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Abstract 

Bradley Martin 

PLYOMETRIC TRAINING AND ITS EFFECTS ON THE NEUROMUSCULAR 
SYSTEM 

Mehmet Uygur, Ph.D  
Master of Science in Athletic Training  

 

 Plyometric training is commonly employed by athletic trainers, personal 

trainers, and strength and conditioning coaches, especially for those athletes who require 

quickness, agility, and high vertical jump performance. It is well documented in its ability 

to increase these aspects of performance.12, 14, 16, 20 There are many proposed mechanisms 

in place which attempt to explain why it is so effective, however, many of the proposed 

mechanisms are still theoretical. The purpose of this study is to examine some of those 

proposed mechanisms that drive the success of plyometric training. This project 

investigates the neurological effects of plyometric training by examining the stretch 

reflex response and the rates of force development and relaxation in recreationally active 

college aged subjects. The mechanisms of interest in this study include the stretch reflex 

response and the rate of force development and relaxation. With an enhanced 

understanding of the neurological adaptations caused by plyometric training, more 

efficient and effective protocols may be adopted into common practice.  
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Chapter 1 

Introduction 

Plyometric training has been well documented in its ability to increase the power 

output of individuals evident by enhancing vertical jump height, horizontal jump 

distance, as well as sprint speed.12, 14, 16, 20 It is often employed for sports such as 

basketball and volleyball where these skills are essential for elevated performance.20 

Plyometric exercises are also commonly used in the later stages of rehabilitation because 

they more closely resemble the sport specific demands and stresses paced on the body.9 

Most sport specific actions occur at higher velocities and over multiple joints at the same 

time.  

A plyometric exercise utilizes the stretch shortening cycle of a muscle to increase 

the maximal force output of that muscle.2, 8, 12, 14, 16, 20, 44  This consists of a rapid eccentric 

contraction immediately followed by a strong and fast concentric contraction.2, 8, 12, 14, 16, 

20, 44  Though there are many mechanisms to which plyometric training is theorized to 

increase performance, many of them are still theoretical.8 Some of the proposed 

mechanisms responsible for an increase in power following a plyometric training 

program include a decreased pennation angle in the muscle,44  converting elastic potential 

energy to kinetic energy during the concentric contraction, and enhancing the stretch 

reflex, thereby adding to the intensity of the concentric contraction.2, 8, 9, 12  

The stretch reflex has also been referred to as the tendon tap reflex because it can 

be elicited by a reflex hammer striking the mid-substance of a tendon.3, 41,  43 When the 

hammer strikes the tendon it elicits a rapid stretch of the tendon, lengthening its 
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corresponding muscle.3, 41,  43 The change in length of the muscle activates the muscle 

spindles, causing a reflexive contraction within the muscle.26,  33 This reflex has been used 

to assess the integrity of the central and peripheral nervous system20 as well as the 

neuromuscular system.3 The large variability among subjects has led previous researchers 

to develop methods of quantifying the stretch reflex, including motion capture analysis, 

force transducers, accelerometers, and surface electromyography.3, 41 

Electromyography (EMG) is a technique used to record and analyze myoelectric 

signals caused by the variations in the degree of activation of muscle fiber membranes.22, 

45 An EMG is capable of quantifying the magnitude of the stretch reflex caused by a 

tendon tap by measuring the myoelectric response caused by the activation of the muscle 

spindles.3, 25,  26,  41,  43 The EMG is based on the action potentials in the muscle fibers 

resulting from the depolarization and repolarization processes during a muscular 

contraction.45 The EMG activity detected represents the sum of the motor unit action 

potentials which are primarily determined by the level of motor unit recruitment.22  

Rate of force development consists of attempting to achieve the maximal amount 

of force as quickly as possible and is commonly used as an indicator of explosive 

strength or power.35 The rate of force relaxation is how quickly a muscle can relax after 

applying that force.35  Explosive strength, or rate of force development, have been 

suggested to be a superior predictor of athletic performance when compared to a one 

repetition maximum test.35 The rate of force development and relaxation are believed to 

reflect different properties of the neuromuscular system because of the lack of a 

correlation between them.14 A high rate of force relaxation does not always follow a high 

rate of force development because they are believed to represent different aspect of the 
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neuromuscular system.14 Although the rate of muscle relaxation is considered to be as 

functionally important as its counterpart, it has received much less attention in the 

literature.14  

The purpose of the current study is to examine the effects of a six-week lower 

extremity plyometric training program on the neuromuscular system. This study will 

compare the following variables pre- and post-plyometric training: the stretch reflex 

response as measured by EMG, rate of force development and relaxation scaling factors, 

maximal voluntary isometric contraction, and vertical jump height performance. With a 

better understanding of the effects plyometric training programs have on the 

neuromuscular system, better and more efficient programs may be developed to further 

increase explosive performance.  

Plyometric Training 

Plyometric training exercises are used to aid in the development of power8, 12, 14 

and rate of force development35, 44 leading to improvements in jumping and sprinting 

ability as well as agility.20 Common examples of lower extremity plyometric exercises 

include box jumps, squat jumps, wall touches, jumping lunges, tuck jumps, depth jumps, 

drop jumps, single and double leg bounding, and lateral cone hops.12, 20 Quality is much 

more important than quantity in terms of plyometric training, because repeated stretch 

shortening cycle exercises have been shown to cause decreased muscular performance 

and fatigue.2 In order for plyometric training to be effective, each exercise must be 

performed with maximal intensity during each repetition.12 It is partially for that reason 

training volume is kept low so that high levels of intensity and motivation can be 
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maintained.12 Repetitions are also limited to prevent injuries such as medial tibial stress 

syndrome or stress fractures from the excessive skeletal loading that takes place during 

landing.12  

A plyometric exercise involves a rapid eccentric contraction (counter-movement) 

immediately followed by a quick and strong concentric contraction.2, 8, 12, 14, 16, 20, 44 This is 

known as the stretch shortening cycle and it is the most common type of muscle action 

required by sport related activities.9 The amortization phase is the time between the 

eccentric and concentric contractions.12 A shorter amortization phase leads to a more 

powerful concentric movement because the potential energy that is stored in the muscle is 

converted to kinetic energy more efficiently.9, 12 If the amortization phase is extended the 

potential energy dissipates and is lost as heat.16 One of the primary goals in any 

plyometric training program is reduction of the amortization phase, leading to greater 

power output.12 Effective plyometric exercises can cause eccentric loads over five times 

the individuals body weight in the active muscles.14 This amount of force is far beyond 

what could be voluntarily produced concentrically by the muscle.9, 14, 16, 44 The stretch 

shortening cycle increases the force output of a muscle by causing an elastic recoil of the 

tendon, increasing the time available to develop the force, and eliciting the stretch 

reflex.9, 44  

The magnitude, duration, and rate of the counter-movement will affect the 

resultant stretch reflex.9, 12 A faster stretch induced by the counter-movement will evoke a 

stronger signal from the muscle spindles leading to a stronger contraction in the muscle 

being stretched.12 The rate at which the stretch is applied is more important than the 
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magnitude of the stretch.12 The rapid eccentric contraction stimulates the muscle spindles 

causing a reflexive contraction enhancing the ensuing concentric contraction.8, 12  

During the concentric contraction the rate of shortening of the musculotendinous 

unit as a whole depends on the shortening of the tendon due to its elastic recoil.9 There is 

minimal displacement of the muscle fibers during the stretch shortening cycle, meaning 

that the muscle is operating closer to its optimal length.9 Based on the length-tension 

relationship, a muscle operating its optimal length can produce more force.9  

The increase in performance from a plyometric training program often occurs 

without hypertrophic changes in the muscle.12, 44  This leads some researchers to believe 

most of the adaptations imposed on a plyometrically trained athlete originate from the 

neurological system especially within the first eight weeks.8, 12, 44  Sugisaki and 

Kurokawa44 did however discovered hypertrophic changes after eight to twelve weeks of 

lower extremity plyometric training. 

