
Rowan University Rowan University 

Rowan Digital Works Rowan Digital Works 

Theses and Dissertations 

11-20-2020 

Moving target network steganography Moving target network steganography 

Tapan Soni 
Rowan University 

Follow this and additional works at: https://rdw.rowan.edu/etd 

 Part of the Information Security Commons 

Recommended Citation Recommended Citation 
Soni, Tapan, "Moving target network steganography" (2020). Theses and Dissertations. 2850. 
https://rdw.rowan.edu/etd/2850 

This Thesis is brought to you for free and open access by Rowan Digital Works. It has been accepted for inclusion 
in Theses and Dissertations by an authorized administrator of Rowan Digital Works. For more information, please 
contact graduateresearch@rowan.edu. 

https://rdw.rowan.edu/
https://rdw.rowan.edu/etd
https://rdw.rowan.edu/etd?utm_source=rdw.rowan.edu%2Fetd%2F2850&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=rdw.rowan.edu%2Fetd%2F2850&utm_medium=PDF&utm_campaign=PDFCoverPages
https://rdw.rowan.edu/etd/2850?utm_source=rdw.rowan.edu%2Fetd%2F2850&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:graduateresearch@rowan.edu


 
 

MOVING TARGET NETWORK STEGANOGRAPHY 

 

 

 

by 

Tapan Soni 
 

 

 

 

A Thesis 

 

Submitted to the 

Department of Computer Science 

College of Science and Mathematics 

In partial fulfillment of the requirement 

For the degree of 

Master of Science in Computer Science 

at 

Rowan University 

November 18, 2020 

 

 

 

  

Thesis Chair: Vahid Heydari, Ph.D. 



 
 

©  2020   Tapan Soni 

 

 

 

 

 

 



 
 

Dedications 

 To my family and friends. Without you, this would not have been possible. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



iv 
 

Acknowledgments 

A special thanks to my committee chair Dr. Vahid Heydari, who first hired me to 

be a student researcher in his lab, back in 2018, and who I’ve worked with throughout my 

undergraduate and graduate school tenure. Special thanks to my committee members 

Professor Patrick McKee, Dr. Chenxi Qiu, and Jacob Carpenter for helping me finish my 

thesis. 

Special thanks to Professor Christopher Simber from Rowan College at 

Burlington County who I worked with during my first research project when I was a 

freshman in college. His guidance, motivation, and knowledge has helped me 

tremendously. 

I would also like to thank my friends who were constantly supporting me through 

this journey. Without their patience and understanding, this would not have been 

possible. 

Finally, I would like to thank my parents. They have helped me more than anyone 

and without them, none of this would have been possible. 

 

 

 

 

 



v 
 

Abstract 

Tapan Soni 
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2019-2020 

Vahid Heydari, Ph.D. 

Master of Science in Computer Science 

 

 A branch of information hiding that has gained traction in recent years is network 

steganography. Network steganography uses network protocols are carriers to hide and 

transmit data. Storage channel network steganography manipulates values in protocol 

header and data fields and stores covert data inside them. The timing channel modulates 

the timing of events in the protocol to transfer covert information. Many current storage 

channel network steganography methods have low bandwidths and they hide covert data 

directly into the protocol which allows discoverers of the channel to read the confidential 

information. A new type of storage channel network steganography method is proposed 

and implemented which abstracts the idea of hiding data inside the network protocol. The 

addition of a moving target mechanism rotates the locations of data to be evaluated 

preventing brute force attacks. The bandwidth of the algorithm can also be controlled by 

increasing or decreasing the rate of packet transmission. A proof of concept is developed 

to implement the algorithm. Experimental run times are compared with their theoretical 

equivalents to compare the accuracy of the proof of concept. Detailed probability and 

data transfer analysis is performed on the algorithm to see how the algorithm functions in 

terms of security and bandwidth. Finally, a detection and mitigation analysis is performed 

to highlight the flaws with the algorithm and how they can be improved. 
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Chapter 1 

Covert Channels and Network Steganography  

Covert Channels  

The term “covert channel” originally coined by Butler Lampson [1], is defined by 

the United States Department of Defense as “any communication channel that can be 

exploited by a process to transfer information in a manner that violates the system’s 

security policy” [2]. In plain terms, a covert channel is an information hiding technique in 

which the user takes advantage of the design and availability of a standard 

communication channel to transfer covert data between two processes or entities without 

a third party knowing of its existence. It is important to note that the term “covert 

channel” is used to describe a category of information hiding techniques and not a 

singular entity by itself. Figure 1 describes the information hiding hierarchy. 

 

 

 

Figure 1. Information hiding hierarchy 
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One of the most widely known and used covert channels is steganography. 

Steganography is the practice of hiding a message inside a carrier and comes from the 

Greek word “steganos” which means “covered” or “protected” and “kryptos”, meaning 

hidden (secret) [3] [4]. A point to note is that steganography is not the same as 

cryptography. Although both prominent techniques of information hiding, steganography 

aims to hide the existence of a message while cryptography aims to hide the content of a 

message [5]. 

The most popular form of steganography is image steganography where data is 

hidden inside images. Software such as BPStegno [6], StegHide [7], and OpenStego [8] 

use different encoding techniques to hide data inside of the image pixels, the most 

common being Least-Significant Bit (LSB) but there are many more techniques. The 

LSB data encoding technique encodes data inside the least-significant bit of the image 

pixel’s red, green, and blue values. By using LSB encoding, the sender can hide up to 3 

bits of data inside every pixel without significantly impact the visual quality of the 

images.  

While image steganography is the most widely used and recognizable forms of 

steganography, a new type of steganography, using network protocols as carriers, has 

gained traction in recent years. The term “network steganography” was first introduced 

by Krzysztof Szczypiorski in 2003 [9]. Network steganography is a subset of 

steganography where network protocols are used as carriers to hide and transmit secret 

messages. For a simple example of network steganography imagine a communication 

protocol which is used by two parties to exchange messages. The communication 
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protocol assumes that the response from either side should come within a specific amount 

of time after the initial message was sent, otherwise the response will be treated as a 

delayed message and discarded. The two parties want to communicate in secret, agree 

that responses carrying the secret messages will be purposely delayed and not be 

discarded by the recipient but instead read to extract the secret message. This becomes 

their shared secret. The manipulation of the communication protocol happens in the 

intentional delaying of responses containing the secret messages. Third parties who 

observe the network traffic between our two parties do not become suspicious of the 

existence of a hidden communication channel if the frequency of delayed responses does 

not appear to be out of the ordinary, e.g., under a certain threshold. This example of 

network steganography is categorized as a timing channel approach which is discussed 

later in this chapter [4]. 

