore, the phase shift angle (δ) increases with frequency but remains below 45 °. 

This behavior is consistent with the NP and indicates that S-50 and L-50 behave as 

viscoelastic solids under dynamic shear [415].  

 S-50 and L-50 demonstrated superior tensile and shear adhesive strength 

compared to fibrin hydrogel and P-0. Fibrin glue adhesives have been studied for IVD 

tissue engineering applications and are considered extremely biocompatible, yet its use 

has several disadvantages: high degradation rate [417], low mechanical properties 

[408,409], and low cohesive strength [410,411]. Additionally, the load-bearing activity of 

the IVD would make a fibrin hydrogel more susceptible to dislodging from the nuclear 

cavity after injection. In the clinical setting, residual disc tissue can also herniate after 

performing discectomy and requires future revision surgery [418,419]. Hence, imparting 

adhesive properties to a cell carrier is necessary in order to prevent implant migration or 

extrusion from the disc.     

 One of the most frequent types of loading exerted on the IVD tissue is 

compression. In general, increased MP concentration and surface area to volume ratios 

increased compressive moduli. Decreased MP diameter allowed for a greater distribution 
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of MPs throughout the PNIPAAm-g-CS hydrogel, thus increasing composite stiffness. 

All formulations either meet or exceed mechanical properties of the native NP tissue in 

unconfined compression, which ranges from 3 – 5 kPa [420]. However, the NP is 

physiologically confined and surrounded by the AF and CEP. Therefore, the confined 

compressive moduli of formulations were subsequently measured. Trends from confined 

compression testing were nearly identical to unconfined conditions, yet moduli varied in 

magnitude. Restricted movement within the rubber surrogate AF caused over a 50-fold 

increase in confined compressive moduli compared to unconfined testing. S-50 and L-50 

reached just below 1 MPa at 25 % strain, which is slightly below the reported range of 

native NP tissue [421]. 

4.5 Conclusions 

 The successful treatment of the degenerated IVD using an injectable cell carrier 

relies on several key prerequisites. Since tissue herniation has been reported in the 

clinical setting post-discectomy, implant migration or extrusion can potentially occur in 

the load-bearing IVD. Therefore, imparting adhesive properties to a cell carrier are vital. 

An implant’s ability to endure repetitive compressive or shear loading are desirable to 

allow for proper load dissipation to surrounding spinal tissues. Blending a high 

concentration of small alginate MPs in PNIPAAm-g-CS significantly enhanced 

rheological properties such as viscosity and shear modulus, thus increasing adhesive 

tensile and shear strength on AF tissue. These results are also coincident with previous 

findings in literature [405,406,407]. More importantly, the IVD endures complex 

combinations of load, hence the composite’s adhesive behavior and resistance to 

extrusion will need to be further tested using an ex vivo disc model or an in vivo animal 
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model. If extrusion occurs, properties of PNIPAAm-g-CS can be altered to improve 

stiffness and viscosity [401] alginate MPs can be conjugated with dopamine to improve 

adhesive strength with tissue [422]. Modifications to the cell carrier in order to meet 

mechanical design criteria would consequently affect ADMSC response and would 

require further investigation. 
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Table 1 

 

Formula Designations of Factorial Design     
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Figure 10. Reaction mechanism for the substitution of a methacrylate group on CS using 

MAA to create MCS. 
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Figure 11. Free radical polymerization of NIPAAm and mCS in deionized water with 

TEMED and APS to create PNIPAAm-g-CS. 
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Figure 12. Phase transition of PNIPAAm-g-CS. The copolymer behaves as a liquid at 

room temperature (25 °C). Upon heating to physiological temperature (37 °C), the 

copolymer becomes hydrophobic and forms a compact hydrogel. 
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Figure 13. Light micrographs of hydrated alginate MPs that are 120 ± 39.0 µm (left) and 

20.0 ± 5.9 µm (right), respectively. 
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Figure 14. Box and whisker plot illustrating the two populations of alginate MPs with 

statistically different means of 120 ± 39.0 µm and 20.0 ± 5.9 µm.  
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Figure 15. Swelling ratios of formulations incubated in PBS at 37 °C after 0 and 14 days 

(n = 5). An asterisk (*) indicates a statistically significant difference (p < 0.05) compared 

to day 0. Swelling ratio increased with increasing MP concentration but did not vary with 

MP diameter.  
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Figure 16. SEM images of formulations incubated in PBS at 37 °C after 0 and 14 days  

(n = 3). P-0 exhibited decreased porosity due to its hydrophobic behavior at physiological 

temperature. S-25 and L-25 counteracted shrinking from the hydrophilic addition of 25 

mg/mL of alginate MPs. Increasing MP concentration to 50 mg/mL (S-50 and L-50) 

further improved pore retention. Scale bars = 50 µm.  
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Figure 17. Representative plots from rheological testing of (A, C) temperature and (B, D) 

frequency sweep tests for formulations P-0 and S-50, respectively. Note that P-0 exhibits 

a crossover of G’ and G’’ and S-50 does not. With increasing frequency, S-50 stiffens, 

whereas P-0 does not.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

114 

 

Table 2 

 

Complex Modulus (G*) and Phase Angle (δ) as a Function of Frequency 
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Table 3 

 

Enzymatic Degradation and Mass Loss 

 

 Mass Loss with Enzyme Exposure (%) 

Formulation PBS Aggrecanase 2 Collagenase P Chondroitinase ABC 

P-0 0.16 ± 0.9 0.09 ± 0.7 0.21 ± 1.1 7.55 ± 0.80 

S-50 0.1 ± 1.1 0.15 ± 0.9 0.19 ± 1.6 8.88 ± 1.0 
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Table 4 

 

Adhesive Strength to AF Tissue in Tension and Shear 

 

 
Note. An asterisk (*) indicates a statistically significant difference (p < 0.05) compared to 

the fibrin hydrogel. 
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Table 5 

 

Unconfined and Continued Compressive Moduli at 25 % Strain 

 

   
Note. An asterisk (*) indicates a statistically significant difference (p < 0.05) compared to 

P-0. 
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Figure 18. Adherence of formulations P-0, S-50, and fibrin hydrogel along the AF tissue 

substrate. GAGs and cell nuclei were stained with alcian blue and Weigert’s hematoxylin, 

respectively. Scale bars = 100 µm.   
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Chapter 5 

 

Differentiation of Mesenchymal Stem Cells Toward an NP Phenotype 

 

5.1 Introduction 

The differentiation of human ADMSCs and BMDMSCs has been extensively 

studied in vitro [423,424,425,426]. Exposing MSCs to solubilized proteins from the 

TGF-β and GDF families is one method to induce discogenic differentiation. MSC 

differentiation toward an NP-like phenotype has been characterized by changes in protein 

and gene expression. One feature that differentiates NP cells from other chondrogenic 

cell lines is the amount of synthesized proteoglycan and collagen. Compared to articular 

chondrocytes, healthy NP cells produce higher proportions of proteoglycans containing 

aggrecan (ACAN) compared to type II collagen (COL2) [424,427]. Therefore, MSCs 

must also produce a proteoglycan rich matrix upon differentiation. Additional discogenic 

proteins of interest that should be produced and expressed by MSCs include type I 

collagen (COL1), SOX9, and hypoxia inducible factor 1α (HIF1α). Studies have also 

identified significant increases in the expression of NP-specific genetic markers like 

paired box 1 (PAX1) [423,424], forkhead box 1 (FOXF1) [423,424,425,426], cytokeratin 

19 (KRT19) [424,425,426], carbonic anhydrase 12 (CA12) [425,426] after growth factor 

exposure.  

 Clarke et al. [426] compared the influence of TGF- β3, GDF-5, and GDF-6 on 

both BMDMSCs and ADMSCs. Authors concluded that GDF-6 stimulation caused 

MSCs to produce more sulfated GAG, express a higher ACAN to COL2 gene ratio, and 

upregulate NP-specific genes compared to TGF- β3 and GDF-5. All these effects were 

more prominent for ADMSCs relative to BMDMSCs. Additionally, Minogue et al. [423] 
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determined that ADMSCs may be more suitable for differentiation toward an NP-like 

phenotype because they lack articular chondrocyte gene expression for integrin binding 

sialoprotein (IBSP) and fibulin 1 (FBLN1). The combination of GDF-6 and ADMSCs 

may be ideal for IVD tissue engineering strategies. 

Prior in vitro work demonstrated that PNIPAAm-g-CS [401] and a preliminary 

composite [402] supported the viability of human embryonic kidney (HEK) 293 cells. 

Even though these formulations supported the survival of this model cell line, HEK-293 

cells would not be grafted into the IVD for regenerative purposes. In the previous 

chapter, S-50 and L-50 exhibited superior swelling, rheological, adhesive, and 

mechanical properties compared to PNIPAAm-g-CS. Based on these findings, S-50 and 

L-50 were evaluated and compared to PNIPAAm-g-CS as potential three-dimensional 

culture systems for ADMSC delivery. The subsequent work describes the survival, 

behavior, and differentiation of ADMSCs toward an NP-like phenotype. PNIPAAm-g-CS 

hydrogel and alginate MPs were first screened for potential cytotoxic leachable 

byproducts that may illicit cell death. Then, ADMSCs were encapsulated within the 

formulations, cultured in vitro with exposure to GDF-6, and evaluated in terms of 

viability, metabolic activity, and secretion of sulfated GAG and collagen. ADMSC 

differentiation toward an NP-like phenotype was assessed on both the gene and protein 

level using qRT-PCR and immunofluorescence analyses, respectively.  

5.2 Methods  

5.2.1 Culturing and passaging ADMSCs. Normal human ADMSCs (ScienCell, 

female donor, 30 years old) were stored in liquid nitrogen until needed. ADMSCs were 

grown in tissue culture treated plates using MSC complete medium (ScienCell) 
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containing basal medium, 5 % fetal bovine serum (FBS), 5 % MSC growth supplement, 

and 5 % penicillin and streptomycin solution. ADMSCs were kept in a water-jacketed 

incubator at 37 °C with 5 % CO2. Once 80 % confluency was reached, ADMSCs were 

detached with trypsin (VWR) for 5 minutes and rinsed with complete medium. ADMSCs 

were then split and passaged at a plating density of 5,000 cells/cm2. Cell number and 

viability was checked using a hemocytometer and 0.4 % trypan blue (Thermo Fisher 

Scientific). Media was changed every other day to remove waste byproducts and refresh 

available nutrients. Stem cells used for future assays were passage 4.  