Plyometric training protocols have shown some variability among different 

researchers in their effectiveness when examining vertical jumping ability when 

compared to traditional weight lifting strategies.16 The extent to which the vertical jump 

can be improved appears to be dependent on the individual’s strength levels prior to the 

initiation of the plyometric training program.16 Fatouros et. al.16 (2000) reported that 

individuals with lower strength levels prior to the initiation of a plyometric training 

program demonstrated more substantial increases in their jumping ability, while 

previously strength trained individuals showed less of an increase in jumping ability. This 

is probably due to the fact that previously strength trained individuals have already 
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undergone many of the neurological adaptations to a training program as opposed to 

untrained individuals.16 

Neuromuscular Adaptations to Plyometric Training  

Many of the neurological adaptations to plyometric training are similar to those 

observed with resistance training.4, 8, 38 Increasing the sensitivity of the muscle spindles, 

decreasing the sensitivity of the golgi tendon organs, altering muscle recruitment and  

synergy, and increasing rate of force production have all been suggested neurological 

adaptations to both resistance training and plyometric training.4, 8, 38 Resistance training 

has been shown to alter the coactivation of antagonistic and synergistic muscles leading 

to more efficiency of movement and more force.4 Plyometric training has been suggested 

to alter the pennation angle of the muscle fibers involved in the exercises,44 activate 

earlier in the stretch shortening cycle,2, 9 alter lower limb biomechanics,1, 13, 27, 30 and 

increase neuromuscular coordination.8, 12  

Proper plyometric training will increase the excitability of the muscle spindles 

and decrease the excitability of the Golgi tendon organs.8, 12 This is similar to what has 

been observed through resistance training.4 Plyometrically trained subjects saw 

significant improvements in the concentric portion of the stretch shortening cycle but not 

movements consisting of purely concentric movement.9 Cormie et. al.9 (2010) believes 

that stretch shortening cycle exercises lead to enhancements in the stretch reflex but not 

purely concentric contraction strength. Plyometric training, like traditional weight 

training, is thought to desensitize the Golgi tendon organs allowing for greater contractile 
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strength.8, 4 The function of Golgi tendon organs is to protect the muscle and tendon from 

excessive force by causing reflexive inhibition of the muscle.8  

A decreased pennation angle of the muscles involved has been demonstrated 

following a five-week plyometric training protocol which will lead to greater force output 

at the terminal stages of knee extension.44 This is because the muscle fibers will work to 

extend the knee by pulling superiorly on the patella rather than be aligned to stretch the 

patellar tendon medially and laterally.44   

Muscles involved in a plyometric action have been shown to activate earlier in the 

stretch shortening cycle following a plyometric training program.2, 9 The eccentric portion 

of the stretch shortening cycle allows the agonist muscles to develop more force and 

stiffen prior to the concentric portion of the cycle.2, 9 Preemptive muscular activation 

could increase the number of active cross bridges present for the stretch leading to 

increased power output.9 The consequent higher tension at the beginning of the concentric 

portion of the exercise result in greater tendinous lengthening and less fascial 

lengthening.9  

Many studies show changes in lower limb biomechanics following a plyometric 

training program which they attributed to the learning effect.1, 13, 27, 30 The neuromuscular 

coordination between the upper and lower extremity is extremely important when 

attempting to perform a maximal vertical jump.1, 35 Because plyometric training for the 

lower extremity consists of jumping, it is expected that just through practice, better 

coordination between the upper and lower extremity will develop leading to increased 

vertical jump height performance.1    
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Plyometric exercise may also enhance neuromuscular coordination.8, 12 The stretch 

reflex enacted by the stretch shortening cycle increases muscle stimulation that, when 

combined to the voluntary concentric contraction, increases the maximal power output.2, 9 

With training, the neuromuscular system is better able to coordinate the reflex with the 

voluntary contraction leading to a force output that is greater than what could have been 

achieved purely voluntarily.9  

Rate of Force Development and Relaxation  

Rapid muscle contractions followed by their subsequent relaxations are essential 

in most athletic movements.14 Rate of force development is defined as attempting to 

achieve the maximal amount of force as quickly as possible and is commonly used as an 

indicator of explosive strength or power.35 Explosive strength and rate of force 

development have been suggested to be a more important predictor of athletic 

performance compared to a one repetition maximum.35  

The rate of force development has typically been evaluated during isometric 

contractions that require the muscle to reach a given force range as quickly as possible.34 

The rate of force development is sensitive enough to depict the differences between 

subjects and demonstrate neuromuscular adaptations to plyometric training.34 A high rate 

of force development is mainly due to the increase in the rate of neuromuscular activation 

as well as the inherent ratio between fast and slow twitch fibers in the muscle being 

tested.34 Mathern et. al.34 (2019) recorded the time to peak force during rate of force 

development assessments at submaximal isometric levels and has shown it to be invariant 
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regardless of the magnitude of the force being produced. Rate of force development and 

relaxation are scaled with the magnitude of the peak force across submaximal ranges.34   

The rate of force development and relaxation may reflect different properties of 

the neuromuscular system because of the lack of correlation between them.34 The 

magnitudes of the rate of force relaxation were consistently lower than the rate of force 

production in a study conducted by Mathern et. al.34 (2019) This study also showed that 

there was no relationship between the rate of force development and relaxation.34  

The rate of force relaxation is vastly dependent on the intrinsic properties of the 

muscle including the ratio of fast and slow twitch muscle fibers.34 Although the rate of 

force relaxation is considered to be as functionally important as its counterpart, it has 

received much less attention in the literature.34 The rate of force relaxation can be 

assessed similarly to the rate force development, and therefore can be assessed at the 

same time.34 From an isometric submaximal or maximal contraction the task given to the 

subject is to relax as quickly as possible.34   

There is significant correlation between vertical jump height and the rate of force 

development during the counter movement jump.35 It is suggested that rate of force 

development is a better predictor of vertical jump height performance compared to a one 

repetition maximum test.35 McLellan et al.35 (2011) suggested that the rate of force 

development is the largest contributor to vertical jump performance. Because plyometric 

training is designed to improve rate of force development, it should lead to enhancements 

in vertical jump height.14, 35, 44  
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Vertical Jump Testing  

The vertical jump test is often used to assess the effectiveness of a plyometric 

training program as well as to assess the explosive strength and power of the lower 

extremity.7, 35, 36 Jumping is a complex action affected by several factors including the 

maximal force developed by the active muscles, the rate at which that force can be 

developed, and the neuromuscular coordination of the upper and lower extremity.35 Jump 

height is defined as the vertical displacement achieved by the center of mass from takeoff 

to the apex.36 Jump height depends on the take-off velocity and the position of the center 

of mass at take-off.36  

Due to the variability among jump height measurements, many different protocols 

and devices have been implemented with the goal of achieving the most accurate and 

reproducible results.35 Some protocols do not allow the subject to perform a 

countermovement or swing their arms while others do. Placing the hands on the hips 

during a jump minimizes the effect the upper extremity has on vertical jump 

performance.31 By eliminating arm movement, the results of the vertical jump assessment 

will more closely resemble the effects of plyometrics on the muscle itself rather than the 

coordination between upper and lower extremities.31 Markovic31 (2004) demonstrated the 

lowest variability in the countermovement jump and the second lowest in the squat jump. 

Position transducers, accelerometers, yardsticks, motion analysis systems, belt mat 

systems, contact mats, and force plates have all been used in an attempt to measure 

vertical jump height.7, 35, 36  
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Force plate devices are considered to be the gold standard when assessing vertical 

jump displacement.7, 35 Force plates not only enable the practitioner to calculate jump 

height, but they will also show the power production throughout the eccentric and 

concentric phases of jumping.3 By measuring the amount of time the subject is in the air, 

their vertical displacement can be calculated.36 If the landing mechanics are altered so 

that the subject remains in the air longer, the validity of this measure will be 

contaminated.36 Because the force plate calculations revolve around the amount of time 

spent in the air, if the subjects land differently from one another they may spend more or 

less time in the air due to their landing mechanics. This alters the relationship between 

power produced and flight time achieved. To obtain the most reproducible results the 

landing mechanics must be carefully monitored between subjects. The formula36 used to 

calculate vertical jump height from flight time is as follows:  

Vertical jump height = ½ gravitational acceleration x (time of flight / 2)2  

Reflexes 

The tendon tap reflex has also been referred to as the myotatic reflex, phasic 

stretch reflex, and stretch refex.41 The tendon tap reflex has been used clinically to assess 

the integrity of the neuromuscular system2 as well as the central and peripheral nervous 

system.33 Tapping the tendon elicits a stretch stimulating the muscle spindle 1a afferents 

which send a signal to the spinal cord.26, 33 There, the 1a afferent signals synapse with the 

alpha motor neurons sending a signal back to the muscle to cause a reflexive 

contraction.26, 33 
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Previous attempts to quantify the reflex response have included the use of 

ultrasonography, dynamometry, electrogoniometry, motion capture analysis, and surface 

electromyography (EMG).3, 41 Tendon tap responses show a large degree of variability 

between subjects which could be in part due to the method of stimulation.43 When 

attempting to elicit a consistent tendon tap reflex it is common for the clinician to ask the 

patient to perform the Jendrassik maneuver.3, 41 This is performed by instructing the 

subject to close their eyes, interlock their hands in front of their chest, and attempt to pull 

them apart.3, 41 Previous attempts to administer reproducible tendon taps have used a 

reflex hammer mounted on an axle and dropped from a consistent height.43 By allowing 

gravity to deliver a consistent force at a consistently aimed location in the mid-substance 

of the tendon more reproducible results have been shown to occur.3, 17, 26  

The major parameters of the stretch reflex are amplitude and latency.26, 33, 41 

Latency is defined as the time between when the tendon tap was delivered and the first 

recorded signal.2, 26, 33 The delay between the tapping force and the resultant contraction 

is due to both the afferent and efferent conduction delay and the neuromechanical delay 

within the muscle.33 Avela et. al.2 (1998) showed that on average the first EMG signal is 

recorded 30-32 milliseconds after the tap was delivered when assessing the quadriceps 

femoris muscle. There is a large gap in the literature regarding amplitude of the EMG 

response following plyometric training. to find an increase in the EMG amplitude of a 

tendon tap following plyometric training would suggest an increase in the sensitivity of 

the muscle spindles.  
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Electromyography  