The Prisoner’s Problem 

A classic problem used to define the need for a covert channel is the Prisoners 

Problem [10]–[12]. The prisoners problem was introduced by Gustavus J. Simmons in 

1983 [10] and is used to describe a scenario in which covert channels are needed to 

communicate. Figure 2 (adapted from [11]) shows the prisoners problem. There are two 

prisoners, Alice and Bob, and they want to communicate with each other to plan their 

escape. Both Alice and Bob are confined to their prison cell and can only communicate 

using the provided computer terminals. The network used for communication is insecure 

and monitored by the Warden, Walter. He is monitoring the network for evidence of any 

malicious activity by Alice or Bob. The use of cryptography would immediately be 

noticed by the Warden causing him to throw Alice and Bob into solitary confinement 
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where they would not be able to communicate with each other. Therefore, cryptography 

cannot be used to secure their exchange of secret messages. Alice and Bob must 

communicate in such a way over the unsecure network that the warden does not find out 

their plan to escape the prison. A point to note is that Alice and Bob have a shared secret 

between them. Without the shared secret, the receiver might as well be the warden 

because there is no way to differentiate normal traffic from the covert traffic. How the 

shared secret is established is beyond the scope of this research, but they could have met 

in private to share the secret. There are two types of wardens in the prisoners problem, an 

active warden and a passive warden. The active warden can modify the contents of the 

network traffic in any way he wants and can be more aggressive. The passive warden is 

like a network sniffer and can only spy on the network traffic, he cannot alter the 

messages in any way.  

 

 

 

The goal of network steganography is to send covert data through regular network 

channels which cannot be detected by the warden or any other third party for that matter. 

Many classical schemes can be easily detected by the warden because they manipulate 

Figure 2. The Prisoner's Problem 
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the protocol in an un-natural or predictable way which does not conform to the standards 

set in place. 

Overview of TCP/IP 

Network steganography exists partly because of the adaption of an open system 

architecture of the Internet and the standardization of communication protocols. The 

Internet, the largest network on the planet, is made up of millions of servers, routers, 

switches, and end-users. These devices communicate with each other using standardized 

communication protocols to form the Internet. These protocols, designed in the 1970s, 

1980s, and 1990s, form the backbone of the communication architecture of the Internet as 

we know it today. One of those protocol suites, the TCP/IP Protocol Suite (Transmission 

Control Protocol and Internet Protocol) [13], is widely used on the Internet today. 

Created by the United States Department of Defense in collaboration with several 

academic institutions [14], the TCP/IP protocol was created to meet the demands of an 

increasingly connected world. Since the creation and adoption of the TCP/IP protocol, the 

Internet has grown exponentially in size and far beyond its original scope [14]. The 

Internet has evolved from a simple network between a small number of federal and 

academic organizations to a global network connecting millions of people, thanks in part 

to the TCP/IP protocol suite. 

 The popularity of TCP/IP is due in part to its robustness and its open, free, and 

broad protocol standard. TCP/IP can operate on different types of physical transmission 

mediums such as Ethernet, optical, and dial-up which allows it to integrate into many 

different kinds of networks [14]. Because it was so widely supported by different 
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organizations, TCP/IP is designed to work independently from specific types of hardware 

or operating systems, allowing it to be used in many different communication scenarios 

[14]. 

The TCP/IP communication suite works using a layered approach. Figure 3 shows 

the layers of the TCP/IP protocol stack. There are 5 layers in the TCP/IP protocol stack 

with the Physical Layer denoted as the first layer and the Application Layer referenced as 

the fifth layer. 

 

 

 

Figure 3. Layers of the TCP/IP Protocol Suite 

 

The application layer oversees the receiving and sending of data to and from the 

user. The protocols in this layer are used to provide services such as file sharing (FTP 
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[15], SFTP [16]), remote login capability (TELNET [17], SSH [18]), mail transfer 

(SMTP [19], IMAP [20], POP3 [21]), and web page delivery (HTTP [22], HTTPS [23]) 

to name a few [14]. New protocols are constantly added to this layer to extend the 

functionality of this layer.  

 The transport layer is one of the most important layers of the TCP/IP stack and 

the fourth layer. It controls the delivery of data between two processes on different hosts. 

Two of the most popular transport layer protocols are the Transmission Control Protocol 

(TCP) [24] and User Datagram Protocol (UDP) [25]. 

TCP is a reliable connection-oriented protocol, which means that it will try to 

send data in a reliable manner and has mechanisms to prevent data (called packets) from 

being lost or dropped between the source and destination [14]. TCP has an 

acknowledgement mechanism which allows the sender to send data again if an 

acknowledgement that the data has arrived has not been sent by the receiver does not 

arrive. TCP also provides checksums or data hashes which are used to verify the integrity 

of the data. If the data is received undamaged and unaltered, the receiver sends a positive 

acknowledgement to the sender. If the data is damaged or altered, the receiver sends a 

negative acknowledgement to the sender and the sender can resend the data [14].  

Being a connection-oriented protocol, TCP establishes a logical end-to-end 

connection between two hosts [14] before sending data. The establishment of this logical 

connection is called a “three-way handshake”. Figure 4 shows a simple implementation 

of the three-way handshake. 
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Figure 4. TCP three-way handshake 

 

The first step in the three-way handshake is the SYN step. The client initiates a 

connection by sending a “SYN” packet to the server. SYN is a flag in the TCP protocol 

which means synchronize and is used to initiate connections. This means that the client 

wants to start a connection with the server. The second step is the SYN+ACK step 

performed by the server. The server sends the client a SYN+ACK packet. The packet sent 

by the server has two flags set, the SYN flag and the ACK flag. The ACK flag stands for 

acknowledge. The server acknowledges to the client that it received the connection 

initiation request sent by the client (the SYN packet) and it also wants to open a 

connection from the server’s side, which is marked by the SYN flag sent alongside the 

ACK flag. The third step is the ACK step sent by the client to the server. The client 

receives the SYN+ACK packet from the server in step two and proceeds to acknowledge 

that the server wants to initiate a connection as well. The client also acknowledges that 
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the server acknowledged the client wanting to open a connection. After the third step is 

complete, both the client and server have established a connection which is 

acknowledged by the other party creating a reliable and connection-oriented path to 

exchange data. The termination of the logical connection happens in the same format. 

The flag used to terminate the connection is FIN which signals the end of data 

transmission from the sender. 

UDP is the second most popular transport layer protocol in the TCP/IP stack. It is 

an unreliable connectionless protocol, where “unreliable” means that UDP does not have 

any way to verify that the data has reached the receiver [14]. UDP delivers data correctly 

by using the IP address of the destination machine and the port number of the process. 

