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Abstract 

Mark F. Vail 
REMEDIATION OF DESSICATION CRACKING IN CLAYEY SOILS THROUGH 

BIO-CEMENTATION AND BOTTOM ASH ADMIXTURE 
2019-2020 

Dr. Cheng Zhu Ph.D 
Master of Science in Civil Engineering 

 

Desiccation cracking considerably impairs the hydraulic and mechanical properties 

of clayey soils and is critical to the long-term performance of infrastructure foundations 

and earth structures. Classical crack remediation methods are associated with high labor 

and maintenance costs or the usage of environment-unfriendly chemicals. Recycling waste 

materials and developing bio-mediated techniques have emerged as green and sustainable 

soil stabilization solutions. The objective of this study is to investigate the feasibility of 

soil crack remediation through the usage of microbial-induced calcite precipitation (MICP) 

and bottom ash admixtures. We carry out monotonic drying and cyclic drying-wetting tests 

to characterize the effects of bottom ash and MICP on the desiccation cracking of clayey 

soils. The desiccation cracking patterns captured by a high-resolution camera are quantified 

using image processing and digital image correlation techniques. We also resort to 

scanning electron microscopy for microstructural characterizations. MICP treatment 

improves the soil strength due to the precipitation of calcite crystals on soil particle surface 

and inside inter-particle pores. Adding bottom ash into clay reduces the plasticity of the 

mixture, promotes the flocculation of clay particles by cation exchange, and also provides 

soluble calcium to enhance calcite precipitations. This study demonstrates the potential of 

using bottom ash and MICP for crack remediation and brings new insights into the design 

and assessment of sustainable infrastructures under climate changes. 
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Chapter 1 

Introduction 

Background 

Geological waste disposal is a globally preferred method for storing high-level 

radioactive waste. Municipal waste landfills remain the most common method of waste 

treatment worldwide. To ensure the long-term isolation of these geostorage systems, 

bentonite has been a favorable choice for buffering and backfilling because of its low 

permeability, high swelling, and high radionuclide retardation capabilities [1, 2]. Under 

drying or heated environment, soil moisture content decreases, and total volume shrinks. 

The resulting progressive formation of desiccation cracks imposes substantial negative 

impacts on the mechanical and hydraulic behaviors of clayey soils. These cracks 

undermine the mechanical integrity of the soil structure and cause a considerable 

weakening in soil strength [3, 4]. The extensive crack network formed by crack 

propagation and coalescence provides the dominant conductive pathways for fluid 

migration, resulting in an increase in the hydraulic conductivity of clayey soils by several 

orders of magnitude [5, 6], which is critical to the isolation functionality of the 

geostorage system [7]. The degradation of clayey soil properties due to the presence of 

desiccation cracks under climate changes is responsible for many geohazards, such as 

slope failure [8], embankment failure [9], and foundation and dam failure [10].  

Research efforts have been dedicated to the development of soil improvement 

techniques for the remediation of desiccation cracking. Classical methods include 

mechanical and physical improvement by compaction control, surcharge loading, or soil 
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replacement, which are usually associated with high labor, high cost, and reduced long-

term serviceability [11]. Chemical agents such as cement and lime have been used to reduce 

the shrinkage potential and suppress the crack development in soils [12, 13]. However, 

lime or cement additives did not completely suppress the soil desiccation cracking when 

the initial water content was high, and more importantly, might harm plant growth and 

cause irreversible environmental concerns [14]. The addition of fiber reinforcement has 

been adopted by a number of researchers in the past few decades (e.g., [15, 16]). Research 

results reveal that fiber inclusions significantly reduce the number of desiccation cracks in 

clayey soils. However, it remains challenging to minimize the agglomeration of fiber 

materials during mixing, especially at field scales[17]. These issues contribute to the 

necessity to develop a novel technology for soil crack remediation.  

MICP. Microbial-induced calcite precipitation (MICP) has emerged in recent years 

as a potential solution for soil improvement. As a natural biological process, MICP is 

environment-friendly and low-maintenance based [18-20]. The fundamental mechanism of 

MICP can be characterized by the following equations, corresponding to two steps, 

respectively: (1) urea is hydrolyzed by microbial urease to form ammonium and carbonate 

ions; (2) the free calcium ions will react with the previously formed carbonate ions to 

generate calcite precipitations.  

CH4N2O + 2H2O urease 
௨௥௘௔௦௘
ሱ⎯⎯⎯ሮ 2NH4

+ + CO3
2-                                                                    (1.1)  

Ca2+ + CO3
2-

 → CaCO3 ↓                                                                                                  (1.2) 

The addition of MICP has shown to biocement soil particles together. The calcite 

crystals formed from the MICP reaction engulf nearby soil particles together creating the 
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biocementation effect. This biocementation effect enhances the structural stability and 

decreases the permeability in sand mixed with MICP [18, 21]. MICP mixed with sand is 

able to form sand columns showing a homogenous solution between the MICP reaction 

and soil particles. These significant impacts allow for further investigation of MICP mixed 

with other soils 

Typical geotechnical applications of MICP include the cementation of sands to 

enhance bearing capacity and liquefaction resistance[18] , soil erosion control [21], 

cracking healing in concrete and masonry [22], and remediation of radionuclide- and metal-

contaminated soil [23]. So far, most research has focused on sand, whereas few studies 

have been reported on clayey soils. The main limiting factor lies in the small pore-throat 

size among clay soil particles that restrain the bacteria from passing freely [24]. Cheng and 

Shahin [25] used clayey sand with up to 20% clay content and assessed three MICP 

treatment methods including injection, premixing, and diffusion. Cardoso et al. [26] carried 

out oedometer and Brazilian splitting tests to characterize the biocementation effect on 

clayey sand and highlighted the importance of chemical effects originated from the clay 

fraction on soil behavior. Li et al. [27] blended fly ash at different concentrations into the 

MICP-treated expansive soil and showed that biocement and fly ash contributed jointly to 

the soil improvement. Guo et al. [28] demonstrated the potential benefit of MICP in 

remediating bentonite’s desiccation cracking in the lab scale, and compared the cracking 

pattern based on visual observations. Most abovementioned studies only focus on the 

influences of MICP on the physical and mechanical properties of clayey soils, whereas 

there is still lack of knowledge in the quantitative analysis of the desiccation cracking 

behaviors of MICP-treated soils. 
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Bottom ash admixture. The usage of coal source for electricity generation leads 

to the production of an abundant quantity of coal ashes, including fly ash and bottom ash. 

Utilizing these waste materials significantly lowers the cost and contributes to the 

conservation of natural resources. A substantial amount of fly ash has been harnessed in 

the areas of geotechnical infrastructure, pavement, and roadway constructions [29]. 

However, due to the unique characteristics such as irregular shape, high porosity, low 

abrasion resistance, and potential to leach toxic trace elements, the utilization of bottom 

ash as an admixture is still restricted[30], with the primary use in the form of replacing 

soils and gravels for embankments, structural fill, road construction, concrete and other 

cement products. The potential impact of bottom ash admixtures on the volumetric 

shrinkage and desiccation cracking of clayey soils subjected to wetting-drying cycles 

remains poorly understood.  

Combining bottom ash admixture and MICP solution into clay soils also is poorly 

understood. The combining effects will have unique impacts on the soil, and it is important 

to isolate the effects of each remediation technique. MICP solution is expected to add a 

biocementation effect onto the soil, as bottom ash is expected to reduce the plasticity of the 

soil through cation exchange and the agglomeration and flocculation of particles[31, 32]. 

Clay particles are surrounded by a diffuse hydrous double layer which is modified by the 

ion exchange of calcium. This alters the density of the electrical charge around the clay 

particles, which leads to the enhanced attraction and the formation of flocs, and eventually 

changes the soil texture [32, 33]. The negatively charged clay particles are engulfed by a 

diffuse hydrous layer that is altered due to the addition of positive ions such as calcium or 

other heavy metals. This alters the density of the soil particles and the electrical charge 
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surrounding each particle [33]. This leads to an enhanced attraction among particles and 

the begin to flocculate and agglomerate together. The particles gain more stability and 

bonding strength between the particles, and also limits the potential of soil expansion [31-

33]. The exploration of these two effects simultaneously remediating desiccation cracking 

is yet to be fully quantified and analyzed  

 Image analysis and digital image correlation. Cracking behavior is difficult to 

predict and prevent. In general, crack branches join together and create crack networks, but 

initial cracking is difficult to determine [34]. Lab scale testing of desiccation cracking is 

exposed to the boundary and shape effects of the testing area. The understanding of the 

interaction between soil and testing surface is essential to characterize crack behavior. Most 

studies use petri dishes to study the desiccation cracking of soil. This implies the edges of 

the dish and bottom of the dish are fixed. These conditions affect the cracking behavior of 

the soil, and it is important to acknowledge these factors when studying crack formation. 

The relationship between the soil and boundaries of the petri dish is essential to 

understanding initial crack behavior in the lab scale. [35] The friction between the soil and 

petri dish edge determine the boundary impacts on cracking behavior. The petri dish 

typically represents a smooth surface, and the soil is a rougher surface. Higher surface 

friction between the soil and petri dish results in less shrinkage area [35].  A smooth soil 

surface will result in more shrinkage area of the soil sample due to the ability of the soil to 

expand easier. The interaction between the walls and soil are also very influential to the 

crack patter. Cracks typically initiate from voids between the soils and walls of the 

boundary [36]. These cracks grow as water evaporates and eventually branch out onto the 
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soil surface. Image processing can be used to isolate these boundary conditions and explain 

other factors of the cracking phenomenon. 

Using Digital Image Correlation (DIC), obtaining real-time radial displacement and 

minor principal strain is possible [37]. DIC uses the pixels of an original image and 

compares its location to the pixels of later images. Pixels are grouped together to form the 

studied area of interest (AOI). This original image represents zero displacement or strain, 

but as the drying process continues and cracking begins. The small groups of pixels begin 

to move or shift from their location in the original image. This change is captured using 

Digital Image Correlation and is represented as radial displacement or minor principle 

strain. This real time analysis allows for strain and displacement data without knowing the 

magnitude of the shrinkage forces being exerted on the soil sample [38].  DIC analysis 

allows for insight into soil behavior and crack formation during the drying process. 