The signal recorded by an EMG is a combination of motor unit recruitment, 

synchronization, and firing frequency.4 An EMG can quantify the magnitude of the 

stretch reflex caused by a tendon tap by recording the electrical activity present in the 

muscle during the response.3, 25, 26, 41, 43  

According to Beck et. al.3 the frequency spectrum of the EMG is determined by 

the shapes of the action potentials and the conduction velocities of the muscle fibers. The 

shape of the action potentials are dependent on the type of motor units being recruited, 

the thickness of the tissue between the muscle and the electrodes, and the dispersion of 

the endplates.3 Muscles with a higher percentage of fast-twitch fibers showed faster 

conduction velocity rates.3 It is likely that the greater depolarization and repolarization 

rates were responsible for the shortened duration of action potentials seen in the fast 

twitch fibers.3 Shortened action potentials lead to greater conduction velocities.3  

The optimal average baseline EMG reading during relaxation should be between 

one and two microvolts, but it shouldn’t exceed three to five microvolts.45 If the signal 

exceeds five microvolts EMG preparation, placement, and ground wire connection should 

be checked to improve the signal. Muscles in close proximity to the recording electrode 

may produce an EMG signal significant enough to be recorded by the electrode.45 This is 

referred to as cross talk between muscles and typically doesn’t exceed ten to fifteen 

percent of the total EMG activity recorded by the electrode and may be mistaken for 

background noise.45  
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An increase in EMG activity will typically lead to greater levels of torque being 

produced by the muscle, however this is not always the case.45 This EMG reading to force 

ratio can be used to help determine the neuromuscular training status of the muscle.45 

During static contractions, well trained muscles tend to demonstrate more force with the 

same level of EMG activation as a subject who is untrained and producing less force.45  

Conclusion 

Plyometric training is well documented in its ability to increase power 

production3, 8, 9 and rate of force development.44  It is commonly used by athletes and 

coaches to increase vertical and horizontal jumping ability as well as sprint speed, agility, 

and performance.8, 12, 14, 20A plyometric exercise invokes the stretch shortening cycle by 

beginning with a rapid eccentric countermovement to stretch the muscle before 

immediately transitioning to a quick and powerful concentric contraction.8, 12, 14, 16, 20, 44  

The rapid counter movement stimulates the muscle spindles causing a reflexive 

contraction which enhances the concentric contraction.8, 12  

Many of the hypothesized mechanisms affected by plyometric training are 

assumed to stem from the neurological system and are still theoretical.8 Of the proposed 

mechanisms, stretch reflex response, rate of force development/relaxation, maximal 

voluntary isometric contraction, and vertical jump height are of the highest concern to the 

research team in the present study.  

If plyometric training increases the sensitivity of muscle spindles it should be 

evident by a tendon tap reflex test compared pre- and post-intervention. Tapping the 

tendon with a reflex hammer stimulates the muscle spindles causing a reflexive 
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contraction similar to the eccentric countermovement phase of a plyometric exercise,26, 33 

but on a much smaller scale. An EMG alone can quantify the magnitude of the stretch 

reflex caused by a tendon tap,3, 25, 26, 41, 43 but the current study will also use a force 

transducer strapped to the ankle. The data from both the EMG and the force transducer 

will be used in conjunction to reveal what effects plyometric training has on the 

neuromuscular system. If the rate of force development and relaxation are altered by 

plyometric training that should also become evident through asking the subjects both pre- 

and post-intervention to produce the maximal amount of force as fast as possible with a 

subsequent relaxation as quickly as possible.  

The current study has multiple objectives. Firstly, the current study will attempt to 

test if plyometric training will increase the patellar tendon tap reflex response with both 

an EMG and a force transducer. Secondly, the study will measure the rates of force 

production and relaxation before and after plyometric training. Third, the study will 

examine the maximal voluntary isometric contraction of the hamstrings and quadriceps 

muscle groups with an EMG and a force transducer. Finally, the study will examine the 

plyometric training protocol’s effects on vertical jump height performance as a means of 

assessing the legitimacy of the program.  

If the current study shows no results in stretch reflex, maximal voluntary 

contraction, or rate of force Development/relaxation, but an increase in jumping ability 

the research team will suggest that the causes of the increase in vertical jump height is 

due to other factors. If the current study shows no increase in jumping ability and no 

increase in any of the other dependent variables being assessed the efficacy of the 

plyometric training protocol used in the study will be brought into question.  
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Aims and Hypotheses  

This study aims to examine the neuromuscular effects of six weeks of plyometric 

training on the lower extremity by assessing the stretch reflex response, rate of force 

development, rate of force relaxation, maximal voluntary isometric contraction, and 

vertical jump height.  

Specific Aim 1: To examine the effects of a 6-week lower extremity plyometric 

training intervention on the stretch reflex assessed through a patellar tendon tap response 

with an EMG and a force transducer.  

Hypothesis 1: We hypothesis that plyometric training will increase the patellar 

tendon tap response which will be measured as the EMG response as well as the level of 

force recorded through the force transducer.  

Specific Aim 2: To examine the effects of a six-week lower extremity plyometric 

training program on the rate of force development of the quadriceps muscle group  

Hypothesis 2: We hypothesis that the rate of force development will be higher in 

the quadriceps muscle group post plyometric training.   

Specific Aim 2.1: To examine the effects of a six-week lower extremity 

plyometric training program on the rate of force relaxation in the quadriceps muscle 

group.  

Hypothesis 2.1: We hypothesis that the plyometric intervention will increase the 

rate of force relaxation in the quadriceps muscle group. 
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Specific Aim 3: To determine the effects of a six-week lower extremity 

plyometric training program on maximal voluntary isometric contraction strength of the 

hamstrings and quadriceps muscle group.  

Hypothesis 3: We hypothesize plyometric training will increase the maximal 

voluntary isometric contraction values in the hamstrings and quadriceps muscle groups 

following plyometric training.  

Specific Aim 4: To examine the effects of a six-week plyometric training 

protocol on vertical jump height performance.  

Hypothesis 4: We hypothesize that plyometric training will increase vertical 

jump height.  
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Chapter 2 

Manuscript 

Abstract   

 Plyometric training has been well documented in its ability to increase vertical 

jump performance,12, 14, 16, 20 however, many of the proposed mechanisms driving its 

success are still theoretical. Of the many proposed neurological adaptations to plyometric 

training, increasing the sensitivity of the muscle spindles leading to enhancements of the 

stretch reflex and increasing the rates of force development and relaxation are of greatest 

interest to the current study. Eleven (seven male and four female) participants completed 

six weeks (12 sessions) of supervised plyometric training. Before and after the 

completion of training, vertical jump height, the stretch reflex via tendon tap, rates of 

force development and relaxation scaling factors, and maximal voluntary isometric 

contraction were assessed with electromyography (EMG) and a force transducer strapped 

to the ankle. The current study found a significant increase in countermovement jump 

height, indicating that the plyometric training regimen was successful. Squat jump height 

was not significantly different following plyometric training. No evidence of an increase 

in the patellar tendon tap response following plyometric training was found. No statistical 

significance was found for the peak force or the peak EMG activation, however our 

results showed an increase in the amount of time required for subjects to reach their peak 

force during a tendon tap following plyometric training. The maximal voluntary isometric 

contraction was not significantly different from pretest. The rate of force development 

scaling factor displayed no increase while the rate of force relaxation scaling factor 



19 
 

improved significantly indicating that subjects were able to relax muscle forces more 

quickly. Our findings suggest that while plyometric training improves vertical jump 

performance, it does not increase the stretch reflex response (as measured by muscle 

activity and force production during a patellar tendon tap). Therefore, we speculate that 

plyometric training might improve coordination among the segments involved in the 

complex action of jumping Further studies are required to determine if plyometric 

training has any effect on the stretch reflex. Future studies should also examine the 

potential improvements in a subject’s form, especially during a countermovement, that 

could potentially lead to the increases witnessed in vertical jump height.  

Introduction  

Plyometric training is a common technique used to enhance agility, quickness, 

and horizontal/vertical jump performance.12, 14, 16, 20 It is especially important in sports 

such as volleyball and basketball where vertical jump height and explosive power are 

paramount to performance. Compared to a one repetition maximum, vertical jump 

performance has been shown to be the superior method of assessing athletic 

performance.35 This is likely because most sports require power as opposed to strength. 

Any exercise that utilizes the stretch shortening cycle of a muscle through a rapid 

eccentric contraction immediately followed by a strong and rapid concentric contraction 

is a plyometric exercise.2, 8, 12, 14, 16, 20, 44  For the lower extremity, that criteria is most 

commonly met by jumping. The countermovement of flexing at the knees and hips 

creates a stretch and an eccentric contraction in the quadriceps. The rapid eccentric 

contraction stimulates muscle spindles eliciting a reflexive contraction that when added 
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to the voluntary contraction increases power output beyond what could be achieved 

purely concentrically.2, 8, 12, 14, 16, 20, 44   

Despite the wide success of plyometric training, many of the proposed 

mechanisms that drive that success are still theoretical.20 Many of the benefits to 

plyometric training are believed to revolve around neural adaptations rather than 

hypertrophic changes in the muscles.9, 12, 20 Sugisaki and Kurokawa;44 (2014) however, 

discovered hypertrophic changes after eight to twelve weeks of lower extremity 

plyometric training. Similarly to resistance training, it appears that plyometric training 

requires an individual to undergo neurological adaptations prior to hypertrophic 

alterations in the muscle. Despite the absence of hypertrophy, vertical jump height 

improvements have been recorded in as few as three weeks from the initiation of the 

plyometric training program.  