Since UDP does not have a data received verification mechanism, it is a more efficient 

choice as a transport layer protocol because there is no overhead of creating and 

maintaining a reliable connection [14]. Media applications and services may prefer using 

UDP over TCP because of its speed in transferring information. 

The network layer is the third layer in the TCP/IP protocol suite. The most 

popular and widely used network protocol is the Internet Protocol (IP) version 4 (IPv4) 

[26]. The IP protocol creates data fragments called datagrams which are the basic unit of 

transmission for the Internet, defines a common addressing scheme for devices connected 

to the Internet, controls the routing of datagrams between hosts, and performs 

fragmentation and de-fragmentation of datagrams [14]. The IP protocol uses IP addresses 

as a common addressing scheme for devices connected to a network. An IP address is 

like a house address. Every house has a different address and in the same way, each host 

has a different IP address. The IP address is used to deliver the data of the previous layers 



10 
 

to the correct destination machine. The IP protocol also handles the fragmentation and 

de-fragmentation of datagrams if needed. Fragmentation breaks datagrams into smaller 

pieces and may be needed if the datagram is too large to be sent as a single unit [14].  

Another important protocol in the network layer is the Internet Control Message 

Protocol (ICMP) [27]. ICMP is used to send messages which perform flow control and 

error reporting by sending messages between hosts through the network layer [14]. The 

ICMP protocol can notify the sender to stop sending datagrams temporarily to control the 

flow of traffic and about unreachable hosts among other notifications. 

The second layer is the data link layer. Data at this layer is encapsulated inside 

frames. The function of the data link layer is to transfer frames between hops in the 

network. A hop or network node is every intermediate stop the frame makes between the 

source and destination, e.g., a router or a switch. The data link layer, like the transport 

and network layer, adds a header to the data frame with the source and destination 

physical addresses. The data link layer can also add a trailer. A trailer is another header 

that is added to the end of the frame instead of the front. The trailer contains data for 

error detection [28]. Some of the protocols supported by the data link layer include the 

IEEE 802.3 Ethernet standard [29] and the IEEE 802.11 Wireless LAN (WLAN) 

standard [30]. The IEEE 802.3 Ethernet standard defines the physical layer of a wired 

connection within a network. The IEEE 802.11 WLAN standard defines the physical 

layer of a wireless physical layer also known as Wi-Fi. 

The first layer is the physical layer. The physical layer takes care of sending and 

receiving the data between hops. The data is sent a bit at a time and the protocol defined 
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by the connection link is used, e.g., if two hops are connected by an ethernet link, the 

ethernet protocol is used to send the data. The physical layer is also tasked with 

controlling the direction of transmission between two devices: simplex, half-duplex, or 

full-duplex [31]. Simplex mode means only one device can send, and one can receive, in 

half-duplex mode, two devices can send and receive but not at the same time, and in full-

duplex mode, two devices can send and receive at the same time [31]. 

Each layer is abstracted from the others to divide the functionality and prevent a 

single layer from performing too many tasks which can create a single point of failure. 

This allows the protocol to be modular and robust because each layer is its own system 

that receives and passes data to and from other layers and does not have to worry about 

the functionality of other layers. Each layer adds a header to the front of the data that it 

receives from the previous layer. The addition of each layer header is called 

encapsulation. Figure 5 [31] shows the encapsulation process. 
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Figure 5. TCP/IP encapsulation process 

 

There are many moving parts in the TCP/IP protocol suite. Each layer has a 

specific job which requires many unique protocols to accomplish. The variety of 

protocols and the availability of the TCP/IP protocol suite in today’s Internet make it an 

increasingly attractive carrier for steganographic activity. Network steganography relies 

on three characteristics of current implementations of network protocols to transfer covert 

information [32]. The communication channels are not perfect. Data loss, corruption, and 

reordering happen in a real-world environment and thus it is possible to embed data by 

mimicking those behaviors [32]. Most network protocols define header fields or 

messages that are not used in all situations allowing users to hide data inside these extra 

fields [32]. Finally, not every protocol is completely defined and “semantic overloading” 

is possible [32], allowing a certain degree of freedom in the implementation. This 

freedom can be used for steganographic purposes to hide data. 
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Network Steganography 

 There are two types of network steganography, storage channel and timing 

channel. A storage channel is a class of network steganography that modifies values in 

the carrier to create a storage covert channel [32]. Typically, these techniques hide 

information by modifying protocol header fields, such as unused bits of a header, or the 

data field of a packet [32]. A majority of network steganography comprises of storage 

channel network steganography since each layer adds some type of header to the data it 

receives and not every field in the header is used.  

A timing channel is a class of network steganography that modifies the timing of 

“events” in a carrier to create a timing covert channel [32]. The goal of a timing covert 

channel is to store information in the timing of the protocol messages or packets [32]. 

Timing channels are less prevalent in network steganography due to the increased 

complexity and limited user control over how the protocol and operating system handles 

the timing of the events. Much of the protocol timing is out of the users’ control, 

therefore, making timing channel steganography harder to implement and develop. 

  Two major drawbacks of current storage channel network steganography 

techniques are that they transmit actual covert data inside the channels and their 

transmission rate is low. Current network steganography channels embed the actual 

covert data inside the protocol allowing a third party to read the data if the covert channel 

is ever found. Additionally, since the confidentiality of the channel must be preserved, 

the transmission rate of the channel suffers because there are not many modifications that 

can be made to the protocol.  
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A new type of storage channel network steganography, moving target network 

steganography, is proposed and implemented to address these drawbacks. The new 

technique abstracts the transmission of data to each host by evaluating a data packet using 

hashing algorithms. Hashing data packets at the host level and comparing bits of the hash 

to covert data at the client level prevents covert data from being embedded inside a 

packet. Furthermore, by moving the locations and order of data that is evaluated to places 

known only by the hosts, it is virtually impossible to extract data from a packet if the 

scheme is detected. The scheme also has a higher average transmission rate than the 1 bit 

per second defined by the United States Department of Defense [2].  

The rest of the thesis is organized as follows, Chapter 2 reviews current 

approaches in storage channel network steganography and touches on timing channel 

network steganography. Chapter 3 provides an in-depth explanation of the 

steganographic algorithm, the proof of concept, and reviews the results of the 

implementation. Chapter 4 contains a probability and data transfer analysis alongside 

mitigation techniques. Chapter 5 concludes the research.  
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Chapter 2 

Related Network Steganography Approaches 

In this chapter, related storage channel network steganography approaches are 

discussed and explained.  

Kadhim et al. [33] proposed a network steganography technique based on crafting 

custom TCP/IP sequence numbers. Their algorithm performs the XOR operation on the 

binary representation of the secret data with the binary representation of the source port 

and destination port numbers. This number, converted to a decimal, is used as the 

sequence number. The receiver reads the data by performing the XOR operation with the 

received packet’s sequence number, source port and destination port. 

