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Abstract 

Joseph Scavetta 
PREDICTION OF DRUG-DRUG INTERACTION POTENTIAL USING MACHINE 

LEARNING APPROACHES  

2019-2020 

Serhiy Y. Hnatyshyn, Ph.D. 

Master of Science in Computer Science 

 

 Drug discovery is a long, expensive, and complex, yet crucial process for the 

benefit of society. Selecting potential drug candidates requires an understanding of how 

well a compound will perform at its task, and more importantly, how safe the compound 

will act in patients. A key safety insight is understanding a molecule’s potential for drug-

drug interactions. The metabolism of many drugs is mediated by members of the 

cytochrome P450 superfamily, notably, the CYP3A4 enzyme. Inhibition of these 

enzymes can alter the bioavailability of other drugs, potentially increasing their levels to 

toxic amounts. Four models were developed to predict CYP3A4 inhibition: logistic 

regression, random forests, support vector machine, and neural network. Two novel 

convolutional approaches were explored for data featurization: SMILES string auto-

extraction and 2D structure auto-extraction. The logistic regression model achieved an 

accuracy of 83.2%, the random forests model, 83.4%, the support vector machine model, 

81.9%, and the neural network model, 82.3%. Additionally, the model built with SMILE 

string auto-extraction had an accuracy of 82.3%, and the model with 2D structure auto-

extraction, 76.4%. The advantages of the novel featurization methods are their ability to 

learn relevant features from compound SMILE strings, eliminating feature engineering. 

The developed methodologies can be extended towards predicting any structure-activity 

relationship and fitted for other areas of drug discovery and development.  
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Chapter 1 

Introduction to Drug Discovery 

The origins of contemporary drug discovery can be traced back to the 1800s, 

when scholars and scientists made many fundamental developments in chemistry: Dmitri 

Mendeleev published the periodic table, Svante Arrhenius began theorizing about acids 

and bases, and August Kekulé explored aromatic organic molecules, just to name a few 

[1]. These advances shook the pharmacology field giving birth to a new area of chemistry 

driven pharmacology. Much later, combinatorial chemistry and high-throughput 

screening led to a new paradigm in drug discovery: parsing a plethora of data and 

compounds to find those that will be successful. However, we can only realize the 

significance of the findings when we are able to read, extract, and apply the data. 

Unfortunately, data analytics in drug discovery was slow to come as shown by the lack of 

improvement in the number of drugs reaching markets [1]. 

The next evolution in drug discovery, similar to the establishment of chemistry 

driven pharmacology, involves an alliance between pharmaceutical disciplines, 

bioinformatics, and computer science. Novel developments in computer science research, 

especially in the area of machine learning, has led to algorithms that allow scientists to 

use historic data for making predictions on new data, while minimizing cost and the 

number of errors. Computer aided drug discovery has and will continue to increase the 

productivity, speed, and efficiency of drug selection and development [2]. 
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Drug Discovery Overview 

The use of compounds for medicinal purposes has been a vital aspect of human 

society. Evidence of drug use dates to the prehistoric period, with written evidence 

appearing in ancient Egypt, China, Rome, Greece, and many other civilizations [3]. In 

more recent times, pharmaceuticals have increased life expectancy and significantly 

reduced the effects of disease and sickness. Diseases that had a devastating effects on 

society in the past, such as bacterial infections, smallpox, and tuberculosis, are now 

generally non-lethal or have a low-chance to contract [4]. Even diseases that are harder to 

control or cure, such as cancer or HIV, have recently began to shift from fatal to chronic 

but manageable [4]. In modern society, quick and efficient drug discovery is becoming 

more important as the population continues to increase, and people tend to live longer. 

Bringing new and improved drugs to the market is important for the health and 

safety of society. Though much has improved from the birth of pharmaceutical sciences, 

the lifespan of a drug is still lengthy, and the process is costly. On average, it takes over 

ten years for a new candidate drug to be approved [5]. Many new candidate compounds 

never make it to clinical trials due to a prohibitive cost of failure: from 2015 to 2016 the 

median cost of pivotal clinical trial was estimated at $19 million [6]. Less than 1% of 

synthesized compounds enter trials [4]. For the drugs that do make it to clinical trials, the 

probability of success is also low: the highest three success rates were 

• 32.6% for ophthalmology drug candidates, 

• 25.5% for cardiovascular drug candidates, and 

• 25.2% for infectious disease products; 
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the lowest success rate came in at just 3.4% for oncology trials [7]. Drugs that do succeed 

through pre-clinical and clinical trials have an average cost of $2.6 billion per compound 

from start to approval [8]. Many candidate compounds will never result in a new 

marketed drug as the candidates will fail, while for those that do succeed, both the 

duration and costs of the discovery and development are significant. 

Following Ator et al.’s overview of drug discovery and development, summarized 

in Figure 1, this process starts with target identification where the receptors that the drug 

should act upon are selected [4]. Next, the compounds that can act on the target must be 

found, which often requires high-throughput screening (HTS) and structure-based drug 

design methods [4]. HTS allows us to select compounds that are active against targets. 

Compounds from the selection pool are optimized to obtain better drug-like properties 

[4]. Optimization is focused on careful examination of candidate drug  properties such as 

absorption, distribution, metabolism, excretion, and toxicity (ADMET) [9]. After a drug 

candidate completes preclinical review and achieves its safety and efficacy goals, it then 

can enter clinical development. Clinical development consists of four phases:  

• Phase I trials test the drug candidate for safety on 10 – 100 healthy human 

volunteers,  

• Phase II trials continue to test safety while also testing efficacy in 50 – 500 of 

those with the targeted disease,  

• Phase III trials test the drug in full-scale with diverse patients and several medical 

centers, and  

• Finally, Phase IV trials monitor the drug’s adverse effects post-approval [4]. 
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Figure 1. The standard workflow within the drug development pipeline. 

 

 

 

Why Drugs Fail 

For a drug to get approved, it must enter and succeed in clinical trials. In Phase I 

trials most drugs fail due to toxicity. During the Phase II and Phase III trials, drugs often 

fail due to efficacy problems, although, toxicity still plays a large role in drug failure 

[10]. Because toxicity and efficacy are the two most common causes of drug failure, 

ADMET properties are crucial for differentiating between successful drugs and those that 

will fail. 

Failure during the late stages of the clinical trials is not only very costly in terms 

of money, time, and labor, but it is also potentially dangerous to patients participating in 

the trials. Clinical trial failures can either be unavoidable due to inadequate scientific 

advances or could be prevented through scientific rigor, curiosity, and discipline [11]. 

Unavoidable failures often lack well performing models due to an insufficient knowledge 
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base of the underlying chemistry and/or biology [11]. Preventable failures are explained 

by a lack of optimal study designs, dosages, and safety data [11]. Overall, learning from 

earlier mistakes, specifically, collecting, sharing, and analyzing data from both successful 

and failed drug tests can help reduce the number of avoidable failures. Furthermore, 

developing new models from these data can also help improve the conditions of the 

currently unavoidable failures. 

Drug Candidate Optimization 

The future improvements in the pharmaceutical industry are likely to focus on 

methods that will significantly reduce failures in clinical trials. Focusing on an early 

evaluation of new drug candidates will help reduce the associated cost and time of the 

overall process. Improving pharmacological properties of drug candidates in early stages 

will reduce the burden on managing compounds that will eventually fail in clinical trials 

[12]. Selecting successful drug candidates is a complex process that requires an 

understanding of drug-like properties, relying on the analyses of overwhelming amounts 

of data [13]. Various drug candidate selection techniques are discussed below. 

Rule-based drug discovery. Rule-based generalizations act as guidelines as to 

which physiochemical properties one should expect from a successful drug, as compared 

to a less effective drug candidate. Defining common generalizations for the desired 

characteristics of drug-like properties is complicated by variations of a drug’s targets and 

routes of transmission. The Lipinski's rule of 5 is well known approach to determining 

which properties make a successful drug candidate. This approach specifies upper bounds 

on molecular properties such as hydrogen bond donors and acceptors, molecular mass, 
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and lipophilicity [14]. While drugs that satisfy Lipinski's rule of 5 are often more 

successful than those that do not, many exceptions exist where the model would 

disqualify a successful drug and vice-versa [15]. The Lipinski's ruleset focuses on the 

absorption properties of a drug, which is only one of many factors that determines a 

successful drug candidate. Furthermore, this approach is primarily expressive of 

permeability potential; while solubility and dosage may also play a role in absorption 

[14]. Also, the bounds apply to oral drugs that do not act as substrates for naturally 

occurring transporters [14]. While there are limitations to this approach, the Lipinski’s 

rule of 5 is a useful starting point in selecting important drug-like properties in future 

drug-prediction models, specifically for absorption models. 

Other rule-based methods have been created as an extension to Lipinski's rule of 5 

[16]. While the rule-based methods provide a simplified approach for determining drug 

success, they are limited in substantial ways. Having a strict cutoff points implies that 

these properties are discrete, rather than continuous [17]. Such assumptions can result in 

many missed opportunities. Furthermore, these rules are generated only from properties 

that successful drugs have in common. However, if the property distributions explored in 

successful drug candidates are similar to failed drug candidates, then these properties are 

ultimately uninformative [17].  

To replace cutoffs with a continuous scale, Bickerton et al. developed the 

quantitative estimate of drug-likeness (QED) [18]. This approach performs quite well, 

however, it still does not consider whether a property is truly predictive, i.e. has a 

different distribution from failed drug candidates. To address both shortcomings of the 
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rule-based approaches, the relative drug likelihood (RDL) can be computed [17]. The 

RDL approach performs better than QED as it uses distributions from both successful 

drugs candidates and failed drug candidates. This allows RDL to identify properties that 

are important to identifying successful drug candidates. Yusof et al. expanded the idea of 

RDL and created a new algorithm based on the patient rule induction method (PRIM) 

[19]. PRIM differs from RDL by exploring all the properties simultaneously and 

identifying redundant properties. 

While rule-based methods have improved, they may still lack the ability to 

generalize non-linear patterns in the data and may miss important relations. Current 

approaches in drug discovery have now shifted towards applying traditional and novel 

machine learning algorithms to chemical datasets with a promise of exploring non-linear 

patterns within data [2]. 

Machine learning in drug discovery. There have been numerous models and 

commercial software that can predict various ADMET properties for drug candidates 

with the help of machine learning techniques [9], [20]. For example, successful drugs 

typically have a solubility, denoted as log S, with the values ranging from -1 to -5. 

However, finding the solubility of a compound is difficult. Rather than directly 

measuring compound’s solubility, the researchers apply machine learning techniques to 

construct solubility models using existing data on other compounds. This approach 

achieves high accuracy of predicting compound solubility, performing as well as 

experimental measurements [21]. Finding favorable ADMET properties is one of the 

areas were large sets of data already exist, thus, machine learning can be applied. Other 



8 
 
 

properties, such as a compound’s pharmacokinetics, can also be modeled using machine 

learning techniques, but experimentally obtained data sets are less common. 

Modeling pharmacokinetic properties of a potential drug is important for 

predicting success in clinical trials. Pharmacokinetic parameters can be modeled based on 

the potential drug’s physiochemical properties and through experimental assays [20]. For 

example, the random forests, a popular machine learning technique, was used to model 

the volume of distribution, one of many important pharmacokinetic parameters [20], [22].  

Quantitative structure–activity relationship (QSAR) modeling for ligand-based 

visual screening, has been benefiting from machine learning techniques. Specifically, 

researchers used machine learning algorithms to determine which drugs match a certain 

query in a database of potential compounds [23]. QSAR modeling relies on the idea of 

structural similarity: compounds with similar structures have similar bioactivities [24]. In 

general, QSAR models employ data from the molecular structure of ligands and 

examines physiochemical properties, therapeutic activities, and pharmacokinetic 

parameters to predict the best molecules for a target [24]. Overall, machine learning 

based QSAR modeling for visual screening has advanced many aspects of drug discovery 

and development, specifically, by taking advantage of big data to predict complex 

biological phenomena [2]. 
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Chapter 2 

Machine Learning Overview 

Simulating human intelligence has been an active area of research in mathematics 

as far back as the 1700s, when Thomas Bayes developed mathematical fundamentals of 

what has become Bayes’ Theorem [25]. Machine learning aims to create algorithms that 

can learn from given data to solve problems without specific instructions. Machine 

learning is often viewed as a subset of artificial intelligence, though it differs from 

common artificial intelligence algorithms in that machine learning emphasizes data rather 

than pure domain expertise to complete a task. One important sub-section of machine 

learning is a family of methods that devise models to classify or predict a value for an 

unknown sample, given a sample of data that has already been classified or has 

established values. These methods are commonly categorized as supervised machine 

learning [26]. 

Supervised machine learning employs statistical methods with fast and efficient 

algorithms to predict some target function 𝑓: 𝑿 → 𝒚. The target function is unknown, and 

may always be unknown, however, using some set of input data 𝑥 ∈ ℝ𝑑 = 𝑿, and some 

known output data 𝒚, a function 𝑔 can be created to closely approximate 𝑓. The 

combination of input data 𝑿 and output data 𝒚 is called a training set and is denoted as 

(𝑥1, 𝑦1), (𝑥2, 𝑦2) … , (𝑥𝑁 , 𝑦𝑁). Using the training examples and a set of hypothesis 

functions 𝐻, often an infinite set, a learning algorithm can select 𝑔 from 𝐻 that best 

approximates 𝑓 [27]. 
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Machine Learning Approaches 

Linear models. Many of the fundamental machine learning algorithms stems 

from the statistical work of linearly modeling relationships between two or more 

variables. This type of modeling is often referred to as linear regression, and it was 

presented as far back as 1886 by geneticist Francis Galton when he was investigating the 

difference in height between parents and children [28]. The overall goal of linear 

regression is to predict some dependent variable 𝑦 given some independent variable(s) 

𝑥𝑚 using weighted relationships in the form: 

 𝑦𝑖 = 𝛽0 + 𝛽1𝑥1 + ⋯ + 𝛽𝑚𝑥𝑚 + 𝜖 Eq. 1 

where 𝛽𝑗 acts as corresponding weights of the variable 𝑥𝑗, and 𝜖 is the random error [29]. 

Using known data for the variable(s) 𝑥𝑚, a prediction of y, denoted as 𝑦̂, can be 

computed using a modification of equation 1 as follows: 

 𝑦̂𝑖 = 𝛽0 + 𝛽1𝑥1 + ⋯ + 𝛽𝑚𝑥𝑚 Eq. 2 

To find the best predictive function, the weights 𝛽𝑗 can be adjusted to minimize the error 

between the predicted 𝑦̂𝑖 and a known 𝑦𝑖. The least squares method is employed to 

minimize the error on each known sample 𝒚 = 𝑦𝑖 ∈ ℝ𝑛 and the samples’ corresponding 

prediction from equation 2 [29]. The least squares error can be calculated using the form: 

 ∑ (𝑦𝑖 −  𝑦̂𝑖)2
𝑛

𝑖=1
 Eq. 3 

There are two common approaches for minimizing the error: (1) using the normal 

equations for a closed form solution and (2) using an iterative method such as gradient 

descent. Assuming linear independence between the variables, a unique solution can be 

found following the closed form: 
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 𝜷 = (𝑿𝑇𝑿)−1𝑿𝑇𝒚 Eq. 4 

where 𝜷 is an optimal weight vector given a matrix of independent variables 𝑿 = 𝑥𝑖𝑗 ∈

ℝ𝑚×𝑛 and a vector of corresponding dependent variables 𝒚 = 𝑦𝑖 ∈ ℝ𝑛 [27]. A general 

solution to the minimization problem is to use gradient descent, which iteratively adjust 

weights and recomputes the global minimum of the error function, until the best solution 

is found [30]. Linear regression is a popular statistical method for finding optimal linear 

relationships between independent and dependent variables. It is often a good starting 

point for solving a prediction task. However, linear regression has limitations as data can 

often be non-linear. 