 The following study aims to explore the potential of remediating desiccation 

cracking in clayey soils through the addition of MICP and bottom ash admixture. The 

structure of the defense is organized as follows. Chapter 2 discusses the hypothesis of this 

research and the overall objectives of the study, followed by Chapter 3 discussing the 

analysis of bentonite soil samples hand-mixed with MICP solution to determine and 

quantify the remediation effects of MICP. Chapter 4 includes the analysis of bentonite soil 

samples mixed with bottom ash undergoing cyclic treatments of MICP solution. This 

replicates the typical wetting-drying cycle behavior of field soil and examines the impacts 

of MICP once desiccation cracking has formed. Chapter 5 includes the analysis of the 

desiccation cracking of sandy clay soil samples mixed with bottom ash through Digital 

Image Correlation. This shows the remediation impacts of bottom ash, as well as, insight 
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into the crack propagation process. A summary of findings is included in chapter 6 

describing the results of each experiment and exploring future expansion of this research. 
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Chapter 2 

Research Objectives 

Problem Statement  

Desiccation cracking significantly decreases the structural integrity of clayey soils and is 

detrimental to the lifespan of many geotechnical structures. The prevention and repair of 

desiccation cracking would increase the serviceability of structures above clayey soil  

Research Hypothesis 

1. The additions of bio-cementation solution and bottom ash admixture can remediate 

desiccation cracking in clay soils. 

2. The detailed analysis using image processing tools can lead to a better 

understanding of crack network propagation and the behavior of soil under wetting 

and drying conditions. 

Objectives of Study 

The primary focus of this thesis is the remediation of desiccation cracking in clayey 

soil. The desiccation cracking is analyzed through the study of crack formations over time 

using image processing and other tools to quantify and compare crack segments. The 

effectiveness of crack remediation techniques can be observed visually and quantitatively 

throughout this study. The paragraphs below describe the research objectives of the 

following chapters.  

Chapter 3 discusses the addition of an environmentally friendly and cost-effective 

remediation technique of desiccation cracking in clay soils known as MICP. MICP has 
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been rarely studied in clay soils due to the small pore sizes that may limit the effectiveness 

of the treatment. This study intends to show the feasibility of using MICP as a remediation 

method through hand mixing in bentonite clay. The reduction of desiccation crack area 

would show MICP has an impact on the soil structure and creates a stronger bonding 

strength between particles. Using a crack image analysis software, different crack 

parameters can be measured and used to understand better desiccation cracking formation 

and remediation. This chapter also compares the desiccation cracking of different ratios of 

MICP solutions and the impact each ingredient has on individual bentonite clay samples. 

This study aims to characterize the effect of MICP on the remediation of desiccation 

cracking in bentonite soils. To overcome the difficulty of fluid migration in low-

permeability bentonite, we mixed bentonite with different percentages of bacteria and 

cementation solutions and prepared six types of soil samples. Other stabilizing agents are 

not considered in this study to eliminate potential influences on the results. Desiccation 

drying tests were carried out, with cracking morphology captured by a high-resolution 

camera and quantified through image processing.  

 Chapter 4 discusses the lab-scale application of the MICP injection technique, and 

the effect the addition of bottom ash admixture has on desiccation cracking. Bentonite 

samples are subjected to MICP treatments and Water Treatments to replicate wetting 

drying cycles that occur naturally in the field. This comparison shows the significant 

impacts of MICP injection and its inherent healing capabilities through cyclic treatments. 

Bentonite is mixed with bottom ash to determine the effect of the admixture on desiccation 

cracking. This chapter focuses on the combination of bottom ash and MICP injection 

treatments to remediate desiccation cracking. 
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 The understanding of wetting and drying cycles is essential to the understanding of 

desiccation cracking as this is the typical lifespan of clayey soils exposed to the 

atmosphere. This experiment focuses on the comparison between water injected samples 

(Control) and MICP injected samples (Test). Direct insight into the remediation effects of 

bottom ash and MICP injection treatments is shown in chapter 4. 

 Chapter 5 analyzes the desiccation cracking in sandy clay soil. This would be 

considered a more field applicable soil. This analysis is conducted using Crack Image 

Analysis Software (CIAS) and Digital Image Correlation. Bottom ash admixture is again 

added to the soil to measure its impact further. The real-time crack analysis shows insight 

into future crack patterns and allows for detailed comparisons of minor principal strain and 

radial displacement. This comparison highlights the impacts of bottom ash in remediating 

desiccation cracking and the impact it has on crack formation.  
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Chapter 3 

Desiccation Cracking Behavior of MICP-Treated Bentonite 

Materials and Methodology 

Soil. This study uses the calcium bentonite clay provided by Bulk Apothecary Inc. 

for testing. We performed sieve analysis and hydrometer analysis to get grain size 

distributions, and Atterberg limit tests to determine the soil plasticity. Table 1 summarizes 

the physical properties of the original soil. According to the Unified Soil Classification 

System (USCS), this soil is classified as clay of high plasticity (CH). According to the 

analysis result provided by Bulk Apothecary Inc., its clay fraction is dominated by 

montmorillonite, and the soluble calcium amount is 21.2 meq. 

Table 1  

Bentonite Clay Properties 

Properties        Value 
Specific gravity  2.6 
Consistency limit 
Liquid limit (%) 276 
Plastic limit (%) 37 
Plasticity index (%) 239 
pH 8.5 
USCS classification  CH 
Clay (< 2𝜇𝑚) 46% 

 

 

 

Bacteria and cementation solution. In this study, we used a urease-active strain 

Sporosarcina pasteurii (ATCC 11859) for the MICP treatment because of its well-defined 

urease-synthesis behavior and strong biological activity under alkaline environment [39]. 
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To initialize the growth of bacterial colonies, we rehydrated pure bacterium strain in the 

solid ammonium yeast extract (NH4-YE) medium for 24 hours followed by low-

temperature storage in Petri dishes at 4oC. High bacterial concentration could be reached 

through the incubation of bacteria in the liquid bacterial growth medium. We prepared the 

growth medium by mixing 20 g/L yeast extract, 10 g/L ammonium sulfate, 15.73 g/L Tris 

base. We sterilized each ingredient of the medium in an autoclave at 121℃ for 20 minutes 

before mixing. After inoculation of the bacteria from the solid NH4-YE medium into the 

liquid bacterial growth media, we started the incubation process by shaking the flask inside 

an incubator at a rotation speed of 200 rpm under a constant temperature of 30oC. The 

optical density (OD600) value was adopted as an indicator of the bacteria concentration, 

measured using an ultraviolet spectrophotometer at 600 nm wavelength. Continual 

measurements indicated that OD600 increased with time and reached an ultimate range of 

1.724 absorbance after 48 hours (Figure 1a). To further assess the bacteria activity based 

on the concentration of ammonium produced from urea, we resorted to the measurement 

of the electrical conductivity of the bacteria solution [40]. As the bacteria became more 

active and helped produce more ammonium, the electrical resistivity of bacteria solution 

increased, and gradually stabilized after approximately 24 hours (Figure 1b). Therefore, to 

ensure maximum activity, the bacteria used in this study were incubated for 24-48 hours.    

To prepare the cementation solution, we followed previous literatures [41, 42] and 

selected 0.5 M/L as the solution concentration in this study. As a result, every liter of 

cementation solution comprised 0.5 mole of urea, 0.5 mole of CaCl2, and 3 g of nutrient 

broth.  
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      (a)        (b) 

Figure 1. Experimental characterization of bacteria concentration and activity: (a) 
absorption (OD600) measured from spectrophotometer; (b) increase in electrical 
conductivity measured from the electric conductometer.  

 

Sample preparation. The soil was air-dried, crushed and passed through the #200 

sieve. To investigate the influences of pore fluids on soil cracking behavior, different 

specimens with varying fluid compositions were prepared. Each bentonite mixture has a 

moisture content of 100%, which corresponds to the following six types of pore fluids: (a) 

100% pure deionized water (considered as control mixture, denoted as sample W); (b) 

100% bacteria solution (denoted as sample B); (c) 100% cementation solution (denoted as 

sample C); (d) 25% bacteria solution and 75% cementation solution (denoted as sample 

25B75C); (e) 50% bacteria solution and 50% cementation solution (denoted as sample 

50B50C); and (f) 75% bacteria solution and 25% cementation solution (denoted as sample 

75B25C). The mixture of bacteria and cementations solutions is denoted as solution BC in 

this manuscript. MICP-treated samples refer to sample types (d), (e), and (f). As the initial 

water content was less than LL, the desiccation cracking of bentonite started from an 

unsaturated state, which aims to avoid excessive cracking. 100% fluids were added into the 
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dry bentonite for mixing. Each mixing process continued for 10 minutes until the mixture 

reached a homogeneous state. For each mixture type, three parallel samples were made to 

validate the experimental repeatability. Moist soils were molded into the 50-mm diameter 

Petri dishes (inner depth = 6.35 mm) and fill the volume completely.   

Testing procedure. All soil samples underwent the same desiccation process, with 

each mixture placed in a Petri dish and exposed to relatively stable room conditions at a 

temperature of 30 ± 1 °C and a relative humidity of 50% ± 5% for drying. Figure 2 

demonstrates the schematic view of the experimental setup. The Petri dish containing the 

bentonite sample was placed on a scale, to monitor the temporal change of soil weight 

continuously. Under LED light conditions, a high-resolution digital camera mounted on 

top captured the evolving desiccation crack patterns in bentonite samples for subsequent 

image processing and quantitative analyses. To further characterize soil microstructural 

changes, we made observations through the scanning electron microscopy (SEM) on the 

completely dried samples.   
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Figure 2. Schematic view of the experimental setup for bentonite desiccation test 

 

Image processing and quantitative analysis. To quantitatively compare the 

effects of various fluids on the soil desiccation process , an image processing software 

“Crack Image Analysis System” (CIAS) developed previously [43] was used here. As 

shown in Figure 3, the image processing comprised three major steps. First, the original 

color image showing crack patterns (Figure 3a) was converted into a grey-level image 

(Figure 3b). Then, by applying the binarization operation using a simple gray threshold, 

we were able to distinguish cracks from soil clods through their sufficiently high contrasts 

(Figure 3c). At last, after the removal of noises in the binary image through a filter 

operation (Figure 3d), CIAS automatically outlined the skeleton of crack networks (Figure 

3e). The final segmented crack network (Figure 3f) was used to determine the following 

geometrical parameters: (1) Surface crack ratio 𝑅௦௖, referring to the ratio between the crack 

area and the total surface area of the soil sample; (2) Average width of cracks 𝑊௔௩௚, 

determined by calculating the shortest distance from a randomly chosen point on one 

boundary to the crack’s opposite boundary; (3) Total length of cracks 𝐿், determined by 
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calculating the trace length of the medial axis of the crack segment, reflected as the skeleton 

in Figure 3f; (4) crack segment number 𝑛௖, indicating the total number of cracks after 

segmentation, and (5) average crack length 𝐿௔௩௚, calculated as the ratio between total crack 

length and crack segment number (i.e., 𝐿௔௩௚ = 𝐿்/𝑛௖). More details on the crack pattern 

descriptors are available in [43]. 