5.2.2 Biomaterial cytotoxicity. Prior to seeding ADMSCs in composites, extract 

tests were performed following the guidelines of ISO 10993-5 Biological Evaluation of 

Medical Devices - Part 5: Tests for In Vitro Cytotoxicity. As described previously, 

ADMSCs were expanded to 80% confluency in advance in a 48 well plate. In parallel, 

5% w/v PNIPAAm-g-CS (n = 3), 20 µm alginate MPs (n = 3), and 120 µm alginate MPs 

(n = 3) were immersed in complete medium for 24 h. Culture media was removed from 

the ADMSC monolayers, replaced with media exposed to hydrogel or MP material, and 

exposed for a total of 3 h at 37 °C and 5 % CO2. Control monolayers were also included 

to identify both living and killed cells. The living control monolayer was given fresh 

complete medium. The killed control monolayer was exposed to 70 % methanol for 15 

minutes, washed with PBS and replaced with fresh complete medium. Cytotoxicity was 

evaluated using the Live/Dead™ Viability/Cytotoxicity Kit for Mammalian Cells 

(Thermo Fisher Scientific) as prescribed by the manufacturer. Images were taken with an 

inverted fluorescent microscope.  
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5.2.3 ADMSC encapsulation in formulations. P-0, S-50, and L-50 were 

examined for their ability to support the viability and differentiation of ADMSCs toward 

an NP-like phenotype using GDF-6. NP differentiation medium was prepared based on 

Clarke et al. [426] and consisted of high-glucose Dulbecco’s Modified Eagle Medium 

(DMEM) (Thermo Fisher Scientific) supplemented with 1 % FBS, 

antibiotics/antimycotics (Thermo Fisher Scientific) containing 100 U/mL penicillin, 100 

µg/mL streptomycin, 0.25 µg/mL amphotericin B, 1.25 mg/mL bovine serum albumin 

(Sigma Aldrich), 5.4 µg/mL linoleic acid (Sigma Aldrich), 100 µM L-ascorbic acid-2-

phosphate (Sigma Aldrich), 40 µg/mL L-proline (Sigma Aldrich), 10-7 M dexamethasone 

(Sigma Aldrich), and 100 ng/mL GDF-6 (PeproTech). The differentiation medium was 

then sterilized through a 0.2 µm filter, protected from light, and stored at 4 °C. Freeze-

dried alginate MPs were sterilized by soaking in 70% isopropanol and allowed to dry 

overnight under vacuum. PNIPAAm-g-CS was dissolved in NP differentiation medium 

overnight at a concentration of 5 % w/v and 4 °C. Both alginate MPs and PNIPAAm-g-

CS were exposed to UV light for 3 h. Alginate MPs were mixed with the PNIPAAm-g-

CS solution using a positive displacement pipette to form composites. ADMSCs were 

then suspended in either PNIPAAm-g-CS or composites at a density of 5 x 106 cells/mL. 

Approximately 100 µL samples were dispensed into a 48 well plate and gelled before 

adding 500 µL of NP differentiation medium. Media was refreshed every other day and 

ADMSCs were cultured for 14 days. 

5.2.4 Cellular viability. Live/Dead™ Viability/Cytotoxicity Kit was used to 

assess ADMSC viability. Hydrogel composites (n = 3) were first dissolved in 0.01 M 

PBS containing 50 mM citrate (Sigma Aldrich) and 20 mM EDTA (Sigma Aldrich). 
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Sodium citrate-EDTA buffer dilutes the hydrogel and reverses ionic alginate-Ca2+ 

crosslinks for complete removal of composite material. Suspended cells were pelleted at 

300 x g for 5 minutes at 4 °C and resuspended in Live/Dead™ reagent containing 2 µM 

calcein AM and 4 µM ethidium homodimer-1 in high glucose DMEM for 1 hour at 37 °C 

and 5 % CO2. Cells were isolated from the Live/Dead™ reagent, rinsed with 0.01 M 

PBS, dispensed in a 48 well plate, and imaged using an inverted fluorescent light 

microscope. Cellular viability was quantified using ImageJ software. 

5.2.5 Metabolic activity. ADMSC metabolic activity was tracked over 14 days 

using the alamarBlue® Cell Viability Assay (Bio-Rad). Media was removed from 

samples (n = 5), replaced with 300 µL of 10 % alamarBlue reagent in NP differentiation 

medium, and incubated for 5 hours at 37 °C and 5 % CO2. Blank wells containing solely 

alamarBlue reagent served as a reference negative control. Reduced reagents were 

removed from the samples, dispensed in a 96 well plate and absorbance readings were 

measured using a spectrophotometer at 570 and 600 nm. Percent reagent reduction was 

calculated as described by the manufacturer’s instructions. 

5.2.6 Protein expression. GAG and collagen production were visualized using a 

histological approach. P-0, S-50, and L-50 (n = 3 each) were fixed for 10 minutes with 4 

% formaldehyde (Fisher Scientific), embedded in frozen section compound, snap-frozen 

in methylbutane chilled with liquid nitrogen, and sectioned to 20 µm sections. 

PNIPAAm-g-CS and alginate MPs were dissolved using sodium citrate-EDTA buffer to 

identify ECM produced solely by ADMSCs. GAGs or collagen were stained for using 1 

% w/v alcian blue or 0.1 % w/v picrosirius red, respectively. Cell nuclei were 
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counterstained with Weigert’s hematoxylin. ECM deposition was compared on days 0 

and 14.      

 An indirect immunofluorescent labeling technique was also used to detect the 

presence of discogenic and NP-specific proteins. Discogenic proteins include type I 

collagen (COL1), type II collagen (COL2), aggrecan (ACAN), and SRY-BOX 9 (SOX9). 

NP-specific proteins include cytokeratin 19 (KRT19), carbonic anhydrase 12 (CA12), 

hypoxia-inducible factor 1-α (HIF1α), and forkhead box F1 (FOXF1). S-50 (n = 3) was 

sectioned to 20 µm, washed with sodium citrate-EDTA buffer, permeabilized for 10 

minutes with tris-buffered saline (TBS) containing 0.3 % Triton X-100 (Fisher 

Scientific), and blocked with 10 % v/v goat serum in TBS for 10 minutes. Primary 

antibodies (Table 6) were applied for 1 hour at room temperature and rinsed off with 

TBS. Secondary antibodies conjugated with Alexa Fluor 647 were applied for 30 minutes 

at room temperature and rinsed off with TBS. Sections were counterstained with 4',6-

diamidino-2-phenylindole dihydrochloride (DAPI) and imaged on a confocal microscope 

(Model A1+, Nikon Instruments Inc.). Immunofluorescent staining performed on sections 

without primary, secondary, or any antibodies from either mouse or rabbit species served 

as controls to check for non-specific staining or endogenous autofluorescence. Primary 

antibodies were monoclonal to increase specificity of the target cite on the protein. 

Secondary antibodies were polyclonal to increase binding capacity to the respective 

primary antibody. Primary and secondary antibodies were raised in either mouse or rabbit 

and goat, respectively. Immunofluorescent protein expression was compared on days 0 

and 14.  
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5.2.7 Gene expression. Gene expression profiles of ADMSCs in S-50 on days 0 

and 14 were examined using quantitative real-time polymerase chain reaction (qRT-

PCR). Seeded cells were isolated from samples (n = 3, 5 constructs each). As described 

previously, gels were treated with sodium citrate-EDTA buffer and centrifuged to isolate 

ADMSCs. Total RNA was extracted using the Pure Link™ RNA Extraction Mini Kit 

(Ambion®, Life Technologies™) and quantified in terms of concentration and purity 

with a nanodrop (Applied Biosystems). RNA integrity was verified by performing gel 

electrophoresis and checking for the presence of the 28S and 18S ribosomal bands. RNA 

samples were combined with loading dye containing formamide, bromophenol blue and 

xylene cyanol and electrophoresed on a 1 % agarose gel containing 3.7 % formaldehyde 

in MOPS running buffer at 90 V and 4 °C. A 9.0 kB RNA ladder (Lonza) was used to 

compare the size of the bands. The gel was stained with 0.5 µg/mL of ethidium bromide 

for 30 minutes and imaged with an Azure Biosystems c600.    

 RNA was then reverse transcribed to cDNA using the High Capacity cDNA 

Reverse Transcription Kit (Applied Biosystems). Target genes (Table 7) were amplified 

in 20 µL reactions using 20 ng of cDNA, Fast SYBR® Green Master Mix (Fisher 

Scientific), 500 nM primer concentrations, and an Applied Biosystems 9800 Fast 

Thermal Cycler. Discogenic genes include COL1, COL2, ACAN, and SOX9. NP-

specific genes include CA12, HIF1α, FOXF1, and paired box 1 (PAX1). Relative gene 

expression was calculated using the delta-delta Ct method (2-ΔΔCt) and normalized to 

ADMSCs on day 0 and the housekeeping gene glyceraldehyde 3-phosphate 

dehydrogenase (GAPDH). Size of DNA products were estimated using Basic Local 

Alignment Search Tool (BLAST) through the National Center for Biotechnology 
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Information (NCBI) database and verified using gel electrophoresis. DNA samples were 

combined with loading dye containing bromophenol blue and xylene cyanol and 

electrophoresed on a 2 % agarose gel in TBE running buffer at 90 V and 4 °C. A 500 bp 

DNA ladder (Lonza) was used to compare the size of the bands. The gel was stained with 

0.5 µg/mL of ethidium bromide for 30 minutes and imaged with an Azure Biosystems 

c600.  

5.2.8 Statistical analysis. SPSS software was used to perform a statistical 

analysis between data sets. A one-way analysis of variance (ANOVA) was conducted to 

compare means over time or between formulations. Assuming equal variance, Tukey’s 

post-hoc test was applied for all comparisons. Significance was set at the 95 % 

confidence level (p < 0.05). All values are reported as the mean ± SD. 