Kundur et al. [34] proposed a network steganography method based on 

manipulating the Do not Fragment (DF) IP header field which marks the packet as “don’t 

fragment” [4]. The DF field which can hold either a “0” or a “1” and can be exploited by 

knowing the Maximum Transmission Unit (MTU) size which is the maximum size of a 

datagram that can be sent through a network [4]. Any datagram whose size is below the 

MTU value is not fragmented, thus rendering the DF field useless if set to “1”. Therefore, 

by crafting datagrams whose size is less than the MTU value, the DF field value can be 

used to transmit one bit of covert data per packet. 

Biswas et al. [35] proposed a network steganography technique which fills the 

TCP data portion with encrypted RSA data. The decryption key is then encoded inside 

the sequence number of the data packet and sent along with the encrypted data. The 
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receiver sniffs TCP traffic from the sender, extracts the encrypted data from the TCP data 

field, and decrypts it using the key inside the sequence number field. 

Stødle [36] proposed a network steganography technique using ICMP  echo 

request and reply packets. In this scheme, the client communicates with a remote proxy 

using ICMP echo requests. The remote proxy communicates with the client using ICMP 

reply packets. The remote proxy then establishes a TCP connection with a remote server 

e.g. a website server. In a communication scenario, the proxy converts incoming TCP 

data from the remote server into ICMP reply packets and sends them to the client. The 

client does the same except their packets are in the form of ICMP request packets when 

communicating with the proxy. 

Handel et al. [37] proposed several network steganography techniques for the OSI 

model [38]. The first method proposed hides covert data inside unused portions of the 

data link layer frame. The covert data is stored inside the buffer, beginning at the end of 

the buffer and working towards the valid data. When the frame is transmitted, the entire 

buffer is sent which includes the valid data and the covert data. The second method 

described is hiding data inside the network layer. Inside the IP header, there is an 8-bit 

Type of Service (ToS) field. The two least-significant bits are unused and can store two 

bits of covert data per packet. The last method uses the 6-bit Reserved header field 

between the Header Length and the TCP Flags to store six bits of information. Combined 

with the IP ToS field’s two bits and the six bits of the Reserved field, the sender can send 

one byte of covert information per packet. 
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Jankowski et al. [39] proposed a network steganography technique called PadSteg 

which uses inter-protocol network steganography and the EtherLeak [40] frame padding 

vulnerability to send covert data. Inter-protocol steganography exploits the relationship 

between two or more protocols from the TCP/IP stack to transmit covert information. The 

EtherLeak vulnerability is a flaw in the padding mechanism of many Network Interface 

Cards (NIC) where the physical layer (hardware implementation) or the data link layer 

(software implementation) do not properly zero out the padded bits of an ethernet frame. 

This allows arbitrary bits to be placed into the padding buffer thus allowing the storage of 

covert bits. PadSteg uses the ARP [41] protocol to search for hidden nodes on a LAN that 

can communicate secretly. Once a hidden node is found, both nodes take TCP data 

transmitted between each other and hide secret data inside the ethernet frame padding 

bits. 

Melo et al. [42] described a network steganography technique using TCP 

sequence numbers. The method can transmit 3 bits of data inside the Initial Sequence 

Number (ISN) of a TCP connection. The covert data is converted into its binary 

representation and concatenated into a 24-bit binary string. The first byte of the 32-bit 

TCP ISN is an identifier. Together, they make up a 32-bit binary string. The sum of the 

high values (locations where the bit is 1) is taken and that generates the 10-digit ISN 

which contains the data. 

Giffin et al. [43] developed a network steganography method based on rewriting 

the least significant bits of a TCP packet’s timestamp field. By purposely delaying the 

processing of TCP packets by the kernel, the least significant bit of the TCP timestamp 

can be modified to hold a covert bit. Since TCP timestamps are based on internal timings 
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of the host machine, on a slower connection, the least significant bits are effectively 

random. 

Rowland [44] proposed three network steganography techniques that manipulated 

TCP/IP header fields to encode ASCII values for transmission. The first method replaces 

the IP identification field with the ASCII representation of the character to be encoded. 

The second method encodes ASCII values inside the TCP sequence number of the packet 

by converting the ASCII representation of the character into a 32-bit sequence number. 

The third method uses a “bounce” server to send data to a remote server anonymously. 

The data is hidden inside the TCP sequence number and the source IP address of the 

packet is the remote server’s IP address. When the bounce server replies to an initial SYN 

packet, the response is sent to the remote server. The remote server takes the incoming 

packet and decodes the information by transforming the sequence number minus one 

back into the ASCII equivalent. 

Trabelsi et al. [45] described a network steganography technique which uses the 

IP Record Route option [26] to hide data inside the IP header. The IP Record Route 

option is an option which, when set in the IP header, allows routers that handle the packet 

to log their own IP address into allocated space inside the packet’s IP header. The IP 

Record Route option has three fields, the code field, the length field, and the pointer field. 

The code field tells the host what type of option it is. The length field specifies the total 

length of the option as it appears inside the IP datagram. The pointer field specifies the 

offset to the next available slot inside the option data. This is used to determine where the 

next location is for writing the hosts’ IP address. Every time a host logs their IP address 

inside the record route option, the pointer field is incremented by 4 (4 bytes). When the 
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pointer field’s value is greater than the length field, no more hosts can log their IP 

address inside the IP datagram and the hosts send the packet to its destination. The 

authors exploit this functionality by setting the initial pointer value to be larger than the 

length value. This prevents any logging of IP addresses and allows up to 36 bytes of 

secret data to be hidden inside the option. They also proposed the Covert File Transfer 

Protocol (CFTP) which is a client/server application that exploits the IP record route 

hiding method to tunnel the ICMP protocol inside the IP options allowing for a two-way 

communication channel between the client and the server.  

Szczypiorski [9] presented HICCUPS (HIdden Communication system for 

CorrUPted networkS), a new type of network steganography which utilized the IEEE 

802.11 WLAN protocol. HICCUPS created data frames with bad checksums as a method 

of creating additional on-demand steganographic bandwidth. The data frames with bad 

checksums would be discarded by hosts who did not know about the steganographic 

scheme. Hosts that knew about the scheme would not discard the data frames and extract 

the covert data from those frames.  