 

 

      

(a) (b) (c) (d) (e) (f) 

Figure 3. Procedure of digital image processing: (a) original image, (b) grey image, (c) 
binary image, (d) clear noise and smoothing, (e) skeleton of the crack network, and (f) 
crack segmentation. 

 

To further analyze the distribution features of the crack pattern, we calculated the 

density function of two crack geometry descriptors, including crack area 𝐴 and crack width 

𝑊. Take crack width for instance, the density function of crack width 𝑓(𝑊) is a density of 

crack width corresponds to value 𝑊 and defined as [43]: 

𝑓(𝑊) =
∆𝑛ௐ

𝑛௖ ∙ ∆𝑊
 (3.1) 

in which 𝑛௖ is the total number of crack segments, ∆𝑛ௐ is the number of crack segments 

whose width ranges between ∆𝑊. The fraction of the crack width in the range of 𝑊 and 
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𝑊 + 𝑑𝑊 is given by 𝑓(𝑊)𝑑𝑊. If the crack width in a given crack pattern covers from 

length 𝑎 to 𝑏, we have 

න 𝑓(𝑊)𝑑𝑊
௕

௔

= න
𝑑𝑛

𝑛௖
=

1

𝑛௖
න 𝑑𝑛
௡೎

଴

௡೎

଴

= 1 (3.2) 

This means that the number of crack segments whose value fall into the interval [a, 

b] equals the total number of crack segments, 𝑛௖. We adopted the concept of the most 

probably value (MPV) of crack width, corresponding the width when the maximum value 

of 𝑓(𝑊) is achieved [39]. Therefore, the probability of crack width near MPV is maximal 

during cracking. Probability distribution and MPV values are determined for crack area in 

a similar way.        

Results  

Experimental observation of desiccation cracks. Figure 4 presents desiccation 

cracks captured at regular time intervals (12, 24, 36, and 48 hours) for all six types of 

samples. For each mixing type, three parallel samples give comparable crack pattern 

results, verified by the subsequent image analysis. All samples experienced extensive 

cracking, with soil body split into separate clods by crack segments. During the drying 

process, we observed the process of crack initiation, propagation, coalescence, and 

intersection, leading to the formation of a complicated crack network throughout the soil 

sample. Cracks initiate from the weaker regions such as natural pores in the soil [44], 

propagate under the driving force of capillary suction, and bifurcate from primary into 

secondary crack branches. Experimental observations indicate that crack pattern changed 

most significantly during the rapid decrease of moisture content within 12-36 hours. After 

48 hours, crack pattern remains unchanged while the water content stopped decreasing. 
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The post-evolutions of crack patterns are mostly the broadening of crack width without 

generating any new crack branches.  

Due to the effect of mixing fluids, six types of samples exhibit different cracking 

morphologies. Comparing these samples, after 12 hours, considerable desiccation cracks 

were observed in samples W, B and C, whereas MICP-treated samples remain intact (row 

“12-hr” in Figure 4). This highlights the effect of MICP in delaying soil cracking and 

enhancing the soil strength. At 24 hours, primary cracks, secondary cracks, and the 

separation between soil and Petri-dish boundary become apparent. Secondary cracks 

initiate from a primary crack or the circumferential boundary of the specimen (row “24-

hr” in Figure 4). The widths of primary cracks in samples W, B and C are much larger than 

those of MICP-treated samples. As water content decreases, the growth of new secondary 

cracks continues, especially in MICP-treated samples. In all samples, crack width increases 

significantly. As the soil layer thickness is 0.635 cm, at the end of 36 hours, most primary 

cracks have propagated to the bottom of the Petri dishes, as reflected by the visible dish 

bottom (row “36-hr” in Figure 4). In the following 12 hours, crack width continues to 

increase whereas the crack pattern stayed almost unchanged (row “48-hr” in Figure 4). It 

is interesting to note that, in comparison to sample W, bentonite samples treated with MICP 

exhibit a certain extent of color change on the soil surface from yellow to white (row 48-

hour). This color change implies the precipitation of calcium carbonate (CaCO3) film on 

soil surface resulting from the bio-cementation process. Although visual observations 

provide a qualitative view of the evolving crack pattern, the changes in crack width and 

crack length are difficult to quantify, requiring further image analysis of the crack pattern.  
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Figure 4. The spatiotemporal evolution of crack pattern in bentonite treated with different 
solutions (Time = 12, 24, 36, and 48 hours). 

 

 

Quantitative analysis of crack patterns. To quantify the evolving characteristics 

of crack patterns, we performed image analysis on all final crack patterns at the end of 48 

hours. Crack segments generated from the image processing of the final crack pattern at 48 

hours are shown in Figure 5, with different colors representing different crack segments. 

The final crack pattern consists of both shrinkage cracks and the circumferential edge-soil 

separations. Based on these crack segments, we determined five geometrical parameters as 

defined in section 2.5, including surface crack ratio, the average width of cracks, and total 

length of cracks, crack segment number, and average crack length.   
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(a) (b) (c) (d) (e) (f) 

Figure 5. Segmented crack patterns of bentonite samples treated with various solutions at 

48 hours: (a) sample W, (b) sample B, (c) sample C, (d) sample 25B75C, (e) sample 

50B50C, and (f) sample 75B25C. 

 

As shown in Table 2, mixing MICP solution with bentonite effectively mitigates 

soil desiccation cracking and reduces the surface crack ratio by up to 23%, from the 

maximum value of 29.2% (sample W) to the minimum value of 22.6% (sample 50B50C). 

Sample 50B50C gives slightly lower surface crack ratio than other two MICP-treated 

samples, highlighting the importance of solution fraction ratio in optimizing the bio-

cementation effect. Over-supply of bacteria or cementation solutions does not necessarily 

increase the amount of calcite precipitations. Samples W and C give comparable surface 

crack ratios, whereas sample B gives a much lower surface crack ratio. 

In terms of average crack width, sample W gives the largest value, 65% higher than 

that of sample 25B75C. Except for samples W and sample C, other samples share 

comparable smaller average crack width at 0.17-0.18 cm. Due to the much larger crack 

width, total crack length of sample W is the smallest. Among MICP-treated samples, 

sample 50B50C gives the smallest total crack length.  
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The correlation between surface crack ratio and crack number is not clear, which 

requires further investigations in the future. In this study, sample C presents the highest 

number of cracks, whereas sample W gives the lowest. Due to the presence of high crack 

segment number, samples C and 25B75C give the lower average crack length. On the 

contrary, sample W with the minimum crack segment number has the largest average crack 

length of 1.46 cm.      

 

Table 2  

Quantitative analysis results obtained from the 48-hour crack patterns of six soil samples.  

Crack Parameters 
Sample  

W 
Sample  

B 
Sample  

C 

Sample 
25B75

C 

Sample 
50B50

C 

Sample 
75B25

C 

Surface crack ratio (%) 29.2 24 29 25.7 22.6 23.5 

Average crack width 
(cm) 

0.28 0.18 0.20 0.17 0.18 0.18 

Total crack length (cm) 23.4 28.8 36.2 34.2 29.0 31.7 

Crack segment number 
(-) 

16 28 44 41 24 25 

Average crack length 
(cm) 

1.46 1.02 0.82 0.83 1.21 1.27 

 

 

 Discussion 

 Crack area confidence intervals. 95% confidence intervals of each sample show 

major differences when comparing crack areas. Sample W has a difference of 1.94% 

Sample B possesses a difference of 1.39%, Sample C possesses a difference of 2.08%, 

Sample 5B75C possesses a difference of 1.11 percent, Sample 50B50C possesses a 
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difference of 1.38%, and Sample  75B25C has a difference of 1.25% Crack areas among 

MICP treated samples  and Sample B show a similar 95 % confidence interval range, 

indicating minimal significant differences between ranges of crack areas between these 

sample. However, Sample 50B50C still maintains the lowest range of crack area and shows 

the impact of optimizing the MICP solution. Sample C and W also obtain similar 

confidence interval due to similar crack patterns and areas. Cementation solution and water 

have similar effects on the soil body resulting in similar crack areas with no significant 

difference between the samples in terms of crack area. 

Effect of solution type on water evaporation. Desiccation cracking process 

occurs after a certain extent of water loss. Understanding the water evaporation process 

and identify the critical water content is key to the study of the cracking process. In this 

study, critical water content refers to the water content when first desiccation crack 

initiates. We found that, in all samples, the circumferential soil-dish separation occurred 

later than desiccation cracks. Comparing the desiccation time at the onset of cracking, the 

formation of cracks was first observed after 2.5 hours in sample W, followed by 4.5-5 hours 

in samples B and C, and then > 16 hours in samples treated with MICP (Table 3). This 

further validates the effects of MICP in strengthening the soil body and lowering the 

cracking potential. The critical water content at crack initiation could be obtained based on 

the change of the soil total weight. When cracks initiated, sample W still has a high-water 

content at 93.5%, in comparison to the initial water content of 100%. Other samples exhibit 

lower water content levels at the onset of desiccation cracking, thus correspond to more 

water loss. The general trend is that when cracks first appeared, larger total weight change 

was recorded in MICP-treated samples, implying a larger amount of water evaporation than 
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other samples. Under drying, water evaporation results in matrix suction and soil volume 

shrinkage, forming a tensile stress field. Cracks initiate when the tensile stress exceeds the 

tensile strength of the soil. Samples treated with MICP gain higher strengths as a result of 

the biocementation effect, which thus requires a larger driving force associated with more 

water evaporation to satisfy the cracking criterion. 

 

Table 3 

 Desiccation time and water loss at the onset of cracking       

Sample Type W B C 25B75C 50B50C 75B25C 

Crack initiation time (hr) 2.5 5 4.5 16.5 16 17 

Critical water content 93.5% 81% 85% 72% 77.3% 66.6% 
 

 

In general, the evaporation process can be divided into three stages [45]: (1) 

constant rate stage; (2) falling rate stage; and (3) residual rate stage. At the constant rate 

stage, the soil remains saturated and the evaporation rate is dominated by ambient factors. 