5.3 Results  

5.3.1 Biomaterial cytotoxicity. Any potential toxic byproducts that may have 

leeched from the PNIPAAm-g-CS hydrogel or alginate MPs did not elicit cell death 

(Figure 19). Therefore, both biomaterial components were deemed non-cytotoxic. The 

living control showed a healthy monolayer of metabolically active cells as shown in 

green. After exposure to 70 % methanol, the killed control showed compromised cell 

membranes and nuclear staining as shown in red. Cell monolayers exposed to extracts 

from PNIPAAm-g-CS, 20 µm MPs, and 120 µm MPs exhibited characteristics of the 

living control and were greater than 95 % viable.  

5.3.2 Cellular viability. After 14 days of culture, ADMSCs showed cellular 

viability within the different adhesive formulations (Figure 20). The number of living 

cells in P-0, S-50, and L-50 were estimated to be 91.8 ± 1.7 %, 92.0 ± 6.5 %, and 93.4 ± 
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1.8 %, respectively. The presence or size of MPs did not significantly influence cell 

survival. 

5.3.3 Metabolic activity. ADMSCs exhibited significant increases in metabolic 

activity during the differentiation period (Figure 21). P-0 showed the greatest increase in 

percent reagent reduction after 14 days by 123 ± 7.5 % (p < 0.05). Reagent reduction also 

significantly increased for S-50 (45 ± 9.8 %) and L-50 (23 ± 4.9 %) (p < 0.05), but not as 

considerably as P-0. 

5.3.4 Protein expression. ADMSCs seeded in P-0, S-50, and L-50 synthesized 

GAGs and collagen after 14 days of culture (Figure 22). Cells remained round in 

morphology and intensity of intracellular and extracellular staining increased for all 

formulations relative to day 0. Interestingly, diffuse ECM appeared to form around large 

MPs in L-50, while concentrated striations bridged gaps between encapsulated cells in S-

50. Overall, P-0, S-50, and L-50 all supported ADMSC survival for 14 days and retained 

secreted ECM for NP tissue regeneration. 

 ADMSC differentiation toward an NP-like phenotype was further examined in S-

50, since this composite exhibited superior adhesive, mechanical, and rheological 

behavior compared to P-0 and L-50. A progressive induction of discogenic and NP-

specific proteins was confirmed by immunofluorescent staining. Discogenic proteins such 

as COL1, COL2, ACAN, and SOX 9 were detected after 14 days (Figure 23). 

Intracellular staining for the NP-specific proteins, CA12, FOXF1, HIF1α, and KRT19 

were also identified (Figure 24). ADMSCs showed minor intracellular staining of 

discogenic or NP-specific proteins prior to culture. Controls did not stain positive for any 
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protein markers ensuring target specificity and absence of non-specific antibody binding 

or endogenous autofluorescence (Figure 25). 

5.3.5 Gene expression. Total RNA was successfully extracted from ADMSCs on 

days 0 and 14 and quantified in terms of purity and concentration using a nanodrop. Gel 

electrophoresis revealed that all samples showed the presence of the 28S and 18S human 

ribosomal bands, which are 5.0 kB and 1.9 kB long, correspondingly (Figure 27). Intact 

RNA was used to synthesize cDNA for qRT-PCR to identify changes in gene expression 

in discogenic and NP-specific markers. PCR results (Figure 26) indicate the upregulation 

of all tested discogenic and NP-specific markers normalized to day 0 and GAPDH. 

Among all of the tested genetic markers, ACAN showed the highest upregulation (≈ 250-

fold change) followed by COL2 (≈ 50-fold change). Both COL1 and SOX9 exhibited a 

relatively smaller upregulation (≈ 5-fold change). KRT19, FOXF1, and PAX1 were the 

highest upregulated NP-specific markers compared to HIF1α and CA12. Amplified PCR 

product sizes were confirmed using gel electrophoresis (Figure 28). Target genes 

exhibited the correct base pair sizes and did not contain genomic DNA or non-specific 

amplified products. 

5.4 Discussion 

 After 14 days of encapsulation, the long-term survival of ADMSCs were 

corroborated by both Live/Dead and alamarBlue results. Interestingly, ADMSCs 

appeared to proliferate more rapidly in P-0 relative to S-50 and L-50. Cells may prefer to 

grow inside thin versus viscous carriers [428,429], nonetheless at least 90 % of ADMSCs 

remained viable in each formulation. One potential contributor to decreased cell survival 

is nutrient deprivation. An ischemic microenvironment with limited protein availability 
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has been shown to induce ADMSC death [430,431], but fosters differentiation potential 

[432].    

 Histological analysis revealed that ADMSCs produced GAG and collagen after 14 

days in vitro. Minimal protein staining was observed in P-0 and may be associated with a 

carrier’s water retention, as ADMSCs may have been prevented from depositing ECM 

due to the hydrogel’s constrictive and hydrophobic behavior above the LCST [433]. 

ECM in L-50 appeared diffuse throughout the hydrogel with concentrated striations 

around alginate MPs. S-50 exhibited finer and more connective tissue formation 

throughout the carrier due to the presence of smaller alginate MPs. Therefore, MP 

diameter will influence the pattern and distribution of newly synthesized tissue 

throughout the carrier [443]. ADMSCs remained round after 14 days of culture indicating 

a NP-like phenotype.  

 Immunofluorescent staining and qRT-PCR were performed on encapsulated 

ADMSCs in S-50 to confirm the presence of discogenic and NP-specific proteins and 

genes. Extracellular proteins such as COL1, COL2, and ACAN were detected, 

confirming the production of connective disc-like ECM. Higher proportions of aggrecan 

to collagen protein (27:1) in the NP tissue of young adult disc with no signs of 

degeneration have been previously reported in literature [427]. Similarly, ACAN gene 

expression was approximately 5 and 50 times higher than COL2 and COL1 expression, 

respectively, indicating NP-like phenotype. Intracellular staining of NP-specific proteins 

FOXF1 and KRT19 were also identified. KRT19, FOXF1, and PAX1 have been recently 

identified as novel NP markers [423,434,435] and were among the highest upregulated 

genes. CA12 and HIF1α showed limited intracellular staining and upregulation, which 
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may be stabilized by MSCs in vitro and linked to glycolysis [436]. Exposure to a hypoxic 

environment would most likely enhance the upregulation of these genes [425,437].  

5.5 Conclusions 

 ADMSCs were successfully encapsulated in each formulation and survived for a 

total of 14 days in vitro. ADMSCs exhibited increased metabolic activity over time 

within all tested formulations, potentially indicating cellular proliferation however DNA 

content was not measured. Histology revealed that P-0, S-50, and L-50 retained newly 

synthesized sulfated GAG and collagen produced by ADMSCs. Since S-50 demonstrated 

superior mechanical properties and supported the survival of ADMSCs, gene and protein 

expression were evaluated further using this formulation. Discogenic proteins (ACAN 

and COL2), and NP-specific proteins (KRT19, FOXF1, and PAX1) were positively 

identified using immunostaining techniques. These markers were also the top five most 

upregulated genes detected using qRT-PCR. Results presented here indicate that 

ADMSCs differentiated toward an NP-like phenotype after encapsulation in S-50 and 

exposure to GDF-6.        

One important limitation in this study was that the degenerative state was not 

completely recapitulated in vitro. Factors such as low pH [438], reduced nutrient supply 

[430,431], low oxygen tension [425,437], hydrostatic pressure [439,440], or mechanical 

loading [441,442] were not implemented. Each of these factors may detrimentally impact 

MSC retention or survival upon injection into the degenerated disc. To improve cell 

survival, ADMSCs can be cultured in vitro under degenerative-like conditions prior to 

delivery into the harsh disc microenvironment. If intradiscal pressure or loading causes 

displacement of ADMSCs, functional groups can be incorporated into the hydrogel 
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composite network to improve cell adhesion. It should also be noted that the influence of 

composite properties on MSC behavior was not explored in this work. Characteristics of 

PNIPAAm-g-CS such as polymer concentration, degree of methacrylate substitution on 

CS, and molar ratio of NIPAAm to CS were held constant but can be modified if need be 

[401]. Bertolo et al. [424] demonstrated that MSC survival and protein expression varied 

depending on the type of encapsulating biomaterial. Studies have also reported that 

diameter and concentration of MPs within a hydrogel affect interstitial space, which 

impact cell to cell interactions, viability, morphology, aggregation, and protein deposition 

[443,444]. These variables should be further investigated in future work.  
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Table 6 

 

Target Proteins Identified Using Immunofluorescent Labeling 

    
   

Protein Antibody Type Species Clonality Dilution 

COL1 Primary Mouse anti-human Monoclonal 1:100 

COL2 Primary Mouse anti-human Monoclonal 1:200 

ACAN Primary Mouse anti-human Monoclonal 1:50 

SOX9 Primary Mouse anti-human Monoclonal 1:100 

KRT19 Primary Mouse anti-human Monoclonal 1:200 

CA12 Primary Rabbit anti-human Monoclonal 1:50 

HIF1α Primary Rabbit anti-human Monoclonal 1:100 

FOXF1 Primary Rabbit anti-human Monoclonal 1:100 

Alexa Fluor 647 Secondary Goat anti-mouse Polyclonal 1:200 

Alexa Fluor 647  Secondary Goat anti-rabbit Polyclonal 1:200 
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Table 7 

 

Genes of Interest Amplified Using qRT-PCR 

   
Gene Forward Primer (5’ – 3’) Reverse Primer (5’ – 3’) 

COL1 CCTGCTGGCAAGAGTGGTGAT GAAGCCACGGTGACCCTTTATG 

COL2 GGCAATAGCAGGTTCACGTACA CGATAACAGTCTTGCCCCACTT 

ACAN TCGAGGACAGCGAGGCC TCGAGGGTGTAGCGTGTAGAGA 

SOX9 AGCGAACGCACATCAAGAC CTGTAGGCGATCTGTTGGGG 

KRT19 GATAGTGAGCGGCAGAATCA CCTCCAAAGGACAGCAGAAG 

CA12 CGTGCTCCTGCTGGTGATCT AGTCCACTTGGAACCGTTCACT 

HIF1α GGGTTGAAACTCAAGCAACTGTC GTGCTGAATAATACCACTCACAACG 

FOXF1 AAGCCGCCCTATTCCTACATC GCGCTTGGTGGGTGAACT 

PAX1 TGGCCCTCGGCACACTC GCCCCTGTTTGCTCCATAAA 

GAPDH CAGCGACACCCACTCCTC TGAGGTCCACCACCCTGT 
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Figure 19. Representative Live/Dead images illustrating the non-cytotoxicity of 