A close cousin to linear regression is logistic regression, one of the earliest and 

most commonly utilized machine learning algorithms for discrete classification [31]. The 

logistic regression learning algorithm approximates a target function. However, rather 

than predicting a functional relationship 𝑓(𝑿) = 𝒚, logistic regression models the 

probability 𝑃(𝒚|𝑿) of the dependent variables 𝒚 = 𝑦𝑖 ∈ [0,1] belonging to a certain 

class, given a set of independent variables 𝑿 = 𝑥𝑖𝑗 ∈ ℝ𝑚×𝑛 [32]. The base form for 

logistic regression is similar to linear regression in equation 1. However, logistic 

regression applies a soft threshold to equation 1 to achieve the form: 

 𝑦𝑖 = 𝜃(𝛽0 + 𝛽1𝑥1 + ⋯ + 𝛽𝑚𝑥𝑚 + 𝜖) Eq. 5 

where 𝜃 is the logistic function: 

 𝜃(𝑠) = 𝑒𝑠 1 + 𝑒𝑠⁄  Eq. 6 

[27]. A common error measure for logistic regression is maximum likelihood, which can 

be minimized in the form: 
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1

𝑛
∑ ln(1 + 𝑒−𝑦𝑖𝜷𝑇𝒙𝑖)

𝑛

𝑖=1
 Eq. 7 

Unlike linear regression, logistic regression does not have a closed form solution. Instead, 

to minimize error, we can employ gradient descent method which can adjust the logistic 

model towards the steepest decrease in error [33]. Overall, logistic regression is 

equivalent to linear regression, aside from the addition of the soft threshold logistic 

function around the linear model to restrict the functional range to [0,1]. 

As more variables, or features, are added to linear models, their complexity 

increases. This can increase the temptation to fit the function too closely to the limited set 

of data points, or in other words, overfit the training data, which may lead to poor 

generalization of new data [34]. To mitigate the effects of overfitting, we can use 

methods that penalize models for having too large a dependency on any given feature. 

This method is often called regularization. Regularization adds another term to the error 

function, which penalizes large weights in the model. The two common methods for 

regularization are ridge (L2) and lasso (L1). Ridge regularization adds the term 𝜆 ∑ 𝛽𝑗
2𝑚

𝑗=1  

to the error function, while lasso regularization adds the term 𝜆 ∑ |𝛽𝑗|𝑚
𝑗=1  [35]. For 

example, with lasso regularization equation 7 can be extended to: 

 
1

𝑛
∑ ln(1 + 𝑒−𝑦𝑖𝜷𝑇𝒙𝑖)

𝑛

𝑖=1
+ 𝜆 ∑ |𝛽𝑗|

𝑚

𝑗=1
 Eq. 8 

The 𝜆 acts as a parameter that controls the complexity of the model; i.e., a low 𝜆 allows 

for a more complicated model while a high 𝜆 reduces the complexity. The differences 

between the two approaches is that lasso regression allows for the optimal model to drop 

terms completely (i.e., setting the feature weights to 0), while ridge regularization does 



13 
 
 

not allow a 0 weight [35]. Traditionally, linear models are often the first sought after 

model as they are fast, efficient, and support regularization methods to avoid overfitting. 

Though for more complex problems, they may underfit the target function. The field of 

machine learning also boasts a large number of other algorithms that are not tied to the 

linear domain, which we will discuss next. 

Decision trees. Using a set of criteria or decision points, we can split and classify 

samples based on the data values. This simple idea is the fundamental concept of decision 

trees [32]. The decision tree consists of branch nodes that split paths and leaf nodes that 

act as the outcome for a sample. A decision tree is created from top down; determining 

which feature of the data will act as the first branch node, and so on. A range of values 

can be considered for each branch of a feature node. For example, if some value for the 

feature is less than 10, the tree may branch one way, otherwise, it will branch a separate 

way. For this reason, ordering features with the most informative features at the top of the 

tree is crucial. The more information a feature provides, the more likely it will split the 

data into separable classifications down the tree. Feature importance is determined using 

one of several feature selection methods.  

The first notable feature selection method, introduced by Breiman, Friedman, 

Stone, and Olshen in 1984, is the Gini index or Gini impurity. The Gini index can be 

interpreted as the estimated probability of misclassifying a random sample using the 

selected feature, such that a Gini index of 0 implies a 0% chance that any sample will be 

misclassified while a Gini index of 1 implies a 100% chance of misclassification [36].  
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Another widely used feature selection method is information gain. Information 

gain is based on information entropy, which is defined as the average production of novel 

information from randomly selected data. High entropy relates to a low probability of 

correctly predicting data, while low entropy relates to a high probability of correctly 

predicting information [37]. In short, the best feature to select for branching is the one 

that gains the most information, or in other words, select the feature that results in the 

greatest reduction of the overall entropy of the prediction task [38].  

The strength of decision tree based approaches is accurate classification of data 

and also determination of the variable importance [32]. Though decision trees can often 

achieve high accuracy on the training data, they are prone to overfitting. This may lead to 

a lack of generalization and a decrease in prediction accuracy for new data [39].  

Rather than performing classification using only one decision tree, an ensemble of 

decision trees can be used to significantly increase the performance of the predictive task 

[40]. Adaptive boosting combines multiple “weak learners” (i.e., models with low 

predictive effectiveness) into a single unified strong learner (i.e., a model that performs 

predictive task well). [41]. Adaptive boosting starts with several decision trees for the 

dataset, which may be weak learners. Next, the algorithm adjusts the weights of 

misclassified samples and selects a random set of data to create a new decision tree. 

Effectively, each new tree is dependent on the errors of the earlier trees. Along with this, 

each tree stores a weight of importance towards the final collective decision based on 

how well that individual tree performed.  
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Another popular ensemble method is bootstrap aggregation, or bagging. The 

bagging method constructs independent decision trees, each created from a bootstrapped 

sub-sample of the original dataset. This approach does sampling with replacement which 

allows duplication of observations [40]. The dataset is split into bootstrap samples many 

times, so that many varying trees are created. The resulting decision trees collectively 

perform prediction task by selecting the majority answer. 

The random forests approach works similarly to the bagging method by creating 

multiple decision trees, however, created trees differ in their feature sub-space. Each tree 

is created by sampling the entire training set but with a randomly selected subset of 

available features [39]. Again, the consensus among individual trees is used to make the 

final prediction. In practice, the random forests approach relies on a combination of 

bagging with random feature sub-spacing [42]. Decision trees used collectively as 

random forests often provide some of the best average performance and are less sensitive 

to overfitting as compared to other methodologies [43], [44]. 

Support vector machine. The support vector machine (SVM) is a versatile 

machine learning approach that allows classification of linearly separable as well as non-

linear data. SVMs are similar to linear models, in the sense that they try to fit a line that 

can split data into two classes. However, the SVM approach has the advantage of finding 

the optimal hyperplane which maximizes the distance of the data on both sides [45]. This 

approach allows for more robustness in generalizing towards new data after training, as 

there is more leeway for the data to trend towards hyperplane without crossing the class 

boundary. The SMV approach provides model stability by finding the optimal solution 
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every time, yielding consistent results for the same data [45]. This consistency makes 

support vector machine appealing for practical use. If data is not linearly separable, then 

the non-linear data can be projected into a high dimension, potentially allowing the data 

to become linearly separable [45]. SVM’s versatility of handling linear and non-linear 

data makes it a practical solution to many varying prediction tasks that may differ widely 

in complexity of the data. 

Artificial neural network. Recently, artificial neural networks (ANN) gained 

popularity and have reached the forefront of machine learning research and technology. 

Neural networks are based on the perceptron, a fundamental learning algorithm that was 

modeled from the biological neuron to learn a task [46]. A basic neural network consists 

of multiple layers of perceptrons, referred to as neurons, which are linked together in 

numerous ways to produce complex relationships from the input to the output data. 

Though research on neural networks was stagnant following the criticism of machine 

learning by Minsky and Papert in their book Perceptrons: an introduction to 

computational geometry [47], ANNs returned to the forefront with the creation of back-

propagation methods, an increase in computational power, and availability of modern 

computers. Back-propagation is a technique that allows for the connections, or weights, 

between one neuron and another to be adjusted towards a global minimization of the 

output error for many neurons and the true output [48]. Using back-propagation, ANN 

models consisting of hundreds or more neurons have their connections adjusted in a way 

that the overall model can take an input and accurately output a response in a short 

amount of time and with little human effort. The greatest advantage of ANNs is the 
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possibility of modeling complicated non-linear relationships, as neural networks can 

often find hidden relationships between data that are difficult to detect. 

In recent years, many machine-learning practitioners have used the term deep 

learning to describe a more complex neural networks that have many hidden layers. Deep 

learning succeeds at modeling even the most complicated relationships than a smaller 

standard ANN cannot achieve. For example, deep learning allowed computers to learn to 

play and to defeat professionals at the game of Go [49]. Convolutional neural networks 

(CNN) and recurrent neural networks (RNN) are examples of deep learning artificial 

neural networks. Similar to a standard ANN, a CNN has multiple layers of neurons. 

However, CNNs employ layers of convolution kernels. In contrast to a fully connected 

ANN that connects all neurons within two adjacent layers, convolution kernels only look 

at a sub-sample of input neurons to generate an output [50]. Overall, convolutional neural 

networks work very well with image recognition. The convolution kernels can learn 

image filters without extensive feature-engineering on the input, and with less 

computational overhead as compared to a fully connected network.  

Recurrent neural networks differ from typical feed-forward networks in creation 

of connections across neurons based on time or sequence. This adjustment allows for a 

dynamic learning process where the neural network can remember earlier data in a 

sequence while training the next step in a sequence. Because of their notion of memory, 

recurrent networks can work well for sequential inputs such as text or speech [51]. Deep 

networks have many more variations that are well suited to specific problems. 
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Machine Learning Tools 

 The data that is being analyzed is often not perfect and may suffer from such 

deficiencies as missing values, major differences in unit variance, unbalanced classes, or 

an overwhelming number of features. One must also consider how the models will be 

evaluated. Although the end goal is to minimize error in the models, the process of 

determining and comparing errors across models is not resolute. Finally, additional 

information about models such as the features that were most important or how changes 

in the features affect the models’ predictions may be of interest. 

Data preprocessing. It is uncommon for the data to be collected in a perfect 

form. Preprocessing is often employed to handle inconsistencies and issues within the 

collected datasets. There is no simple solution for handling all issues with missing data. 

Approaches to handle missing data may include removing the samples or features that 

have missing data or filling in the missing data with some estimated value. If a large 

portion of data is unavailable, or specific samples or features contain a significant amount 

of missing data, it may be worth removing samples or features altogether. However, to 

avoid removing useful data, missing data can be estimated by taking the mean of the 

feature values, or the mode, if the feature is categorical. Of course, a mixture of both 

removing and imputing the values can be used as well. 

During the data preprocessing phase, the researchers should also consider whether 

the features should be standardized or normalized. It is possible that one feature may 

unfairly bias the importance of other features. While in some cases such side effect could 

be desirable, it is often the result of inconsistent selection of the feature units. This issue 
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is often resolved by normalizing all features to be between 0 and 1 or standardizing the 

features so that they all have a mean of 0 and a standard deviation of 1. 

Another problem that is often ignored is the lack of class balance in the dataset. 

For example, if a dataset contains 90% of class A samples then the model can be 90% 

accurate by always predicting that a sample belongs to class A. This issue can be solved 

by adjusting the accuracy or error metric, but sometimes it is better to address it at the 

data level instead. There are two main approaches to balancing a dataset: (1) removing 

from the over-sampled class and (2) adding to the under-sampled class. Removing from 

the over-sampled class can be as trivial as randomly selecting and removing samples 

within that class. However, this method risks losing important information from the 

dataset.  

Adding data to an under-sampled class could be achieved by either sampling with 

replacement or by generating synthetic data points. Sampling with replacement simply 

duplicates randomly selected samples of under-sampled class. The Synthetic Minority 

Over-Sampling Technique (SMOTE) is a method for generating synthetic data points. 

This approach randomly creates samples with features that would exist within the 

boundaries of the true class data [52]. 

Sometimes, there are too many features present in a given dataset. An 

overabundance of bad features or many correlated features could hurt the performance of 

a model by allowing it to learn based on misguided data. It can also lead to a significant 

slowdown of the algorithm. To mitigate the problem of too many features, the 

preprocessing can employ univariate feature selection or principal component analysis 
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(PCA). The univariate feature selection approach selects the 𝑛 best features based on 

certain statistical test or based on the amount of variance. The advantage to this approach 

is that the values of the remaining features will not change, those considered 

uninformative will simply be removed. However, eliminating features may lead to losing 

useful information. PCA is more robust against losing information as it transforms the 

original features into a few (𝑛) linear combinations of the features (principal 

components) with the highest amount of variance [53]. By using orthogonal 

transformations, PCA can convert correlated features into linearly uncorrelated principal 

components. Overall, the intentions of modeling and the amount of redundancy in the 

dataset may decide which, if any, approaches are taken. 

Metrics and workflows. Model accuracy is an important metric for comparison 

of model performance. Assume that the given dataset consists of two classes: class 

positive and class negative. In this example, summarized in figure 2, the elements can be 

classified as follows: 

• True positive (𝑇𝑃) - number of positive elements classified as positive, 

• False negative (𝐹𝑁) - number of positive elements classified as negative, 

• False Positive (𝐹𝑃) - number of negative elements classified as positive, 

and 

• True Negative (𝑇𝑁) - number of negative elements classified as negative. 



21 
 
 

 

Figure 2. The possible outcomes for a binary classification prediction. 

 

 

 

Using the above notation, we can define model accuracy as 

(𝑇𝑃 + 𝑇𝑁) (𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃 + 𝑇𝑁⁄ ). The model accuracy specifies the proportion of 

predictions that are correct. Other considered evaluation metrics are model’s precision 

𝑇𝑃 (𝑇𝑃 + 𝐹𝑃)⁄ , recall 𝑇𝑃 (𝑇𝑃 + 𝐹𝑁)⁄ , false discovery rate 𝐹𝑃 (𝐹𝑃 + 𝑇𝑃)⁄  and/or an F1 

score 2𝑇𝑃 (2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁)⁄ . Model accuracy, along with other metrics, may help truly 

understand how well a model is performing. For example, the F1 score can be thought of 

as the harmonic mean of the model’s precision and recall, creating a more robust metric. 

The usage of the overall dataset in training and testing models has an important 

impact on the observed performance metrics. The training and testing models can be 

viewed as how well the model is able to train on a given dataset and how well the model 

is able to classify data it has never seen, respectively. Model bias defines how well the 

model is trained: a high bias means it did not train well to the dataset and a low bias 

means it has trained well to the dataset. Model variance explains how well the model 

performs a classification task: high variance means new data is not classified well and 

low variance means new data is classified well. To determine model bias, we can simply 

evaluate the model on the training data. To determine model variance, we must use a 
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dataset that the model was not trained on. To compute model’s bias and variance the 

dataset could be randomly split into two subsets, creating a training set and a testing set.  