Desiccation cracks start to develop in the constant rate stage when the soil remains 

saturated. After drying, when air starts to replace water in the pores and soil changes from 

saturated to unsaturated state, the evaporation process transits to the falling rate stage. 

Therefore, the transition point of the evaporation curve corresponds to the air-entry state 

of soil. Given the soil tested here had a water content of 100%, less than the liquid limit, 

only falling rate and residual rate stages should be observed. However, in this study, these 

two phases were not observed in MICP-treated samples. This can be attributed to two 

factors, the hydrolysis of urea and the bio-mediated soil reinforcement. According to Eq. 



24 
 

(3.11), water is involved during the hydrolysis reaction, which considerably lowers the 

water amount that is available for evaporation under drying. Therefore, at the end of 

desiccation test, the percentage of water loss, defined as the ratio between water loss and 

the original water amount, is 50%, 60%, and 58% for samples 25B75C, 50B50C, and 

75B25C, respectively. On the other hand, the precipitated calcite in Eq. (3.2) acting as a 

bonding agent to bentonite clay particles delays and reduces the soil cracking process. The 

presence of less cracks decreases the soil surface area that is in contact with atmosphere, 

contributing to the slow down and reduction of the moisture loss. SEM observations 

validate this phenomenon. As shown in Figure 6, in sample 75B25C, white region 

corresponds to the area where full biocementation occurred, whereas grey regions represent 

less-cemented areas. Micro-pores of different sizes mostly exist in the less-cemented areas. 

Such pores could be caused by the evaporation of water and the continued volumetric 

shrinkage of soil body. SEM observations also highlight the microstructural heterogeneity 

under the coupled effects of biocementation and water evaporation.       

 

Figure 6. SEM image of the partially cemented sample 75B25C. 
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Comparing three MICP-treated samples, higher amount of water loss was observed 

in samples 50B50C and 75B25C, implying the influences of bacteria and cementation 

amount on the biocementation effect. Although the calcium bentonite used in this study 

provides sufficient soluble calcium ions, the hydrolysis reaction is governed by the 

presence of both urea and the urease-producing bacteria. Zhao et al. [46]  showed that, the 

calcite content and the sandy soil strength increased with increasing bacteria, whereas more 

cementation media has limited effects in enhancing MICP results. Consistent findings were 

obtained in our study. As reflected through water loss, sample 50B50C reached 60%, 

higher than both samples 25B75C and 75B25C, indicating a better biocementation effect. 

Urea is provided by the cementation solution, and urease activity is determined by the 

bacteria solution. Therefore, more bacteria or more cementation solution in the mixture 

may not necessarily enhance the MICP process.      

Effect of solution type on crack pattern. To study the effect of soil type on 

desiccation crack pattern, we carried out the quantitative analysis of crack geometrical 

parameters. The probability density functions of crack parameters including crack area and 

crack width, as described in section 2.5, are determined to compare the solution effect on 

final crack pattern.  

The probability distributions of crack areas can be approximated by the power law 

distribution, with much higher probability value obtained for smaller cracks and very small 

probability value for larger cracks (Figure 7). The area of most cracks in all samples is 

below 0.2 cm2, whereas more than 40% of the cracks in sample W have an area larger than 

0.3 cm2. Although the MICP process could not be initiated in samples B and C, large cracks 

are not visible. The surface crack ratios of samples W, B and C (Table 2) are not able to 
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reveal the distribution features. Although samples W and C share similar value of surface 

crack ratio, their probability distributions vary significantly. In general, when cementation 

solution is added to the clayey soil, Ca2+ ions replace monovalent, metallic ions 

surrounding the clay particles. Clay particles are surrounded by a diffuse hydrous double 

layer which is modified by the ion exchange of calcium. This alters the density of the 

electrical charge around the clay particles, which leads to the enhanced attraction and the 

formation of flocs, and eventually changes the soil texture [32, 33]. However, in our study, 

cementation solution has little effects on the cracking of sample C, which is mostly because 

the bentonite soil is rich in Calcium and has formed a relatively stable soil structure. If 

other type of clayey soil such as sodium bentonite was used, the addition of cementation 

solution will show a much stronger cementation effect [31]. In sample B mixed with 

bacteria solution, numerous microbes fill up the inter-particle pores and adhere to the 

surface of soil particles, which may induce the formation of biofilms on soil particles and 

affect the physical properties of soil [47]. 

Among three MICP-treated samples, sample 50B50C has the highest probability 

distribution of small cracks with area less than 0.1 cm2 (Figure 7), validating the best 

cementation effect in this sample. Although sample 25B75C shows a larger surface crack 

ratio than sample 75B25C, majority of its cracks are limited to 0-0.2 cm2. Comparatively, 

sample 75B25C has less small cracks and has a broader range of crack area. The most 

probable values (MPV) of samples B, 25B75C, 50B50C, and 75B25C are within the range 

of 0-0.1 cm2, while the MPV values of samples W and C are around 0.1-0.2 cm2.   
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Figure 7. Probability distribution of crack area of four soil samples after 48 hours of drying. 

 

Figure 8 shows the probability distribution plots of crack width, which is different 

from that of crack area. This is because larger cracks may have small widths but large 

lengths. While majority of the cracks in the MICP-treated samples belong to narrow cracks 

with width less than 0.2 cm, 50% of the cracks in sample W are larger than 0.25 cm wide. 

Sample W has a much broader range of crack width varying from 0 to 0.7 cm than all other 

samples. Comparing all samples, cracks in sample B are more uniform, as demonstrated 

by the high probability value for both crack area (0-0.1 cm2) and crack width (0.1-0.2 cm). 

In this study, MPV for crack width is 0.1-0.2 cm for samples B, C, 25B75C and 50B50C, 

and 0-0.1 cm for samples W and 75B25C. These probability distribution plots provide a 

better quantitative overview of the crack pattern. 
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Figure 8. Probability distribution of crack width of four soil samples after 48 hours of 
drying. 

 

Significance and Limitation of Current Work  

Our research indicates that mixing MICP solutions with bentonite soils restrains the 

shrinkage cracking and reduces the crack geometric parameters, particularly surface crack 

ratio and average crack width. As introduced earlier, the variation of the crack geometry 

governs the hydraulic and mechanical properties of soil. In comparison to the control 

sample, MICP-treated bentonite is expected to possess an improved hydraulic conductivity 

and mechanical strength due to the bonding effect of CaCO3 produced in the MICP process. 

The improved structural integrity of MICP-treated bentonite is of great importance to the 

performance of geological storage systems.  

The MICP treatment presents several advantages over existing soil improvement 

techniques. Our study indicates that MICP treatment can delay the crack initiation and 

suppress the soil desiccation cracking significantly at high initial water content, because of 
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the remarkable water stability of calcite mineral produced in the MICP process. For clayey 

soils with calcium contents, the MICP treatment effect can be optimized given appropriate 

amount of bacteria and cementation solutions. As a natural biological process, the MICP 

is a more environment-friendly and energy efficiently solution for soil desiccation cracking 

remediation. Moreover, the residual urea in soil during the MICP process can provide 

nutrients for plant growth. 

This study has demonstrated the feasibility of using MICP to remediate desiccation 

cracking in small bentonite soil samples at lab scale. The mixing process remains to be 

tested for field implementations. The bio-grouting and injection methods will be extremely 

challenging for bentonite due to its small pores and low permeability. Alternative 

approaches such as surface spraying of MICP solution may be a better solution. Due to the 

scale and boundary effects, lab results still show large deviations with field measurements. 

For instance, compared to the field tests reported by Li and Zhang [48], the crack length is 

shorter and crack density is higher in the small soil sample of the current study. In addition, 

the crack distribution is more inhomogeneous in field tests, as the soil often contains coarse 

particles and structures, and has more complicated interactions with the varying 

atmosphere in field. To investigate the potential application of MICP for soil crack 

remediation in field, more in-situ tests will be needed. Furthermore, the influence of MICP 

on the crack depth is not considered and will be studied in the future work. 

Summary of Findings 

The formation of desiccation cracks in bentonite soils is detrimental to the long-

term performance of engineered clay barriers in geological storage facilities. In this study, 

we investigated the potential of the MICP treatment in the remediation of desiccation 
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cracks for bentonite. Laboratory desiccation tests were conducted on bentonite samples 

mixed with deionized water, bacteria solution, cementation solution, or different 

percentages of bacteria and cementation solutions. Relying on imaging tools including 

camera and SEM, we carried out qualitative and quantitative analyses on soil cracking 

behaviors and reached the following conclusions: 

(1) MICP significantly delays the initiation of desiccation cracks in bentonite soils. 

The formation of cracks was first observed in sample treated with water after 2.5 hours of 

drying, followed by 4.5-5 hours in samples treated with bacteria or cementation solutions, 

and then more than 16 hours in samples treated with MICP.  

(2) MICP-treated soil samples show less desiccation cracks, as reflected by the 

surface crack ratio and average crack width. Under the MICP process, the calcite crystal 

precipitations contributes primarily to the improved mechanical integrity of soil sample as 

well as desiccation cracking resistance. The sample treated with bacteria solution also gives 

less cracks as a result of the formation of biofilm around clay particles due to the presence 

of microbes. For calcium bentonite, cementation solution containing calcium chloride has 

negligible impacts on the remediation of soil cracking.  

(3) The water evaporation in MICP-treated samples is governed by two factors 

including the hydrolysis of urea and the bio-mediated soil reinforcement. More water loss 

is needed in MICP-treated samples to generate larger suction stresses as the crack driving 

force. More bacteria or more cementation solution in the mixture may not necessarily 

reduce the water evaporation.  

(4) The probability distributions of crack areas can be approximated by the power 

law distribution. The MPV of crack areas for samples B, 25B75C, 50B50C, and 75B25C 



31 
 

are within the range of 0-0.1 cm2, while that of samples W and C are around 0.1-0.2 cm2. 

Most cracks in the MICP-treated samples are narrow with width less than 0.2 cm, whereas 

50% of the cracks in sample W are larger than 0.25 cm wide. MPV for crack width is 0.1-

0.2 cm for samples B, C, 25B75C and 50B50C, and 0-0.1 cm for samples W and 75B25C.   