PNIPAAm-g-CS and alginate MPs. Living cells that metabolized calcein-AM are shown 

in green. Cells death was induced with 70 % methanol and are shown in red. Scale bars = 

100 µm.   
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Figure 20. Representative Live/Dead images illustrating the viability of ADMSCs in 

formulations P-0, S-50, and L-50 after 14 days (n = 3). Living and dead cells are shown 

in green and red, respectively. Scale bars = 100 µm.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

136 

 

 

Figure 21. Reagent reduction values calculated from alamarBlue assay results illustrating 

the metabolic activity of ADMSCs in formulations P-0, S-50, and L-50 on days 0, 7, and 

14 (n = 5). An asterisk (*) indicates a statistically significant difference (p < 0.05) 

compared to day 0. 
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Figure 22. Representative histological images illustrating the ECM produced by 

ADMSCs in formulations P-0, S-50, and L-50 after 0 and 14 days (n = 3). GAGs (top 

row in blue) and collagen (bottom row in red) were stained with alcian blue and 

picrosirius red, respectively. Nuclei were counterstained with Weigert’s hematoxylin and 

are shown in black. Scale bars = 100 µm.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

138 

 

 

 

Figure 23. Representative immunofluorescent staining of proteins (magenta) produced by 

ADMSCs in formulation S-50 after 14 days (n = 3). Discogenic proteins include ACAN, 

COL1, COL2, and SOX9. Cell nuclei were counterstained with DAPI (blue). Scale bars = 

100 µm.   
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Figure 24. Representative immunofluorescent staining of proteins (magenta) produced by 

ADMSCs in formulation S-50 after 0 and 14 days (n = 3). NP-specific proteins include 

KRT19, FOXF1, HIF1α, and CA12. Cell nuclei were counterstained with DAPI (blue). 

Scale bars = 100 µm. 
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Figure 25. Representative immunofluorescent staining of negative control samples in 

formulation S-50 after 14 days (n = 3). Negative control samples were routinely stained 

with no primary antibody and (A) secondary mouse antibody, (B) secondary rabbit 

antibody, or (C) no secondary antibody. Cell nuclei were counterstained with DAPI 

(blue). Scale bars = 100 µm.  
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Figure 26. Relative gene expression profiles of ADMSCs in formulation S-50 after 14 

days using qRT-PCR (n = 3). Discogenic genes include SOX9, COL1, COL2, and 

ACAN. NP-specific genes include CA12, HIF1α, PAX1, FOXF1, and KRT19. Data was 

normalized to ADMSC gene expression on day 0 and the housekeeping gene GAPDH.   
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Figure 27. An agarose gel with RNA products isolated using the Pure Link™ RNA 

Extraction Mini Kit. Total RNA from ADMSCs after 0 days and 14 days of incubation in 

NP differentiation media were electrophoresed to detect the 28S and 18S ribosomal bands 

with sizes of 5.0 kB and 1.9 kB, respectively. An RNA ladder is provided to estimate the 

size of the bands.  
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Figure 28. An agarose gel with DNA products amplified from qRT-PCR. Amplified 

DNA from ADMSCs after 14 days in NP differentiation medium were electrophoresed to 

observe quality and approximate size of the products. A DNA ladder is provided to 

estimate the size of the bands. Estimated product sizes are listed below each lane.  
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Chapter 6 

 

Biomechanical Restoration of the Injured Porcine Disc 

 

6.1 Introduction 

 The IVD must maintain a healthy hydrostatic pressure to withstand diurnal static 

and dynamic loading [69,70,71,72]. Mechanical injury from tissue herniation or 

dehydration of the NP due to proteoglycan degradation can cause a significant decline in 

intradiscal pressure, thus result in decreased disc height, subsequent nerve root 

compression, and increased LBP [92]. Current strategies for treating these conditions 

such as discectomy [168], LIF [189], or TDR [214] can resolve LBP, but ultimately do 

not restore the healthy biomechanics to the afflicted joint. Therefore, a clinical need 

exists for an injectable implant that can restore normal physiological function to the 

injured or degenerated disc.  

Preemptive augmentation of the NP, while the AF is still competent, may be key 

in preventing further disc degeneration [268]. Therefore, research has shifted towards 

developing NP replacements that can be injected in a minimally invasive manner. In situ 

forming hydrogels have gained popular interest as replacements, since they have been 

shown to restore disc height and decrease radial bulge [445]. Additionally, the implant 

should match the mechanical properties of the native NP, conform to the intradiscal 

space, and adhere to the surrounding disc tissue to minimize the risk of expulsion. Other 

studies have also emphasized the importance of restoring biomechanical parameters such 

as stiffness and range of motion (ROM) [416,446,447,448,449,450], which are key to 

achieving pain relief and joint mobility in the clinical setting.  
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In the previous chapters, S-50 was identified as a composite with superior 

mechanical and adhesive properties and supported the survival and differentiation of 

encapsulated ADMSCs in vitro. Therefore, S-50 moved on for further mechanical testing 

as a potential NP replacement in an ex vivo porcine disc model. An injury model was 

developed by removing NP tissue and exposing each disc to mechanical fatigue. The first 

objective was to assess the bioadhesive composite’s ability to restore range of motion and 

stiffness during axial compression relative to that of the intact condition. The second 

objective was to observe the composite’s resistance to expulsion during lateral bending.   

6.2 Methods  

6.2.1 Dissection, isolation, casting of porcine IVDs. Lumbar spines from 

healthy male and female porcine donors (5 – 6 months old, 250 – 300 lb.) were purchased 

from Tissue Source, LLC (LaFayette, IN) and IVDs were isolated for biomechanical 

testing (Figure 29A). External tissue was removed from the surrounding joints using 

scalpels to reveal motion segments. All bony posterior and transverse elements were 

removed from each motion segment using shears. Individual motion segments were 

isolated by cutting through the midline of each vertebral body using a bone band saw 

(Mar-Med Inc.). Motion segments were wrapped with saline soaked gauze to prevent 

dehydration, while each vertebral body was cast in a polyurethane mold (Smooth Cast) 

(Figure 29B). Potted specimens were kept frozen at -20 °C. 

6.2.2 Histology. Histology was performed to assess implant conformation to the 

inner cavity of the porcine IVD. Discs were either (1) intact, (2) denucleated, or (3) 

denucleated and injected with composite. After subjected to treatment, discs were fixed 

with 4% formaldehyde in PBS for 24 h at 37°C. Bone segments were decalcified using 
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5% v/v HCl in PBS for 24 h at 37°C. Discs were embedded in frozen section compound 

and 30 µm sagittal cross sections were obtained on a cryostat. GAGs and collagen were 

stained with alcian blue and picrosirius red, respectively. Cross sections were imaged 

using a stereoscope. 

6.2.2 Compression-tension and biomechanical restoration. IVDs (n = 7) were 

compressed and tensed based on previously reported literature by Cannella et al. using 

human lumbar IVDs [36]. Image J software was used to approximate the average cross-

sectional area (8.2 ± 0.4 cm2) for discs (Figure 29C). IVDs were compressed to -1000 N 

and tensed to 100 N for 10 cycles at a rate of 0.1 Hz. The peak compressive and tensile 

forces were selected to represent physiological pressures of jogging or climbing stairs 

[71,72] and were scaled for differences in cross-sectional area between human and 

porcine species [36,451]. The first nine cycles were performed as preconditioning to 

establish a repeatable hysteresis response and the slow rate allowed for complete transfer 

of load to the specimen. Range of motion (ROM) and stiffness were calculated using the 

10th cycle (Figure 30). ROM was measured as the end-to-end displacement of the 

hysteresis curve. A linear regression was used to calculate the compressive (0 to -200 N) 

and tensile stiffness (0 to 50 N). Specimens were tested on an MTS 831 elastomer test 

system and maintained at 37°C in saline.  

 Each disc was subjected to compression-tension after the following conditions to 

detect differences in ROM and stiffness. First, properties were measured for the intact 

specimen to obtain a baseline reference. Next, the specimen was then punctured 

approximately 15 – 30° from the coronal plane with an 18-gauge needle (Figure 31). 

Third, NP tissue was removed using the needle attached to a syringe with vacuum. 
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Fourth, an excessive fatigue compressive load from -1800 N to 0 N for 50 cycles at a rate 

of 0.1 Hz was applied to mechanically overload the disc. Last, the specimen was injected 

with composite until the syringe’s plunger could no longer be depressed. The composite 

was dyed blue for identification purposes, kept cold at 4°C, and allowed to set for 10 

minutes. ROM and stiffness for the punctured, denucleated, fatigued, and injected 

conditions were all normalized to that of the intact disc. 

6.2.3 Lateral bending and resistance to expulsion. Lateral bending tests were 

performed to observe the composite’s resistance to expulsion (n = 7). Custom-designed 

mechanical fixtures were created to allow for bending of the IVD specimen (Figure 32). 

The rod is offset 25.4 mm from the center of the top stainless-steel fixture (3 ° from the 

vertical) and connected to a hinge, thus allowing for rotational movement. Specimens 

were denucleated, injected with composite, and subjected to lateral bending (- 3 to + 3°) 

along the injury axis for 10 cycles at a rate of 0.5°/s by applying a vertical displacement 

(- 4 to + 4 mm) located 25.4 mm from the center of the specimen (Figure 33A). This was 

followed by an expulsion test where the bending angle was continuously increased at a 

rate of 0.1 °/s on the side opposite of the injection site (Figure 33B). The test was stopped 

manually when the maximum bending angle was reached due to geometric constraints of 

the tissue. Angles were tracked using a video camera recording at a rate of 30 frames per 

second. Torque was calculated as the applied force multiplied by the perpendicular 

distance from the axis of rotation. Specimens were tested on an MTS 831 elastomer 

machine and maintained at 37 °C using a saline bath. 

6.2.5 Statistical analysis. SPSS software was used to perform a statistical 

analysis in identifying significant differences of biomechanical parameters between 
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experimental conditions. A repeated-measures, one-way analysis of variance (ANOVA) 

was conducted to compare means and a post-hoc Bonferroni correction was applied. 

Significance was set at the 95 % confidence level (p < 0.05). All values are reported as 

the mean ± SD. 