The cross-validation approach trains and tests the model while rotating the data in 

the training and testing set such that all data will be used in the testing set once. Cross-

validation is typically considered a better approach as it allows for a statistical 

comparison between models and gives a way to find performance anomalies on specific 

portions of the dataset. Please note that data-preprocessing should be computed only on 

the testing set and the results should be projected onto the testing set. For example, if 

missing data is estimated, they should only be estimated using data from the training set, 

otherwise, information may be leaked into the testing set. Information leaking can bias 

the scoring functions to overestimate a model’s performance. 

Model analysis. After the best performing model is selected, the details of a 

model’s functionality may be of interest. Some model details that could be useful are the 

weighted importance of each variable, or how the different values a variable could obtain 

influence model predictions. Investigating variable or feature importance is trivial when 

working with linear based models because the absolute value of the weights associated 

with the features gives a clear indication as to which features change the prediction more 

heavily than others. The same is true for decision trees, where the Gini index or the 

information gain can show how important a feature is within the tree. To understand how 

a feature’s value influences a model’s sensitivity, partial dependence of various features 

can be plotted and analyzed. The researchers observe how the output changes across the 

feature domain when the model is fed the average values of all other features, or one 
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feature value is changed from certain minimum and maximum. The unified framework, 

SHAP (SHapley Additive exPlanations) assigns each feature an importance value for a 

given prediction. This is a model agnostic approach for performing exploration 

techniques [54], which allow us to better understand the model rather than leaving it a 

black box. 

Predictive Models  

 There are many modeling approaches for predicting and evaluating potential drug 

activities [55]. Using empirical data, one could take a modeling approach that does not 

rely on fundamental knowledge of the system. This can be reliable as many drug 

phenomena are complex and not yet well understood. Two common empirical modeling 

methods are ligand-based, and target-based approaches [55]. In ligand-based approaches, 

shown in Figure 3, known active and inactive compounds can be used to detect important 

structural features for the activity in question. In target-based approaches, the structural 

features of the enzyme or protein in question can be used to detect potential ligand 

interactions. Both methods can benefit from machine learning techniques. Target-based 

approaches can use regression methods to learn and model various enzyme-ligand 

docking conformations. Ligand-based approaches can use regression or classification 

techniques to predict a ligand’s activity towards the enzyme or the phenomena being 

modeled. 
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Figure 3. Ligand-based modeling approaches. 
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Chapter 3 

Biological Role of Cytochrome P450 Enzymes 

Cytochromes are an important class of proteins for all biological species. 

Containing heme as a cofactor, they are involved in electron transport reactions and act as 

enzymes in reduction and oxidation reactions. Cytochrome proteins were first discovered 

in 1884 [56], but didn’t receive the cytochrome name until the 1920s [57]. There are four 

major types of cytochrome proteins, which can be distinguished by analytical chemistry 

techniques. Various spectroscopy methods enable analyzing the exact structure of the 

heme group, analyzing inhibitor sensitivity, and analyzing reduction potential [58]. This 

chapter focuses on the cytochrome P450 superfamily of enzymes, which named after the 

characteristic peak formed by absorbance of light at wavelengths near 450 nm, when the 

heme iron is reduced to carbon monoxide. These enzymes, specifically the 3A4 variant, 

play an important role in oxidative metabolism and are primarily involved in 

steroidogenesis and detoxification [58].  

The cytochrome P450 superfamily are categorized as cytochromes that act as 

monooxygenases, reducing oxygen to a hydroxyl group for incorporation into substrates 

[59]. Cytochrome P450 enzymes are found in all domains of life and consist of more than 

2000 distinct proteins across different species [60]. There has been a total of 57 human 

genes described within the P450 superfamily with substrates including sterols, fatty acids, 

eicosanoids, vitamins, and xenobiotics [61]. The oxidation of xenobiotics is particularly 

important for reducing toxicity that is involved with the incorporation of foreign 

compounds, which may often be pharmaceuticals. The metabolism, of an estimated 75% 
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of drugs, is mediated by P450 enzymes, emphasizing the importance of this family of 

proteins in drug design [61]. According to their intracellular localization, P450 enzymes 

may be classified into: 1) microsomal cytochrome P450, which are present mainly in the 

microsomes of liver cells and represents about 14% of the microsomal fraction of liver 

cells or 2) mitochondrial cytochrome P450, which are present in mitochondria of many 

tissues but is particularly abundant in the liver and steroidogenic tissues such as adrenal 

cortex, testis, ovary, placenta, and kidney. 

Metabolic Reactions Mediated by CYP3A 

The P450 protein superfamily can be further broken down into families, 

subfamilies, and finally the specific gene products. The most common and the most 

versatile member of the cytochrome P450 family of oxidizing enzymes is CYP3A4. Like 

all other members of this family CYP3A4 is a hemoprotein which is involved in drug 

metabolism. In humans, the CYP3A4 protein is encoded by the CYP3A4 gene [62]. This 

gene is part of a cluster of Cytochrome P450 genes and, as visible in Figure 4, is 

positioned at chromosome 7q22.1 [63]. 
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Figure 4. Human chromosome 7 with cytogenetic bands displayed. 

 

 

 

 

According to Wienkers at al [64] the bulk of the metabolism of known drugs in 

humans is mediated by cytochrome P450 (CYP) enzymes. Among those, the majority of 

drug oxidations (46%) were carried out by members of the CYP3A family. CYP3A 

catalyze many reactions involved in drug metabolism as well as in synthesis of 

cholesterol, steroids, and other lipids components. Enzymes of CYP3A family mainly 

found in the liver and in the intestine. Their role is oxidation of small foreign organic 

molecules (xenobiotics), such as toxins or drugs, so that they can be removed from the 

body. This makes CYP3A enzymes remarkably important in drug design and 

pharmaceutical research.  
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The CYP3A subfamily consists of 4 genes: CYP3A4, CYP3A5, CYP3A7, and 

CYP3A43. Of the four, CYP3A4 tends to have the highest expression and the greatest 

affinity for metabolizing pharmaceutical drugs [65]. CYP3A4 has a large and flexible 

active site, and can bind with many large lipophilic compounds, allowing for substrates 

like immunosuppressants, antibiotics, antidepressants, opioids, and many others [65]. The 

CYP3A4 protein is an important enzyme in first-pass metabolism, where some amount of 

a drug may be metabolized before entering systemic circulation [66]. A snapshot of the 

KEGG entry for CYP3A4 is shown in Figure 5. A sample oxidative reaction catalyzed by 

CYP3A4 is shown in Figure 6, where a xenobiotic molecule binds with oxygen, creating 

a less toxic drug and/or a drug that is easier to metabolize downstream. 



29 
 
 

 

Figure 5. KEGG entry for the CYP3A4 gene. 
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Figure 6. Oxidation reaction catalyzed by CYP3A4. Obtained from KEGG R05727. 

 
 
 

Potential for Drug-Drug Interactions 

The role of metabolic reactions catalyzed by CYPs is to transform the xenobiotic 

substances to harmless and excretable metabolites [55]. Issues arise in the situation when 

xenobiotic substances are transformed into a toxic metabolite or the speed of metabolic 

clearances is significantly altered. The reliance on P450 enzymes to oxidize and facilitate 

the removal of dugs opens the potential for issues in drug metabolism. Two major issues 

in drug metabolism are 1) the bioavailability of a drug, i.e., how quickly the drug is 

metabolized and eliminated, and 2) the accumulation of the drug in the system, which 

could cause toxic side effects. Issues in bioavailability may arise if the P450 enzymes are 

induced by another drug, while issues in drug toxicity could occur if the P450 enzymes 

are inhibited by another drug. The inhibition of P450 enzymes is often the cause of many 

adverse drug reaction as these drugs are metabolized at slower rates and can begin to 

accumulate at levels that are toxic [61]. The ability for one drug to affect another drug’s 

metabolism is referred to as a drug-drug interaction. This interaction is often linked to the 

inhibition or induction of a P450 enzyme. 
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Interferences with the Action of the CYP3A4 Enzyme 

While many drugs are metabolized by CYP3A4 mediated reactions, there are also 

some drugs which are activated by the enzyme. Some substances, such as grapefruit juice 

and some drugs, interfere with the action of CYP3A4. These substances will therefore 

either amplify or weaken the action of the drugs that are modified by CYP3A4, 

potentially causing them to exceed the minimum toxicity levels and create adverse side 

effects. Inhibition can happen in one of three ways, 1) competitive, in which the inhibitor 

competes with the substrate for the active site within the enzyme, 2) non-competitive, 

where the inhibitor reduces the activity of the enzyme, and 3) mechanism-based, where 

the inhibitor is metabolized into a reactive group that can form an irreversible bond with 

the enzyme. A well reported case of CYP3A4 inhibition was discovered by researchers 

who noticed an increase in bioavailability of many drugs in patients after consuming 

grapefruit juice. This effect is due to bergamottin, a furanocoumarin, found within 

grapefruit that acts as a mechanism-based inhibitor of CYP3A4 [67]. 

Screening for CYP3A4 Inhibitors 

Understanding a drug’s potential to inhibit CYP3A4 is a common step in drug 

development; many in vitro and some in vivo assays are conducted on potential drugs to 

determine if they have any inhibitory ability. The potential for a drug to inhibit CYP3A4 

can be assessed in vitro by using a probe substrate. The probe must be a compound that is 

metabolized by the CYP3A4 enzyme. A commonly used probe is midazolam, a known 

substrate of CYP3A4, which performs similarly in vitro and in vivo [68]. The screening 

process works as follows. The probe is placed in a mixture of microsomes that contain 



32 
 
 

the CYP3A4 enzyme and other drugs that are being assessed. If the drug inhibits 

CYP3A4, the probe can no longer be metabolized at its standard rate. This will result in 

lower level of metabolites, which can be measured to determine if inhibition was taking 

place. To increase throughput, CYP3A4 inhibition assays typically use either a 

fluorescent probe or Liquid Chromatography Mass Spectrometry (LC-MS/MS) to 

monitor the rate of probe metabolism [64]. Recently, there has also been an effort in 

predicting CYP3A4 inhibition in silico, which could save time and resources in the 

lengthy and expensive drug development pipeline. 

Kinetics of CYP3A Meditated Reactions 

The kinetics of drug metabolism can be summarized by few computed values: 

Michaelis-Menten constants (Km), maximal velocities (Vmax), and intrinsic clearance 

(CLint, Vmax/Km). Similarly, protein inhibition and kinetics can be understood through 

values such as the inhibition constant (Ki) and the inhibitory concentrations (IC50). While 

this manuscript focuses on CYP3A4, many compounds that are substrates of CYP3A4 

can also be metabolized by CYP3A5 [69]. The speed of metabolism varies by compound 

and drug class. For example, antifungals on average have a lower CLint than antivirals, 

with an exception for Itraconazole [69]. The strength of inhibition and induction also 

varies by compound, a list of compounds with varying degrees of inhibition or induction 

strength are displayed in Table 1. 
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Table 1 

Known Inhibitors and Inducers for CYP3A4 

Compound Name Strength Type 

Boceprevir Strong Inhibitor 

Cobicistat Strong Inhibitor 

Danoprevir and Ritonavir Strong Inhibitor 

Elvitegravir and Ritonavir Strong Inhibitor 

Grapefruit Juice Strong Inhibitor 

Indinavir and Ritonavir Strong Inhibitor 

Itraconazole Strong Inhibitor 

Ketoconazole Strong Inhibitor 

Lopinavir and Ritonavir Strong Inhibitor 

Posaconazole Strong Inhibitor 

Ritonavir Strong Inhibitor 

Saquinavir and Ritonavir Strong Inhibitor 

Telaprevir Strong Inhibitor 

Tipranavir and Ritonavir Strong Inhibitor 

Telithromycin Strong Inhibitor 

Troleandomycin Strong Inhibitor 

Voriconazole Strong Inhibitor 

Clarithromycin Strong Inhibitor 

Idelalisib Strong Inhibitor 

Nefazodone Strong Inhibitor 

Nelfinavir Strong Inhibitor 

Aprepitant Moderate Inhibitor 

Ciprofloxacin Moderate Inhibitor 

Conivaptan Moderate Inhibitor 

Crizotinib Moderate Inhibitor 

Cyclosporine Moderate Inhibitor 

Diltiazem Moderate Inhibitor 

Dronedarone Moderate Inhibitor 

Erythromycin Moderate Inhibitor 

Fluconazole Moderate Inhibitor 

Fluvoxamine Moderate Inhibitor 

Imatinib Moderate Inhibitor 

Tofisopam Moderate Inhibitor 

Verapamil Moderate Inhibitor 

Chlorzoxazone Weak Inhibitor 

Cilostazol Weak Inhibitor 

Cimetidine Weak Inhibitor 

Clotrimazole Weak Inhibitor 
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Table 1 (continued) 

Compound Name Strength Type 

Fosaprepitant Weak Inhibitor 

Istradefylline Weak Inhibitor 

Ivacaftor Weak Inhibitor 

Lomitapide Weak Inhibitor 

Ranitidine Weak Inhibitor 

Ranolazine Weak Inhibitor 

Ticagrelor Weak Inhibitor 

Apalutamide Strong Inducer 

Carbamazepine Strong Inducer 

Enzalutamide Strong Inducer 

Mitotane Strong Inducer 

Phenytoin Strong Inducer 

Rifampin Strong Inducer 

St. John’s Wort Strong Inducer 

Bosentan Moderate Inducer 

Efavirenz Moderate Inducer 

Etravirine Moderate Inducer 

Phenobarbital Moderate Inducer 

Primidone Moderate Inducer 

Armodafinil Weak Inducer 

Modafinil Weak Inducer 

Rufinamide Weak Inducer 

 

 

 

Bioanalytical Methods to Study CYP3A Mediated Metabolism 

The bioanalytical approaches for metabolism studies can be classified into three 

main categories: 1) metabolite profiling and identification, which includes 

biotransformation and structural analysis both in vitro and in vivo; 2) metabolic stability, 

which includes profiling the kinetics both in vitro and in vivo, and 3) identification of 

rate-limiting CYP enzymes in vitro only. The third approach is often used for drug 

interaction studies which examine the influence of a drug substrate on CYP activity: 1) 
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CYP inhibition: single substrate or cocktail study in microsomes or in hepatocytes, and 2) 

CYP induction: nuclear receptor activation or cocktail studies in hepatocytes [70]–[74]. 

Traditional in vitro CYP450 inhibition assays typically target six isoforms of 

P450: CYP1A2, 2C9, 2C19, 2D6, 3A4, and 3A5, which are known to metabolize more 

than 90% of drugs. There are two major types of assays: 1) single-substrate assays using 

known P450 inhibitors and licorice root extract and 2) cocktail assays, also known as N-

in-one assays [75]. 

Single-substrate assay typically evaluates the inhibition of a drug on one P450 

isoform at a time. The cocktail inhibition assays can simultaneously evaluate the 

inhibition effects of drugs on up to 12 CYP450 isoforms. While cocktail assays are much 

more efficient than traditional single probe substrate approaches, they still have some 

disadvantages. They are much more complex and require significant investment into an 

assay’s parameter optimization. Cocktail assay parameter optimization includes selection 

of enzyme protein concentration, minimization of probe substrate interactions, 

minimization of solvent effects, complicated detection of probe substrates and usage of a 

fast and sensitive ultrahigh pressure liquid chromatography (UHPLC) – tandem mass 

spectrometry (MS/MS) quantitative instrumentation. Typical experimental procedure 

requires potassium phosphate buffer (100 ml, 0.1 M, pH 7.4) containing 1.3 mM 

NADPH, 0.2 mg/ml human liver microsomes, and a cocktail of 10 probe substrates 

including midazolam, which is used for testing CYP3A4 activity [75]. Such experimental 

procedures are expensive and time-consuming, thus the development of accurate 

theoretical models to predict CYP450 activity is highly desirable. 
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In Silico Prediction of CYP–Ligand Interactions 

In silico models to predict characteristics of CYP–ligand interactions attempt to 

link the structure and properties of ligand with the readouts from CYP mediated 

metabolic transformations obtained during in vitro experiments. Such models enable the 

researchers to exploit experimentally derived data and fill the gaps in understanding of  

(1) the affinity of ligand binding to specific CYPs;  

(2) predicting sites of metabolism;  

(3) prediction of inhibition characteristics of test molecules [55].  