The proposed adaptations to plyometric training of interest to this study include 

increasing the sensitivity of the muscle spindles to produce a greater stretch reflex 

response, increasing the rate of force development, and increasing the rate of muscle 

relaxation. Secondarily, the present study will examine the effects of plyometric training 

on maximal voluntary isometric contraction values and vertical jump height performance. 

The current study will attempt to evaluate these neurological adaptations believed to be 

caused by plyometric training. This will be achieved by recording the stretch reflex 

elicited by a patellar tendon tap with electromyograph (EMG) and the corresponding 

isometric force produced by the quadriceps via a force transducer attached to the ankle. 

The rate of force development/relaxation scaling factors will be assessed through brief 

isometric force pulses performed to various sub-maximal ranges. Maximal voluntary 
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contraction will also be assessed using the EMG and the force transducer. Finally, 

vertical jump height during a squat jump and two countermovement jumps under 

different conditions will be assessed using a force plate.  

We hypothesize that plyometric training will increase the patellar tendon tap 

response measured by relative EMG activation and force. We also hypothesize that 

plyometric training will increase the rates of force development and relaxation as well as 

the maximal voluntary isometric contraction. Finally, we hypothesize that plyometric 

training will improve vertical jump height performance.    

Methods  

Subjects. Eleven healthy, non-injured, recreationally active subjects between the 

age of 18 and 22 were recruited for the present study. Recreationally active was defined 

as physically active for a minimum of three 30-minute periods per week. The subjects 

consisted of seven males and four females with an average height of 1.77 (±0.09m) and 

an average weight of 71 (±12.2kg). Subjects with any current injury, pain, swelling, or a 

history of surgical intervention in the lower extremity were excluded from the study. 

Further inclusion criteria included: adequate range of motion in the lower extremity 

examined by observation of hamstring and quadricep assisted stretching, adequate 

balance as tested using the modified balance error scoring system,12 and the ability to 

perform five squats within five seconds with 60% of their body weight maintaining 

proper form.12 The subjects were informed to only perform the prescribed exercises under 

the supervision of the research team and not to perform any other lower extremity 

exercises for the duration of the study. Subjects were permitted to continue upper body 
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weight training and cardio exercises as normal during the training period. No dietary 

alterations were made by the research team. Subjects were told to continue eating and 

drinking as they have been prior to the initiation of the study. Training session times were 

picked by the subjects; however pretest and post tests were performed in the morning 

around the same time of the day for each subject. All subjects read and signed the 

informed consent form approved by the IRB of Rowan University prior to the initiation 

of any testing or exercise protocols.  

Procedure. Prior to the beginning of data acquisition, the subjects were instructed 

not to perform lower extremity exercises for at least two days prior to any testing 

procedures and not to perform any exercise the day of their testing prior to the testing 

procedures. The subject’s dominant leg was placed in a position similar to the testing 

position before the electrodes were placed. In accordance with the SENIAM42 guidelines 

for EMG placement, a mark on the skin was placed 2/3 the distance from the anterior 

superior iliac spine (ASIS) and the superior lateral border of the patella for the vastus 

lateralis. A second mark was placed 2/3 the distance from the ischial tuberosity to the 

lateral boarder of the popliteal fossa for the biceps femoris. In accordance with standard 

EMG procedure, each marked area was first shaved with a razor to remove any hair then 

scraped with fine grain sandpaper to remove any dead skin cells. The marked areas were 

then cleaned with alcohol preparatory pads and allowed to dry before placing the 

electrodes on the skin perpendicular to the orientation of the muscle fibers. A strip of tape 

was then applied over each electrode to prevent slippage. The reference electrode was 

placed on the patella because the lateral malleolus was unavailable due to the placement 

of the force transducer.  
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The subject was then instructed to sit down on the custom-made wooden box with 

their dominant ankle resting on the force transducer. The force transducer was adjusted 

for height to rest just above the lateral malleolus of each subject. The height of the 

transducer was recorded to ensure that it was placed in the same position for the post test. 

Their ankle was secured to the force transducer allowing for quasi isometric contractions. 

Two straps were tightly wrapped around the dominant thigh securing it to the box, and 

one more strap around the hips to prevent any compensatory motions. When sitting on 

the box, subjects’ hips were flexed to approximately 90 degrees and knees to 

approximately 70 degrees of flexion (figure 1a). 
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A     B  

Figure 1. Subject positioning for the tendon tap and the reproducible tendon tap delivery 
device. The picture on the left (figure a) shows the swinging arm in the ready position 
and the picture on the right (figure b) shows after the release has been pulled and the 
hammer drops. Picture shoes placement of EMG channel 1 on the vastus lateralis, 
reference electrode on the patella, the force transducer at the ankle, and the three straps 
used to restrain the subject. EMG channel 2 on the hamstrings is out of sight due to the 
subject being seated.  

 

 

 Patellar tendon tap. A custom-made and height adjustable swinging arm was 

used to deliver tendon taps at a consistent force and location to elicit a stretch reflex. The 

moving arm was brought up to a consistent height and dropped to ensure it was striking 

with the same amount of force in the mid-substance of the tendon. To further remove 

human error a pin was inserted through a hole to hold the swinging arm in place. When 

the tap was ready to be delivered the pin was removed allowing the arm to fall and the 

reflex hammer to strike the tendon (figure 1b). All tendon tapes were performed while the 
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subject was holding the Jendrassik maneuver.3, 41 One trial consisted of four tendon taps 

with 20 seconds of rest between each. Four trials were performed resulting in a total of 16 

patellar tendon taps per subject.  

 Maximal voluntary isometric contraction (MVC). Subjects were asked to cross 

their arms across their chest and rest while the new baseline recording of the force was 

collected, whose value was subtracted from the recorded force values in the experimental 

protocol. Quadriceps strength was assessed first and hamstring strength was assessed 

second with the instruction being “kick out/pull back as hard as you can and hold that 

effort until instructed to stop.” Subjects received verbal feedback and motivation during 

the MVC testing using the words “kick!” and “pull!” for the quadriceps and hamstrings, 

respectively. The subjects alternated quadricep and hamstring trails until they had 

completed three for each with 60 seconds of rest between each trial of the same muscle. 

Within each tested muscle group the highest of the three was taken as the MVC value.  

 Rate of force development/relaxation. Four horizontal lines corresponding to 

20, 40, 60, and 80% of the highest recorded MVC were displayed on the feedback screen. 

These horizontal lines were used to define three force ranges termed small (20-40%), 

medium (40-60%), and large (60-80%). The subjects were instructed to cross their arms 

across their chest and kick out as fast as they could and then relax as fast as they could 

within the requested force range shown on the monitor. Each subject was told to pay little 

attention to accuracy and focus more on the speed at which they produce the force pulse 

and then relax after producing that force. Each subject was also allotted up to two 

minutes to practice producing the force pulses in each range using the monitor for 

continuous and instantaneous visual feedback. When ready, an audio recording was 
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played for the subjects ensuring the same pace and order of force ranges for each subject. 

The force ranges always come in groups of five. Trial one started with small, then 

medium, then large, and back around again for ten total repetitions within each range per 

trial. The order of the force ranges changed after each trial. Over the course of four trials 

there was a collection of 40 force pulses in each range for a total of 120 force pulses per 

subject.  

Following the resolution of this portion of the test the subjects were unstrapped 

from the box and the force transducer. The electrodes were removed and sanitized with 

an alcohol prep pad, and the subjects were allowed to walk around briefly before the final 

portion of the testing.  

 Vertical jump height. Each subject was then allowed up to five minutes on a 

stationary exercise bike followed by self-prescribed dynamic and ballistic stretching 

activities to prepare for the vertical jump assessment. While the subjects were preparing 

for the vertical jump assessment the three different types of jumps were explained to 

them.  

During the squat jump subjects were instructed to maintain their hands on their 

hips for the duration of the jump. A box was positioned underneath them, and they were 

instructed to hold a squat so that they had slight contact with the box. The box height was 

selected so that the subject thighs were parallel to the ground. The height was recorded to 

ensure the same height was used pre- and posttest. Upon contact with the box the subjects 

were given a verbal count down from three. Subjects were instructed to explode straight 

up as high as they could from the squat without dropping down first. The ground reaction 



27 
 

force graph was carefully monitored for a countermovement prior to the initiation of the 

jump. If a countermovement was detected the test was repeated.  

Two types of countermovement jumps were recorded: with and without arm 

swing. The subjects were given very little instruction on the countermovement with arm 

swing. They were instructed to jump as high as possible. They were allowed to drop as 

low to the ground as they wanted and swing their arms to achieve a maximal vertical 

jump. The countermovement without arm swing required the subjects to keep their hands 

on their hips, but still allowed them to drop as low as they wanted.  

For all the jumping conditions, the subjects were instructed to land on their toes 

with their knees mostly straight. They were also instructed to take off and land on both 

legs. Subjects were also informed that they must land with both feet on the force plate for 

the jump to be counted, however they were told not to sacrifice jump height for landing 

accuracy. If the subjects failed to follow takeoff or landing instructions the data was 

deleted, and the test was repeated. The subjects were allowed a practice jump for each of 

the three jumping conditions. The order of the jumps was randomized for each subject. 