6.3 Results 

6.3.1 Histology. The composite’s ability to completely fill, conform, and adhere 

to surrounding disc tissue was confirmed using a histological approach (Figure 34). 

Specimen height varies across the disc, ranging from 2 – 5 mm, with a noticeably taller 

NP and shorter AF. The native porcine disc exhibits a strong presence of sulfated GAGs 

and slight staining of collagen in the NP. The lamellar collagenous structure of the AF 

and thin CEPs can also be identified in the disc. Puncturing the disc with an 18-gauge 

needle does not cause large-scale morphological damage. Conversely, denucleation 

causes disorganization of NP tissue and leaves behind a large void in the nuclear cavity. 

Injection of the composite fills the void and contacts native NP, AF, and CEP. 

6.3.2 Compression-tension and biomechanical restoration. Restoration of 

biomechanical parameters was first assessed by performing compression and tension on 

the porcine IVDs. Approximately 294 ± 41 mg or 44 ± 8.9 % of NP tissue were removed 

from IVDs. The average mass of composite hydrogel that was injected into the IVD was 

340 ± 43 mg. ROM (Figure 35) and stiffness (Figure 36) were calculated for each 

condition and normalized to the intact disc. Relative to the intact condition, needle 

puncture did not cause a significant increase in ROM (p > 0.05), yet resulted in a small 

decrease in compressive and tensile stiffness (p < 0.05). Denucleation caused a 

significant increase in ROM by approximately 20 ± 10 % (p < 0.05) and decrease in both 
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compressive and tensile stiffness (p < 0.05). Excessive mechanical fatigue caused a 

further significant increase in ROM by 35 ± 18 % (p < 0.05) and caused compressive and 

tensile stiffness to drop by nearly 28 ± 5 % and 47 ± 10 %, respectively. Upon injection 

of the hydrogel composite, ROM and stiffness were restored relative to the intact 

condition (p > 0.05). The implant remained within the disc space and expulsion through 

the annular defect was not observed during loading (Figure 37). 

6.3.3 Lateral bending and resistance to expulsion. Lateral bending tests were 

performed to evaluate the composite’s ability to resist migration and expulsion from 

within the disc space. The average mass of NP removed from the IVD was 357 ± 78 mg 

or 47 ± 9.3 %. The average mass of composite hydrogel that was injected into the IVD 

was 449 ± 157 mg. Specimens were bent to an average maximum angle of 11.2 ± 1.2 °, 

exhibited an average maximum torque of 5.3 ± 1.4 Nm and showed no evidence of 

expulsion during testing. 

6.4 Discussion 

 Ex vivo biomechanical testing can offer important preliminary findings when 

evaluating an injectable implant for NP replacement. Several laboratories have 

investigated replacements in cadaver models including human [446,447,452,453], ovine 

[448,454,455], porcine [456,457], bovine [416,449], caprine [450], and murine [458]. 

Partial denucleation increased ROM and decreased stiffness, which has been consistently 

reported in literature [416,446,447,448,449,450]. Peak compressive stress values for 

excessive fatigued loading without NP augmentation surpassed intradiscal pressures of 

regular physiological activity [71,72]and caused further degenerative changes. Composite 

injection restored ROM and stiffness relative to the intact condition and expulsion was 
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not observed. Several ex vivo studies in literature have also demonstrated that an 

injectable replacement can restore ROM and stiffness [416,446,447,448,449,450].  

Expulsion of the composite was also not observed within the limits of physiological 

bilateral bending or hyperphysiological unilateral bending.  

 One difference between the presented work and other cadaver models was the 

method of inducing degeneration. For example, other studies have augmented disc 

biomechanics through nucleus disruption [455], forced herniation [457,458], or 

enzymatic degradation [450]. In our model, aspiration of NP tissue using a needle was 

feasible due to its mucous-like rather than fibrous texture, which is typically observed 

across other animal species including humans. Conversely, others created vertical [448], 

oblique [454], or cruciate [452,449] incisions in the AF and physically excised NP tissue 

with rongeurs. Accessing the intradiscal space by creating a large annular incision 

increases the risk of implant herniation [377]. While the bioadhesive did not expel 

through the needle tract, resistance to expulsion through alternative annular defects such 

as an incision should be explored further.  

 Biomechanical assessment was modeled after repetitive physiological activity to 

determine if properties of ROM and stiffness could be restored, however additional types 

of in vivo behavior should also be considered. For example, the IVD undergoes 

continuous cycles of creep-recovery during diurnal activity [459,460], which was not 

modeled in this study. Creep is indicative of the disc’s poroelasticity in which fluid flows 

from the tissue during loading and returns due to the presence of proteoglycans. The 

composite’s performance should also be evaluated during other twisting or bending 

motions such as axial rotation or flexion-extension with superimposed compressive 
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loading [446,455,456,457]. Other properties such as hysteresis [446], neutral zone 

[446,447,455,449,450], hydraulic permeability [458], and DH [447,456,457,449] can also 

be measured to assess physiological function in future work.   

 There are several key factors to achieving clinical success in restoring mechanical 

function. Maximizing an implant’s adhesive strength to host tissue is important in 

preventing implant migration [402,403]. Histology revealed that the composite was able 

to completely fill void space within the denucleated disc. If implant dislocation were to 

occur, the hydrogel’s stiffness or viscosity can be increased [401], or alginate 

microparticles can be conjugated with dopamine or cysteine to enhance adhesion [422, 

461]. The amount of NP removed from the disc [447] and injected replacement [446] 

influence ROM, NZ, stiffness, and DH. In this work, the removed mass of NP tissue was 

completely substituted with excess composite, whereas inadequate filling can lead to 

incomplete biomechanical restoration. Delivery of an injectable NP implant requires 

injuring the AF by needle puncture, and we showed potential of the implant to resist 

expulsion through the defect. Importantly, needle puncture may initiate long-term 

degenerative changes [462] which should be considered when evaluating implant 

resistance to expulsion. Sealing annular defects with a bioadhesive can help prevent 

expulsion, maintain implant hydration, and promote healing of the AF 

[458,463,464,465,466]. Therefore, simultaneously replacing the NP and AF should be 

considered when repairing the disc. Lastly, the host’s immune response and whether the 

body will accept or reject the bioadhesive composite material will need to be evaluated.   
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6.5 Conclusions 

 Compression-tension tests were performed to assess changes in the disc’s 

mechanical properties during different experimental conditions. Puncturing with an 18-

gauge needle did not significantly alter disc biomechanics. Artificial degeneration was 

induced to the porcine IVD through partial denucleation followed by excessive 

mechanical fatigue. Consequently, a significant increase in ROM and decrease in 

stiffness were observed. Upon injection of the composite, biomechanical properties were 

restored and did not significantly differ from the intact condition. Denucleated IVDs 

injected with composite were then exposed to cyclic bilateral bending followed by a 

unilateral expulsion test. No evidence of implant herniation was observed during lateral 

bending tests. Histological results confirm that the composite is space-filling and adheres 

to native disc tissue. Results presented in these ex vivo studies demonstrate the 

bioadhesive composite’s ability to restore mechanical properties and resist expulsion 

from a denucleated and mechanically fatigued porcine IVD. 
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Figure 29. Dissection, isolation, and casting of porcine IVDs. (A) Macroscopic view of 

the porcine lumbar spine, (B) casting of a motion segment in polyurethane, and (C) a 

transverse cross section of an IVD.  
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Figure 30. A representative hysteresis plot of an intact disc from compression-tension 

testing. Range of motion (ROM) and stiffness, represented by the linear dashed lines, 

were calculated from measured data.  
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Figure 31. Denucleation process. An 18-gauge needle attached to a syringe and vacuum 

was used to puncture the porcine IVD and remove NP tissue.   
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Figure 32. Custom-made mechanical fixtures designed to induce bending of the IVD 

specimen. The vertical rod is offset 25.4 mm from the center of the stainless-steel cup 

and affixed to a hinge allowing for rotational movement.  
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Figure 33. IVD specimens were punctured, denucleated, injected with composite and 

bent to observe potential risks for implant extrusion. (A) Representative bilateral bending 

hysteresis curve followed by a (B) unilateral bending expulsion test until the maximum 

angle of rotation was reached.   
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Figure 34. Histological sagittal cross sections of IVDs subjected to different treatments 

and stained with alcian blue and picrosirius red. IVDs were (A) intact, (B) denucleated, 

or (C) denucleated and injected with implant. The location of the void (V) and the 

bioadhesive composite (BAC) have been identified within the white dashed lines. The 

implant fills void space and interfaces with both the native NP and AF in the porcine 

disc. Scale bars = 1 cm. 
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Figure 35. Range of motion (ROM) normalized to the intact disc for each test condition. 

An asterisk (*) indicates a statistically significant difference (p < 0.05) compared to the 

intact disc.    
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Figure 36. Compressive and tensile stiffness normalized to the intact disc for each test 

condition. An asterisk (*) indicates a statistically significant difference (p < 0.05) 

compared to the intact disc.    
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Figure 37. The porcine IVD after (A) puncture with an 18-gauge needle, (B) 

denucleation and injection of the bioadhesive composite (BAC) filling the annular defect, 

and (C) transverse cross section of the IVD containing the implant within the nuclear 

cavity post-mechanical testing. Scale bars = 1 cm. 
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Chapter 7 

 

Ex Vivo Tissue Repair of the Degenerated Bovine Disc  

 

7.1 Introduction 

The mutual effects of MSCs and resident disc cells on one another have been well 

characterized. In vitro studies showed that proliferation and ECM expression of disc cells 

are enhanced when co-cultured with MSCs in direct contact [349,350,351,352,353]. 

Further, MSCs stimulate degenerate disc cells to regain a healthy phenotype through the 

upregulation of trophic factors and downregulation of catabolic signaling molecules 

[353,467]. Concomitantly, resident disc cells alter MSC phenotype and induce 

differentiation by releasing their own soluble factors [355,356,358]. Direct in vitro co-

culture with NP [349,354] or AF [357] cells elevate MSC gene expression levels for 

ACAN, COL1, COL2, and SOX9. MSCs also differentiate toward NP or AF phenotypes 

and secrete disc-like ECM when transplanted in vivo [363,468,469,470,471]. 