Inhibition Model Review 

 The task of predicting CYP3A4 inhibition in silico has been examined before with 

the help of various theoretical models. A summary of these studies is presented in Table 

2. In 2011, Cheng et al. was able to develop a model based on the support vector machine 

approach, which achieved a cross-validation accuracy of 0.775 [76]. The models utilized 

MACCS fingerprints determined from the compound structures. In addition, Sun et al. 

achieved a cross-validation accuracy of 0.811, also using a support vector machine model 

in 2011. The primary difference between these approaches was in the feature set and the 

use of custom atom type descriptors [77]. More recently, in 2018, Li et al. used an auto 

encoder deep neural network that was able to achieve a cross-validation accuracy of 

0.850. This study  used a set of features generated using the PaDEL software in addition 

to the compounds’ PubChem fingerprints [78]. In 2019, Wu et al. extended on previous 

work  and developed a new XGBoost approach that achieved a cross-validation accuracy 

of 0.860 [79]. 
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Table 2 

CYP3A4 Inhibitor Prediction Models in Literature 

Authors Date Model Accuracy # Training Feature Set 

Wu et al. 2019 XGBoost 0.860 (3070, 5985) 
PaDEL1&2D, 

PubChem FP 

Wu et al. 2019 Gradient Boosting DT 0.851 (3070, 5985) 
PaDEL1&2D, 

PubChem FP 

Wu et al. 2019 Deep NN 0.839 (3070, 5985) 
PaDEL1&2D, 

PubChem FP 

Wu et al. 2019 Convolutional NN 0.833 (3070, 5985) 
PaDEL1&2D, 

PubChem FP 

Wu et al. 2019 Random Forests 0.828 (3070, 5985) 
PaDEL1&2D, 

PubChem FP 

Li et al.. 2018 Multitask AE-DNN 0.850 (3070, 5985) 
PaDEL1&2D, 

PubChem FP 

Li et al. 2018 Singletask AE-DNN 0.845 (3070, 5985) 
PaDEL1&2D, 

PubChem FP 

Lee et al. 2017 Laplacian Naïve Bayes 0.799 (1193, 2221) VolSurf+ 

Su et al. 2015 Support Vector Machine 0.756 (5177, 7456) PaDEL3D, Mold 

Su et al. 2015 C5.0 Decision Tree 0.733 (5177, 7456) PaDEL3D, Mold 

Sun et al. 2011 Support Vector Machine 0.811 (2334, 4466) Custom Atom types 

Cheng et al. 2011 Support Vector Machine 0.775 (4637, 6899) MACCS 

Cheng et al. 2011 Stack: SVM; K-NN 0.767 (4637, 6899) MACCS 

Cheng et al. 2011 Stack: SVM; Naïve Bayes 0.752 (4637, 6899) FP4 

 

 

 

 

  



38 
 
 

Chapter 4 

Representation, Modeling, and Featurization of Chemical Compounds 

Much of chemical exploration and research relies on computational tools and 

techniques to represent and study compound structures. However, it is not trivial to 

efficiently represent a compound in its entirety. At a basic level, we can view a 

compound as a graph representing atoms as nodes and bonds as vertices. However, the 

graph must ensure that the differences in compound configuration are also clearly 

distinguished. For example, features such as single, double, triple, and ionic bonds, the 

stereochemistry of an atom, or aromaticity could be difficult to represent. Creating a 

graph-based representation that covers all of these aspects is not necessarily impossible. 

In fact, many of these features are often used to visualize compounds [80]. However, 

existing representations often lack the ability to store structural information or to gather 

complex information from of a compound in an efficient manner. As summarized in 

Table 3 there are other techniques that can be used to represent compounds, such as the 

simplified molecular-input line-entry system (SMILES), generating molecular 

fingerprints, or simply using their molecular descriptors. These techniques allow us to 

describe complex compounds numerically, so that a computer can easily and efficiently 

process them.  
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Table 3 

Featurization Methods Useful for Predictive Modeling in Drug Discovery 

Featurization Type Description Ref 

SMILE String Alphanumeric characters representing the 2D structure [2] 

MACCS Fingerprint 960 or 166 structural keys for important substructures [5] 

PubChem FP Fingerprint 881 structural keys used by the PubChem database [6] 

Extended-

Connectivity 
Fingerprint Sets bits based on the structure in a radius of focused atoms [7] 

PaDEL Descriptor Calculate 797 chemical features including 1D, 2D, and 3D [8] 

Mordred Descriptor Calculate more than 1800 2D and 3D descriptors [9] 

 

 

 

Simplified Molecular-Input Line-Entry System (SMILES) 

The simplified molecular-input line-entry system (SMILES) is a widely used 

representation of compounds. As its name suggests, this method attempts to model a 

particular compound using a single line of characters. SMILES relies on a set of parsing 

rules that allow for an unambiguous reconstruction of a compound’s structure. This 

approach was first introduced in the 1980s [81]. While currently there are other formats, 

the fundamentals of a SMILE compound representation as a string remain unchanged. 

For example, atoms are denoted by an uppercase character abbreviation, e.g., carbon is 

represented as C, nitrogen as N, fluorine as F, chlorine as Cl, etc. Atoms can also be 

extended to include their charge, as applicable. For instance, a hydroxide may be depicted 

as [OH-] to indicated that the OH group contains a formal negative charge and a 

titanium(IV) atom may be depicted as [Ti+4] to indicate a formal positive charge of 4. To 

represent bonds, the characters “.”, “-”, “=”, “#”, “$”, “:”, can be used for a non-bond, 

single bond, double bond, triple bond, quadruple bond, and aromatic bond. Bond 
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stereochemistry can be denoted using “/” and “\” characters which represent single bonds 

connected to a double bonded pair of atoms. For example, F/C=C/F shows the trans 

configuration while F/C=C\F represents the cis configuration. Often, standard single 

bonds are assumed and omitted, thus, it is rare to see “-” within a SMILE string. 

 To store ring structures in a SMILE string, one arbitrary bond within the ring is 

broken and an integer value is placed instead. At the end of the ring, the integer value is 

repeated to show that the ring has closed. For example, cyclohexane, a ring of 6 single 

bonded carbons, would be represented as C1CCCCC1. Integers can be incremented to 

demonstration additional rings in the compound. Aromatic rings can be shown in a 

multitude of styles. However, the common syntax is to convert the atom symbols into 

lowercase characters. For example, using this approach, benzene, a 6-carbon aromatic 

ring, can be shown as c1ccccc1. 

  SMILE format also allows representing multiple branching points using 

parenthesis. Specifically, the atom where the branch starts is followed by the branch 

portion of the compound surrounded by an open and close parenthesis. For example, 

isopropyl alcohol is denoted by CC(C)O, indicating that the third carbon branches off of 

the second and is not bonded to the oxygen. Branch bonds that must be shown, such as a 

double bond, are denoted within the parentheses. For example, acetone is represented as 

CC(=O)C to indicate that the oxygen is double bonded to the second carbon, while the 

third carbon is also bonded to the second carbon rather than the oxygen. 

 A final consideration in the structural representation of a compound is the chiral 

configuration of a tetrahedral carbon, where the positional order of the four bonds may be 
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chemically important. There are a several ways to represent chirality. It is often denoted 

by a clockwise or counter-clockwise bond order with either @ (counter-clockwise) or 

@@ (clockwise) characters in a SMILE string. For example, the amino acid L-alanine 

and D-alanine are represented as N[C@@H](C)C(=O)O and N[C@H](C)C(=O)O, 

respectively. 

 CANGEN was the first standard algorithm for creating canonical SMILE strings 

to ensure that each compound has a unique SMILE representation [82].  Recently new 

algorithms that achieve better results were developed. For example, the public chemical 

database ChEMBL uses Accelrys's Pipeline Pilot software to generate their canonical 

SMILE strings [83]. Overall, a standardized canonical SMILE algorithm can ensure 

uniqueness of compound representation, which is vital when searching for specific 

compounds, similar compounds, or compounds that contain a particular sub-structure. 

Canonical SMILE strings can also provide a normalized structure placement when 

mining structural information from many SMILE strings. 

Molecular Fingerprints 

 Another approach to representing a compound, especially for similarity scoring or 

for data mining, is molecular fingerprints. The essence of a fingerprint is that the 

compound is represented as a variable length string of bits. Each bit identifies the 

presence or lack of certain piece of information from of the compound. There are many 

approaches to generating fingerprints, notably, substructure keys-based, topological or 

path-based, and circular [84]. 
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 Substructure keys-based fingerprints are based on the idea of chemical motifs or 

functional groups. Each bit in the compound’s notation indicates the presence or absence 

of a given substructure. This can typically be done with SMARTS patterns, where a 

SMILE string is parsed for a particular character sequence, similar to regular expressions. 

Examples of substructure keys-based fingerprints include MACCS fingerprints, which 

has 960 or 166 structural keys for important and popular substructures in drug discovery 

[85], and PubChem fingerprints, which contains 881 structural keys used by the 

PubChem database for similarity searching [86]. Structure based fingerprints are 

important for tasks that rely on the presence or absence of particular functional groups in 

a compound, such as, filtering compounds that may be reactive based on the presence of 

one or more reactive chemical motifs. 

 Topological or path-based fingerprints do not rely on predefined keys and a set 

number of bit positions, instead, they parse molecular fragments along bond paths. While 

moving along a bond path, these methods hash the path into a new bit position. The 

location of that bit within the bit string is determined by the hashing function. These 

methods can be customized to generate a string of any number of bits by adjusting the 

hashing function. An example of topological fingerprints is the Daylight fingerprints that 

contain 2048 bits. The downside to this approach is a possibility of collision, which may 

place different substructures at the same bit position, possibly losing information. 

 Circular fingerprints, also called extended-connectivity fingerprints (ECFPs), are 

similar to topological fingerprints in that they hash the chemical structures. However, 

bond paths are not traveled down the molecule, instead, the structure within a given 
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radius of an atom is searched. ECFPs have the advantage that they can be calculated 

quickly and can represent any number of molecular features, while also capturing 

stereochemical information [87]. While the bits may be harder to utilize in substructure 

searching, this approach could provide much more information about a compound for 

data mining applications. 

 Molecular fingerprints can be an efficient and highly versatile representation of 

compounds, allowing for computed similarity scores between compounds, searching 

databases with substructure queries, extracting chemical and structural information from 

compounds, and transforming compounds into useful features for data mining pipelines. 

Many of the fingerprint techniques can be used together with the SMILES representation 

as both approaches have their advantages. Therefore, the fingerprints approach is not 

necessarily a replacement of SMILE strings. 

Molecular Descriptors 

 Representing a compound as a set of molecular descriptors is another approach 

that computes chemically relevant data. This approach can represent complex features 

such as a molecule’s solubility or acidic properties and often formats features in ways 

that are easier to interpret compared to fingerprints. Molecular descriptors could range 

from something as simple as a molecular weight to structural information such as the 

molecular surface area and electrostatic properties such as polar surface area. There are 

many packages that can calculate numerous molecular features for a given compound. In 

this work we will focus on the following two popular software packages: PaDEL-

Descriptor and Mordred. 
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 PaDEL-Descriptor is an open source software that can generate 797 chemical 

features including 1D, 2D, and 3D descriptors [88]. The types of descriptors calculated 

by PaDEL include constitutional, topological, geometric, electrostatic, hydrophobic, 

steric, and quantum chemical. PaDEL can be regarded as one of the better options 

because it is free, open source, supports a majority of molecular file formats, and is fast. 

The Mordred software package is based on PaDEL-Descriptor and it can calculate more 

than 1800 2D and 3D descriptors. Mordred is open source and free just like PaDEL. 

However, it is almost twice as fast as PaDEL [89]. The Mordred also can handle large 

molecules which is often an issue for other packages. Overall, the PaDEL-Descriptor 

software and the Mordred software can compute a plethora of varied but relevant 

molecular descriptors from the structure of a compound. 

Numeric Featurization 

 While humans can understand conceptual information, such as a compound being 

acidic or basic, a computer relies on raw numbers and therefore, molecular concepts must 

be converted to some numerical form [90]. This process, however, can be tricky when 

avoiding non-informative or redundant features that may act as noise. There are several 

ways to handle the procedure of feature selection: removing features that are highly 

correlated with others, dropping features with low variance, or using regularization 

techniques.  

A conversion of categorical data into numerical values can arise another issue. A 

simple approach to assign a number to each possible category could bias the computer 

into seeing a non-existent order within the categories. For example, labeling acid as 0, 
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base as 1, and neutral as 2 may cause the computer to interpret that an acid is less than a 

base, which is less than a neutral compound. Of course, this ordered relationship does not 

exist in reality. Instead, categorical features can be one-hot encoded to create a series of 

bits that simply represent if a feature is present or not. A one-hot encoded feature is 

treated as multiple numerical features, one bit for each possible case in the category. If a 

particular case is present in the category, then that bit will become a 1, otherwise, it will 

become a 0. So, for the acid-base category, two numeric features will be generated, one 

bit (either 0 or 1) for an acid and another bit (either 0 or 1) for a base. If a compound is 

neutral, then both the acid and base bits will be set to 0, indicating the third category. 

Representing compounds using featurization can be difficult and may require 

domain knowledge for the specific task. Fortunately, molecular fingerprints and the 

molecular descriptor approaches to compound representation has been curated and tested 

by many experts within the chemical and pharmaceutical fields and have been shown to 

work well. 

  



46 
 
 

Chapter 5 

Cytochrome P450 3A4 Inhibitor Modeling 

 In silico methods for determining a compound’s potential to inhibit CYP3A4 

could greatly reduce the time and resources spent on drug candidate development. 

Inhibition prediction models can be built by selecting relevant features from compound 

structures and correlating them to experimentally observed inhibition outcomes using the 

data generated by in vitro assays. Machine learning techniques that analyze many data 

samples can discover patterns in the feature space and make adequate predictions of the 

inhibition potential for a new candidate molecule. The best model for separating already 

known samples and generalizing the unknown data can be selected from the comparison 

of various machine learning approaches and modeling techniques. The process of 

creating a CYP3A4 inhibition model must consider many aspects, including the choice of 

the dataset used for training, the procedure of molecular feature extraction from 

compounds, the selection of the machine learning algorithm for model generation, etc. 

Our workflow for building predictive models is presented in Figure 7. 
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Figure 7. Methodological pipeline used to create predictive models. 

 

 

 

Dataset Curation 

 A vital part of any successful prediction model is the data used to train it. The 

quality of training data directly influences the accuracy of model predictions. PubChem 
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AID: 1851 is a publicly available and frequently used dataset. It is often considered to be 

the standard for CYP3A4 inhibition modeling [91]. Many compounds (n=17,143) were 

studied in vitro using a luminescence-probe approach. CYP3A4, as well as many other 

CYP enzymes, were used to catalyze the dealkylation of pro-luciferin substrates to 

luciferin. Using luciferase detection reagent, luciferin could be measured with 

luminescence. Various concentrations of the compounds were tested to determine the 

compounds’ IC50 for the studied CYP enzymes from measured concentration−response 

curves. In addition, the data on response curves contains curve classification that 

specifies the completeness of the reaction and efficacy of the compound. PubChem 

provides an activity score and an activity outcome, where the compounds are labeled as 

active, if their activity score is 40 or more. Inactive compounds have a score of 0, and 

inconclusive results if their activity score is less than 40 but greater than 0. 