After a successful completion of one condition the subjects were asked to perform one of 

the other two types of jumps. Including the practice jumps, each subject had to perform a 

minimum of 12 jumps. Most did not have to perform more than 15 jumps. Sixty seconds 

of rest was allotted between each trial. Both the highest of the three maximal vertical 

height jumps for each condition, and their average, was calculated.  
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Plyometric training. All subjects completed two training sessions per week, for a 

total of six weeks. Every training session was observed by one of two practitioners 

trained in the diagnosing and correcting improper biomechanics. New exercises were 

introduced every two weeks. Prior to the initiation of each new exercise, subjects were 

sent written instructions as well as a video demonstrating the exercise. No subjects were 

removed from participation in the study due to a failure to correct improper movement 

mechanics or injury.  

Every exercise session began with a self-prescribed warm up, and questions about 

injury status as well as recovery from the past session. Each subject was given the 

opportunity to include any warmup procedures they felt necessary. Each plyometric 

exercise was demonstrated and described on videos that were sent to them prior to the 

initiation of that week. The subjects were instructed to bend the knees to about 90 degrees 

and immediately explode up into the air as high as they could for every repetition. They 

were instructed to minimize the amount of time they spent on the ground. Subjects were 

given verbal feedback about their performance and their mechanics. Any improper 

movement mechanics that were noticed by the observer were explained and corrected. 

The subjects were also given verbal encouragement throughout the workout in an effort 

to keep motivation levels high.  

During the first two weeks of plyometric training the exercise protocol was as 

follows; squat jumps, jumping lunges, and wall touches. Three sets of ten repetitions 

were performed for each of the exercises for a total of 90 foot contacts (beginner 

intensity). A 30 second rest was allotted between each set and a two-minute rest was 

allowed between each exercise. During weeks three and four the double jump replaced 
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the jumping lunges for a total of 120 foot contacts (intermediate intensity). Weeks five 

and six included all of the same exercises with the addition of the “out and up” exercise. 

The total sets for squat jumps and wall touches was brought down to two for a total of 

160 foot contacts (advanced intensity).   

 

Table 1  

Layout of the plyometric training program given to the subjects including the sets, reps 

and rest periods.   

week 1-2 
exercise  sets reps  
squat jumps  3 10 
jumping lunges 3 10 
wall touches  3 10 

week 3-4 
squat jumps  3 10 
double jumps  3 10 
wall touches  3 10 

week 5-6 
squat jumps  2 10 
double jumps  3 10 
out and ups  3 10 
wall touches  2 10 

   
30 second rest between each set 
2 minutes rest between each 
exercise 
2 training sessions per week  

 

 

The double jump exercise is meant to simulate a drop jump. It is performed by 

having the subject perform an initial smaller jump, then upon landing, very quickly bend 

the knees to about 90 degrees and get back up into the air as high and as quickly as 

possible. The landing from the smaller initial jump is similar to the landing from a small 
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stack of boxes that would be seen in a drop jump. The “out and up” exercise is also meant 

to simulate a drop jump but at a much higher intensity. It requires the subject to broad 

jump as far as possible and then immediately upon landing jump as high and as quickly 

as possible without moving forward again. Forcing the subject to cancel out all their 

forward momentum and instead force themselves to jump as high as possible places a 

large eccentric load on the quadriceps for a more intense exercise.  

At the conclusion of every plyometric workout static stretching of the quadriceps, 

hamstrings, and triceps surae muscle group were prescribed. The subject could use any 

cool down procedure they felt necessary following the static stretches given to them. At 

least four days were allowed between the final training session and the post test. Each 

subject was also asked if they still felt sore from their last exercise session prior to any 

testing.   

Data acquisition and analysis. EMG is recorded at 1000 Hz through a Delsys 

Bagnoli 2-channel system (delsys, Boston, MA) and the force data is recorded using a 

force transducer (SM-500, Interface Inc., Scottsdale, AZ). All EMG data were demeaned, 

rectified, and low-pass filtered at 20 Hz to create a linear envelope, which was used to 

calculate the dependent variables.  

In tendon tap analysis, both the recordings of EMG and force data were displayed 

on the computer screen. The software found each tendon tap instances by searching local 

peaks in the force data and displayed one second of both EMG and force data on the 

screen such that the force peak was in the middle of the recording. Cursors were 

automatically placed to the initiation, peak, half relaxation, and full relaxation instances 
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of both EMG and force signals (figure 2). As recommended by Maffiuletti et. al.29 the 

plotted points were visually confirmed by the researcher and adjusted if necessary. Both 

the force and EMG initiation was defined as when their values reach greater than three 

standard deviations above the baseline preceding the tendon tap. The following 

dependent variables were calculated from the tendon tap trials: peak force, the time to 

peak force, the peak EMG activation, the time to peak EMG activation, and the 

electromechanical delay. The electromechanical delay is defined as the time between the 

initiation of the EMG and the initiation of the force.  

 

 

Figure 2. A representative recording obtained from a tendon tap, color coded for force, 
EMG channel 1 (vastus lateralis), and EMG channel 2 (biceps femoris) prior to the 
placement of the cursors.  

 



32 
 

 

Figure 3. Picture of the same pulse recorded from a tendon tap color coded for force, 
EMG channel 1 (vastus laterlis), and EMG channel 2 (biceps femoris) following the 
placement of the cursors.  

 

 

Another LabView software was used to analyze rates of force development and 

relaxation scaling factors. Both the recorded force and its time derivative were plotted 

together on the computer screen. Similar to the tendon tap, each force pulse was 

displayed on the screen individually and cursors were placed automatically on the curves 

corresponding to the force initiation, peak force, force termination, and their values were 

recorded for further analysis. Both the rate of force development and rate of force 

relaxation were calculated by dividing the peak force values by its time to peak and its 

time to relax, respectively.  The regression parameters obtained from the relationships 

between peak force-rates of force development and peak force-rate of force relaxation 

were used as dependent variables. Namely, the slope of the linear relationship between 

peak forces and corresponding peak rates of force development is called the rate of force 

development scaling factor (RFD-SF). A similar slope obtained from the linear 
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relationship between peak forces and peak rate of force relaxation is termed the rate of 

force relaxation scaling factor (RFR-SF). The R-squared obtained from the 

aforementioned relationships revealed the consistency of scaling of the rates of force 

development and relaxation within the magnitudes of the force pulses produced.34   

Vertical jump height used custom LabView software designed to pick the first 

frame where there is no force reading on the force plate and pick the frame where the first 

force reading is picked up again to determine the amount of time each subject spent in the 

air. By determining their flight time, the program was then able to calculate vertical jump 

height from the following calculation:  

Vertical jump height = ½ gravitational acceleration x (flight time / 2)2  

Maximal vertical jump height and flight time as well as average vertical jump height and 

flight time were assessed for each subject pre- and posttest.   

Statistical analysis. Dependent variables for rate of force development and 

relaxation testing include maximal voluntary isometric contraction (newtons), rate of 

force development scaling factor, R2 of RFD-SF, rate of force relaxation scaling factor, 

and R2 of RFR-SF. Since R2 values are inherently not normally distributed their values 

were fisher transformed prior to the statistical analysis. The dependent variables for the 

tendon tap are as follows: the peak force, the time to peak force, the peak EMG 

activation, the time to peak EMG activation, and the electromechanical delay. Dependent 

variables for the vertical jump assessment include the maximal vertical jump height over 

three trials, the average vertical jump height of the three trials, maximal flight time, and 

average flight time. These variables are assessed over three different types of jumps.  
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In the current study, each subject acted as their own control and all the dependent 

variables were assessed prior to plyometric training and reassessed following the 

completion of plyometric training. Two tailed paired sample t-tests were used to compare 

the selected dependent variable before and after the completion of training. Significance 

values were set at p<0.05 

Results  

Stretch reflex. The electromechanical delay, defined as the time between the 

initiation of the EMG and the initiation of the force, was not significantly different 

following plyometric training (t=1.54; p=0.16.) The peak force, although not significant, 

decreased on average by 0.25N (t=0.53; p=0.6.) The time to peak force significantly 

increased by an average of 0.002s (t=4.14; p=0.002) following plyometric training. The 

EMG value reported as a percentage of the maximal voluntary isometric contraction 

value was decreased by an average of 21.6% (t=1.96; p=0.08) (table 2).  

 

Table 2   

Results from the tendon tap portion of the testing 
 

pre post statistics  
mean SD mean SD % difference t-

value 

p-

value 

peak force 

(%MVC)  

4.189 3.417 3.939 3.002 -5.97% 0.531 0.607 

time to peak 

force (s) 

0.077 0.010 0.091 0.011 18.70% 4.056 0.002 

EMG peak 

value 

(%MVC) 

44.261 42.255 34.689 33.694 -21.60% 1.950 0.080 

EMD (s) 0.037 0.010 0.035 0.007 -7.38% 1.536 0.156 
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Rate of force development/relaxation. Maximal voluntary isometric contraction 

was insignificantly increased by 56.89N (t=2.12; p=0.06) which is equivalent to a 7.8% 

increase. The rate of force development scaling factor calculated by the time required to 

reach peak force was not statistically different (t=1.24; p=0.24.) The rate of force 

relaxation scaling factor measured the same way significantly increased by 16.8% (t=2.63 

p=0.03) (table 3).  