Whole disc organ culture offers a cost-effective approach to study the influence of 

the IVD microenvironment on MSCs and while controlling experimental conditions and 

evaluating repair. Compared to the human lumbar, caudal bovine discs exhibit similar 

hydration and ECM gradients of GAG and collagen across the NP and AF 

[472,473,474,475]. Other characteristics such as swelling pressure [472], cellular density 

[473], and the lesser presence of notochordal cells [476,477] are also similar to the 

human lumbar disc. When scaled for differences in geometry, mechanical properties in 

axial compression and torsion are comparable [474,475]. Based on these findings, the 

caudal bovine IVD was selected as a model to study ADMSC survival, morphology, and 

protein expression after delivery to injured IVD tissues. 
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It is hypothesized that transplanted MSCs will change in phenotype and produce 

ECM resembling the native composition and structure of the tissue based on their 

location. MSCs implanted in the NP are expected to produce proteoglycan containing 

ACAN and COL2 [45,54]. Conversely, MSCs implanted in the outer AF should produce 

relatively more COL1, minimal COL2, and less proteoglycan [45,61]. MSCs residing 

within the transition zone between the NP and AF would ideally synthesize mixed 

quantities of proteoglycans and collagen. Other discogenic proteins such as SOX9 and 

HIF1α should be ubiquitously expressed by MSCs throughout disc tissue [478,479]. 

However, MSCs should express higher proportions of KRT19 and FOXF1 in the NP or 

glypican 3 (GPC3) and fibulin 1 (FBLN1) in the AF [435,480,481]. Morphological 

changes would also occur, whereby MSCs present a round, chondrocyte-like or 

elongated, fibroblast-like shape similar to that of NP or AF cells, respectively [40]. 

In this chapter, an ex vivo organ culture model of caudal bovine IVDs was 

employed to investigate cell therapy. Our first objective was to establish suitable 

culturing conditions for free-swelling IVDs by quantifying cellular viability and 

biochemical composition of the native tissue after 14 days. Our second objective was to 

develop an injury model using enzymatic digestion. Discs were injected with papain 

enzyme and cultured for 7 days to create a void space in the NP. Our third objective was 

to deliver the bioadhesive composite, specifically formulation S-50, with ADMSCs and 

assess the extent of cellular differentiation and ECM deposition. ADMSC viability, 

morphology, and protein expression were quantified as a function of location within the 

injured disc after 14 days of culture.  
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7.2 Methods  

7.2.1 Isolation, debridement, and culturing of bovine IVDs. Caudal IVDs were 

dissected from fresh bovine tails (20 months, 3 hours post-mortem) obtained from a local 

abattoir (Bringhurst Meats, Berlin, NJ). Tails were first disinfected with 10 % povidone-

iodine (Fisher Scientific) and dried with sterile gauze. Muscle tissue, tendons, and bony 

processes were removed using scalpels equipped with blades (#10 and #22) and shears. A 

histological band saw (Mar-Med, Inc.) was used to isolate IVDs from adjacent vertebrae, 

leaving behind approximately 1 – 2 mm of thin bone on the superior and inferior 

endplates. IVDs were wrapped in saline-soaked gauze to prevent dehydration and placed 

in a 6-well plate on ice to slow cellular metabolism and minimize cell death. Endplates 

were rinsed thoroughly with a pressurized water system using sterile saline supplemented 

with 50 mM sodium citrate to remove blood clots and improve diffusion of nutrients. 

IVDs were cultured under free-swelling conditions with 80 mL of culture media in 100 

mL specimen containers (Starplex Scientific, Inc.) and maintained at 37 °C and 5 % CO2. 

Media was replaced every two days and composed of high glucose DMEM containing 10 

% FBS, 100 U/mL penicillin, 100 µg/mL streptomycin, 0.25 µg/mL amphotericin B, and 

50 µg/mL ascorbic acid.   

7.2.2 Experimental design. Bovine discs were subjected to several treatments for 

analysis (Figure 38). Intact discs were kept in a free-swelling, normoxic environment for 

14 days to assess suitable culturing conditions. Changes in native disc cell viability, ECM 

content, and architecture as a result of dissection technique or ex vivo conditions were 

compared to intact isolated discs at the beginning of the study.   
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 Disc degeneration was initiated through proteolysis using papain enzyme. Papain 

suspension (10 mg/mL, 30 U/mg, Sigma Aldrich) was diluted to a final concentration of 

100 U/mL in buffer containing 5 mM sodium citrate, 150 mM cysteine hydrochloride, 

and 5 mM ethylenediaminetetraacetic acid (EDTA). Approximately 100 – 200 µL of 

papain enzyme was injected into each disc with a 30-gauge needle and proteolytic 

digestion proceeded for 7 days.  

 Degenerated discs were treated with carrier containing ADMSCs. PNIPAAm-g-

CS was dissolved overnight at 4 °C in ADMSC culture media at a concentration of 5 % 

w/v. Freeze-dried alginate MPs were immersed in 70 % ethanol, vacuum filtered to 

remove excess alcohol, and allowed to dry overnight. Aqueous PNIPAAm-g-CS and MPs 

were sterilized under UV light for a minimum of 5 hours. MPs were blended with 5 % 

w/v PNIPAA-g-CS at a concentration of 50 mg/mL to form the composite. ADMSCs 

were detached with trypsin, collected, counted, and labeled with PKH26 red fluorescent 

dye (Sigma Aldrich) according to the manufacturer’s instructions for tracking purposes. 

Cells were encapsulated within the composite at a density of 5 x 106 cells/mL. 

Degenerated discs were injected with as much composite until a resistance to flow was 

achieved and cultured for an additional 14 days (21 days total). Treated disc tissues were 

compared to degenerated and intact tissues with respect to native disc cell viability, ECM 

content, and architecture. Implanted ADMSCs were also characterized for viability, 

morphology, and protein expression.    

7.2.3 Biochemical assays. Proteins in NP and AF tissue from intact discs (n = 4) 

cultured for 14 days were quantified using the BlyscanTM Sulfated Glycosaminoglycan 

and SircolTM Soluble Collagen biochemical assay kits (Biocolor, Life Science Assays) 
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and compared to isolated discs (n = 4) at the beginning of the study. Endplates were 

removed and biopsied tissue samples were freeze dried to determine their dry masses. To 

quantify GAG content, buffer composed of 200 mM sodium phosphate, 100 mM sodium 

acetate, 5 mM cysteine HCl, 10 mM EDTA, and 0.1 mg/mL papain (10 mg/mL, 30 

U/mg, Sigma-Aldrich) was used to digest tissue for 24 h at 65 °C. To quantify soluble 

collagen content, buffer composed of 0.1 mg/mL pepsin (2500 U/mg, Sigma Aldrich) in 

0.5 M acetic acid was used to digest tissues for 24 h at 4 °C. Chondroitin sulfate from 

bovine trachea and collagen from rat tail were used to construct a standard curve for 

GAG and collagen content, respectively. Absorbance readings were measured at 656 nm 

and 555 nm using a microplate reader (SpectraMax M2, Molecular Devices) to determine 

GAG and collagen content, respectively. 

7.2.4 Cellular viability. Viability of native disc cells and ADMSCs were assessed 

using the Live/Dead™ Cytotoxicity Kit. Biopsied tissues (n = 3 or 4) from both NP and 

AF regions were placed into microcentrifuge tubes with DMEM containing 2 µM calcein 

AM and 4 µM ethidium homodimer-1. Sample incubation occurred for 3 h at 37 °C and 5 

% CO2. Tissue samples were washed thrice in PBS, placed on glass coverslips, and 

viewed on a confocal microscope (Nikon, Model A1+). Superficial edges of tissue 

samples were excluded in the quantification of cellular viability. Three random depths, 

approximately 200 µm below the tissue surface, were imaged from each sample to obtain 

an average viability.     

 Endplates were removed from treated discs and composites containing PKH26 

labeled ADMSCs (n = 3) were inserted into microcentrifuge tubes. Composites were 

dissolved in citrate buffer consisting of PBS supplemented with 50 mM sodium citrate 
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(Sigma Aldrich) and 20 mM EDTA (Sigma Aldrich). Suspended cells were pelleted at 

300 x g for 5 minutes and the supernatant was discarded. The cell pellet was resuspended 

in DMEM containing 2 µM calcein AM and incubated for 1 h at 37 °C and 5 % CO2. 

Suspended cells were pelleted to remove excess reagent, resuspended in PBS, and 

dispensed in a 48 well plate. Three random regions of living and dead ADMSCs were 

imaged from each sample to obtain an average viability using an inverted fluorescent 

light microscope (Zeiss, Axio Vert.A1). Living cells that metabolized calcein AM or 

dead cells with compromised membranes and nuclei labeled with ethidium homodimer-1 

appeared green or red, respectively. ImageJ software was used to estimate cellular 

viability.  

7.2.5 Protein expression. Histology was performed to assess cell morphology 

and proteins present in intact, degenerated, and treated tissues that received composite 

containing ADMSCs. Discs (n = 3) were fixed with 4 % formaldehyde in PBS for 24 h at 

37 °C. Endplates were removed and disc tissues were transferred to cryomolds containing 

frozen section compound and frozen in methylbutane chilled with liquid nitrogen. 

Transverse cross sections with a thickness of 30 µm were obtained using a cryostat and 

placed on positively charged slides. Sections containing PKH26 labeled cells were 

located and imaged to identify differences in morphology. Hydrogel and microparticle 

material were removed using sodium citrate-EDTA buffer to identify ECM deposited by 

ADMSCs. GAGs and collagen were identified by staining with either 1 % w/v alcian 

blue or 0.1 % w/v picrosirius red, respectively. Cell nuclei were counterstained with 

Weigert’s hematoxylin. Protein expression and morphology of encapsulated ADMSCs in 

the bioadhesive composite before and after delivery into the degenerated disc were 
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compared. Cross sections were imaged on an inverted light microscope (Zeiss, AxioVert 

A.1).  