 PubChem enables a publicly available RESTful API providing the access to data 

tables corresponding to a user-selected assay. Substance IDs and specific table features, 

like activity scores, can be retrieved over HTTPS protocol using the PubChem API. 

CYP3A4 data were downloaded in a JSON1 format. A correspondent list of canonical 

SMILES strings were obtained by matching activity data records using compound IDs. 

All compounds, activity scores, and curve classifications in the AID: 1851 assay were 

retrieved from PubChem, matched with SMILES structures, and filtered using an 

 
 

1 JavaScript Object Notation 
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automated Python script. Please see Appendix A: pubchem.py and Appendix B for our 

source code. The compounds were classified as follows: 

• inhibitors - compounds with an activity score ≥ 40 and a curve classification 

of -1.1 (complete curve; high efficacy), -1.2(complete curve; partial efficacy), 

or -2.1 (partial curve; high efficacy),  

• non-inhibitors - compounds with an activity score of 0 and a curve 

classification of 4 (undefined),  

• inconclusive -- compounds that did not fall under either classification. 

Compounds classified as inconclusive were excluded from the dataset.  

PubChem fingerprints were generated by the PaDEL software for all included 

compounds. The Mordred package was employed to generate molecular features. Our 

final feature set included both PubChem fingerprints and Mordred generated molecular 

features. In total, 10,832 compounds were selected for the training dataset. For each 

compound in the dataset 1,826 molecular features were calculated and 881 fingerprint 

bits were extracted. The source code for molecular descriptor generation is shown in 

Appendix A: featurized.py. 

Inhibitor Models 

 Four machine learning approaches were evaluated for the task of building a 

prediction model for CYP3A4 inhibition: logistic regression, random forests, support 

vector machine, and neural network. A logistic regression approach has the advantages of 

being the fastest to train and use. Also, a logistic regression model is relatively easy to 

modify and interpret. In comparison, random forests and support vector machine are 
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more difficult to use and modify. However, these approaches often perform well on many 

different tasks, and can be better generalized to new data. A neural network approach 

offers the most potential in learning more complicated features in addition to the ones 

already present. While the neural network approach can be much harder to interpret and 

more complicated to use, it offers a significant increase in performance for many machine 

learning tasks. 

Model creation. All four machine learning models were implemented in Python 

using the scikit-learn package [92], please see the details in Appendix C. The training 

data went through several pre-processing steps:  

1) missing data was imputed using the mean value of the relevant feature, 

2) features were normalized to fall within a range of 0 to 1,  

3) features with a variance less than a certain threshold were removed, and 

4) classes were either balanced using a SMOTE or an under-sampling approach, 

or classes were left unbalanced.  

All pre-processing steps were conducted in a pipeline corresponding to a cross-

validated train-test split. The pre-processors were constructed using training dataset and 

evaluated using the testing dataset. 

The optimization of each model contained multiple hyperparameters. For 

example, the logistic regression algorithm’s regularization factor can affect the weight of 

each feature. For the random forests model, the number of estimators in the ensemble and 

the fraction of features considered for each estimator can significantly alter the bias and 

variance of the final model. For the support vector machine model, the regularization 
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parameter (lambda) and gamma can alter the weights of the features and the amount of 

influence one sample has. Finally, for the neural network approach, the number of layers 

and the number of nodes in each layer can greatly impact the bias and variance of the 

model. Regularization can alter the weighting of each node, with high regularization 

corresponding to a lower amount of strongly weighted nodes. All models went through 

extensive tuning and optimization of the above model hyperparameters, as well as for 

various pre-processing steps, using the open source hyperparameter optimization 

framework Optuna [93]. 

Model performance and comparisons. To evaluate and compare the above 

models, a 3-fold cross-validation approach was conducted on each of them. Prediction 

accuracy was calculated and used to score each model. The best average cross-validation 

accuracies for each model approach were the following:  

• logistic regression achieved an accuracy of 0.832,  

• random forests achieved an accuracy of 0.834,  

• support vector machine achieved an accuracy of 0.819, and  

• neural network achieved an accuracy of 0.823.  

Overall, all models achieved a similar performance on accuracy that was 

consistent with the results seen in literature. The cross-validated accuracies for each of 

the 3-folds are compared in Figure 8. Random forests and logistic regression have similar 

performances, though, random forests had a larger variance between the three cross 

validated folds. Support vector machine had the worst performance of the four 

approaches and a large variance between fold accuracies. The neural network approach 
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had the most consistent accuracy measures between the three folds; however, these 

accuracies were worse than those of both random forests and logistic regression. The 

models performed best when the variance threshold was set lower, allowing for more 

features to pass through to the model. The best class balancing technique for random 

forests, support vector machine, and neural network was SMOTE, while logistic 

regression preferred no balancing of classes. A more detailed overview of all 

hyperparameters for each modeling approach is shown in Table 4. 

 

 

 

 

Figure 8. Cross-validated (3-fold) accuracies for all standard modeling approaches. 
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Table 4 

Hyperparameter Optimization for Standard Models 

Model Hyperparameter Range Considered Best Value 

Logistic Regression 

Balance {None, Under-sample, SMOTE} None 

Variance Threshold [0, 0.25] 0.00164 

C = 1 / regularization [1x10-5, 1x105] 44772.5 

Random Forests 

Balance {None, Under-sample, SMOTE} SMOTE 

Variance Threshold [0, 0.25] 0.02322 

Max Features [0.01, 1] 0.36402 

# Estimators [1, 1000] 968 

Support Vector 

Machine 

Balance {None, Under-sample, SMOTE} SMOTE 

Variance Threshold [0, 0.25] 0.06889 

C = 1 / regularization [1x10-5, 1x105] 691.286 

Gamma [1x10-5, 1x105] 0.06045 

Neural Network 

Balance {None, Under-sample, SMOTE} SMOTE 

Variance Threshold [0, 0.25] 0.01611 

Alpha [1x10-10, 1x1010] 2.28473 

Layers [1, 3] 2 

Units in Layer 1 [1, 300] 140 

Units in Layer 2 [1, 300] 181 

 

 

 

Model Exploration 

 Exploring which features were most important to a model can bring insight into 

the model’s predictive power and can showcase patterns between specific features and 

labels. While some modeling approaches, such as logistic regression, can be easily 

explained by viewing the weights of each feature, other approaches are harder to 

comprehend by simply examining the weight values. The SHAP framework can be 

employed to identify important features in a model, observe how fluctuations in feature 

values effect the model output, and determine how features altered a model’s prediction 

for a given sample. We implemented a series of model exploration tools, presented in 

Appendix D. 
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The top five features for each model are shown Figure 9. In all of the explored 

models the two most important features were the atom-bond connectivity index (ABC) 

[94] and the centered Moreau-Broto autocorrelation of lag 5 weighted by Allred-Rochow 

electronegativity (ATSC5are) [95]. Additionally, all models had Graovac-Ghorbani 

atom-bond connectivity index (ABCGG) [96] and centered Moreau-Broto autocorrelation 

of lag 6 weighted by Allred-Rochow electronegativity (ATSC6are) within their top five 

most important features. Logistic regression and random forests both shared the same top 

5 features and also happen to be the best performing models. The support vector machine 

model had 5-membered ring count (n5Ring) as a unique most important feature, while the 

neural network model had shortest path diameter of adjacency matrix (SpDiam_A) as a 

unique most important feature. We observed that higher ABC values indicate a higher 

probability that the compound will be classified as an inhibitor in all of the explored 

models. 
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Figure 9. Most important features for standard modeling approaches. 

 

 

 

Novel Machine Learning Approaches 

 We examined several modeling approaches for predicting CYP3A4 inhibitors. 

However, all investigated models relied on external featurization of compounds, i.e. with 

PaDEL, Mordered, or fingerprint techniques. While these techniques have been widely 
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used in research, they all depend on tedious manual curation of the features. This may 

lead to imprecise representations of the molecular structures and lack of relevance to the 

prediction task at hand. Rather than rely on a human curated preprocessing step of 

extracting molecular features from a SMILES string, the machine learning algorithm can 

perform feature extraction instead. This removes the bias and dependence on a particular 

molecular descriptor tool in feature generation, allowing for the model to learn relevant 

features for a specific task without human intervention. The features extracted with this 

machine learning approach are correspondent to detected patterns in the training data, 

allowing the model to identify sub-structures within a compound that may be important 

for the prediction task. 

 Neural network architectures can allow for auto-featurization though connecting 

multiple nodes in different ways with tunable weights. Convolutional neural networks 

can extend featurization from a 1-dimensional vector to a 2-dimensional matrix, 3-

dimensional matrix, or more [50]. A 1-dimensional convolutional layer can take a 2-

dimensional matrix and scan across one dimension with varying kernel sizes, while 

filtering on the second dimension. This is often beneficial for finding temporal patterns in 

one-hot encoded strings. A 2-dimensional convolutional layer performs similarly, except 

it can scan across a 2-dimnesional matrix with an 𝑥 by 𝑦 kernel, while filtering on the 

third dimension. Scanning in multiple dimensions is valuable for detecting spatial 

patterns. 
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 To investigate these opportunities of auto-feature extraction, we developed two 

novel approaches in CYP3A4 inhibition prediction based on work published by Hirohara 

et al. [97]. Specifically, we focused on answering the following two question: 

• Can relevant molecular and structural features be extracted and used to 

accurately predict the potential for CYP3A4 inhibition based on SMILES 

strings?  

• Can relevant molecular and structural features be extracted and used to 

accurately predict the potential for CYP3A4 inhibition based on a 2-

dimensional conformation of the compound’s atoms and bonds? 

SMILES string auto-extraction. A molecule’s SMILES string holds information 

about the structure of the compound, notating atoms that are bonded together, the bond 

orders, rings, branching structures, and of course the symbol of the atoms present. 

Treating a SMILES string as a temporal sequence of atoms and bonds can allow for 

substructures to be identified and featurized from the SMILES string itself. To setup a 

SMILES string into a numerical matrix that can be fed into a neural network, each 

character in the string must be one-hot encoded, such that a specific character will receive 

a specific bit in a vector, much like fingerprints. Through using one-hot encoding on all 

characters in a SMILES string, a 2-dimensional numeric matrix is created. All the 

dimension lengths of all SMILES matrices must be the same, thus, the matrices require 

zero-padding. An example SMILES matrix can be seen in Table 5. In this example, 

amifostine (NCCCNCCSP(=O)(O)O) was featurized using each character in the 
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compound’s SMILES string. The columns represent each character in the SMILES string, 

while the rows represent which feature the bit or integer refers too. 

 

 

 

Table 5 

SMILE Featurization Matrix for Amifostine 

Amifostine N C C C N C C S P ( = O ) ( O ) O 

# Hydrogens 2 2 2 2 1 2 2 0 0 0 0 0 0 0 1 0 1 
Degree 3 4 4 4 3 4 4 2 4 0 0 1 0 0 2 0 2 

Formal Charge 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Valence 3 4 4 4 3 4 4 2 5 0 0 2 0 0 2 0 2 
In Ring 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Aromatic 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
C 0 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 
N 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 
O 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 
Br 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Cl 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
F 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
P 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 
S 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

ring 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
( 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 
) 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 
/ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
\ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
= 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 
# 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Counterclockwise Chirality 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Clockwise Chirality 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

SP 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
SP2 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 
SP3 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 0 1 

Ring Start 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Ring End 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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Using 1D convolutional layers, the SMILES matrix can be scanned across the 

first dimension representing SMILES characters, while pooling and filtering the second 

dimension representing the one-hot encoded bit vectors. These convolutional layers can 

be repeated, if beneficial, before inserting the extracted features into a dense layer of 

nodes. A dense layer is not always needed. Although, one or more dense layers are often 

added to the end of the model architecture. This architecture is visualized in Figure 10. 

 

 

 

 

Figure 10. First two layers of the SMILE string auto-extraction architecture. 

 

 

 

We achieved an accuracy of 0.823 after extensive tuning. The best model 

consisted of two 1D convolutional layers with 27 and 13 filters, a kernel size of 5 and 4, 

and a stride of 1 and 4. Dropout proportions of 0.35 and 0.47, respectively, were used to 

reduce overfitting. Both convolutional layers used a rectified linear unit (ReLU) 

activation function and were followed by batch normalization. The output layer consisted 

of one densely connected node using a sigmoid activation function. Hyperparameter 

details are available in Table 6. Overall, the SMILES string auto-extraction architecture 



60 
 
 

provided similar accuracy to the standard models, while displaying ability for auto-

featurization from SMILES strings. 

 

 

 

Table 6 

Hyperparameter Optimization for Auto-Extractor Models 

Model Hyperparameter Range Considered Best Value 

SMILE Auto-Extraction 

Conv Layers [1, 2] 2 

Conv Layer 1 Filters [1, 50] 27 

Conv Layer 1 Kernel [1, 5] 5 

Conv Layer 1 Stride [1, 5] 1 

Conv Layer 1 Dropout [0.2, 0.5] 0.34915 

Conv Layer 2 Filters [1, 50] 13 

Conv Layer 2 Kernel [1, 5] 4 

Conv Layer 2 Stride [1, 5] 4 

Conv Layer 2 Dropout [0.2, 0.5] 0.46571 

Dense Layers [0, 1] 0 

Structure Auto-Extraction 

Conv Layers [1, 6] 4 

Conv Layer 1 Filters [1, 20] 8 

Conv Layer 1 Kernel [1, 25] 4 

Conv Layer 1 Stride [1, 5] 1 

Conv Layer 1 Dropout [0.2, 0.7] 0.59298 

Conv Layer 2 Filters [1, 20] 3 

Conv Layer 2 Kernel [1, 25] 25 

Conv Layer 2 Stride [1, 5] 1 

Conv Layer 2 Dropout [0.2, 0.7] 0.69967 

Conv Layer 3 Filters [1, 20] 15 

Conv Layer 3 Kernel [1, 25] 9 

Conv Layer 3 Stride [1, 5] 5 

Conv Layer 3 Dropout [0.2, 0.7] 0.26906 

Conv Layer 4 Filters [1, 20] 4 

Conv Layer 4 Kernel [1, 25] 17 

Conv Layer 4 Stride [1, 5] 3 

Conv Layer 4 Dropout [0.2, 0.7] 0.43041 

Dense Layers [0, 1] 1 

Dense Layer 1 Units [75, 250] 104 

Dense Layer 1 Dropout [0, 0,5] 0.27760 
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2D structure auto-extraction. Using the RDKit package, 2D conformations for 

molecules can be computed from a SMILES string. The generated 2D conformations 

provide structural information in the form of atom positioning measured in ångströms as 

well as the bonds connecting atoms. Using the computed x, y coordinates for atoms, a 2D 

matrix can be created to represent the coordinates at a specified resolution and scale. For 

example, a 2D matrix consisting of 100x100 pixels can be created and the atom 

coordinates can be converted into a -15 to 15 ångström scale, so that each atom 

coordinate gets placed into a pixel within the matrix. The pixels to represent a bond can 

be calculated using Bresenham's line algorithm, where the bond pixels are determined as 

the best pixelated line from one atom pixel to the other. Atom’s in the matrix can be 

encoded by their atomic mass, while bonds can be encoded by their bond order. To avoid 

potential overlapping coordinates of atoms and bonds, two different filters can be 

constructed for a given 2D matrix, one for atoms and one for bonds. Effectively, each 

SMILES will result in a [100x100x2] matrix representing the atomic structure. A 

flattened example of these pixel matrices for Chlorzoxazone and Voriconazole can be 

seen in Figure 11. 
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Figure 11. 100x100 pixel matrix displaying Chlorzoxazone and Voriconazole. 