Rios et al. [46] presented network steganography techniques in the Dynamic Host 

Control Protocol (DHCP) [47]. The first technique uses the XID field in the DHCP 

header. The XID field is the transaction ID which is a random number generated by the 

client and used by both the client and server to associate the messages and responses 

between a client and a server [47]. The XID field is 4 bytes long. Since the field uses 

randomly generated fields by the client, the client can store covert data inside the field 

and send it to the server. The server stores the data locally until the client signals the end 

of the covert data transmission. Once the end of transmission is received, the server can 
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read the covert data from the XID field. The second technique uses the sname and file 

fields inside the DHCP header which are together 190 bytes in length. Both the sname 

and file fields consist of null-terminated (‘\0’) strings. Anything after the null termination 

is marked as garbage data. The strategy sends “empty” fields by setting the first byte to a 

null character allowing for a maximum of 190 bytes of covert data to be sent per packet 

including the null characters. 

Patuck et al. [48] introduced several covert channels inside the Extensible 

Messaging and Presence Protocol (XMPP) [49]. XMPP relies on XML streams as a base 

for transferring data. The first covert channel exploits the type channel by alternating 

between the “normal” and “chat” values. The attribute is not used by the server and is 

passed as-is to the receiver. The second covert channel uses the ID element which is a 

unique alphanumeric string for use in tagging messages (like TCP sequence numbers). 

The covert data is encoded inside the least-significant bit of the ID element and sent to 

the receiver, similar to [43]. The third covert channel manipulates the xml:lang attribute. 

The xml:lang attribute is used to determine the language used in writing the message. By 

using language codes that represent roughly the same language (en-GB, en-US, etc.), 

covert data can be transmitted. The final covert channel modifies the contents of the body 

element. The body element is where the actual content of the message is stored. The 

methods of modifying the body element include leading and trailing spaces around the 

body text encoding up to 2 bits of information, replacing words with synonyms (likely to 

suffer from many false positives and low accuracy), and intentional spelling mistakes. 
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Chapter 3 

Algorithm, Implementation, and Results 

Background 

 Hash functions. Hash functions are mathematical functions that generate a 

unique fixed-sized string from an input of arbitrary size [50]. Figure 6 [51] describes the 

hashing process. The user has an arbitrarily sized message (M) which they send to the 

hashing algorithm (H). The hashing algorithm mathematically reduces the message into a 

unique and fixed-size output (D) called the message digest or a hash. 

 

 

 

Figure 6. Hash function input and output 

 

Hash functions are used for a wide variety of situations. Some of their many uses 

include digital signatures, integrity verification, message authentication, and password 

protection [51]. The properties that enable hash functions to be versatile are 

unpredictability, pre-image resistance, second pre-image resistance, and collision 
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resistance [51]. Unpredictability is the property of a hash function that makes a hash 

function return a random unique string each time it receives an input [51]. Table 1 [51] 

shows an example of the unpredictability property. Three different inputs (numerals 1, 2, 

and 3) are hashed by the SHA-256 [52] hashing function and their output is shown. Even 

though 1, 2, and 3 are off only by one or two bits (0001, 0010, 0011), the output of the 

hash function is completely different for every input [51]. A point to note is that hash 

functions are always deterministic meaning they will always produce the same output for 

the same input. 

 

Table 1 

Hash function input and output examples 

 

 

Pre-image resistance describes the guarantee that given a random hash value, an 

attacker will never find a preimage of that hash value. A preimage of a given hash value, 

D, is any message, M, such that 𝐻(𝑀) = 𝐷 . Hash functions are also called one-way 

functions because a user can generate a hash from a message, but not a message from a 

hash, i.e. one-way. Pre-image resistance describes cases where it is practically (but not 

completely) impossible to find a message that hashes to a given hash value. Second pre-
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image resistance on the other hand, describes the cases that when given a message, M and 

its hash value D, it is practically impossible (but not completely) to find another message, 

N, that hashes to the same hash that M does. Pre-image resistance focuses on the hash 

functions ability to be irreversible, whereas second pre-image resistance focuses on the 

hash functions output being sufficiently random [51]. 

 Collision resistance is the property that prevents two different input messages, M 

and N, from having the same hash, D [53] [51]. Collision resistance is related to second 

pre-image resistance in that if an attacker can find a second pre-image using a given 

message and its hash value, the attacker can also find collisions [51]. The reality of 

collisions is that they will always occur no matter what hashing algorithm is being used. 

This is due to the pigeonhole principle. The idea of the pigeonhole principle is that you 

have K holes and R pigeons to put into those holes, and if R is greater and K, at least one 

hole must contain more than one pigeon [51]. Hash functions produce a hash whose size 

is always the same, but they can take in a message that can of any length. This will 

always result in some messages having the same hash as other messages because the 

input can be, theoretically, any length. The goal is to make such a discovery practically 

impossible to detect and that is collision resistance. 

 Hash functions are an integral part of the proposed method because they provide a 

unique representation of data which allows the method to evaluate data packets and hide 

secret data inside of them without having to manipulate the packets directly. 

Permutations. In mathematics, arranging objects in a certain order is called a 

permutation [54]. In contrast, a combination is a way of arranging objects where order 
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doesn’t matter. The numbers in the permutation do not have to increase linearly or 

consecutively. Each number can be greater or smaller than the previous number in the 

permutation. The sequence of numbers can also be described as a permutation array. 

 Another example of a permutation is choosing an ordered subset from a set of 

objects. How many ways can first place, second place, and third place be assigned to 

three people from a group of twenty people. In this example, order matters because there 

can only be one first-place winner, one second-place winner who cannot be either the 

first-place or the third-place winner, and one third-place who cannot be either the first-

place or the second-place winner. Selecting an ordered subset out of a set is a selective 

permutation [55]. By leveraging selective permutations in the proposed method, a 

moving target feature is added. Selecting a random permutation array that is of a certain 

size out of a larger list of values allows the method to change the locations of where the 

secret data is hidden. Additionally, by seeding a random permutation array generator with 

a secret pre-shared key, the method prevents third parties from re-creating the same 

permutation arrays. 

Algorithm 

While traditional storage channel network steganography methods hide data 

directly into the fields of a packet, the proposed algorithm analyzes a packet in a holistic 

manner to hide and extract secret data. This allows the algorithm to stray away from 

hiding covert data inside the data packet. Since covert data is never hidden directly inside 

the data packet, any attempt to extract data from the packet without knowing the 

algorithm first will not work.  
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The algorithm is designed to use a stream of packets originating from the sender 

and going to the receiver as a covert channel. If a packet stream is not available, the 

algorithm generates one which acts as a covert channel. Each packet in the stream is 

evaluated to see if a specific number of bits from target locations of its hash match the 

same number of bits of secret data. If they do match, the packet is marked and sent over 

the wire. The receiver sniffs traffic coming from the sender’s machine and looks for the 

marked packets. Once they see the marked packet, the receiver creates the same hash of 

the marked packet and extracts the secret data bits from that packet and reassembles the 

covert data. The algorithm security is augmented by the addition of a moving target 

mechanism. The location of the bits that are evaluated in packet hash bits which are 

compared for every marked packet change. By moving the location of the bits that are 

evaluated, an attacker simply cannot guess the correct location and extract the covert 

data. They need to know the order of the bits that need to be evaluated from the packet 

hash and their specific location which renders a brute force attack useless. Additionally, 

since the packet is analyzed as a whole entity, statistical analysis does not yield anything 

because the packet is useless and doesn’t convey any special meaning, except to the 

receiver. Figure 7 shows the steps the sender takes to hide data and send it to the receiver 

using the general algorithm. 
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Figure 7. MTNS algorithm, sender side 
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The algorithm requires the sender and receiver to have pre-shared parameters. 