 ADMSC differentiation was evaluated as a function of position within the IVD 

using indirect immunofluorescent staining. Primary and secondary antibodies were 

purchased from Abcam to confirm the presence of human proteins such as: ACAN, 

COL1, COL2, HIF1α, FOXF1, KRT19, FBLN1, and GPC3. As described previously, 

discs injected with composite containing ADMSCs (n = 3) were fixed, sectioned, and 

rinsed with sodium citrate-EDTA buffer to remove hydrogel and alginate microparticle 

material. Sections were permeabilized with TBS supplemented with 0.3 % v/v Triton X-

100 for 10 minutes. Sections were blocked with TBS containing 10 % v/v goat serum for 

10 minutes. Primary antibodies were applied for 1 hour at room temperature. Excess 

primary antibody was discarded, and sections were rinsed thrice with TBS. Secondary 

antibodies, conjugated with Alexa Fluor 647, were applied for 30 minutes at room 

temperature. Excess secondary antibody was discarded, and sections were rinsed thrice 

with TBS. ADMSCs were identified with the PKH26 fluorescent dye and imaged on a 

confocal microscope (Nikon, Model A1+). Alexa Fluor 647 staining was altered to show 

green and enhance contrast against cells labeled with PKH26 fluorescent marker. Protein 

expression of encapsulated ADMSCs in the bioadhesive composite before and after 

delivery into the degenerated disc were compared. 

7.2.6 Statistical analysis. Mann-Whitney U Tests were used to identify statistical 

differences in biochemical composition or cellular viability. Significance was set at the 

95 % confidence level (p < 0.05). All values are reported as the mean ± SD. 
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7.3 Results 

7.3.1 Intact disc model. Native disc cell viability was quantified for intact disc 

tissues (Table 8). Directly after dissection, cells from the NP and AF regions were 74.6 ± 

5.7 % and 76.8 ± 6.2 % viable, respectively. After 14 days of free swelling culture, NP 

and AF cells were 72.4 ± 5.4 % and 74.5 ± 6.0 % viable, respectively. Intact disc tissues 

exhibited a small, but insignificant drop in cell viability (p > 0.05). Native NP cells 

exhibited a round morphology with dendritic-like processes, as opposed to AF cells 

which were elongated and aligned. GAG and soluble collagen content of cultured disc 

tissues (Figure 39) showed no significant differences (p > 0.05) to discs tissues sampled 

prior to culture. Comparatively, NP and AF tissue contained relatively higher 

concentrations of GAG and soluble collagen, respectively. Histological analysis 

confirmed the presence and distribution of GAG and collagen throughout the intact disc 

(Figure 40A/B). Upon gross examination of the discs, no signs of deterioration or 

morphological changes were observed (Figure 41A/B). 

7.3.2 Degenerative disc model. Artificial disc degeneration was initiated using 

proteolytic digestion. Seven days after injection of papain enzyme, a noticeable void 

formed in the center of the IVD (Figure 40 D and Figure 41D). Degenerated discs were 

more flexible as a result of tissue digestion compared to discs that did not receive papain 

injections. Enzymatic digestion caused a complete loss of NP tissue and GAGs residing 

throughout the AF tissue. Collagen content and architecture of the AF lamellae remained 

uncompromised. 

7.3.3 Treated disc model. Native disc cell viability of intact, degenerated, and 

treated tissues was compared after 21 days (Table 9). Cellular viability of native NP 
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could not be assessed for degenerated or treated discs as a result of papain digestion, 

therefore tissue near the periphery of the void was quantified. After 21 days, NP and AF 

cells from intact discs were 77.0 ± 2.2 % and 79.4 ± 2.0 % viable, respectively. 

Enzymatic digestion caused a slight significant drop in cellular viability of degenerated 

discs compared to intact disc tissues (p < 0.05). Disc cells along the void periphery and 

AF in degenerated tissues exhibited a viability of 70.2 ± 4.1 % and 70.6 ± 2.5 %, 

respectively. Cellular viability of treated disc tissues was not significantly different 

compared to intact disc tissues (p > 0.05). Disc cells along the void periphery and AF in 

treated tissues were 78.6 ± 2.0 % and 81.2 ± 4.8 % viable, respectively. 

 ADMSCs stained positively for intracellular staining of GAGs and collagen prior 

to injection into degenerated discs (Figure 42A/B). Labeling with PKH26 did not 

significantly affect ADMSC viability and were greater than 95 % viable after 

encapsulation. Cells exhibited a round morphology with red fluorescently labeled 

membranes (Figure 42C). After 14 days post-injection into the degenerated disc, isolated 

ADMSCs that were pooled from the composites were 86.8 ± 4.9 % viable and appeared 

either round or elongated (Figure 42D). Furthermore, fluorescently labeled cells 

presented distinct morphologies based on their location within the disc (Figure 43). 

ADMSCs appeared round at the center of the composite or elongated along the periphery 

of the composite adjacent to the inner AF. 

 The carrier was successfully retained within the degenerated disc throughout the 

culture period and fills the void generated from proteolytic digestion (Figure 40E and 

Figure 41E). More notable was the diffuse GAG staining surrounding the periphery of the 

composite, which appeared to have replaced the degraded ECM (Figure 40E). ECM 
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deposition by ADMSCs was location dependent within the composite. Striations of GAG 

were identified at the center of the composite; however, collagen staining was not 

detected (Figure 44A/B). Histological results revealed intense staining of extracellular 

collagen and GAG along the periphery of the composite (Figure 44C/D).  

 ADMSCs at the beginning of the study did not show signs of extracellular 

staining for NP or AF-specific proteins (Figure 45). ACAN, COL1, COL2 and HIF1α 

proteins produced by ADMSCs were detected in degenerated discs and throughout the 

carrier at the end of the culture period. At the center of the carrier, COL2 and ACAN 

were stained positively, whereas COL1 was absent indicating that ADMSCs are 

producing ECM like the composition of NP tissue. ACAN, COL1, and COL2 were all 

detected at the periphery of the composite and are typically found in the transition zone 

(inner AF) between the outer AF and NP. HIF1α was also detected in both regions of the 

disc. Proteins specific to NP (FOXF1 and KRT19) and AF (FBLN1 and GPC3) tissues 

were detected in specific regions of the carrier (Figure 46). Positive staining for FOXF1 

and KRT19 was identified at the center of the composite and absent along the periphery. 

In contrast, positive staining for FBLN1 and GPC3 was identified along the periphery 

and absent at the center. These results suggest that protein expression will vary depending 

on the location of ADMSCs within the disc.   

7.4 Discussion 

 Repairing degenerated disc tissues through cell therapy is one potential alternative 

that can have important clinical impact. Whole disc organ culture provides a simple 

approach to studying the repair potential and fate of ADMSCs when injected into the disc 

environment. Culturing intact caudal bovine discs under free-swelling conditions has 



 

172 

 

been well established in literature [482,483,484,485]. In this study, we have demonstrated 

similar findings of sustained cellular viability in both the NP and AF regions for up to 

three weeks. Additionally, ECM content and morphological tissue structure remained 

unchanged as evidenced by histology and biochemical assays.  

 Degeneration models have been established by injecting digestive enzymes into 

caudal bovine discs [483,486,487]. A papain concentration of 100 U/mL was selected to 

aggressively degrade proteins with cysteine residues and generate a void space [486]. 

Naturally occurring disc degeneration is not characterized by a central void, yet this 

technique allows for carrier injection. Furthermore, papain is not an enzyme present in 

the human IVD and degrades ECM differently compared to aggrecanases or collagenases. 

Regardless, this enzyme was effective in causing GAG loss with minor changes in native 

disc cell viability. When developing a whole disc organ culture model, the type and 

degree of degeneration should be carefully selected, as these methods will most likely 

impact the fate of delivered ADMSCs.  

 Several studies have published findings pertaining to MSC fate when injected into 

the caudal bovine disc. Chan et al. injected a peptide hydrogel containing encapsulated 

MSCs into the nucleus pulposi of cryopreserved discs and observed a 20 % viability after 

7 days [488]. In a subsequent study, MSCs were injected into mildly degenerate discs 

using 30 U/mL of papain enzyme and were 40 % viable after two days [486]. These 

studies have concluded that exogenous factors such as disc health and high intradiscal 

pressure significantly impact MSC survival, and suggests that viability can be further 

improved by reducing osmotic pressure via enzymatic degradation and using an adequate 

cell carrier [486,488]. These hypotheses were supported by Malonzo et al. when 
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investigators injected a thermosensitive PNIPAAm hydrogel containing encapsulated 

MSCs into a moderately degenerate disc using 60 U/mL of papain enzyme and reported 

approximately 70 % viability [489]. A study by Peroglio et al. concluded that hydrogel 

carriers support MSC viability and an anabolic cellular response [490]. Further, it was 

demonstrated that the degree of disc degeneration will dictate MSC fate. Significantly 

higher expression of discogenic markers was observed in MSCs implanted into healthy 

versus degenerated discs.  However, no studies that we are aware of have examined MSC 

morphology and ECM expression as a function of the local tissue microenvironment 

within the disc.   

 We hypothesized that the transplanted ADMSCs would differentiate into the local 

tissue phenotype, even in the absence of added growth factors or mechanical stimulation. 

Our results indicate that site-specific differences in the disc microenvironment did indeed 

affect ADMSC differentiation, morphology, and ECM deposition. Histological, light 

microscopy, and fluorescent images suggested that transplanted ADMSC morphology 

and ECM deposition were consistent with observations in intact IVDs. For instance, 

ADMSCs located along the periphery of the carrier exhibited an elongated morphology 

and produced ACAN, COL1, and COL2 [40,54,61]. In addition, AF-specific protein 

markers (FBLN1 and GPC3) were positively identified along the periphery but absent at 

the center of the carrier [480,481]. These features are characteristic of cells residing 

within the transition zone or inner AF. In contrast, ADMSCs found at the center of the 

carrier remained round and produced ACAN and COL2 [40,45,54]. Furthermore, positive 

staining of NP-specific proteins (FOXF1 and KRT19) was located at the center, but 

absent along the periphery [435,480,481]. Centrally positioned ADMSCs displayed a 
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phenotype typical of NP cells. Because these markers were absent at day 0, it is 

hypothesized that biochemical and biophysical signals produced from both surrounding 

cells [355,356,358] and ECM [491] within the tissue induced ADMSCs toward region-

specific phenotypes. Our findings suggest that direct physical contact between ADMSCs 

and native disc cells is not required to induce differentiation of the ADMSCs. Overall, 

these preliminary findings are significant because they suggest that a single biomaterial 

can be used to support site-specific ECM deposition across the heterogeneous IVD.   