 

Table 3  

Results from the RFD/RFR testing.  
 

pre post statistics  
mean SD mean SD % 

difference 

t-

value 

p-

value 

MVC (N) 725.09 157.69 781.91 135.97 7.84% 2.10 0.06 
RFD_r^2_ttp 0.63 0.24 0.61 0.28 -2.54% 

 

fisher R2-

RFD-SF 

0.86 0.49 0.87 0.57 0.81% 0.07 0.94 

RFD_SF_ttp 5.15 2.05 4.53 1.82 -12.06% 1.24 0.24 
RFR_r^2_ttp  0.70 0.16 0.79 0.16 12.47% 

 

fisher R2-

RFR-SF 

0.93 0.31 1.15 0.34 23.97% 2.15 0.06 

RFR_SF_ttp -4.18 1.64 -4.89 1.80 16.80% 2.63 0.03 

Note that RFD_R^2_ttp and RFR_R^2_ttp do not have a t value or a p value because they 

are not normally distributed.  

 

Vertical jump height. The countermovement jump condition, in which subjects 

were allowed to swing their arms, improved significantly compared pretest to posttest. 

Maximal vertical jump height increased on average by 0.02m (t=2.33; p=0.04) 

corresponding to an increase of 6%. Following completion of the plyometric training 

program the average vertical jump height of the three trials increased by 0.02m (t=3.1; 

p=0.01) which relates to a 4.4% increase. The increased maximal vertical jump height is 
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associated with an increase in maximal flight time by an average of 0.01s, or 2.9% (t=2.6; 

p=0.03). The mean flight time of the three trials increased by an average of 0.02s (t=2.7; 

p=0.02) indicating an increase of 4.8%.   

The countermovement jump, in which the subjects were not allowed to swing 

their arms, saw similar results to the countermovement jump allowing an arm swing in all 

variables assessed. Maximal jump height increased by an average of 0.03m, or 10.3% 

(t=2.5; p=0.03) and maximal flight time increased by an average of 0.02s, or 4.5% (t=2.3; 

p=0.05). The mean jump height increased by an average of 0.02m (t=2.9; p=0.02) as well 

as average flight time increase of 0.02s (t=2.8; P=0.02). These results are associated with 

an increase of 8.9% and 4.9% respectively.  

The squat jump did not see the same results as the countermovement jumps. The 

only condition assessed in the squat jump that saw any improvement was in the average 

flight time category (t=2.8; p=0.02) which increased by 0.02s or 5.4%. Maximal flight 

time on the other hand did not see the same statistically significant results with an 

increase of only 0.02s or 4.1% (t=2.0; p=0.08) Maximal vertical jump height, although 

not statistically significant, increased on average by 0.02m, or 9.1% (t=2.0; p=0.08). The 

mean vertical jump height actually decreased on average by 0.002m corresponding to a 

loss of 1.5% (t=0.14; p=0.89).  
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Table 4  

Results from the vertical jump assessment.  
 

pre post statistics  
mean SD mean SD % 

difference 

t-

value 

p-

value 

max height 

CMJA (m) 

0.3079 0.0760 0.3228 0.0723 6.0% 2.32 0.04 

mean height 

CMJA (m) 

0.2963 0.0706 0.3164 0.0702 4.4% 3.10 0.01 

max flight time 

CMJA (s) 

0.4978 0.0605 0.5110 0.0566 2.9% 2.54 0.03 

mean flight 

time CMJA (s)  

0.4825 0.0583 0.5046 0.0556 4.8% 2.66 0.02 

max height 

CMJN (m) 

0.2647 0.0627 0.2898 0.0699 10.3% 2.52 0.03 

mean height 

CMJN (m) 

0.2522 0.0600 0.2723 0.0619 4.5% 2.87 0.02 

max flight time 

CMJN (s) 

0.4604 0.0554 0.4784 0.0603 4.4% 2.25 0.05 

mean flight 

time CMJN (s)  

0.4500 0.0541 0.4676 0.0527 4.9% 2.79 0.02 

max height SJ  

(m) 

0.2536 0.0704 0.2703 0.0601 9.1% 1.98 0.08 

mean height SJ 

(m) 

0.2425 0.0688 0.2447 0.0963 -1.5% 0.14 0.89 

max flight time 

SJ (s) 

0.4505 0.0641 0.4669 0.0518 4.1% 1.98 0.08 

mean flight 

time SJ (s) 

0.4400 0.0651 0.4605 0.0511 5.4% 2.56 0.03 

 

 

Discussion   

 The current study aimed to identify any relationship between plyometric training 

and vertical jump height, stretch reflex assessed by a tendon tap, maximal voluntary 

isometric contraction, and rates of force production and relaxation across submaximal 

ranges (i.e. rates of force development and relaxation scaling factors). After completion 

of the plyometric training program, countermovement vertical jump height significantly 
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increased, while there was no change in the squat jump. In the tendon tap, contrary to the 

hypothesis, we found no significant differences in the electromechanical delay, peak 

force, or the peak EMG activation levels. The only change was an increase in the time 

required to reach the peak force. Finally, while the maximal voluntary isometric 

contraction and rate of force development scaling factor did not improve, the rate of force 

relaxation scaling factor was significantly increased after the completion of plyometric 

training.   

 Vertical jump. We investigated the effects of plyometric training on three 

different vertical jump conditions (i.e. countermovement jump with and without arm 

swing, and a squat jump without arm swing). Two out of the three studied vertical 

jumping conditions improved following six weeks of plyometric training. The squat 

jump, in which the subjects were not allowed an arm swing or a countermovement, was 

the only condition that was not significantly different after completion of the training. 

This is consistent with previous literature on the subject.2, 5, 9, 31, 32 One potential reason 

for the lack of improvement in the squat jump could be due to the nature of the jump, 

which didn’t include a countermovement. During the countermovement of the jump, the 

rapid eccentric descent prior to the concentric phase of the jump elicits a stretch reflex 

causing an involuntary muscle contraction.2, 9 This involuntary muscle contraction can 

then be added to the concentric contraction for a greater power output.9 Removal of the 

countermovement in a squat jump forced subjects to jump without the assistance of the 

stretch reflex. While plyometric training has been shown to increase stretch shortening 

cycle movements, it is not effective in increasing the performance of purely concentric 

exercises.5, 31, 32 Another potential reason for this is due to the learning effect. Subjects 
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were practicing maximal vertical jumps where they were allowed the use of a 

countermovement and an arm swing for six weeks in between their testing sessions. None 

of the exercise selections included in our plyometric training regimen restricted the use of 

an arm swing or a countermovement. This may help to explain why an increase in 

countermovement jump height was witnessed when similar increases in vertical jump 

weight without the use of a countermovement or an arm swing were not.  

The two countermovement jumps, with and without an arm swing, both improved 

significantly following the plyometric intervention. This is consistent with the results of 

previous literature as plyometric training is well documented in its use to increase vertical 

jump height.12, 14, 16, 20, 28 During plyometric training subjects were practicing jumping as 

high as possible for six weeks and, therefore, increases in performance are to be expected 

simply from the learning effect. However, subjects had limited space to land (i.e. force 

plate) for their pretest and posttest measurements, but when training were not instructed 

to land in a specific area. Attempting to land in a specific area alters biomechanics of not 

only landing but of takeoff as well13 suggesting that not all the results observed are due to 

the learning effect. Forcing subjects to land on a one square foot force plate could add a 

layer of complexity that was not present during their training sessions. Other potential 

reasons for the increase in vertical jump height according to Luhtanen and Komi28 (1978) 

are attributed to better synchronization in producing power among all of the segments 

(e.g. ankle knee and hip) involved in the complex movement, which is primarily 

determined by the training status of the individual.28 Synchronization between the upper 

and lower extremity is also important for achieving maximal vertical jump 

performance.28 Because vertical jump height was improved, the research team concludes 
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that the plyometric training program was a success and that the results of the study stem 

from the training program.   

Tendon tap. Contrary to our hypothesis, the current study found no statistically 

significant change in the electromechanical delay (i.e. the time between the initiation of 

the EMG and the force pulses) following plyometric training. Grosset et. al18 (2008) did 

however find a significant increase in the electromechanical delay following 10 weeks of 

plyometric training which they attributed mainly to the musculotendinous stiffness. The 

most important determining factor for the electromechanical delay is the time taken to 

stretch the musculo-tendinous unit.18 Because we used a reproducible tendon tap delivery 

device in our study, each tendon tap stretched the tendon at exactly the same rate, leaving 

the tendinous stiffness the most important variable in determining electromechanical 

delay.18 Conu et al.11 (1997) found a decrease in tendinous stiffness following seven 

weeks of plyometric and Grosset et. al18 (2008) found a decrease in musculo-tendinous 

stiffness after ten weeks of plyometric training, suggesting that our study may not have 

had a long enough intervention to observe these physiological changes. Future studies 

should examine not only the electromechanical delay of the stretch reflex, but also of 

voluntary contractions.  