This study validates the applicability of MICP treatment in reinforcing clayey soils 

for drying conditions. Bonding crystals produced from MICP enhances the soil strength 

and lowers the potential of desiccation cracking in clayey soils. Future study will focus on 

the application of multiple MICP treatments in clayey soils. The bio-stabilization of clayey 

soils explored in this study brings new insights into the remediation of soil erosion and 

cracking for various climate changes, which is key to the design and performance of 

sustainable geotechnical infrastructures. 
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Chapter 4 

Desiccation Cracking Behavior of Clayey Soils Treated with Bio-Cement and 

Bottom Ash Admixture 

Methodology  

This study aims to explore the potential of remediating desiccation cracking in 

clayey soils through the addition of bottom ash mixtures and the MICP-based bio-

cementation technique. To test the feasibility of this method in reinforcing extremely 

swelling soils, bentonite is chosen as the experimental clay material. Instead of pre-mixing, 

we adopted the surface spraying method to add bacteria and cementation solutions into the 

soil. The structure of the paper is organized as follows: Methodology explains materials 

used, sample preparation, and test setup. Results section presents experimental 

observations of desiccation crack patterns and quantitative image analysis results. 

Discussion section emphasizes the influences of bottom ash, fluid type, and wetting-drying 

cycle on soil cracking behaviors. The major findings obtained from this study are 

summarized in the conclusions section.  

Bottom ash. The fundamental properties of bottom ashes provided by Charah 

Solutions, Inc. are summarized in Table 4. The low unit weight can be attributed to two 

factors: (1) chemical compositions, and (2) presence of particles with porous or vesicular 

textures. The chemical composition indicates that bottom ash contains a significant amount 

of CaO, which may facilitate the precipitation of calcite during the reaction. In addition, 

several types of heavy metals exist, which is the main cause of the potential environmental 
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hazard of bottom ash. Researchers have explored the possibility of bioremediation of heavy 

metal-contaminated soils through MICP [49, 50]. 

 

Table 4 

 Fundamental properties of bottom ash 

Properties Value 

Unit weight 15.31 kN/m3 

Percent finer (pass #100) <17% 

Chemical Composition 
Percentage by 

weight 

CaO 17.28 

SiO2 40.706 

Al2O3 14.997 

Fe2O3 5.706 

MgO 7.214 

SO3 0.527 

Mn2O3 0.019 

TiO2 1.596 

P2O5 0.2714 

ZnO 0.0083 

 

 

Sample preparation. Bentonite clay was crushed, air dried, and sieved through the 

#200 sieve. As an experimental investigation, relatively fine bottom ash particles that 
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passed #30 and retained above #60 sieves were selected in this study, which ensured the 

homogeneous mixing with smaller clay particles and minimized the formation of local 

defects. We prepared two groups of samples, group 1 for pure water treatments, and group 

2 for MICP treatments. Each group contains three samples, with different mixing ratios 

by weight: (a) 100% bentonite (sample A); (b) 80% bentonite and 20% bottom ash 

(sample B); and (c) 60% bentonite and 40% bottom ash (sample C). One hundred percent 

(100%) water by weight were added into dry samples and mixed continuously until 

reaching a homogeneous state, which is denoted as treatment 0 in this study. To validate 

the experimental repeatability, we made three parallel samples for each mixing ratio under 

each treatment type. Moist soils were molded into the 50-mm diameter by 6.35-mm depth 

Petri dishes, with surface leveled appropriately.    

Testing procedure. The experiments were performed in a relatively stable 

environment (30 ± 1 °C in temperature, 50 ± 5% in relative humidity). During the test, in 

addition to the preliminary wetting-drying cycle (denoted as treatment 0), all samples 

underwent five subsequent treatment cycles (denoted as treatments 1-5), with each 

treatment made through the surface spraying of the same amount of fluids (i.e., water or 

MICP solutions). We initiated the new treatment cycle only after the soil sample became 

completely dried and its mass stayed constant. Samples were placed underneath a high-

resolution camera in an enclosed area with isolated light sources. After each wetting-drying 

treatment cycle, soil crack patterns were captured by a high-resolution digital camera 

mounted on top for further image-based quantitative analyses [43]. Microstructural 

characterization of dried samples was carried out using Scanning Electron Microscope 

(SEM) (at the end of five treatment cycles) 
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Based on the final crack pattern obtained from image processing, we determined 

three geometrical parameters [43]: (1) Surface crack ratio 𝑅௦௖, calculated as the ratio 

between the crack area and the total surface area of the soil sample; (2) Average crack 

width 𝑊௔௩௚, determined by the shortest distance from a randomly chosen point on one 

boundary to the crack’s opposite boundary; and (3) Total  crack length 𝐿், calculated as 

the trace length of the medial axis of crack segment, reflected as the skeleton in Figure 3e. 

Results 

Experimental observation of desiccation cracking process. Table 5 and Table 6 

present the typical desiccation crack patterns captured at the end of each cycle for samples 

treated with water and MICP solutions, respectively. Due to the presence of bottom ash, 

samples exhibit a different extent of cracking at the beginning (row “Treatment 0”). Cracks 

initiate, propagate, coalesce, and intersect during drying, leading to the formation of a 

complex crack network throughout the soil sample. Other subplots in Tables 5 and 6 (rows 

“1” to “5”) comparatively demonstrate how desiccation cracks evolve spatiotemporally 

after each treatment with different fluids.  

For samples treated with water (Table 5), the positions and geometries of most 

cracks change considerably during the wetting-drying cycles, which is consistent with 

findings obtained by other researchers [45]. Cracks propagate in the three-dimensional 

space, horizontally to form the coalesced crack network, and vertically to the bottom 

interface of petri dish plates. With more treatment cycles, the crack connectivity is 

increased, and soil clods are degraded into smaller and more irregular ones. Comparing 

three columns in Table 5, for the same cycle number, the extent of cracking reduces with 

the increasing amount of bottom ashes. It is also interesting to notice that, cracks in sample 
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A with pure bentonite develop both inside the soil body and along the circumferential 

boundary. In contrast, cracks in other two samples with bottom ash admixtures are mostly 

circumferential. This cracking effect corresponds to relatively more integrated soil bodies 

in samples B and C, which is more apparent within the first few cycles.  
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Table 5 

 Desiccation crack pattern in soils treated with water (group 1) 

Cycle 
No. 

Sample A Sample B Sample C 

100% 
bentonite 

80% bentonite 
+ 20% bottom 
ash 

60% bentonite 
+ 40% bottom 
ash 

0 
(water) 

   

1 
(water) 

   

2 
(water) 

   

3 
(water) 

   

4 
(water) 

   

5 
(water) 
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The evolutions of desiccation cracking patterns in MICP-treated soil samples are 

presented in Table 6. At the end of treatment 0, similar cracking patterns as those shown 

in Table 5 can be obtained: The largest soil-dish boundary separation occurs in sample B, 

followed by sample C, whereas sample A is dominated by the crack coalescence within the 

soil body (row “0”, Table 6). With increasing cyclic MICP treatments, the extent of 

cracking reduces, as reflected by the narrowing and healing of cracks. Unlike those in 

water-treated samples, the geometry and morphology of the crack network skeleton in 

MICP-treated samples experience less changes across different treatment cycles. In 

comparison to other two samples, the healing effect is more evident in sample C, where 

the soil body is restored close to its intact state (row “5”, Table 6). We also observe the 

formation of new cracks, especially crack branches that originate and propagate from 

primary crack networks. During the wetting-drying cycles, the surface of MICP-treated 

soil becomes increasingly uneven, implying the calcite precipitations on the soil surface, 

which is not observed in water-treated samples.     
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Table 6 

Desiccation crack pattern in soils treated with MICP solutions (group 2) 

Cycle 
No. 

Sample A Sample B Sample C 

100% bentonite 
80% bentonite + 
20% bottom ash 

60% bentonite + 
40% bottom ash 

0 
(water) 

   

1 
(MICP) 

   

2 
(MICP) 

   

3 
(MICP) 

   

4 
(MICP) 

   

5 
(MICP) 
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Quantitative characterization of crack patterns. To quantify the evolving 

characteristics of crack patterns, we carried out image analysis for all crack patterns shown 

above. Three geometrical parameters including surface crack ratio, average crack width, 

and total crack length were determined for all samples at the end of each treatment cycle. 

Figure 9 shows the evolution of the surface crack ratio values in all samples. After 

preliminary treatment, samples A, B and C in group 1 (water treatment) have a surface 

crack ratio of 26.5%, 22.5%, and 14.6%, respectively (Figure 9a). These values are 

comparable with those obtained at the end of preliminary treatment for group 2 (MICP 

treatment) (Figure 9b), validating the repeatability of the experiments. The surface crack 

ratios for all water-treated samples increase with the number of wetting-drying cycles, with 

the highest value consistently obtained from sample A that is prepared using pure bentonite 

(Figure 9a). In samples treated with MICP solutions, we observe a parabolic trend that 

surface crack ratio increases first after treatment 0, reaches the peak value at treatment 1, 

and then decreases in the subsequent four treatment cycles (Figure 9b). With MICP 

treatments, sample A with pure bentonite still presents the highest cracking area. As the 

number of cyclic MICP treatment increases, the surface crack ratio gradually declines and 

approaches zero. Comparing with treatment 0, the reduction of surface crack ratio at the 

end of the 5th cycle reaches 65%, 77%, and 91% in samples A, B, and C, respectively.  
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Figure 9. The evolution of geometrical parameters in soil samples (group 1: water-treated 
samples; group 2: MICP-treated samples) subjected to wetting-drying cycles: (a) surface 
crack ratio of group 1, (b) surface crack ratio of group 2, (c) average crack width of group 
1, (d) average crack width of group 2, (e) total crack length of group 1, and (f) total crack 
length of group 2. 

 

Although the crack area follows an increasing trend in water-treated bentonite 

samples, the evolutions of average crack width and total crack length are highly irregular. 

They seem not to follow any trend (Figures 9c and 9e). Comparatively, both average crack 

width (Figure 9d) and total crack length (Figure 9f) obtained from MICP-treated samples 
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exhibit the parabolic trend to a certain extent. At the end of the treatment cycles, the cracks 

in sample A have a larger dimension characterized by larger width and length values than 

those in samples B and C. With more cycles of MICP treatments, the bioremediation of 

soil cracks becomes more evident, as shown by the smaller average crack width and shorter 

total crack length.  