7.5 Conclusions 

 This work demonstrates the potential use of a bioadhesive composite as a cell 

carrier for the encapsulation and delivery of ADMSCs to repair the degenerated IVD. The 

cell carrier retained viable ADMSCs for up to 14 days in the degenerated disc. ADMSC 

transplantation improved native IVD cell viability compared to injured discs that were 

left untreated. Location of the transplanted ADMSCs had an influence ADMSC 

morphology and protein expression at the end of the culture period. Findings from this 

work are significant because current therapy for IVD degeneration can be improved with 

the development of a technology that can support repair of both NP and AF defects. 

However, there were limitations to this study. The amount of residual NP tissue 

was not quantified after enzymatic degradation; therefore, it is difficult to conclude 

whether cues from the NP or from the adjacent CEPs induced ADMSC differentiation. It 

must also be considered that carrier composition and stiffness may play a role in guiding 

cell behavior [492,493], but carrier composition was held constant in this study. It is also 

important to note that the injury model used in this study mimics the early stages of 

degeneration [494]. Little is understood about how the timing of the intervention, degree 
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of tissue degeneration, and inflammatory environment affect tissue engineering outcomes 

for the IVD. Last, future studies should examine repair in both the inner and outer AF 

defects. Proper cellular alignment and bridging of newly produced tissue across a defect 

will be key in sealing annular injuries and restoring biomechanical functionality. 
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Figure 38. Intact bovine discs were first kept in a free-swelling, normoxic environment 

for 14 days to confirm suitable culturing conditions. Degeneration was then induced with 

papain enzyme and progressed for 7 days. Degenerated discs were either treated with the 

bioadhesive composite containing ADMSCs or left untreated and cultured for an 

additional 14 days. In parallel, intact discs were cultured for a total of 21 days. Discs 

obtained immediately after dissection were also evaluated for comparison. 
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Table 8 

 

Cellular Viability of Intact Disc Tissues  

 

 
 

Note. No significant differences in viability were detected. Scale bars = 100 µm. 
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Figure 39. GAG and collagen content for intact IVD tissues prior to and after 14 days of 

culture (n = 4). Samples were normalized to their respective dry masses. No significant 

differences in GAG or collagen content were observed after 14 days.  
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Figure 40. Histological staining of transverse IVD cross sections (n = 3). (A) Discs 

immediately obtained after dissection exhibited similar morphology and ECM content 

compared to discs cultured after (B) 14 days and (C) 21 days. (D) Artificially 

degenerated discs contained a void and exhibited a significant loss of GAGs. (E) The 

carrier filled the void and diffuse GAG was detected throughout the AF. Scale bar = 1 

cm. 
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Figure 41. Gross morphology of IVDs (n = 3). (A) Discs immediately obtained after 

dissection were identical to (B) intact discs cultured for 21 days. (C) Papain enzyme was 

injected into the NP and caused the formation of a void. (D) The carrier filled the void 

and adhered to native disc tissue. Scale bar = 1 cm. 
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Table 9 

 

Cellular Viability of Intact, Degenerated, and Treated Disc Tissues  
 

 
 

Note. Degenerated tissues showed a slight significant decline in viability compared to 

intact tissues (p < 0.05). Scale bars = 100 µm. 
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Figure 42. Encapsulated ADMSCs in the bioadhesive composite appeared round and 

exhibited intracellular staining for (A) GAG using alcian blue and (B) collagen using 

picrosirius red. (C) After labeling with PKH26, cell membranes were clearly 

distinguished by a fluorescent red color. (D) A representative Live/Dead image of 

ADMSCs after 14 days of culture in degenerated discs (n = 3). Both round and elongated 

morphologies were observed. Yellow indicates co-staining of PKH26 and metabolized 

calcein AM and living transplanted cells. Red and green indicates dead transplanted 

ADMSCs and alive native IVD cells, respectively.  
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Figure 43. Representative fluorescent and light micrograph overlays of ADMSCs located 

at the center and periphery of the bioadhesive composite in degenerated discs after 14 

days of culture (n = 3). ADMSCs in the center of the composite exhibited a round 

morphology, while those at the periphery were elongated.  
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Figure 44. Histological images of degenerated discs treated with the bioadhesive 

composite containing ADMSCs after 14 days (n = 3). The carrier was removed using 

sodium citrate buffer. At the center of the carrier, (A) collagen staining was absent and 

(B) small striations of GAG were present. Along the periphery of the carrier, both (C) 

collagen and (D) GAG staining were evident. 
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Figure 45. Representative images of immunofluorescent staining of ACAN, COL1, 

COL2, and HIF1α at the center and periphery of the carrier after 14 days (n = 3). Cross-

sectional staining of ADMSCs within the bioadhesive composite prior to delivery into the 

degenerated disc are presented as controls.  
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Figure 46. Representative images of immunofluorescent staining of FOXF1, KRT19, 

FBLN1, and GPC3 at the center and periphery of the carrier after 14 days (n = 3). Cross-

sectional staining of ADMSCs within the bioadhesive composite prior to delivery into the 

degenerated disc are presented as controls.     
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Chapter 8 

 

Project Summary 

 

8.1 Conclusions 

 

 The overall goal of this project was to develop a novel bioadhesive composite cell 

carrier for the replacement and repair of degenerated IVD tissues. The first specific aim 

was to develop an injectable composite material that demonstrated adhesion to tissue and 

requisite mechanical properties for NP replacement. Thermosensitive PNIPAAm-g-CS 

blended with alginate MPs was viscous, yet injectable and gelled below physiological 

temperature. It was determined that the addition of 50 mg/mL of 20 µm alginate MPs to 

PNIPAAm-g-CS significantly increased swelling, viscosity, shear modulus, compressive 

modulus, and adhesive strength relative to PNIPAAm-g-CS alone. None of the composite 

formulations exhibited the requisite shear modulus for native NP tissue and must be 

improved. Adhesion to disc tissue may also be further enhanced to minimize the risk of 

implant migration upon injection into the disc. The bioadhesive composite was not 

degraded by enzymes present in the disc such as aggrecanase or collagenase. The 

inability to degrade allows for the potential long-term retention of MSCs and synthesized 

ECM within the composite network. Overall, an injectable composite with desirable 

properties was engineered for NP replacement.  

 The second specific aim focused on the feasibility of the bioadhesive composite to 

serve as a three-dimensional culture system for disc regeneration. The differentiation of 

ADMSCs toward a NP-like phenotype within the bioadhesive composite was induced 

using GDF6 and characterized in vitro. ADMSCs remained viable over the course of 14 

days and exhibited increased metabolic activity. Cell proliferation may have occurred; 
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however, DNA content was not measured to confirm this hypothesis. Histological 

findings revealed newly synthesized sulfated GAG and collagen by ADMSCs. 

Immunostaining further identified the presence of ECM proteins like COL2 and ACAN 

produced by ADMSCs encapsulated in S-50. In addition, key NP-specific proteins such 

as KRT19, FOXF1, and PAX1 were positively detected. These proteins were also among 

the top five most upregulated genes quantified using qRT-PCR. It is important to note 

that degenerative conditions of ischemia, hypoxia, or low pH were not recapitulated in 

vitro. Each of these factors can impact MSC survival or differentiation upon 

transplantation within the degenerated disc. Cell survival, differentiation, and behavior 

were not fully characterized as a function of composite properties and should be further 

explored in future work. These results indicate that the bioadhesive composite supports 

the in vitro differentiation of ADMSCs toward an NP-like phenotype and may serve as a 

potential delivery vehicle for cell transplantation.   

 The third specific aim tested the hypothesis that the bioadhesive composite can 

restore biomechanics after partial nucleotomy and resist extrusion from the injured 

porcine disc ex vivo. Histology showed that S-50 filled the void remaining after NP 

tissue removal. Injection of the bioadhesive composite into a partially denucleated and 

mechanically fatigued porcine disc restored compressive ROM and stiffness relative to 

the intact condition. The implant was able to resist extrusion under compressive axial 

loading and lateral bending. The composite’s ability to mimic the creep response of the 

NP, restore disc height, and resist extrusion through a larger annular defect should also be 

determined. Simultaneous modes of loading such as compression with bending or 

twisting were not applied in this ex vivo model. If implant extrusion were to occur, 
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composite properties can be altered to improve stiffness, viscosity, or adhesive strength 

with tissue. However, modifications to the bioadhesive composite in order to meet 

mechanical design criteria would consequently affect ADMSC behavior and would 

warrant further investigation. The bioadhesive composite demonstrated the ability to 

restore the disc’s biomechanical properties through NP augmentation and resisted 

extrusion during loading.  

 The last and fourth specific aim tested the hypothesis that the bioadhesive 

composite supported the differentiation of transplanted ADMSCs toward a discogenic 

phenotype and deposition of region-specific ECM proteins within a degenerated 

microenvironment. S-50 retained viable ADMSCs for up to 14 days in the degenerated 

bovine disc. ADMSC transplantation improved native IVD cell viability compared to 

untreated, degenerated discs. The local microenvironment induced ADMSC 

differentiation toward an NP or AF-like phenotype, as evidenced by distinct changes in 

morphology and protein expression. Residual NP tissue was not quantified after 

enzymatic digestion; therefore, it is difficult to conclude whether cues from the NP or 

adjacent CEPs induced differentiation. The degree of disc degeneration and its impact on 

MSC behavior should be carefully considered and tested. Future work should also 

include examining the repair and sealing of any AF defects. Sealing annular injuries is 

key in restoring complete biomechanical functionality and preventing potential implant 

extrusion. The bioadhesive composite supported the site-specific differentiation and 

protein synthesis of ADMSCs within the degenerated bovine disc.        

 In summary, a thermosensitive bioadhesive composite cell carrier was developed 

for NP replacement. The composite demonstrated both adhesion to disc tissue and 
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requisite mechanical properties like that of the native NP. Encapsulated ADMSCs were 

retained, remained viable, differentiated, and produced discogenic proteins in vitro after 

exposure to GDF6. The composite was able to restore biomechanical properties and resist 

expulsion from a denucleated and mechanically fatigued porcine disc ex vivo. Finally, 

ADMSCs were successfully delivered in the bioadhesive composite into a degenerated 

bovine disc ex vivo, and underwent site-specific differentiation based on cues from the 

local microenvironment. Findings from this work are significant and will represent a 

major step forward in improving tissue engineering strategies for the repair of the 

degenerated IVD.  
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