 The peak force as recorded from the patellar tendon tap was decreased 

insignificantly and the peak EMG value (as a percentage of the maximal voluntary 

isometric contraction value) recorded during tendon tap decreased, although not 

significantly, following training. This is contradictory to the hypothesis that plyometric 

training would increase the stretch reflex response. Our results showed no increase in the 

amount of EMG activation or force produced by the stretch reflex elicited by a tendon 
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tap. To our knowledge, no previous studies exist that compared the muscle activation and 

the force produced during a tendon tap reflex pre- and post-plyometric training. Based on 

our findings, plyometric training does not increase the stretch reflex response; however, 

we speculate that it may allow an individual to take better advantage of the stretch reflex. 

A faster countermovement will lead to a greater stretch reflex response, which would also 

lead to a greater power output and, therefore, increased vertical jump height. If the only 

alterations in the stretch reflex are observed during a countermovement, assessing the 

stretch reflex with an isometric tendon tap would yield no results. Future studies that 

examine the electrical activity within the muscle during a countermovement may yield 

different results. Future studies should also measure the rate of the countermovement to 

determine if there are any differences following plyometric training.  

The amount of time required to reach the peak force following a tendon tap 

increased significantly following plyometric training, which is also contradictory to the 

original hypothesis. These findings suggest that plyometric training actually increases the 

duration of the stretch reflex. By increasing the duration of the stretch reflex, the active 

muscles could produce force involuntarily over a longer period, therefore potentially 

adding to the force output over a longer period. Future studies should examine the effects 

a longer stretch reflex response may have on overall power and force production during a 

vertical jump to determine if this adaptation could lead to enhancements in vertical jump 

height.   

 Despite the best efforts of the research team, EMG data is inherently highly 

variable.45 To account for the high degree of variability, a much larger sample size is 

necessary. Furthermore, the EMG device used in the current study had limited gain 
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options which limited our ability to obtain EMG activity with a high resolution. Future 

studies with larger sample size and more technologically advanced EMG systems are 

required to determine if plyometric training has any effects on the patellar tendon tap 

reflex. Future studies should also examine the electrical activity present within the 

muscle during a countermovement and alterations in a subject’s biomechanics. 

 Rates of force development and relaxation. The maximal voluntary isometric 

contraction and the rate of force development scaling factor did not improve significantly 

following plyometric training. This is contradictory to the original hypothesis. One 

potential reason for this is due to the specificity of training.4, 16, 27 Plyometric exercise is 

very dynamic, and our isometric testing involved no movement. In a traditional 

weightlifting program, increases in maximal voluntary isometric contraction would be 

expected because it more closely relates to the task or the goal attempting to be achieved. 

Most commonly, the goal of a weight lifting program is to increase strength, as measured 

by a one repetition maximum or a maximal voluntary isometric contraction,4, 16 however 

the goal of a plyometric training program is most commonly to increase power, as 

measured by vertical jump performance.12, 32, 16 The effectiveness of a plyometric training 

program is not assessed by maximal voluntary isometric contraction strength, it is 

measured by an increase in vertical jump height performance. Another potential reason 

we did not find any statistically significant change in the rate of force development 

scaling factor is because a maximal vertical jump requires a maximal voluntary 

contraction as quickly as possible through a dynamic range of motion. In the current 

study, rate of force development and relaxation scaling factors were assessed across 

submaximal ranges isometrically. Future studies should examine maximal rate of force 
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development dynamically using an isokinetic dynamometer following a plyometric 

training program to determine if there are any effects of plyometric training on the rate of 

force development.  

The rate of force relaxation scaling factor improved following plyometric 

training, which is in line with the original hypothesis. To the knowledge of the research 

team there are no previous studies relating the rate of force relaxation with plyometric 

training. A high rate of force relaxation allows for greater torque production in 

movements that require quick and consecutive contractions between agonist and 

antagonist muscle groups (e.g. sprinting).34 A higher rate of force relaxation may also 

indicate improved coordination between agonistic and antagonistic muscle groups as seen 

with resistance training.4 By being able to limit antagonistic muscle activity, the agonists 

encounter less resistance and achieve greater efficiency which could lead to 

enhancements in vertical jump performance.28   

Conclusion  

 Following plyometric training, subjects significantly increased vertical jump 

performance in the countermovement jump. This indicated that the program was a 

success and that the results stem from their training. The present study failed to show 

improvements in the electromechanical delay, the peak force, or the peak EMG values as 

represented by a percentage of the maximal voluntary isometric contraction obtained 

from the tendon tap trials. The only dependent variable assessed for the tendon tap with 

statistical significance was the time required to reach the peak force. Contrary to the 

original hypothesis the time to peak force during a tendon tap increased after completion 
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of the plyometric training program. Despite being contradictory to the original 

hypothesis, a longer involuntary contraction could still increase force output potentially 

leading to enhancements in vertical jump performance, however, future studies are 

required to confirm this.  

 The maximal voluntary isometric contraction and the rate of force development 

scaling factor did not increase significantly following plyometric training. These results 

are in line with previous literature regarding the specificity of training.4, 27, 16 Maximal 

vertical jump requires maximal rates of force development dynamically. The rate of force 

relaxation scaling factor was significantly increased suggesting better coordination 

between agonistic and antagonistic muscles leading to greater efficiency.28     

Future studies are required to determine the effects plyometric training has, if any, 

on spinal reflexes. To the knowledge of the research team, no prior studies exist relating 

patellar tendon tap responses to plyometric training. The results from the current study 

brings the theory that plyometric training increases the stretch reflex response into 

question. A large sample size and more precise equipment is necessary to combat the 

large degree of variability in EMG recordings. Future studies should also examine the 

electrical activity within the muscle during a countermovement to determine if the only 

increases in the stretch reflex response are caused by biomechanical alterations. 

Alterations in biomechanics should be assessed in future studies as well to determine the 

extent, if any, that the learning effect accounts for the increases in vertical jump height 

witnessed following a plyometric training program. Finally, rates of force development 

and relaxation should be assessed dynamically and maximally in future studies to more 

closely resemble the goals of a plyometric training program.  
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Chapter 3 

Conclusions and Future Works 

 The current study found no improvements in peak force, peak EMG activation, 

or the electromechanical delay between the initiation of the EMG and the initiation of the 

force curve in response to a patellar tendon tap following the completion of a six week 

plyometric training program. The only change regarding the patellar tendon tap was an 

increase in the amount of time required to reach the peak force after the stimulus was 

applied. The maximal voluntary isometric contraction and rate of force development 

scaling factor were not statistically significant; however, the rate of force relaxation was 

found to be significantly increased. Finally, countermovement jump height increased 

significantly while squat jump height did not. These results indicate that any differences 

in the stretch reflex are due to biomechanical alterations leading to an enhancement in the 

stretch reflex. Other potential explanations for the increases in vertical jump performance 

stem from the coordination between all the segments involved in the complex motion of 

jumping.28  

Future studies should examine the rate of force development dynamically and 

maximally with an isokinetic dynamometer to determine if plyometric training has any 

effects on them. Future studies with more technologically advanced EMG systems that 

can obtain a larger sample size are necessary to account for the large degree of variability 

among EMG data to determine if plyometric exercise has any effect on reflexes. Future 

studies should examine the electrical activity within the muscle during the 

countermovement phase of jumping and measure the rate of descent to determine if 
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alterations in coordination and biomechanics could result in an increase in the stretch 

reflex response following a plyometric intervention.   

Finally, we believe that the main contributing factor to the success of plyometric 

training programs stems from practice and alterations in a participant’s form. By 

practicing the act of jumping, individuals can achieve higher efficiency by better 

coordinating the agonist and antagonist muscles.28 Future studies should examine the 

effects of a plyometric training program on subjects’ biomechanics and form specifically 

in the rate of the countermovement phase.  

 

 

 

 

 

 

 

 

 

 

 



47 
 

References 

1. Arabatzi F, Kellis E, Saèz-Saez De Villarreal E. Vertical jump biomechanics after 
plyometric, weight lifting, and combined (weight lifting + plyometric) training. Journal 

of Strength and Conditioning Research. 2010;24(9):2440-2448. doi: 
10.1519/JSC.0b013e3181e274ab. 

2. Avela J, Komi PV. Reduced stretch reflex sensitivity and muscle stiffness after long-
lasting stretch-shortening cycle exercise in humans. Eur J Appl Physiol. 1998;78(5):403-
410. doi: 10.1007/s004210050438. 

3. Beck TW, Simmons JL, Defreitas JM. EMG spectral differences among the quadriceps 
femoris during the stretch reflex. Muscle & Nerve. 2015;52(5):826-831. doi: 
10.1002/mus.24625. 

4. Behm DG. Neuromuscular implications and applications of resistance training. Journal 

of Strength and Conditioning Research. 1995;9(4):264-274. doi: 10.1519/00124278-
199511000-00014. 

5. Bobbert MF, Gerritsen KGM, Litjens MCA, Van Soest AJ. Why is countermovement 
jump height greater than squat jump height? Medicine and Science in Sports and 

Exercise. 1996;28(11):1402-1412. doi: 10.1097/00005768-199611000-00009. 

6. Bobbert M. Dependence of human squat jump performance on the series elastic 
compliance of the triceps surae: A simulation study. Journal of Experimental Biology. 
2001;204(3):533. 

7. Buckthorpe M, Morris J, Folland JP. Validity of vertical jump measurement 
devices. Journal of Sports Sciences. 2012;30(1):63-
69. doi:10.1080/02640414.2011.624539. 