These parameters are the number of evaluation bits, a secret key, and a retry count. The 

number of evaluation bits identifies how many bits are intended to be hidden inside of a 

packet. It is the number of bits which are compared from the packet hash against the 

same number of covert bits. The value of the evaluation bits can range between 1 and up 

to including the size of the hash digest e.g. 256 for the SHA-256 hashing algorithm. The 

retry count specifies how many times the sender should send the message again if the 

receiver did not receive all the secret data or cannot verify the integrity of the secret data. 

The retry count is also used by the receiver to determine how many times they will keep 

sniffing for secret data from the sender if all the secret data was not received or the data 

integrity could not be verified. 

The number of evaluation bits dictates the total time it takes to transfer the data 

and the number of bits that are transferred per packet. The higher the number of 

evaluation bits, the more data can be transferred per packet. On the other hand, as the 

number of evaluation bits increases, the total transmission time also increases because the 

algorithm needs to match a greater number of bits from the packet hash against the secret 

data. A larger amount of evaluation bits also provides more security from brute force 

attacks since an attacker would have to find the exact order of the permutation used when 

evaluating the packet hash. A smaller amount of evaluation bits allows the user to 

transfer data at a higher rate than if they used more evaluation bits because the algorithm 

is evaluating a smaller amount of positions from the packet hash against the secret data. 

The overall data transmission time is reduced when using a smaller amount of evaluation 
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bits. By using a smaller amount of evaluation bits, the amount of data transferred is also 

smaller. 

 A smaller amount of evaluation bits provides less security than many evaluation 

bits because the number of positions from the packet hash that need to match the secret 

data are less.  Nevertheless, smaller amounts of evaluation bits have their advantages. 

They are much faster in transferring data since the algorithm  

The key is a shared secret between the sender and the receiver. The secret key 

allows the sender and receiver to prevent any third party from extracting secret data from 

the packets by acting as the seed for a random permutation generator which generates an 

array of values whose size is the same as the number of evaluation bits. Since both the 

sender and receiver have the same secret key, they generate the same sequence of 

permutation arrays. 

Sender side. The first step of the general algorithm is taking in the secret data as 

input from the user. The secret data is then sent to the data formatter which generates the 

formatted message. The format of the message is the following: +<MSG> | <MSGCTR> 

|<First 4 chars and last 4 chars of SHA256(MSG+MSGCTR)>-. The formatted message 

begins with a + sign to indicate the start of a new message. Next, the actual plain text 

message is concatenated. The pipe (|) acts as a separator between each component of the 

formatted message. After the message, the message counter is attached. The message 

counter is used to keep track or of the order of messages that are sent by the sender to the 

receiver. The message counter will also be used in the reply the receiver sends to the 

sender acknowledging whether all the data was received, and if the integrity was verified 
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or not. Preceded by another separator are the first four and the last four hexadecimal 

characters of the SHA256 hash of the message and the message counter. The sender 

sends over the first four and last four characters of the hash digest as an integrity 

verification mechanism. The receiver will compute the SHA256 hash of the on their end 

and compare the first four and last four hexadecimal characters to the provided 

characters. This is used to verify the message integrity by the receiver. After the message 

hash, a dash (-) is attached to signal the end of a message. This will let the receiver know 

that the sender has finished sending their message. Once the plaintext secret message has 

been formatted, the newly formatted message is then converted into binary for 

transmission. 

The second step generates a random permutation array that is the same size as the 

number of evaluation bits. The values of the permutation array are limited to a range 

between 0 and the maximum size of the hash digest minus one (1), e.g., if the hash digest 

is 256 bits long, then the values in the permutation array will be between 0 and 255 

inclusive. The permutation generator is seeded with the pre-shared secret key which 

allows the sender and receiver to generate the same permutation array for every marked 

packet. The values in the permutation array act as index locations of the binary packet 

hash that are to be checked against bits of secret data, n bits at a time, where n is the 

number of evaluation bits. For every marked packet, Alice and Bob generate a new 

permutation array, effectively moving or changing the target indexes to be evaluated 

against the next set of bits. By moving the locations of the evaluation bits, we make a 

brute force attack practically impossible for an attacker because they would have to find 

the correct location of the evaluation bits and process the evaluation in the correct order. 



30 
 

A point to note is that the permutation array need not be in increasing order. The values 

can be both in an increasing and decreasing order as determined by the permutation 

generator e.g. if the number of evaluation bits is equal to 8, the permutation array may 

look like this: [84, 22, 52, 12, 156, 194, 73, 2]. The non-linear order of the permutation 

array allows the algorithm to enforce order when comparing the binary packet hash bits 

against the covert data. In other words, the bits that are being checked aren’t simply from 

left to right, their location can be all over the binary hash adding another layer of security. 

The third step determines whether network traffic exists and can be used as a 

covert channel or not. If an existing channel doesn’t exist, the sender generates a TCP/IP 

packet stream that can be used as a covert channel. If the TCP/IP packet stream is 

generated, the packet contains a randomly generated data which has no semantic 

meaning. The packet doesn’t hold any semantic value and contains no secret information 

embedded inside either the TCP header, IP header, or data fields.  

The fourth step generates the hash of the TCP/IP packet. The elements that are 

used as parameters for the hashing function are packet specific dynamic and non-dynamic 

values such as the source IP address, the destination IP address, source port number, the 

destination port number, the sequence number, and the data. This hash is then converted 

into its binary representation for step five. 

The fifth step uses the permutation array values as indexes locations to compare 

the bits at those index locations in the binary packet hash with the first set of n bits of the 

secret data, where n is the number of evaluation bits. Figure 8 shows an example of step 

five. The number of evaluation bits is selected to be 8 and the range of the permutation 
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values is between 0 and 255 (since SHA256 outputs a 256-bit hash value).  The values of 

the packet hash in binary at the index positions, defined by the permutation array, are 

evaluated to see if they match the secret data in binary. If all the values match exactly 

with the secret binary data, then the algorithm marks the packet as defined in the next 

step. If the bits do not match exactly, then the algorithm skips the marking step and 

moves onto the next one after that. 