 

 

 

Using 2D convolutional layers, the structural matrix can be scanned across the x, 

y dimensions with a rectangular kernel, while pooling and filtering the third dimension of 

atom and bond filters. These convolutional layers can be repeated if beneficial, before 

inserting the extracted features into a dense layer of nodes. 

The highest accuracy achieved for the best model based on the 2D structure 

extractor was 0.764, which falls short of the other models, but still shows the promising 

potential for this approach. The best model for the 2D structure extractor approach 

consisted of four 2D convolutional layers with 8, 3, 15 and 4 filters, a kernel size of 4, 25, 

9, and 17, and a stride of 1, 1, 5, and 3. Following the convolutional layers, 1 dense layer 

was added with 104 units. Dropout was used on all layers with dropout proportions of 

0.59, 0.70, 0.27, and 0.43 for the convolutional layers, respectively, and a dropout 

proportion of 0.28 for the dense layer. All layers used a rectified linear unit (ReLU) 

activation function and were followed by batch normalization. The output layer consisted 
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of one densely connected node using a sigmoid activation function. Hyperparameter 

details are summarized in Table 6.  

Overall, the 2D structure auto-extraction architecture had a lower accuracy than 

other models. However, it performed reasonably well to be considered for further 

optimization. The performances of both auto-extractor models are compared in Figure 12. 

Random forests, the best performing model, was significantly better than the 2D structure 

auto-extraction approach. Although it was only marginally better than the SMILES string 

auto-extraction technique. Both novel approaches achieved accuracies greater than 75%. 

 

 

 

 

Figure 12. Cross-validated (3-fold) accuracies for auto-extraction approaches. 
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Validation on Known CYP3A4 Inhibitors 

 A set of compounds published by the FDA as either strong, moderate, or weak 

clinical inhibitors was passed into each model to determine its predictive performance. 

Inhibition probabilities were calculated for all compounds in each of the tested models. 

The summary of results for all the models is shown in Figure 13. Logistic regression 

performed the best with 24 out of 33 samples classified correctly as inhibitors, followed 

by both convolutional auto-extractor models correctly predicting 16. The Random forests 

model correctly predicted 13 inhibitors, the neural network model predicted 12, and the 

support vector machine model predicted only 7. We did not detect a trend in prediction 

confidence from strong to weak inhibitors for any model. This was anticipated because 

the strength of inhibition was not considered when we trained the models. Please note, 

that these predictions are not an indication of model accuracy as only inhibitors were 

included in this test set. Instead, these results are an indication of the models’ recall on 

inhibitors, or the models’ ability to correctly classify a true inhibitor. 
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Figure 13. Inhibition prediction probabilities on FDA inhibitors for all models. 

 

 

 

For each model, we created a SHAP force plot showing the best and the worst 

predictions as well as providing an insight as to which variables were most influential. 
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Figure 14 illustrates the generated SHAP force plots. For logistic regression, cobicistat2 

was correctly predicted as an inhibitor with the most confidence. The two features that 

were deemed most important to this decision were centered Moreau-Broto 

autocorrelation of lag 8 weighted by Van der Waals volume (ATSC8v) and Moreau-

Broto autocorrelation of lag 8 weighted by sigma electrons (ATS8d) [95]. The inhibition 

prediction with the lowest confidence was for the compound chlorzoxazone3. The Geary 

coefficient of lag 4 weighted by ionization potential (GATS4i) [98] weighted the 

classification towards an inhibitor. However, the average Moreau-Broto autocorrelation 

of lag 0 weighted by Pauling electronegativity (AATS0pe), and the presence of PubChem 

fingerprint 669 (Cl-C:C-C=O) [86] confused the model and caused an incorrect 

prediction of non-inhibitor. 

 
 

2 Drug molecule for use in the treatment of human immunodeficiency virus infection (HIV/AIDS) 
3 Drug molecule for use as muscle relaxant to treat muscle spasm and the resulting pain or discomfort. 
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Figure 14. SHAP force plots for the best and worst FDA test predictions. 

 

 

 

Specific to the 2D structure auto-extractor approach, we can explore the spatial 

areas and potentially the sub-structures within a compound that are most influential to the 

model using SHAP values. An example of this exploration is shown in Figure 15 with 
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chlorzoxazone and voriconazole4. Pixels that are shaded red contribute more towards a 

classification of inhibitor, while pixels shaded blue contribute more towards the non-

inhibitor classification. The 2D structure model incorrectly classificed voriconazole as a 

non-inhibitor, likely because of the 3 ring structures present around the center of the 

molecule as indicated by the blue shading. 

 

 

 

 

Figure 15. 2D SHAP values for predictions on Chlorzoxazone and Voriconazole. 

  

 
 

4 Drug molecule known as antifungal medication, used to treat a number of fungal infections. 

 

https://en.wikipedia.org/wiki/Antifungal_medication
https://en.wikipedia.org/wiki/Fungal_infections
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Chapter 6 

Conclusions and Future Opportunities 

Four machine learning methods, logistic regression, random forests, support 

vector machine, and artificial neural network were used to create classification models to 

link compound structures with their ability to inhibit CYP3A4 activity. All models shared 

the same training set derived from the PubChem AID: 1851 dataset. Two new approaches 

for extracting molecular features from compound structures were developed and 

investigated: 1) external featurization using Mordred, and 2) feature auto-extraction from 

the SMILES representation of the compounds’ structure using CNNs. The results of the 

featurization approaches showed that the random forests models based on external 

featurization performed significantly better than the 2D structure auto-extraction 

approach. However, its performance was only marginally better than the SMILES string 

auto-extraction technique which requires farther study and optimization. 

Two features: 1) the atom-bond connectivity index (ABC) and 2) the centered 

Moreau-Broto autocorrelation of lag 5 weighted by Allred-Rochow electronegativity 

(ATSC5are) were assigned the highest importance in all models based on external 

featurization. Additionally, all models based on external featurization share Graovac-

Ghorbani atom-bond connectivity index (ABCGG) and centered Moreau-Broto 

autocorrelation of lag 6 weighted by Allred-Rochow electronegativity (ATSC6are) as 

part of their top five features.  

All studied models performed well (greater than 75% accuracy) at classifying 

compounds as either inhibitors or non-inhibitors. Random forests and logistic regression 
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performed the best with accuracies of 0.834 and 0.832, respectively. Although, Random 

forests had a larger variance between the three cross validated folds. Support vector 

machine had the worst performance of the four approaches and a large variance between 

fold accuracies. The neural network approach had the most consistent accuracy measures 

between the three folds.  

All developed models were validated on the set of compounds published by the 

FDA. Logistic regression performed the best with 24 out of 33 compounds correctly 

classified as inhibitors, followed by both convolutional auto-extractor models correctly 

predicting 16, the random forests model predicting 13, the neural network model 

predicting 12, and the support vector machine model predicting only 7.  

The modeling methods implemented in this study are not limited to predicting 

only CYP3A4 inhibitors. Rather, they can learn to predict any activity for a given target. 

Possible model expansion can be achieved through adding more refined data labels and 

changing classification output from a binary case to a spectrum consisting of multiple 

labels, e.g. strong, medium, or weak inhibitors labels. These added classes could improve 

predictive power as compound activity may not be binary. Studied models can be 

expanded into predicting compound’s activity on a continuous scale yielding a numerical 

measure of compound’s potency towards a target. In addition to possible model 

improvements from refined labels, the number of compounds in the training dataset 

should be increased as well. It is important to ensure that new data is readily available for 

improved models as new compounds are tested in vitro and/or in vivo. Models could 
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continuously learn and improve their predictive power over time by connecting to a 

downstream data pipeline. 

 Research into model exploration tools could find important substructures within a 

compound. If the substructure is important for the binding task, it should be present more 

often in samples with high binding activities. Models such as the SMILES string auto-

extractor or the 2D structure auto-extractor can assign high weights to nodes relating to 

these substructures. This allows for diagnostic tools to explore models and discover 

highly weighted substructures within the compounds. 

 Predicting a compound’s potential to inhibit an enzyme such as CYP3A4 is 

important. However, adjusting the compound to remove inhibitory activity is another 

complicated but crucial step. A tool that generates potential compound derivates from a 

parent compound could be incorporated in predictive models. After generating all 

derivatives, each compound could have, for example, their CYP3A4 inhibition potential 

predicted. From these predictions, the tool can score each derivative and display them to 

a chemist for further considerations. A tool like this could assist with structural 

modification on drug candidates, allowing for chemists to find paths that remove or 

greatly diminish the inhibitory affects.  
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Appendix A 

Scripts 

featurized.py 
import os 
import re 
import numpy as np 
import pandas as pd 
from mordred import Calculator, descriptors 
from padelpy import padeldescriptor 
from rdkit import Chem 
from rdkit.Chem import AllChem 
from sklearn.preprocessing import OneHotEncoder 
from tqdm import notebook 
 
def generate_descriptors(smiles): 
    """ 
    Generate molecular descriptors using the Mordred package for a list of SMILE strings. 
    :param smiles: An iterable collection of SMILE strings. 
    :return: A pandas data frame of generated mordred descriptors by SMILE string. 
    """ 
    descriptors_table = np.ndarray((len(smiles), 1826), dtype=object) 
    print("Generating mordred descriptors:") 
    for index in notebook.tqdm(range(descriptors_table.shape[0])): 
        structure = smiles[index] 
        mol = Chem.MolFromSmiles(structure) 
        if mol is None: 
            descriptors_table[index, :] = [None] * 1826 
        else: 
            AllChem.EmbedMolecule(mol, useExpTorsionAnglePrefs=True, useBasicKnowledge=True) 
            descriptors_table[index, :] = Calculator(descriptors, ignore_3D=False)(mol).fill_missing() 
    return pd.DataFrame(descriptors_table, columns=Calculator(descriptors, ignore_3D=False).descriptors) 
 
def generate_fingerprints(smiles: pd.Series) -> pd.DataFrame: 
    """ 
    Generate PubChem fingerprints for a list of SMILE strings using PaDEL. 
    :param smiles: A pandas series of SMILE strings. 
    :return: A pandas data frame of PubChem fingerprint bits by SMILE string. 
    """ 
    print("Generating fingerprints:") 
    smiles.to_csv("temp_smiles.smi", index=False, header=False) 
    padeldescriptor(mol_dir="temp_smiles.smi",d_file="fingerprints.csv",fingerprints=True,retainorder=True) 
    fingerprints_table = pd.read_csv("fingerprints.csv").drop("Name", axis="columns") 
    os.remove("temp_smiles.smi") 
    os.remove("fingerprints.csv") 
    print("\tDone.\n") 
    return fingerprints_table 
 
def extract_smiles(smiles, max_length=250) -> np.ndarray: 
    """ 
    Extract a stack of one-hot encoded 2D matrices from a list of SMILE strings. 
    :param smiles: An iterable collection of SMILE strings. 
    :param max_length: The length of the SMILE string dimension, those shorter than this are 0-padded to this length. 
    :return: A 3-dimensional ndarray of (samples, smile positions, one-hot encoded features). 
    """ 
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    smile_list = [] 
    print("Extracting SMILE matrices:") 
    for smile in notebook.tqdm(smiles): 
        smile_list.append(__extract_smile_features(smile, max_length)) 
 
    return np.stack(smile_list) 
 
def extract_smile_structures(smiles, resolution=100, scale=(-15, 15)) -> np.ndarray: 
    """ 
    Extract a stack of 2-dimensional matricies from a list of SMILE strings. 
    :param smiles: An iterable collection of SMILE strings. 
    :return: A 4-dimensional ndarray of (samples, x-coordinates, y-coordinates, filters). 
    """ 
    mol_list = [] 
    print("Extracting 2D structures:") 
    for smile in notebook.tqdm(smiles): 
        matrix = None 
        mol = Chem.MolFromSmiles(smile) 
        if mol is not None: 
            mol.Compute2DCoords() 
            matrix = __extract_mol_structure(mol, 0, resolution, scale) 
        if matrix is None: 
            matrix = np.full((resolution, resolution, 2), -1, dtype='b') 
        mol_list.append(matrix) 
 
    return np.stack(mol_list) 
 
def __extract_atom_features(molecule, atom_index): 
    symbol_features = [] 
    atom = molecule.GetAtomWithIdx(atom_index) 
    symbol_features.append(atom.GetSymbol()) 
    symbol_features.append(atom.GetTotalNumHs()) 
    symbol_features.append(atom.GetTotalDegree()) 
    symbol_features.append(atom.GetFormalCharge()) 
    symbol_features.append(atom.GetTotalValence()) 
    symbol_features.append(atom.IsInRing() * 1) 
    symbol_features.append(atom.GetIsAromatic() * 1) 
    symbol_features.append(str(atom.GetChiralTag())) 
    symbol_features.append(str(atom.GetHybridization())) 
    symbol_features.append(0) 
    two_char_abbr_flag = True if len(atom.GetSymbol()) > 1 else False 
    return symbol_features, two_char_abbr_flag 
 
def __extract_smile_features(smile, max_length): 
    molecule = Chem.MolFromSmiles(smile) 
    ion_flag = False 
    two_char_abbr_flag = False 
    two_digit_ring_flag = False 
    ring_first_digit = 0 
    ring_indices = [] 
    atom_index = 0 
    smile_array = [] 
    if molecule: 
        for character in smile: 
            if re.match(r'[a-gi-z]', character, re.IGNORECASE): 
                if two_char_abbr_flag: 
                    two_char_abbr_flag = False 
                else: 
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                    symbol_features, two_char_abbr_flag = __extract_atom_features(molecule, atom_index) 
                    smile_array.append(symbol_features) 
                    atom_index += 1 
            elif re.match(r'[\\/.=#)(]', character): 
                symbol_features = [character, 0, 0, 0, 0, 0, 0, 'CHI_UNSPECIFIED', 'UNSPECIFIED', 0] 
                smile_array.append(symbol_features) 
            elif re.match(r'[+-]', character): 
                ion_flag = True 
            elif re.match(r']', character): 
                ion_flag = False 
            elif re.match(r'%', character): 
                two_digit_ring_flag = True 
            elif re.match(r'[0-9]', character): 
                if two_digit_ring_flag: 
                    if ring_first_digit == 0: 
                        ring_first_digit = character 
                        continue 
                    else: 
                        character = ring_first_digit + character 
                        ring_first_digit = 0 
                        two_digit_ring_flag = False 
                if not ion_flag: 
                    symbol_features = ['ring'] 
                    if character not in ring_indices: 
                        # Ring start. 
                        symbol_features.extend([0, 0, 0, 0, 0, 0, 'CHI_UNSPECIFIED', 'UNSPECIFIED', 1]) 
                        ring_indices.append(character) 
                    else: 
                        # Ring end. 
                        symbol_features.extend([0, 0, 0, 0, 0, 0, 'CHI_UNSPECIFIED', 'UNSPECIFIED', 2]) 
                    smile_array.append(symbol_features) 
    # 0-Padding 
    smile_array.extend([[0] * 10] * (max_length - len(smile_array))) 
    smile_array = pd.DataFrame(smile_array) 
 