8. Chimera NJ, Swanik KA, Swanik CB, Straub SJ. Effects of plyometric training on 
muscle-activation strategies and performance in female athletes. Journal of athletic 

training. 2004;39(1):24. 

9. Cormie P, McGuigan MR, Newton RU. Changes in the eccentric phase contribute to 
improved stretch-shorten cycle performance after training. Medicine and science in 

sports and exercise. 2010;42(9):1731-1744. 

10. Cormie P, McBride J, McCaulley G. Power-time, force-time, and velocity-time curve 
analysis of the countermovement jump: Impact of training. Journal of Strength and 

Conditioning Research. 2009;23(1):177-186. doi:10.1519/JSC.0b013e3181889324. 

11. Cornu C, Izabel M, Silveira A, Goubel F. Influence of plyometric training on the 
mechanical independence of the human ankle joint. Eur J Appl Physiol. 1997:76; 282-
288. 

 



48 
 

12. Davies G, Riemann BL, Manske R. Current concepts of plyometric 
exercise. International journal of sports physical therapy. 2015;10(6):760.  

13. de Marche Baldon R, Moreira Lobato D, Yoshimatsu A, et al. Effect of plyometric 
training on lower limb biomechanics in females. Clinical Journal of Sport Medicine. 
2014;24(1):44-50. doi: 10.1097/01.jsm.0000432852.00391.de. 

14. Drinkwater E, Lane T, Cannon J. Effect of an acute bout of plyometric exercise on 
neuromuscular fatigue and recovery in recreational athletes. Journal of Strength  and 

Conditioning Research. 2009;23(4):1181-118. doi: 10.1519/JSC.0b013e31819b79aa. 

15. EBBEN William, FLANAGAN Eamonn, JENSEN Randall. Gender similarities in 
rate of force development and time to takeoff during the countermovement jump Journal 

of exercise physiology. 2007;10. 

16. Fatouros IG, Jamurtas AZ, Leontsini D, et al. Evaluation of plyometric exercise 
training, weight training, and their combination on vertical jumping performance and leg 
strength. Journal of Strength and Conditioning Research. 2000;14(4):470-476. doi: 
10.1519/00124278-200011000-00016. 

17. Ghosh A, Haggard P. The spinal reflex cannot be perceptually separated from 
voluntary movements. The Journal of Physiology. 2014;592(1):141-152. 

18. Grosset J, Piscione J, Lambertz D, Pérot C. Paired changes in electromechanical 
delay and musculo-tendinous stiffness after endurance or plyometric training. Eur J Appl 

Physiol. 2009;105(1):131-139. doi: 10.1007/s00421-008-0882-8. 

19. Hermens HJ. European recommendations for surface electromyography. 2. ed. 
Enschede: Roessingh; 1999. 

20. Hernández S, Ramirez-Campillo R, Álvarez C, et al. Effects of plyometric training on 
neuromuscular performance in youth basketball players: A pilot study on the influence of 
drill randomization. Journal of sports science & medicine. 2018;17(3):372-378.  

21. Jaggers J, Swank A, Frost K, Lee C. The acute effects of dynamic and ballistic 
stretching on vertical jump height, force, and power. Journal of Strength and 

Conditioning Research. 2008;22(6):1844-1849. doi: 10.1519/JSC.0b013e3181854a3d. 

22. Josephson MD, Knight CA. Comparison of neural excitation measures from the 
surface electromyogram during rate-dependent muscle contractions. Journal of 

Electromyography and Kinesiology. 2019;44:1520. doi:10.1016/j.jelekin.2018.11.004. 

23. Kellis E, Katis A. Reliability of EMG power-spectrum and amplitude of the 
semitendinosus and biceps femoris muscles during ramp isometric contractions. Journal 

of Electromyography and Kinesiology. 2006;18(3):351-358. doi: 
10.1016/j.jelekin.2006.12.001. 

 



49 
 

24. de Ruiter CJ, de Korte A, Schreven S, de Haan A. Leg dominancy in relation to fast 
isometric torque production and squat jump height. Eur J Appl Physiol. 2010;108(2):247-
255. doi: 10.1007/s00421-009-1209-0. 

25. LEMOYNE R, COROIAN C, MASTROIANNI T, GRUNDFEST W. Quantified 
deep tendon reflex device for response and latency, third generation. Journal of 

Mechanics in Medicine and Biology. 2008;8(4):491-506. doi: 
10.1142/S0219519408002772. 

26. LEMOYNE R, DABIRI F, JAFARI R. Quantified deep tendon reflex device, second 
generation. Journal of Mechanics in Medicine and Biology. 2008;8(1):75-85. doi: 
10.1142/S0219519408002462. 

27. Lephart SM, Abt JP, Ferris CM, et al. Neuromuscular and biomechanical 
characteristic changes in high school athletes: A plyometric versus basic resistance 
program. British Journal of Sports Medicine. 2005;39(12):932-938. doi: 
10.1136/bjsm.2005.019083. 

28. Luhtanen P, Komi RV. Segmental contribution to forces in vertical jump. European 

journal of applied physiology and occupational physiology. 1978;38(3):181-188. doi: 
10.1007/BF00430076. 

29. Maffiuletti N, Aagaard P, Blazevich A, Folland J, Tillin N, Duchateau J. Rate of force 
development: Physiological and methodological considerations. Eur J Appl Physiol. 
2016;116(6):1091-1116. doi: 10.1007/s00421-016-3346-6. 

30. Makaruk H, Czaplicki A, Sacewicz T, Sadowski J. The effects of single versus 
repeated plyometrics on landing biomechanics and jumping performance in men. Biology 

of sport. 2014;31(1):9-14. doi: 10.5604/20831862.1083273. 

31. Markovic G, Dizdar D, Jukic I, Cardinale M. Reliability and factorial validity of 
squat and countermovement jump tests. The Journal of Strength and Conditioning 

Research. 2004;18(3):551. doi: 10.1519/1533-4287(2004)18<551:RAFVOS>2.0.CO;2. 

32. Markovic G, Newton RU. Does plyometric training improve vertical jump height? A 
meta-analytical review commentary. British Journal of Sports Medicine. 2007;41(6):349-
355. doi: 10.1136/bjsm.2007.035113. 

33. Marshall GL, Little JW. Deep tendon reflexes: A study of quantitative methods. The 

journal of spinal cord medicine. 2002;25(2):94-99. 

34. Mathern R, Anhorn M, Uygur M. A novel method to assess rate of force relaxation: 
Reliability and comparisons with rate of force development across various muscles. Eur J 

Appl Physiol. 2019;119(1):291-300. 

35. McLellan C, Lovell D, Gass G. The role of rate of force development on vertical 
jump performance. Journal of Strength and Conditioning Research. 2011;25(2):379-
385. doi: 10.1519/JSC.0b013e3181be305c. 

 



50 
 

36. Moir GL. Three different methods of calculating vertical jump height from force 
platform data in men and women. Measurement in Physical Education and Exercise 

Science. 2008;12(4):207-218. 

37. Per Aagaard, Erik B. Simonsen, Jesper L. Andersen, Peter Magnusson, Poul Dyhre-
Poulsen. Neural adaptation to resistance training: Changes in evoked V-wave and H-
reflex 

38. Per Aagaard, Erik B. Simonsen, Jesper L. Andersen, Peter Magnusson, Poul Dyhre-
Poulsen. Increased rate of force development and neural drive of human skeletal muscle 
following resistance training. Journal of Applied Physiology. 2002;93(4):1318-1326. doi: 
10.1152/japplphysiol.00283.2002. 

39. Perrier E, Pavol M, Hoffman M. The acute effects of a warm-up including static or 
dynamic stretching on countermovement jump height, reaction time, and 
flexibility. Journal of Strength and Conditioning Research. 2011;25(7):1925-1931. doi: 
10.1519/JSC.0b013e3181e73959. 

40. Plyometric training in female athletes. decreased impact forces and increased 
hamstring torques. The American journal of sports medicine. 1996;24(6):765-
773. responses. Journal of Applied Physiology. 2002;92(6):2309-2318. doi: 
10.1152/japplphysiol.01185.2001. 

41. Pope ZK, DeFreitas JM. The effects of body position and muscle activation on 
patellar tendon reflex properties. Physiological measurement. 2015;36(7):1429-1438. 

42. Rainoldi A, Melchiorri G, Caruso I. A method for positioning electrodes during 
surface EMG recordings in lower limb muscles. Journal of Neuroscience Methods. 
2004;134(1):37-43. doi: 10.1016/j.jneumeth.2003.10.014. 

43. Stam J, Tan KM. Tendon reflex variability and method of stimulation. 
Electroencephalography and Clinical Neurophysiology. 1987;67(5):463-467. doi: 
10.1016/0013-4694(87)90010-1. 

44. Sugisaki N, Kurokawa S. Effect of lower-body plyometric training on athletic 
performance and muscle–tendon properties. The Journal of Physical Fitness and Sports 

Medicine. 2014;3(2):205-209 

45. Williams TA, Poss CW. The ABC's of EMG. Federation of Insurance & Corporate 

Counsel Quarterly. 1995;46(1):37. 

 

 

 

 


	Plyometric training and its effects on the neuromuscular system
	Recommended Citation

	Microsoft Word - 727583_pdfconv_852674_1A562C8A-79E1-11EA-96F8-E7035AE51536.docx