 

 

Step six is about marking the packet. The marking of the packets tells the receiver 

that the packet “contains” n bits of secret data that need to be extracted. The marking 

includes the setting of the TCP push (PSH) flag in the TCP flag field. The aim is to use 

the traditional push flag to mark not the transmission of regular data, but also covert data. 

If the algorithm uses a stream of packets instead of generating one, the marking of the 

packets is not done by setting the push flag because packets in the stream might already 

Figure 8. Evaluating the packet hash to see if it can hold covert data 
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have the push flag set. Therefore, finding a more covert way to mark packets is a part of 

the future work. 

Step seven sends the packet with secret data to the receiver. Regardless of 

whether the packet is marked or not, it is sent to the receiver. After the packet is sent, the 

algorithm evaluates whether all the secret data has been sent. If all the data has been sent, 

the sender waits for an acknowledgement from the receiver. The acknowledgement from 

the receiver confirms that they received all the data and that it was unmodified by any 

third party. The data of the acknowledgement packet is the message counter which is 

used to keep track of the message order. If the receiver sends back a negative number as 

the acknowledgement data instead of the message counter, that means that the message 

wasn’t properly received or verified by the receiver and that the sender should re-send the 

data. The sender will keep generating new permutations and sending the data and wait for 

the right acknowledgement response until the retry count threshold has been met or the 

receiver has received the data, whichever comes first. If the acknowledgement contains 

the message counter, the sender knows that all the data was received, and the integrity 

was verified therefore the process has finished. 

Receiver side. Figure 9 shows the steps in the general algorithm from the receiver’s 

side. The first step is to generate the same permutation array used by the sender which will 

be used to find the covert data in the following steps. Since both the sender and receiver 

know the scheme, and have the same secret key, the receiver uses it to seed the random 

permutation generator and creates a permutation array which is the size of the evaluation 

bits. 
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Figure 9. MTNS algorithm, receiver side 
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The second step is to monitor the traffic coming to receiver from the sender. The 

receiver is constantly monitoring the traffic for marked packets. If the receiver finds a 

marked packet, they move onto step three otherwise they keep monitoring the traffic until 

one is found. 

In the third step, the receiver computes the hash of the packet using the same 

parameters that the sender used. The hash is then converted into binary which is where the 

covert data is stored. The fourth step extracts the secret data from the binary packet hash. 

This is done by reading the bits of the binary packet hash located at the indexes in the 

permutation array. Figure 10 shows how this is achieved. 

 

 

 

Figure 10. Extracting data from marked packets 
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Step five is the final step of the data extraction process. After the receiver has read 

the secret data from the packet, they reassemble the data into the complete binary string 

which contains all the secret data. When the receiver encounters the dash (-) as the covert 

data, they know that they sender has finished sending the data. If the receiver has not 

encountered the dash (-), they generate the next permutation array and keep sniffing for 

traffic. 

Step six verifies the integrity of the data. The receiver calculates the SHA256 

hash of the received message and then compares the first four and the last four 

hexadecimal characters of the hash to the provided hash. If they match exactly, then the 

receiver knows that the message was received completely and without alterations. If the 

message was received without any modifications, the receiver sends back an 

acknowledgement packet with the message counter as the data. If the message was 

altered in any way such that the computed hash did not match the provided hash, the 

receiver sends back a negative number to the sender indicating that the message was not 

received correctly and then proceeds to repeat the permutation array generation and the 

monitoring of traffic.  

Proof of Concept 

In the previous section, the general algorithm was outlined in detail and presented 

from both the sender and receiver’s sides. In this section, a simplified version of the 

general algorithm is implemented as a proof of concept. The proof of concept does not 

contain the permutation mechanism, or the acknowledgement reply by the receiver but 
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those can be easily added in future versions. For this section, the sender will be called 

Alice and the receiver will be called Bob. 

The proof of concept is designed using two virtual machines. One virtual machine 

is the Alice computer and the other virtual machine is the Bob computer. Although a full 

duplex communication system is not implemented in the proof of concept, it is 

completely possible to create by letting Bob be the sender and Alice be the receiver. In 

that case, Bob would execute Alice’s sender steps and Alice would execute Bob’s 

receiver steps. 

The virtual machines are deployed using Oracle VM VirtualBox [56], a free to 

use hypervisor designed to emulate many different types of operating systems. The 

operating systems on these two virtual machines are Ubuntu 18.04 LTS (Bionic Beaver) 

[57]. The proof of concept itself is developed using Python 3.8 [52] and uses the Scapy 

[59] packet crafting library. Figure 11 shows the network implementation of the proof of 

concept. Both virtual machines have two network interfaces enabled. The first interface, 

enp0s3, is enabled and used for an internal network. The internal network allows both 

virtual machines to communicate with each other in an isolated environment. This is the 

interface that is used for sending and receiving a packet stream generated by the 

algorithm that is used as a covert channel. The second interface, enp0s8, is enabled and 

used as a bridged adapter which allows the virtual machines to communicate directly 

with the Internet through the host machine. The enp0s8 interface is enabled for updating 

the software on the virtual machines and downloading new software packages. 
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Figure 11. Proof of Concept network architecture 

 

There are several parameters that Alice and Bob have pre-shared. They have each 

other’s IP address, the port number to communicate through, the number of evaluation 

bits, and the secret key. The number of evaluation bits for the proof of concept must be 

between 8 and the maximum hash size of the hashing function (256 for SHA-256) and it 

must be a multiple of eight. The number of evaluation bits being restricted to multiples of 

eight is a design choice made for simplicity. One (1) ASCII [60] character is eight bits, 

therefore converting binary strings that have the size of a multiple of 8 to English 

characters is simple and straightforward. Of course, the proof of concept could be 

modified to use any number of evaluation bits between one and the size of the hash.  
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The following pseudo-code describes the proof of concept from the Alice’s side: 

1. Take input from the user 

a. Create binary representation 

2. Establish TCP connection with Bob on given IP address and port number 

3. Create the TCP/IP packet with Scapy 

a. The PSH flag is set initially – marking the packet as containing data 

4. Create the hash of the packet and convert it into binary 

a. Use the source IP address, destination IP address, source port number, 

destination port number, sequence number, and the data as parameters for the 

hashing function  

b. Convert the hash into binary 

5. Compare the last 8 bits of the binary packet hash with 8 bits of the secret data 

a. Match? 

i. Send it to Bob 

b. No match? 

i. Remove the PSH flag and send it to Bob 

6. Repeat steps 3-5 until the entire message is sent. 

7. Ask user if they want to send more data 

a. Yes? 

i. Go to step 1 

b. No? 