    encoder = OneHotEncoder([['C', 'N', 'O', 'Br', 'Cl', 'F', 'P', 'S', 'ring', '(', ')', '/', '\\', '=', '#'], 
                             ['CHI_TETRAHEDRAL_CCW', 'CHI_TETRAHEDRAL_CW'], 
                             ['SP', 'SP2', 'SP3'], ['1', '2']], sparse=False, handle_unknown='ignore') 
 
    smile_array = np.concatenate([smile_array[[1, 2, 3, 4, 5, 6]].to_numpy(), 
                                  encoder.fit_transform(smile_array[[0, 7, 8, 9]].astype(str))], axis=1) 
    return smile_array 
 
def __extract_mol_structure(mol, conf_id, resolution, scale): 
    digitizer = {'SINGLE': 1, 'AROMATIC': 2, 'DOUBLE': 3, 'TRIPLE': 4, 'C': 6, 'N': 7, 'O': 8, 'F': 9, 'P': 15, 'S': 16, 
                           'Cl': 17, 'Br': 35, 'Other': 40} 
    pixel_scale = (scale[1] - scale[0]) / resolution 
    matrix = np.zeros((resolution, resolution, 2), dtype='b') 
 
    conformer = mol.GetConformer(conf_id) 
    for atom in mol.GetAtoms(): 
        symbol = atom.GetSymbol() 
        x = conformer.GetAtomPosition(atom.GetIdx()).x 
        y = conformer.GetAtomPosition(atom.GetIdx()).y 
        if x < scale[0] or x > scale[1] or y < scale[0] or y > scale[1]: 
            return None 
 
        j = int(np.floor((x - scale[0]) / pixel_scale)) 
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        i = int(np.floor((scale[1] - y) / pixel_scale)) 
        if symbol not in digitizer.keys(): 
            symbol = 'Other' 
 
        matrix[i, j, 0] = digitizer[symbol] 
 
    for bond in mol.GetBonds(): 
        bond_type = bond.GetBondType() 
        x_start = conformer.GetAtomPosition(bond.GetBeginAtomIdx()).x 
        y_start = conformer.GetAtomPosition(bond.GetBeginAtomIdx()).y 
        j_start = int(np.floor((x_start - scale[0]) / pixel_scale)) 
        i_start = int(np.floor((scale[1] - y_start) / pixel_scale)) 
        x_end = conformer.GetAtomPosition(bond.GetEndAtomIdx()).x 
        y_end = conformer.GetAtomPosition(bond.GetEndAtomIdx()).y 
        j_end = int(np.floor((x_end - scale[0]) / pixel_scale)) 
        i_end = int(np.floor((scale[1] - y_end) / pixel_scale)) 
        pixel_coords = __pixelate(i_start, j_start, i_end, j_end) 
        for pixel in pixel_coords[1:]: 
            matrix[pixel[0], pixel[1], 1] = digitizer[str(bond_type)] 
 
    return matrix 
 
def __pixelate(x0, y0, x1, y1): 
    pixel_coords = [] 
    if abs(y1 - y0) < abs(x1 - x0): 
        if x0 > x1: 
            x0, x1 = x1, x0 
            y0, y1 = y1, y0 
        dx = x1 - x0 
        dy = y1 - y0 
        yi = 1 
        if dy < 0: 
            yi = -1 
            dy = -dy 
        d = 2 * dy - dx 
        y = y0 
        for x in range(x0, x1): 
            pixel_coords.append((x, y)) 
            if d > 0: 
                y += yi 
                d -= 2 * dx 
            d += 2 * dy 
    else: 
        if y0 > y1: 
            x0, x1 = x1, x0 
            y0, y1 = y1, y0 
        dx = x1 - x0 
        dy = y1 - y0 
        xi = 1 
        if dx < 0: 
            xi = -1 
            dx = -dx 
        d = 2 * dx - dy 
        x = x0 
        for y in range(y0, y1): 
            pixel_coords.append((x, y)) 
            if d > 0: 
                x += xi 
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                d -= 2 * dy 
            d += 2 * dx 
 
    return pixel_coords 

 

export.py 
from joblib import dump 
from tensorflow.keras.wrappers.scikit_learn import KerasClassifier 
 
def export_model(score, classifier, x, y, filepath, study): 
    try: 
        if score > study.best_value: 
            __export_models(classifier, x, y, filepath) 
    except ValueError: 
        __export_models(classifier, x, y, filepath) 
 
def __export_models(classifier, x, y, filepath): 
    classifier.fit(x, y) 
    if type(classifier) == KerasClassifier: 
        classifier.model.save(filepath) 
    else: 
        dump(classifier, filepath) 

 

pubchem.py 
import numpy as np 
import requests 
 
 
def get_assay_results(aid, tids=None): 
    assay_results = [] 
    url = f'https://pubchem.ncbi.nlm.nih.gov/rest/pug/assay/aid/{aid}' 
    request = requests.get(f'{url}/sids/json') 
    sids = request.json()['InformationList']['Information'][0]['SID'] 
    limit = 10000 
    batches = [sids[i * limit:(i + 1) * limit] for i in range((len(sids) + limit - 1) // limit)] 
    for batch in batches: 
        request = requests.post(f'{url}/json', data={'sid': ','.join(map(str, batch))}) 
        data = request.json()['PC_AssaySubmit']['data'] 
        for compound in data: 
            if tids is None: 
                props = [list(prop['value'].values())[0] for prop in compound['data']] 
            else: 
                props = [list(prop['value'].values())[0] for prop in compound['data'] if prop['tid'] in tids] 
            assay_results.append([compound['sid']] + props) 
 
    return np.array(assay_results, dtype=object) 
 
 
def get_smile(sids): 
    url = f'https://pubchem.ncbi.nlm.nih.gov/rest/pug/assay/substance/sid/cids/json' 
    request = requests.post(url, data={'sid': ','.join(map(str, sids))}) 
    compounds = request.json()['InformationList']['Information'] 
    smile_table = np.ndarray((len(compounds), 2), dtype=object) 
    for index in range(smile_table.shape[0]): 
        smile_table[index, 0] = compounds[index]['CID'][0] if 'CID' in compounds[index] else None 
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    cids = smile_table[smile_table[:, 0] != None, 0].astype(int) 
    url = f'https://pubchem.ncbi.nlm.nih.gov/rest/pug/compound/cid/property/CanonicalSMILES/json' 
    request = requests.post(url, data={'cid': ','.join(map(str, cids))}) 
    smiles = request.json()['PropertyTable']['Properties'] 
    smiles_index = 0 
    for index in range(smile_table.shape[0]): 
        smile = smiles[smiles_index] 
        if smile_table[index, 0] == smile['CID']: 
            smile_table[index, 1] = smile['CanonicalSMILES'] 
            smiles_index += 1 
        else: 
            smile_table[index, 1] = None 
 
    return smile_table 
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Appendix B 

Data Retrieval 

import numpy as np 
import pandas as pd 
 
from featurize import generate_descriptors, generate_fingerprints, extract_smiles, extract_smile_structures 
from pubchem import get_assay_results, get_smile 
 
def create_labeled_dataset(): 
    assay_data = get_assay_results(aid='1851', tids={60, 68}) 
    assay_data = pd.DataFrame(assay_data, columns=['sid', 'score', 'curve_class'], dtype='object') 
 
    smiles = get_smile(sids=assay_data.iloc[:, 0].astype(int)) 
    smiles = pd.DataFrame(smiles, columns=['cid', 'smile']) 
 
    assay_data = pd.concat((smiles.smile, assay_data.iloc[:, [1, 2]]), axis=1).dropna() 
 
    inhibitor = assay_data.loc[(assay_data.score >= 40) & assay_data.curve_class.isin({-1.1, -1.2, -2.1}), ['smile']] 
    inhibitor['label'] = 'inhibitor' 
 
    noninhibitor = assay_data.loc[(assay_data.score == 0) & (assay_data.curve_class == 4), ['smile']] 
    noninhibitor['label'] = 'noninhibitor' 
 
    return pd.concat((inhibitor, noninhibitor), axis=0).drop_duplicates('smile').reset_index(drop=True) 
 
labeled_data = create_labeled_dataset() 
mordred_features = generate_descriptors(labeled_data.smile.to_list()) 
fingerprints = generate_fingerprints(labeled_data.smile) 
labeled_data = pd.concat([labeled_data, mordred_features, fingerprints], axis=1) 
labeled_data.to_csv('data/cyp3a4_labeled_data.csv', index=False) 
 
smile_features = extract_smiles(labeled_data.smile, max_length=250) 
np.save('data/cyp3a4_smile_features', smile_features) 
 
smile_structure = extract_smile_structures(labeled_data.smile, resolution=100, scale=(-15, 15)) 
np.save('data/cyp3a4_smile_structure', smile_structure) 
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Appendix C 

Models 

import numpy as np 
import pandas as pd 
import optuna 
import matplotlib.pyplot as plt 
from imblearn import over_sampling, under_sampling, pipeline 
from sklearn import ensemble, svm, linear_model, neural_network 
from sklearn import impute, feature_selection, preprocessing, model_selection 
from tensorflow.keras import Sequential, Input 
from tensorflow.keras.layers import Conv1D, Conv2D, Dense, Dropout, Flatten, BatchNormalization 
from tensorflow.keras.optimizers import Adam 
from tensorflow.keras.wrappers.scikit_learn import KerasClassifier 
 
from export import export_model 
 
df = pd.read_csv('data/cyp3a4_labeled_data.csv', low_memory=False) 
features = df.drop(['smile', 'label'], axis=1) 
smile_features = np.load('data/cyp3a4_smile_features.npy', allow_pickle=True) 
smile_structure = np.load('data/cyp3a4_smile_structure.npy', allow_pickle=True) 
labels = df.label.values.reshape(-1) 
 
db_path = 'sqlite:///data/p450_ml.db' 
best_scores = {'Logistic Regression': [], 'Random Forest': [], 'Support Vector Machine': [],  
                             'Neural Network': [], 'SMILE Auto-Extractor': [], 'Structure Auto-Extractor': []} 
 
def create_pipe(trial): 
    pipe = [] 
    pipe.append(impute.SimpleImputer()) 
    pipe.append(preprocessing.MinMaxScaler()) 
    pipe.append(feature_selection.VarianceThreshold(trial.suggest_uniform('var_thresh', 0, 0.25))) 
    balance = trial.suggest_int('balance', 0, 2) 
    if balance == 2: 
        pipe.append(over_sampling.SMOTE()) 
    elif balance == 1: 
        pipe.append(under_sampling.RandomUnderSampler()) 
 
    return pipe 
 
def log_score(scores, name): 
    try: 
        if scores.mean() > study.best_value:  
            best_scores[name] = scores 
    except ValueError: 
        best_scores[name] = scores 
 
def objective(trial): 
    pipe = create_pipe(trial) 
    pipe.append(linear_model.LogisticRegression(C=trial.suggest_loguniform('c', 1e-5, 1e5))) 
    classifier = pipeline.make_pipeline(*pipe) 
    scores = model_selection.cross_val_score(classifier, features, labels, scoring='accuracy', 
cv=model_selection.StratifiedKFold(3, shuffle=True), n_jobs=3) 
    log_score(scores, 'Logistic Regression') 
    export_model(scores.mean(), classifier, features, labels, 'models/lr-model.joblib', study) 
    return scores.mean() 



88 
 
 

 
study = optuna.create_study(study_name='lr', storage=db_path, direction='maximize', load_if_exists=True) 
study.optimize(objective, n_trials=50) 
 
fig = optuna.visualization.plot_optimization_history(study) 
fig.show() 
fig = optuna.visualization.plot_slice(study) 
fig.show() 
 
def objective(trial): 
    pipe = create_pipe(trial) 
    pipe.append(ensemble.RandomForestClassifier(max_features=trial.suggest_loguniform('max_features', 0.01, 
1), n_estimators=trial.suggest_int('n_estimators', 1, 1000))) 
    classifier = make_pipeline(*pipe) 
    scores = model_selection.cross_val_score(classifier, features, labels, scoring='accuracy', 
cv=model_selection.StratifiedKFold(3, shuffle=True), n_jobs=3) 
    log_score(scores, 'Random Forest') 
    export_model(scores.mean(), classifier, features, labels, 'models/rf-model.joblib', study) 
    return scores.mean() 
 
study = optuna.create_study(study_name='rf', storage=db_path, direction='maximize', load_if_exists=True) 
study.optimize(objective, n_trials=50) 
fig = optuna.visualization.plot_optimization_history(study) 
fig.show() 
fig = optuna.visualization.plot_slice(study) 
fig.show() 
 
def objective(trial): 
    pipe = create_pipe(trial) 
    pipe.append(svm.SVC(C=trial.suggest_loguniform('c', 1e-5, 1e5), gamma=trial.suggest_loguniform('gamma', 
1e-5, 1e5), probability=True)) 
    classifier = make_pipeline(*pipe) 
    scores = model_selection.cross_val_score(classifier, features, labels, scoring='accuracy', 
cv=model_selection.StratifiedKFold(3, shuffle=True), n_jobs=3) 
    log_score(scores, 'Support Vector Machine') 
    export_model(scores.mean(), classifier, features, labels, 'models/svm-model.joblib', study) 
    return scores.mean() 
 
study = optuna.create_study(study_name='svm', storage=db_path, direction='maximize', load_if_exists=True) 
study.optimize(objective, n_trials=15) 
fig = optuna.visualization.plot_optimization_history(study) 
fig.show() 
fig = optuna.visualization.plot_slice(study) 
fig.show() 
 
def objective(trial): 
    pipe = create_pipe(trial) 
    layers = [] 
    for i in range(trial.suggest_int('layers', 1, 3)): 
        n_units = trial.suggest_int(f'units_{i}', 1, 300) 
        layers.append(n_units) 
 
    pipe.append(neural_network.MLPClassifier(hidden_layer_sizes=tuple(layers), 
                                                                                          alpha=trial.suggest_loguniform('alpha', 1e-10, 1e10))) 
    classifier = make_pipeline(*pipe) 
    scores = model_selection.cross_val_score(classifier, features, labels, scoring='accuracy', 
                                                                                     cv=model_selection.StratifiedKFold(3, shuffle=True), n_jobs=3) 
    log_score(scores, 'Neural Network') 
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    export_model(scores.mean(), classifier, features, labels, 'models/nn-model.joblib', study) 
    return scores.mean() 
 
study = optuna.create_study(study_name='nn', storage=db_path, direction='maximize', load_if_exists=True) 
study.optimize(objective, n_trials=50) 
fig = optuna.visualization.plot_optimization_history(study) 
fig.show() 
fig = optuna.visualization.plot_slice(study) 
fig.show() 
 
def build_cnn_model_1d(cnn_layers=(64, 3, 1, 0.4), dense_layers=(32, 0.4), learning_rate=0.001, 
                                                shape=(250, 28)): 
    model = Sequential() 
    model.add(Input(shape=shape)) 
 
    for layer in cnn_layers: 
        model.add(Conv1D(filters=layer[0], kernel_size=layer[1], strides=layer[2], activation='relu')) 
        model.add(BatchNormalization(axis=2)) 
        if layer[3] > 0: 
            model.add(Dropout(layer[3])) 
 
    model.add(Flatten()) 
 
    for layer in dense_layers: 
        model.add(Dense(units=layer[0], activation='relu')) 
        model.add(BatchNormalization(axis=1)) 
        if layer[1] > 0: 
            model.add(Dropout(layer[1])) 
 
    model.add(Dense(units=1, activation='sigmoid')) 
    model.compile(optimizer=Adam(lr=learning_rate), loss="binary_crossentropy", metrics=["accuracy"]) 
 