Discussion 

Effect of bottom ash admixture on desiccation cracking. The desiccation crack 

patterns shown in the previous section indicate that, with bottom ash admixture percentage 

increasing from 0 to 40%, soil samples tend to exhibit less cracking. After five wetting-

drying cycles, the surface crack ratios in sample C are much smaller than those in sample 

A, corresponding to 33.5% reduction under water treatment and 81.1% reduction under 

MICP treatment. The addition of bottom ash has two significant effects on desiccation 

cracking. First, bottom ash shows little plastic behavior, implying a very low potential of 

swelling and shrinkage upon water content changes. In contrast, bentonite soil has a very 

high plasticity index due to the high plastic montmorillonite minerals (Table 1). Replacing 

bentonite with bottom ash particles dramatically reduces the overall plasticity index of the 

mixture. Second, non-expansive bottom ash particles are capable of reducing the shrinkage 

potential of clay particles. The bottom ashes are primarily composed of non-crystalline 

silicate, calcium, aluminum, and iron oxides compounded with some microcrystalline 

material (Table 4). These bottom ashes have the potential to provide multivalent cations 

such as Ca2+, Al3+, Fe3+, which promotes the flocculation of clay particles by cation 

exchange. As a result, the surface area and water affinity of the soil samples decrease, 

implying a reduction in the shrinkage potential. However, bottom ash cannot 
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fundamentally eliminate soil cracking. At 40% bottom ashes in the mixture, desiccated 

soils still generate increasing cracking as the cyclic wetting-drying conditions continue 

(Figure 9a). 

At the end of the cyclic treatment, SEM images were taken to characterize the 

microstructural changes in these desiccated samples. Unlike small spherical fly ash 

particles [51], bottom ash particles are larger and have more angular shapes (Figure 10c). 

During wetting-drying cycles, high plastic clay deforms significantly, whereas low plastic 

bottom ash aggregates show minor deformation. This is the main cause to the formation of 

local stress concentrations at the ash-soil interface, which drives the opening and 

propagation of micro-cracks in the soil body. 
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(a) (b) 

(c) (d) 

Figure 10. SEM images of soil samples at the end of five cycles of treatments: (a) sample 
A under water treatment; (b) sample A under MICP treatment; (c) sample B under water 
treatment; and (d) sample C under MICP treatment. 

 

Effect of fluid type on desiccation cracking. In this study, the soil desiccation 

cracking behavior is governed by two competing mechanisms: (1) Water evaporation in 

bentonite decreases the pore pressure and induces matrix suction, which acts on the soil 

skeleton and drives the crack opening once it exceeds the tensile strength of soil[7, 52]; 

and (2) Calcite precipitation enhances the inter-particle bonding and resists cracking [53]. 

Bottom ash aggregate 

Spherical CaCO3 

crystals 

Spherical CaCO3 

crystals 
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In all water-treated samples (group 1), the first mechanism dominates, resulting in the 

development of desiccation crack patterns under drying conditions (Figure 9a). The crack 

segments are smooth and mostly form an intersection angle of 90-150 degrees. This is 

consistent with the observations by other research [52, 54], and can be interpreted using 

the maximum stress release and crack propagation criterion [44]. Upon wetting, the 

original desiccation cracks tend to be increasingly narrow due to the filling of the exfoliated 

soil aggregates from the clods as well as the volume swelling of the clods [45]. Repeated 

volumetric swelling-shrinkage and the resulting cracking during the wetting-drying 

process lead to irreversible soil fabric changes and the degradation of structural integrity 

in the soil sample.  

Based on quantitative and qualitative comparisons in the results section, MICP 

treatment yields a promising influence on crack remediation. Mixing the cementation 

solution with the bacteria solution yields the precipitation of numerous spherical CaCO3 

crystals of similar size, well-distributed spatially (Figures 10b and 10d). These crystals 

formed on the vertical surface of crack are able to bond the adjoining soil clods together 

and fill up the inter-granular space, which improves the tensile strength of soil around the 

cracks [18]. Calcite precipitations in the vicinity of particle contacts also serve as an 

additional bonding agent to soil particles, contributing to the increase of soil strength and 

the improvement of cracking resistance. Due to the usage of the surface spraying method, 

MICP reactions occur not only inside the crack, but also on soil surface. This explains the 

presence of CaCO3 crystals on the sample surface (Table 6), resulting in the formation of 

increasingly uneven soil profiles with more treatment cycles. Without calcite 

precipitations, water-treated samples in group 1 have relatively flat surfaces (Table 5). 
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Certain surface heave and settlement deformations can be observed in these samples 

(Figure 10a), which can be attributed to the repeated soil expansion and shrinkage during 

wetting-drying cycles. The detailed cracking behaviors of MICP-treated samples are 

determined by the interplay of crack driving force and bio-cemented soil strength. The 

wetting of MICP-treated samples is associated with crack closure and healing, originated 

from the coupled effect of soil swelling and bio-cementation. Note that, because of the 

soluble calcium cations provided by calcium bentonite and bottom ash, the addition of 

MICP solutions leads to an enhanced hydrolysis reaction and a better biocementation effect 

[55]. The individual contribution of calcium bentonite and bottom ash to calcite 

precipitation will be analyzed in future investigations.  

Effect of treatment cycle number on desiccation cracking. To quantify the 

cracking resistance of soils at different cycles, we adopted the concept of crack reduction 

rate (Rcr) that was first introduced and applied in the study of fiber-reinforced soil by Miller 

and Rifai [53]:  

𝑅௖௥ =
𝑅௦௖,௨ − 𝑅௦௖,௧௜

𝑅௦௖,௨
× 100% (4.1) 

where Rsc,u is the surface crack ratio of the soil specimens at the end of preliminary 

treatment. Rsc,ti is the surface crack ratio of the soil specimens after each cyclic treatments, 

with i varying from 1 to 5.  

 The crack reduction rates obtained for soil samples in group 1 remain negative 

throughout the cyclic treatment (Figure 11a), indicating the increasing crack area after 

preliminary treatment. Soil shrinks under drying and swells under wetting conditions. The 

cyclic wetting-drying process leads to the formation of irreversible soil microstructural 
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changes and the creation of many weak zones, which significantly controls the onset 

positions of cracks in the subsequent cycles. This explains why, as the cycle number 

increases, we observed both the re-opening of cracks generated in previous cycles and the 

initiation of new cracks in the neighboring regions (Table 5).  

As shown in Figure 11b, for MICP-treated samples, the crack reduction rate 

increases from negative to positive values with the increasing wetting-drying cycle 

number, which highlights the competing effects of crack driving force and crack resistance 

force. After the 1st cycle, all samples have negative crack reduction rate, implying an 

increment in the crack area, which is attributed to the insufficient MICP solutions for 

biocementation. With more cycles of treatments, the newly formed crystals precipitate on 

crystals produced in previous treatment cycles. The gradual accumulation of crystals 

increases the size of crystal clusters and causes the cementation between adjacent clusters 

[55]. The densely distributed CaCO3 crystal clusters on soil particle surface and inside 

inter-particle pores contributes primarily to the improved mechanical integrity of soil 

samples. Therefore, with more MICP treatments, soil samples exhibit stronger resistance 

to cracking under drying, reflected as higher crack reduction rate (Figure 11b) and smaller 

crack dimensions (Figures 9b, 9d, and 9f). Due to the continual precipitation of calcite 

crystals on the soil surface, the surface roughness of MICP-treated samples increases with 

the treatment cycle (Table 6). The formation of the surface film hinders the penetration of 

water during wetting and the loss of moisture during drying, resulting in a possible 

reduction of capillary suction in soils. 
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          (a)            (b) 

Figure 11. The evolution of crack reduction rate with wetting-drying cycles: (a) water 
treatment; (b) MICP treatment  

 

Summary of Findings 

To investigate the potential of using bottom ash and MICP for the remediation of 

desiccation cracking in clayey soils, we performed a series of cyclic wetting-drying tests 

on laboratory-scale soil samples. Two groups of bentonite samples mixed with different 

percentages of bottom ashes were treated with water and MICP solutions, respectively. The 

qualitative and quantitative analyses of soil cracking behaviors lead to the following 

conclusions:  

1) The addition of bottom ash into clayey soils reduces the plasticity of the mixture and 

promotes the flocculation of clay particles by cation exchange, which jointly 

contributes to the reduced shrinkage potential and desiccation cracking of soils. The 

soluble calcium cations provided by bottom ash adds to the enhanced hydrolysis 

reaction during the MICP process and results in a better biocementation effect. 
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2) Water-treated soil samples experience volume swelling and shrinkage, crack 

opening, propagation, coalescence, closure and healing under wetting-drying cycles. 

Quantitative analysis results based on image processing reveal that the crack area in water-

treated samples monotonically increases with the wetting-drying cycles, which can be 

attributed to the irreversible soil fabric changes and the degradation of structural integrity 

in the soil sample.  

3) MICP treatment is effective in remediating desiccation cracks, with the effect governed 

the interplay of crack driving force and bio-cemented soil strength. The parabolic 

evolution of crack geometrical parameters including surface crack area, average crack 

width, and total crack length indicates that calcite precipitations are insufficient to resist 

cracking in the first cycle of treatment and gradually increase with the subsequent 

treatments. The densely distributed CaCO3 crystal clusters on soil particle surface and 

inside inter-particle pores contributes primarily to the improved mechanical integrity 

of soil samples. 

The study highlights the potential of using bottom ash and MICP in reinforcing clayey 

soils for cyclic wetting-drying conditions. The inclusion of bottom ash admixtures 

contributes to the recycled usage of waste materials and reduces the desiccation cracking 

in clayey soils. The surface spraying of MICP solutions is easy to operate and provides a 

new possibility for field-scale implementations. Future studies will focus on the 

optimization of surface spraying methods and the bio-remediation of heavy minerals in 

bottom ashes through MICP. The bio-stabilization of clayey soils explored in this study 

brings new insights into the remediation of soil erosion and cracking for various climate 

changes, which is key to the design and performance of sustainable infrastructures. 
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Chapter 5 

The Analysis of the Remediation of Desiccation Cracking of Sandy Clay with the 

Addition of Bottom Ash Admixture through Digital Image Correlation 

Methodology 

Understanding the formation and propagation of desiccation cracking can be a 

useful technique while evaluating crack remediation. Networks of desiccation cracking can 

be studied directly through Digital Image Correlation (DIC). Analyzing the formation of 

the crack networks through real time displacement can be used to predict future crack 

networks and quantify the desiccation cracking behavior of sandy clay (Table 7) mixed 

with bottom ash admixture (Table 4).  

 This soil represents potential in field soil and allows for the analysis of the 

feasibility of adding bottom ash admixture into clayey soils prone to desiccation cracking. 