    return model 
 
def objective(trial): 
    cnn_layers = [] 
    for i in range(trial.suggest_int('cnn_layers', 1, 2)): 
        filters = trial.suggest_int(f'filter_{i}', 1, 50) 
        kernel = trial.suggest_int(f'kernel_{i}', 1, 5) 
        stride = trial.suggest_int(f'stride_{i}', 1, 5) 
        dropout = trial.suggest_uniform(f'dropout_cnn_{i}', 0.2, 0.5) 
        cnn_layers.append((filters, kernel, stride, dropout)) 
 
    dense_layers = [] 
    for i in range(trial.suggest_int('dense_layers', 0, 1)): 
        n_units = trial.suggest_int(f'unit_{i}', 1, 50) 
        dropout = trial.suggest_uniform(f'dropout_nn_{i}', 0.2, 0.5) 
        dense_layers.append((n_units, dropout)) 
     
    classifier = KerasClassifier(build_fn=build_cnn_model_1d, epochs=100, batch_size=32, learning_rate=0.0005,  
                                                        verbose=0, cnn_layers=tuple(cnn_layers), dense_layers=tuple(dense_layers)) 
 
    scores = model_selection.cross_val_score(classifier, smile_features, labels, scoring='accuracy',   
                                                                                     cv=model_selection.StratifiedKFold(3, shuffle=True)) 
    log_score(scores, 'SMILE Auto-Extractor') 
    export_model(scores.mean(), classifier, smile_features, labels, 'models/cnn-model.h5', study) 
    return scores.mean() 
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study = optuna.create_study(study_name='cnn', storage=db_path, direction='maximize', load_if_exists=True) 
study.optimize(objective, n_trials=50) 
fig = optuna.visualization.plot_optimization_history(study) 
fig.show() 
fig = optuna.visualization.plot_slice(study) 
fig.show() 
 
def build_cnn_model_2d(cnn_layers=(64, 3, 1, 0.4), dense_layers=(32, 0.4), learning_rate=0.001,  
                                                shape=(100, 100, 2)): 
    model = Sequential() 
    model.add(Input(shape=shape)) 
 
    for layer in cnn_layers: 
        model.add(Conv2D(filters=layer[0], kernel_size=layer[1], strides=layer[2], padding="same",  
                                               activation='relu')) 
        model.add(BatchNormalization(axis=2)) 
        if layer[3] > 0: 
            model.add(Dropout(layer[3])) 
 
    model.add(Flatten()) 
 
    for layer in dense_layers: 
        model.add(Dense(units=layer[0], activation='relu')) 
        model.add(BatchNormalization(axis=1)) 
        if layer[1] > 0: 
            model.add(Dropout(layer[1])) 
 
    model.add(Dense(units=1, activation='sigmoid')) 
    model.compile(optimizer=Adam(lr=learning_rate), loss="binary_crossentropy", metrics=["accuracy"]) 
 
    return model 
 
def objective(trial): 
    cnn_layers = [] 
    for i in range(trial.suggest_int('cnn_layers', 1, 6)): 
        filters = trial.suggest_int(f'filter_{i}', 1, 20) 
        kernel = trial.suggest_int(f'kernel_{i}', 1, 25) 
        stride = trial.suggest_int(f'stride_{i}', 1, 5) 
        dropout = trial.suggest_uniform(f'dropout_cnn_{i}', 0.2, 0.7) 
        cnn_layers.append((filters, kernel, stride, dropout)) 
 
    dense_layers = [] 
    for i in range(trial.suggest_int('dense_layers', 0, 1)): 
        n_units = trial.suggest_int(f'unit_{i}', 75, 250) 
        dropout = trial.suggest_uniform(f'dropout_nn_{i}', 0, 0.5) 
        dense_layers.append((n_units, dropout)) 
     
    classifier = KerasClassifier(build_fn=build_cnn_model_2d, epochs=75, batch_size=64, learning_rate=0.001,  
                                                        verbose=0, cnn_layers=tuple(cnn_layers), dense_layers=tuple(dense_layers)) 
 
    scores = model_selection.cross_val_score(classifier, smile_structure, labels, scoring='accuracy',  
                                                                                     cv=model_selection.StratifiedKFold(3, shuffle=True)) 
    log_score(scores, 'Structure Auto-Extractor') 
    export_model(scores.mean(), classifier, smile_structure, labels, 'models/2d-cnn-model.h5', study) 
    return scores.mean() 
 
study = optuna.create_study(study_name='2d-cnn', storage=db_path, direction='maximize',load_if_exists=True) 
study.optimize(objective, n_trials=50) 
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fig = optuna.visualization.plot_optimization_history(study) 
fig.show() 
fig = optuna.visualization.plot_slice(study) 
fig.show() 
 
scores = list(best_scores.values())[:4] 
labels = list(best_scores.keys())[:4] 
 
plt.figure(figsize=(6, 3), dpi=300) 
plt.rcParams.update({'font.size': 7}) 
plt.xticks(rotation=0) 
plt.ylim(0.74, 0.86) 
plt.ylabel('3-Fold Cross-Validation Accuracy') 
plt.boxplot(scores, labels=labels, boxprops={"linewidth": 0.8},  
                       medianprops={"color": 'black', "linewidth": 0.8},  
                       whiskerprops={"linewidth": 0.8}, capprops={"linewidth": 0.8}) 
for i in range(len(scores)): 
    y = scores[i] 
    x = np.random.normal(i+0.7, 0, size=len(y)) 
    plt.plot(x, y, 'k.', markersize=2) 
plt.savefig('images/cv_accuracies_standard.svg') 
 
scores = list(best_scores.values()) 
scores = [scores[i] for i in [1, 4, 5]] 
labels = list(best_scores.keys()) 
labels = [labels[i] for i in [1, 4, 5]] 
plt.figure(figsize=(6, 3), dpi=300) 
plt.rcParams.update({'font.size': 7}) 
plt.xticks(rotation=0) 
plt.ylim(0.74, 0.86) 
plt.ylabel('3-Fold Cross-Validation Accuracy') 
plt.boxplot(scores, labels=labels, boxprops={"linewidth": 0.8},  
                       medianprops={"color": 'black', "linewidth": 0.8},  
                       whiskerprops={"linewidth": 0.8}, capprops={"linewidth": 0.8}) 
for i in range(len(scores)): 
    y = scores[i] 
    x = np.random.normal(i+0.7, 0, size=len(y)) 
    plt.plot(x, y, 'k.', markersize=2) 
plt.savefig('images/cv_accuracies_auto_extract.svg') 
 
study = optuna.load_study(study_name='lr', storage=db_path) 
study.best_params 
 
study = optuna.load_study(study_name='rf', storage=db_path) 
study.best_params 
 
study = optuna.load_study(study_name='svm', storage=db_path) 
study.best_params 
 
study = optuna.load_study(study_name='nn', storage=db_path) 
study.best_params 
 
study = optuna.load_study(study_name='cnn', storage=db_path) 
study.best_params 
 
study = optuna.load_study(study_name='2d-cnn', storage=db_path) 
study.best_params 
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Appendix D 

Exploration 

import pandas as pd 
import matplotlib.pyplot as plt 
from joblib import load 
import shap 
import os 
import warnings   
warnings.filterwarnings('ignore') 
 
df = pd.read_csv('data/cyp3a4_labeled_data.csv', low_memory=False) 
features = df.drop(['smile', 'label'], axis=1).astype(float) 
 
def adjust_plot(title, colorbar_label): 
    plt.title(title, fontsize=11) 
    ax = plt.gcf().axes[0] 
    for label in (ax.get_xticklabels() + ax.get_yticklabels()): 
        label.set_fontsize(8) 
    for label in [ax.xaxis.label, ax.yaxis.label]: 
        label.set_fontsize(10) 
    ax = plt.gcf().axes[1] 
    for label in (ax.get_yticklabels()): 
        label.set_fontsize(8) 
    if colorbar_label: 
        ax.yaxis.label.set_fontsize(10) 
    else: 
        ax.set_ylabel('')             
    plt.tight_layout() 
 
def shap_feature_importance(features, model, title, save_path, sample_size=100): 
    samples = shap.sample(features, sample_size) 
    explainer = shap.KernelExplainer(model.predict_proba, samples) 
    shap_values = explainer.shap_values(samples, nsamples=5, l1_reg="aic") 
    shap.summary_plot(shap_values[0], samples, feature_names=samples.columns, max_display=5, 
                                           plot_size=(6, 2), show=False) 
    plt.xlabel('SHAP Value') 
    adjust_plot(title, False) 
    plt.savefig(f"{save_path}_feature_importance.svg", dpi=300) 
    plt.show() 
    shap.dependence_plot('rank(0)', shap_values[0], samples, interaction_index='rank(1)', show=False) 
    adjust_plot(title, True) 
    plt.savefig(f"{save_path}_dependence.svg", dpi=300) 
    plt.show() 
 
titles = ['Logistic Regression', 'Neural Network', 'Random Forest', 'Support Vector Machine'] 
model_paths = os.listdir('models') 
index = 0 
for model_path in model_paths: 
    if '.h5' in model_path: 
        pass 
    else: 
        model = load(f'models/{model_path}') 
        print(model_path) 
        shap_feature_importance(features, model, titles[index], f"images/{model_path.split('.')[0]}") 
        index += 1 
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Appendix E 

Test 

import os 
import numpy as np 
import pandas as pd 
import plotly.figure_factory as ff 
import plotly.graph_objects as go 
import matplotlib.pyplot as plt 
import shap 
from joblib import load 
from tensorflow.keras.models import load_model 
from featurize import generate_descriptors, generate_fingerprints, extract_smiles, extract_smile_structures 
shap.initjs() 
import warnings   
warnings.filterwarnings('ignore') 
 
test_set = pd.read_csv('data/fda_test.csv', low_memory=False) 
mordred_features = generate_descriptors(test_set.smile.to_list()) 
fingerprints = generate_fingerprints(test_set.smile) 
test_set = pd.concat([test_set, mordred_features, fingerprints], axis=1) 
features = test_set.drop(['name', 'smile', 'type'], axis=1).astype(float) 
smile_features = extract_smiles(test_set.smile, max_length=250).astype(float) 
smile_structure = extract_smile_structures(test_set.smile, resolution=100, scale=(-15, 15)).astype(float) 
meta = test_set[['name', 'type']] 
 
def image_plot(shap_values, labels, figsize): 
    fig, axes = plt.subplots(nrows=shap_values.shape[0], ncols=1, figsize=figsize) 
    for row in range(shap_values.shape[0]): 
        abs_vals = np.abs(shap_values.sum(-1)).flatten() 
        max_val = np.nanpercentile(abs_vals, 99.9) 
        axes[row].set_title(labels[row], fontsize=11) 
        sv = shap_values[row].sum(-1) 
        im = axes[row].imshow(sv, cmap=shap.plots.colors.red_transparent_blue, vmin=-max_val, vmax=max_val) 
        for label in (axes[row].get_xticklabels() + axes[row].get_yticklabels()): 
            label.set_fontsize(8) 
    fig.subplots_adjust(wspace=0, hspace=0.3) 
    cb = fig.colorbar(im, ax=np.ravel(axes).tolist(), label="SHAP value", orientation="horizontal",  
                                      aspect=figsize[0]/0.2, pad=0.08) 
    cb.ax.xaxis.label.set_fontsize(10) 
    for label in (cb.ax.get_xticklabels()): 
        label.set_fontsize(8) 
    cb.outline.set_visible(False) 
 
def plot_radar(values_best, values_worse, categories): 
    fig = go.Figure() 
    fig.add_trace(go.Scatterpolar(r=values_best, theta=categories, fill='toself', name='Best Prediction')) 
    fig.add_trace(go.Scatterpolar(r=values_worse, theta=categories, fill='toself', name='Worse Prediction')) 
    fig.update_layout(showlegend=True, autosize=False, width=500, height=500) 
    fig.show() 
model_paths = os.listdir('models') 
results = np.ndarray((meta.shape[0] * len(model_paths), 4), dtype=object) 
for model_index, model_path in enumerate(model_paths): 
    print(model_path) 
    if '.h5' in model_path: 
        model = load_model(f'models/{model_path}') 
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        if '2d' in model_path: 
            predictions = model.predict_proba(smile_structure)[:, 0] 
            sorted_indices = np.argsort(predictions, axis=0) 
            index = [sorted_indices[-1], sorted_indices[1]] 
            explainer = shap.GradientExplainer(model, smile_structure) 
            shap_values = explainer.shap_values(smile_structure) 
            plt.figure(figsize=(2.5, 2.5)) 
            plt.matshow(np.amax(smile_structure[index[0],:,:,:], 2), cmap=plt.cm.gray_r, fignum=1) 
            plt.savefig(f"images/example_structure_1.svg", dpi=300) 
            plt.figure(figsize=(2.5, 2.5)) 
            plt.matshow(np.amax(smile_structure[index[1],:,:,:], 2), cmap=plt.cm.gray_r, fignum=2) 
            plt.savefig(f"images/example_structure_2.svg", dpi=300) 
            image_plot(shap_values[0][index], meta.name[index].values, figsize=(3,8)) 
            plt.savefig(f"images/2d_shap.svg", dpi=300) 
            plt.show() 
        else: 
            predictions = model.predict_proba(smile_features)[:, 0] 
    else: 
        model = load(f'models/{model_path}') 
        predictions = model.predict_proba(features)[:, 0] 
        sorted_indices = np.argsort(predictions, axis=0) 
        index = [sorted_indices[-1], sorted_indices[1]] 
        explainer = shap.KernelExplainer(model.predict_proba, features) 
        shap_values = explainer.shap_values(features, nsamples=50) 
        best = True 
        for i in index: 
            print(meta.name[i]) 
            shap.force_plot(explainer.expected_value[0], shap_values[0][i,:], features.iloc[i,:].values, 
                       list(features.columns.astype(str)),  matplotlib=True, show=False, figsize=(20, 3.5), text_rotation=10) 
            plt.title(meta.name[i], fontsize=12) 
            plt.tight_layout() 
            plt.savefig(f"images/{model_path.split('.')[0]}_force_{'best' if best else 'worst'}.svg", dpi=300) 
            plt.show() 
            best = False 
    for pred_index, pred in enumerate(predictions): 
        index = pred_index + (meta.shape[0] * model_index) 
        results[index, :] = [meta.iloc[pred_index, 0], meta.iloc[pred_index, 1], model_path.split('-')[0], pred] 
results = pd.DataFrame(results, columns=['name', 'type', 'model', 'inhibitor_conf']) 
heatmap = None 
for strength in ['strong', 'moderate', 'weak']: 
    temp = results[results.type == strength] 
    temp = temp.pivot(index='name', columns='model', values='inhibitor_conf').reset_index() 
    temp['name'] = temp.name + ' [' + strength + ']' 
    heatmap = pd.concat([heatmap, temp]) 
plt.figure(figsize=(6, 6)) 
plt.rcParams.update({'font.size': 7}) 
x = ['CNN Structure', 'CNN SMILE', 'LR', 'NN', 'RF', 'SVM'] 
y = heatmap['name'].to_list() 
z = heatmap.values[:, 1:].astype(float) 
im = plt.imshow(z, aspect='auto') 
plt.xticks(np.arange(len(x)), x) 
plt.yticks(np.arange(len(y)), y) 
for i in range(len(y)): 
    for j in range(len(x)): 
        text = plt.text(j, i, round(z[i, j], 2), ha="center", va="center", color="w") 
plt.tight_layout() 
plt.savefig(f"images/fda_test.svg", dpi=300) 
plt.show() 
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