One of the most significant benefits of using bottom ash is allowing an abundant waste 

material to be recycled, thus creating an added value to this by-product. Bottom ash has 

shown promise in remediating desiccation cracking in Bentonite (Chapter 4) and it is 

important to determine the impact bottom ash can have on natural soil. 
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Table 7 

Characteristics of sandy clay gathered from Tech Park  

Soil Properties Value 

Specific Gravity 2.39 

Liquid Limit (%) 22.7 

Plastic Limit (%) 13.2 

Gravel (%) 0 

Sand (%) 30% 

Below #200sieve 70% 

 

 

Test setup. Figure 1 shows the schematic of the experimental setup in this work. 

Images were captured from the speckled surface of samples during drying using a Rebel 

t6i camera. The camera lens was positioned above and perpendicular to the exposed 

surface. The sample was placed atop a scale to enable the real-time recording of its mass 

loss due to drying. Images were continuously recorded at 30 minute time intervals. A high 

intensity LED light was used to illuminate the sample surface. The entire setup was placed 

inside a blackout cover to reduce the effects of ambient lights.   

Sample preparation. This study investigates three soil samples of sandy clay; 

sample 0%BA, Sample 20%BA, and Sample 40%BA Bottom ash is hand-mixed into the 

sandy clay with a moisture content of 50%. This is roughly 1.5 times the liquid limit of the 

soil (Table 7). The wet soil is then placed wet in 5cm petri dishes to limit voids between 

the soil and petri dish.  
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Imaging and digital correlation. Deformation and strain fields developed in the 

samples during drying were characterized in situ by digital image correlation (DIC) 

measurements. To use DIC in the present work, the exposed surface of the wet sample was 

coated with a thin layer of matt black paint that was sprayed directly on the surface of 

interest. To ensure that the speckle pattern does not affect the drying process, several 

independent measurements were conducted wherein the drying kinetics of samples with 

and without the pattern were compared. These independent measurements revealed that the 

drying kinetics are not affected by pattern deposition likely because of the discontinuous 

nature of the coating that leaves enough channels for the drying process.    

Images captured during drying were analyzed using the commercial DIC software 

Vic-2D (Correlated Solutions, Inc.). In this software, the DIC area of interest (AOI) was 

selected as a circular region with a diameter of approximately 1700 pixels (~29 µm/pixel 

resolution). The in-plane strain fields developed during the drying process were quantified 

using subset and step sizes of 49 pixels and 7 pixels, respectively. A strain filter size of 5 

was used for full-field strain measurements. This strain filter size is equivalent to a virtual 

strain gage (VSG) of ~200 µm that facilitates the measurement of highly localized strains 

with sharp gradients in the vicinity of the cracks. 

The image correlation parameters were selected to ensure a full correlation while 

keeping the strain noise floor at a minimum [38]. Figure 12 shows the DIC area of interest 

and the subset size used. Strain bias and noise floor were characterized based on the 

procedure detailed in [56] and using a set of at least 5 stationary images captured before 

the onset of the experiments. Strain bias and noise floor in this work were determined as -

5.74×10-5 and 10.7×10-5 µε, respectively. The strain noise floor determined here is at least 
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5 orders of magnitude lower than strains measured during the drying process. The 

shrinkage-induced out-of-plane motion of the sample surface was neglected due to its 

insignificant contribution to the in-plane deformation fields [57].  

 

 

Figure 12. DIC Area of Interest 

 

Results  

Water evaporating during drying. Using CIAS, different crack parameters could 

be studied including crack area, average crack width, and total crack length (Table 8). It 

can be visually observed and quantitatively proven that the addition of bottom is effective 

in remediating desiccation cracking. Visually it is easy to see that Sample 40%BA and 

Sample 20%BA have less crack area then Sample 0%BA and that bottom ash limits crack 

formation and potential The heavy metals in the bottom ash expose the soil to cation 

exchange and limit the potential expansion of the soil. The structural integrity of the soil 

sample is maintained as moisture loss occurs. Moisture loss over time is shown in Figure 
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13. As the initial rate of moisture loss is consistent in all three samples, Sample 40%BA 

and Sample 20%BA begin to plateau much sooner than Sample 0%BA. The plateau results 

in a higher final moisture content for sample 40%BA. This higher moisture retention 

correlates directly with crack area as the less moisture evaporated results in less desiccation 

cracking. 

The plasticity reduction in the soil can also be shown through the analysis of 

average crack width and total crack length. Average crack width may be more dependent 

on the number of crack segments obtained through image processing or the outlier of larger 

shrinkage cracks may skew the average resulting in 20%BA having a higher average crack 

width than 0%BA, however it can be seen in the 40%BA sample that crack expansion is 

limited by the addition of the bottom ash admixture, and that is represented through the 

lowest average crack width of 0.18 cm. Total crack length displays clearer evidence that 

bottom ash remediates desiccation cracking with 0%BA having the highest total crack 

length as 40%BA has the lowest. This trend shows bottom ash’s ability to prevent crack 

propagation and disrupts crack networks from forming. The addition of bottom ash helps 

retain the structural integrity of the soil body and less cracking results in a less permeable 

clay.  
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Table 8 

CIAS Results 

Sample  24 Hour 
Image 

Crack segments Crack area 
(%) 

Average 
Crack 
Width 
(cm) 

Total 
Crack 
Length
(cm) 

0%BA 

  

7.76 0.028 38.58 

20%BA 

  

6.86 .053 26.12 

40%BA 

  

2.44 0.018 17.49 
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Figure 13. Moisture Content Over Time 

 

Volumetric shrinkage during drying. Digital image correlation gives further 

insight into the desiccation cracking process and the remediation impact bottom ash can 

have on clayey soils. Figures 14, 15, and 16 show the radial displacement of all three soil 

samples over time and the red color indicates 0 radial displacement [38]. The color 

brightens as radial displacement increases and this represents the shrinkage of the soil 

sample. The shrinkage begins near the edge of the petri dish as the colors brighten around 

the edges of all three samples. Early displacement predicts future cracks before initial 

cracking has begun This is evident in all three samples as the edges become brighter within 

the first few hours, and this brightness begins to move toward the soil body indicating 

displacement of the soil particles [56]. The soil particles begin to separate resulting in crack 

formation and potentially the formation of an entire crack network. All maximum 

displacements occur near the boundary in all three samples, and this shows the impact the 
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petri dish has on each sample. This impact appears consistent and does not affect crack 

area measurements.  

Another trend observed is red area appearing near crack tips in all three samples. 

As cracks form the displacement near the crack is tips is 0 due to the compressive inward 

stress of the neighboring and the fixed boundary of the nearby crack. Sample 0%BA at 3.5 

hours has many red areas around the forming crack network. As time continues the red area 

decreases indicating the inward displacement of non-cracked or intact soils. The end of 

cracking results in smaller red areas surrounding the propagated crack networks. Radial 

displacement measurements can also show the impact of bottom ash admixture. The scale 

for sample 40%BA is significantly lower than the other two samples showing again the 

limited potential of soil expansion and crack propagation. Sample 40%Ba experiences less 

radial displacement, and therefore has the more intact soil body[37]. Shrinkage cracking is 

severely limited indicating there is less capability for the soil to be pulled inward. 
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Figure 14. Contour maps showing the evolution of radial displacement at various time 
steps during drying of 0% BA sample. No significant change is observed after 7 hrs. 
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Figure 15. Contour maps showing the evolution of radial displacement at various time 
steps during drying of 20% BA sample. No significant change is observed after 7 hrs. 
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Figure 16. Contour maps showing the evolution of radial displacement at various time 
steps during drying of 40% BA sample. No significant change is observed after 7 hrs. 

 

 Minor principle strain. Another parameter being measured is minor principal 

strain. This is a measurement of strain due to the tensile forces of evaporation leading to 

desiccation cracking. The minor principal strain over time is shown in Figures 17,18, and 

19. Again, the red color indicates 0 strain, therefore each initial sample at 0 hour is 

completely red. The sample brightening up indicates strain is occurring. Similarly, to radial 

displacement, initial strain is seen around the edges of the petri dish or the soil boundary 

and over time this strain occurs throughout the soil body indicating where future cracks 
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will form. There is much clearer disparity between the three samples in terms of minor 

strain. Sample 0%Ba experiences strain throughout the entirety of the sample as Sample 

20%Ba and 40%BA have larger red areas indicating 0 displacement. The impact of the 

bottom shows portrays that there is a resistance to displace in sample 20%Ba and 40%BA. 

There is significantly less displacement throughout the soil body in the bottom ash samples.  

Maximum strain occurs near the cracks due to the separation of soil particles and 

this is consistent with all three samples. Sample 40%Ba has minimal high strain areas due 

to the addition of bottom ash as Sample 0%BA has high strain throughout the entire soil 

body resulting in multiple crack networks. The consistency of these high strain areas 

indicate heterogeneity [37]. Heterogeneity shows when displacement becomes consistent 

or shows no change over time. Sample 0%BA is able to obtain heterogeneity at 

approximately 5 hours, sample 20%BA occurs at 6 hours, and sample 40%BA occurs at 7 

hours. Bottom ash delays maximum strain and keeps the soil body intact and this is evident 

through a smaller maximum minor principal strain compared to Sample 0%BA and 

20%BA. 
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Figure 17. Contour maps showing the evolution of the second principal strain (ε2) at 
various time steps during drying of 0% BA sample. No significant change is observed after 
7 hrs. 
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Figure 18. Contour maps showing the evolution of the minor principal strain (ε2) at various 
time steps during drying of 20% BA sample. No significant change is observed after 7 hrs. 
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Figure 19. Contour maps showing the evolution of the minor principal strain (ε2) at various 
time steps during drying of 40% BA sample. No significant change is observed after 7 hrs. 

 

Discussion 

Crack area confidence intervals. Confidence intervals show major differences 

among all 3 samples. The difference of Sample 0%BA is 0.693, Sample 20%BA possesses 

a difference of 0.554%, and sample 40%BA possesses a difference of 0.416%. This 

indicates there is no significant difference in terms of crack area regarding Sample 0%BA 

and Sample 20%BA. Sample 40%BA possesses a significant difference within the 
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confidence interval range of all three samples. 20%BA may not have a significant impact 

in terms of crack area remediation; however Sample 40%Ba shows major improvements 

in remediating impacts on cracking area. Future studies should look to further optimize the 

percentage of bottom ash to maximize the remediation impacts of bottom ash admixture. 

 Effects of bottom ash. The addition of bottom ash admixture into sandy clay 

reduces desiccation cracking and changes the soil’s surface morphology. The added 

plasticity and size of the bottom ash soil particles reduces the potential of soil expansion. 

Microcracks form around the bottom ash particles resulting in an increased surface 

roughness. Table 9 shows the crack propagation over time and sample 0%BA experiences 

appears to have a much smoother soil surface compared to the bottom ash samples, but 

also develops cracks faster and to a greater extent. Bottom ash limits crack network 

expansion as cracks are unable to join and coalesce throughout the entire sample. Soil 

roughness should be studied further using 3d analysis or high-resolution imaging. 
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Table 9 

Crack Propagation over time  

T 
(hr) 

Sample 0%BA Sample 20%BA Sample 40%BA 

0 

   
3 

   
6 

   
12 

   
24 

   

 

 

  Area of interest comparison. DIC allows some insight into the soil surface 

characteristics with the ability to isolate intact soil with no cracks from the entire soil body 

and compare this smaller area of interest to the larger area of interest or entire sample [38]. 

The entire AOI and isolated intact soil body AOI is compared as seen Figure 20. The 

comparisons within these areas of interest is vital to understanding the strain that is 
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occurring within the soil samples. Figure 21a and Figure 21b show that sample 40%BA 

has significantly less minor principle strain in both areas of interest. This insight shows 

how the soil is affected as cracks form and how intact soil responds to shrinkage or cracks 

forming around it around it.  

An interesting analysis is the direct comparison between the full scale AOI and the 

crack free AOI. The initial rate of strain occurring is consistent with all three samples and 

in both areas of interest. This is consistent with the drying process shown in Figure 14. 

Initially all samples experience a similar initial evaporation process. Samples begin to 

differ around the 4-hour mark and the rate of displacement significantly slows in the bottom 

ash treated samples, and Sample 0%BA strain rate increases until plateauing around 5 

hours. These trends are consistent in both areas of interest. An interesting observation is 

the 20%BA and 0%BA have very similar strain curves with 20% showing overall less 

strain and a slower rate of strain. These curves are linear until reaching their plateau, but 

Sample 40%BA experiences a change in strain rate before plateauing. This highlights the 

effects of the reduced plasticity of the soil and the success of cation exchange within the 

soil matrix. 

This behavior is essential to the structural integrity of the soil and it is clear that 

Bottom ash significantly delays strain throughout the soil sample. Sample 0%BA possesses 

similar results in both areas of interest considering there is nothing holding back the 

shrinkage of the soil. Sample 0%BA reaches its max strain at nearly 5 hours and then begins 

to plateau. The full area of interest shows less displacement in the Bottom Ash treated 

samples, and longer time for the strain to plateau as 20%BA plateaus at nearly 7 hours and 
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40%BA plateaus at nearly 9 hours. This delay and limitation of minor strain shows the 

increased durability and strength of the bottom ash samples. 

 

Figure 20. Full, A1, and reduced, A2, AOIs are shown for a 0% B.A. sample. 

 

 

Figure 21. Variation of second principal strain, ε2, with respect to time for samples with 
0%, 20%, and 40% B.A., extracted for (a) full DIC AOI, and (b) Reduced (crack-free) AOI. 
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Summary of Findings 

 This study investigated the remediation capabilities of bottom ash admixture when 

added to sandy clay through image processing and digital image correlation. Three Samples 

(0%BA, 20%BA, 40%BA) underwent desiccation cracking tests and photos were taken 

every half hour to obtain the crack morphology and water loss over time. These results lead 

to the conclusions of; 

1. The addition of bottom ash admixture leads to significantly less moisture loss in sandy 

clay resulting in less desiccation crack area (Figure 14 and Table 8). Bottom ash limits the 

potential of expansion and shrinkage of the soil specimen and prevents the formations of 

crack networks through cation exchange and reducing the plasticity of the soil. 

2. Analysis using Digital Image Correlation gives valuable insight into the formation of crack 

networks, and crack initiation. Initial radial displacement occurs near the edge of the soil 

sample and continues inward toward the soil body. Future cracks can be predicted based 

on these initial results. Sample 40%BA has significantly less radial displacement or 

shrinkage due to the addition of Bottom ash. This further proves the positive impacts of 

bottom ash has on remediating desiccation cracking. The sandy clay particles have less 

shrinkage or expansion potential in samples with bottom ash admixture (Figures 15.16,17). 

Sample 0%BA has no resistance and an entire crack network is able to form throughout 

the entire soil body. The addition of bottom ash keeps the structural integrity of the soil 

intact. 

3. DIC is also able to measure the minor principle strain throughout all the three samples and 

through isolated crack free area of interests. This analysis shows the limited strain of 

sample 40%BA and significantly less soil expansion. Bottom ash add roughness to the soil 
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as microcracks form around bottom ash particle, however Sample 0%BA has a much 

smoother surface but a much more extensive crack network. Analyzing smaller intact soil 

areas shows how the soil is impacted despite not having any cracks. Sample 40%BA shows 

much less strain delays final crack propagation. Sample 0%BA has strain occur at a 

consistent rate and reaches its ultimate strain much faster than the bottom ash treated 

samples. The addition of bottom ash delays crack propagation and limits the minor 

principle strain occurring within the soil sample. 

This study focused on the remediation of desiccation cracking of field applicable 

sandy clay with the addition of bottom ash admixture. The use of digital image correlation 

allows for new evidence of remediation and soil behavior. These findings are useful to 

preventing future cracks and predicting potential crack networks before they form. Bottom 

ash admixture is very effective in remediating desiccation cracking in clayey soils. 
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Chapter 6 

Conclusions 

 This thesis focuses on the remediation of desiccation cracking in clayey soils. The 

remediation of desiccation cracking remains an essential problem in geotechnical 

engineering and this paper highlights the remediation techniques of the addition of MICP 

and admixture bottom. This analysis is conducted on bentonite clay (Table 1) and sandy 

clay (Table 7) in the lab scale. The findings throughout this study encourage future work 

in the field scale development of these remediation techniques and for more in depth tools 

for comparison such as a 3d scanner of a 3-dimension digital image correlation. The major 

findings are summarized below. 

1. Microbial induced calcite precipitation reduces desiccation cracking area in bentonite 

clay when hand mixed. The increased bonding strength of the soil reduces crack 

propagation and limits soil expansion throughout the entire sample. This is shown through 

higher water retention and later initial cracking. The hydrolysis of the urea and the bio-

cementation effect lead to high moisture retention in MICP treated samples. MICP affects 

are seen in terms of surface crack ratio and average crack width. Sample 50B50C yielded 

the lowest crack area showing the optimized solution of MICP solution. Sample 25B75C 

and sample 75B25C each yielded similar crack ratios and similar average crack widths. 

The MICP treated samples have an average width of 0.18 cm as Sample W had an average 

width of 0.28 cm. This difference shows the limited crack potential and soil expansion once 

MICP treatment is added. 
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2. The probability distribution of crack areas shows that MICP treated samples are much 

less likely to experience large desiccation cracks but are more likely to achieve smaller 

crack areas. Sample W has the highest likelihood to experience large crack areas. This 

distribution shows the impacts of MICP in remediating desiccation cracking. A similar 

trend is observed when analyzing crack width. The avoidance of large crack formation 

allows for the structural integrity of the soil to be maintained and increases the 

serviceability of the soil. The positive impacts of MICP solution allow for further 

investigation into its remediation effects and to further advance this technique.  

3. MICP injection treatments are effective in remediating desiccation cracking. As 

treatments increase, the bio cementation effect overcomes the expansion caused by the 

drying process. The effect leads to a higher structural stability of the soil and can be shown 

through the analysis of surface crack ratio and average crack width. Water treated samples 

experience a monotonical increase of crack area with each cycle. Crack reduction rate 

shows MICP treated samples reduce cracking by nearly 80% as water treated samples 

experience a negative crack reduction rate. The structural stability of water treated samples 

is significantly decreased as treatments continue. The addition of MICP can reverse this 

trend and repair or lessen desiccation cracking to extend the service life of the soil. Further 

advancement into the field scale investigation of the MICP application is needed due to the 

lab scale success in remediating desiccation cracking. 

4. Bottom ash admixture is effective in remediating desiccation cracking by reducing the 

plasticity of the soil and promoting cation exchange among the clay particles which leads 

to flocculation and agglomeration of the clay particles. The addition of bottom ash severely 

limits the expansion potential of the soil, and this is shown as Sample C with 40% bottom 
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ash has the lowest crack area. The structural stability of the soil is increased as the addition 

of bottom ash allows for the soil body to remain mostly intact. Circumferential cracking is 

mostly observed among the bottom ash treated samples, as Sample A shows the formation 

of crack networks occurring throughout the entire soil body. Bottom ash also has a visible 

impact on the surface roughness of the soil resulting in a less smooth surface. This common 

waste material is effective in remediating desiccation cracking and also provides soluble 

calcium ions to aid in the MICP reaction. MICP treatments and the addition of bottom ash 

admixture are able to nearly fully reduce desiccation cracking as Sample C shows a final 

crack area of only 3%.  

5. Digital image correlation is a valuable tool in analyzing soil behavior and crack 

formation. The real time strain and displacement measurements allow for insight into the 

initial cracking process and the ability to predict future crack formations. DIC analysis is 

also able to show the remediation effects of bottom ash admixture in sandy clay. Measuring 

radial displacement in all three samples showed sample 40%BA experiences the least 

expansion among all samples, as the max displacement is significantly less than the other 

samples tested. Insight into soil behavior during the drying process indicate displacement 

begins at soil petri dish boundary and slowly encircles the entire sample until the cracking 

process begins. Soil behavior once cracking occurs is also beneficial to the integrity of the 

soil. As cracking occurs the soil nearest the crack will experience minimal displacement, 

and further away from crack networks shows higher displacements.  

 This study was successful in remediating desiccation cracking through the addition 

of MICP solution and bottom ash admixture. Quantitative analysis was conducted studying 

observed crack patterns and soil behavior allowing for many findings to be obtained. 
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Further advancement of this research includes the addition of 3-dimensional analysis using 

a 3d scanner or 3d DIC. Noticeable changes occur on the soil surface during the drying 

process and that quantitative analysis is unavailable with a 2-dimensional study. This 

research provides valuable insight into soil behavior and the formation of crack networks 

in hopes to remediate the effects of desiccation cracking in clay soils. 
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