i. Terminate TCP connection and exit  
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Alice begins by taking input from the user. In this case, it is a string. She converts 

the string into its binary representation. Next, Alice creates a TCP session with Bob using 

the pre-shared port number and Bob’s IP address. Alice then creates a TCP packet using 

Scapy. She initially sets the push flag, marking the packet as containing covert data. She 

will remove it later if the packet does not contain covert data. Next, she creates the hash 

of the packet using the SHA-256 hashing algorithm. The parameters of the packet that are 

used for the hash computation are the source IP address, destination IP address, source 

port number, destination port number, sequence number, and the data. These values are 

session and packet specific resulting in unique hashes for every packet created. Once the 

hash has been converted into its binary form, the last 8 bits (one ASCII character) of the 

binary packet hash are compared with 8 bits of the input from the user. If the binary 

packet bits match the bits of the input, then the packet is sent over the wire to Bob, 

already having the push flag set. If the bits do not match, then the push flag is removed 

and then the packet is sent over the wire to Bob. Alice repeats the steps of creating 

packets, generating the hashes, and comparing the bits until all the covert data is sent to 

Bob. If Alice wants to send more data, she has that option once all the previous data has 

been sent. 
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The following pseudo code describes the proof of concept from the receiver (Bob) side: 

1. Establish TCP session with Alice on given IP address and port number 

2. Sniff traffic coming from Alice’s machine 

3. When marked PSH flag is found 

a. Create the packet hash and convert it to binary 

i. Use the source IP address, destination IP address, source port 

number, destination port number, sequence number, and the data 

as parameters for the hashing function  

b. Extract the secret data bits which are the last 8 bits of the binary packet 

hash 

c. Re-assemble the data 

4. Repeat until Alice stops sending data 

Bob’s steps are much simpler than Alice’s steps since he is simply reading the 

covert data in the marked packets. He begins by establishing a TCP connection with 

Alice’s machine using her IP address and the mutual port number used to communicate. 

Next, he continuously sniffs for traffic coming from her machine on the specific port. 

When he sees a packet with the push flag set, he generates the same hash using the source 

IP address, destination IP address, source port number, destination port number, sequence 

number, and the data as parameters for the hashing function. After converting the hash 

into its binary representation, Bob reads the last 8 bits of data and reassembles the covert 

message. Bob repeats the steps of sniffing for marked packets, generating the binary 

packet hash, and reading the last 8 bits until Alice stops sending him data.  
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It is important to note that the goal of the proof of concept was to determine if the 

algorithm could be implemented. Therefore, a version of the general algorithm was 

implemented which contained the core functionality of the algorithm by abstracting the 

embedding of data inside the data packets using hashing. Future versions of the proof of 

concept could include the moving target functionality of the permutation array and a 

mechanism for determining if Bob received the message completely and without any 

alterations. Another feature that could be included in future versions of the proof of 

concept is a duplex communication system where both Alice and Bob can send messages 

instead of only Alice being able to send messages. This two-way communication would 

make the proof of concept more robust. 

Results 

Figure 12 shows the proof of concept in action from Alice’s side. Figure 13 shows 

the proof of concept from Bob’s side. Alice is sending the secret message “hello” to Bob 

by evaluating the last eight bits of the packet binary hash. Bob is sniffing for marked 

packets, extracting the last eight bits of the marked packet binary hash, and rebuilding the 

secret message letter by letter. 
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Figure 12. Sending data from Alice's side 

 

  

 

 

Figure 13. Receiving data from Bob's side 
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Wireshark [61], a network sniffer, is used to monitor the data transfer between 

Alice and Bob’s virtual machines. Figure 14 shows the Wireshark output of the data 

transfer between Alice and Bob. A push flag packet is highlighted. By correlating the 

sequence number from the Wireshark packet capture with figure 13, the packet contains 

the second “l” in “hello”. Figure 15 shows the contents of the packet highlighted in figure 

14. Wireshark allows the user to view each layer of the packet, the data, and provides 

additional analysis information about the packet. A point to note is that the data is 

random data. It is a random number generated by the proof of concept. It doesn’t convey 

any special meaning. Another point to note is that the proof of concept supplied the 

source IP address, destination IP address, source port number, destination port number, 

the sequence number, the push flag, and the data. The rest of the fields for the packet 

were filled automatically by Scapy. 

 

 

 

 

Figure 14. Wireshark packet capture 
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Figure 15. Contents of a marked packet 
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Chapter 4 

Analysis 

Probability 

In this section the section, the algorithm is analyzed for the probability of an 

attacker managing to uncover the secret data. A sample scenario is defined where the 

number of evaluation bits, denoted as n, is 8 bits. Both the sender and receiver have 

secret keys which they are using to generate permutation arrays. The secret data is 

“Hello”, and the packet transmission rate is 100 packets per second, and the general 

algorithm is known to the attacker. 

The algorithm keeps creating new packets and calculates their hashes until the bits 

located at the indexes defined by the permutation array match n bits of covert data. The 

maximum number of possible n-bit binary strings that can be created is 2𝑛 since each 

position can have two possible values, like the following: 21 × 22 × ⋯ 2𝑛 =  2𝑛. Since n 

is 8 in this scenario, the maximum number of possible 8-bit binary strings that can be 

created is 28 or 256. That means, in the worst case, the algorithm must calculate 256 

hashes before finding a match to 8 bits of secret data (assuming that the 8-bit strings are 

unique for every consecutive calculation and do not repeat). The probability of matching 

one unique string out of the maximum calculated hashes is 
1

2𝑛 which, for this scenario, is 

1

256
 . That means that Alice has the probability of  

1

256
 of matching 8 bits of the packet 

hash to 8 bits of the secret data. If the attacker knew the implementation of the algorithm, 
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all they must do is read the eight bits of the marked packet hash to extract the secret data. 

The burden of probability falls on the sender. 

Therefore, using static bit locations e.g. the last eight locations of the packet hash, 

is a bad idea. The solution to this problem is moving the locations, i.e. moving the target. 

This is where the permutation array comes into effect. The permutation array, as 

discussed before, is a randomly generated array of values of size n in which the order of 

the values is enforced. The order property of a permutation is important in adding 

security to the algorithm because the algorithm must compare and read values in a 

specified order determined by the array preventing a right to left data extraction event, 

adding more security. Since the range of values is between 0 and the size of the hash - 1, 

in this scenario, the random permutation generator creates a permutation array of size n 

with values ranging between 0 and 255 inclusive (256 total possibilities). Selecting a 

permutation of 8 values from 256 values yields 16,517,640,193,528,320,000 possible 

combinations. If the n is increased, the possible number of permutations increases 

exponentially, e.g., if n is 16, the possible number of 16 permutations out of 256 is 

210,875,602,102,456,269,086,537,616,669,081,600,000 and if n is 24, the possible 

number of 24 permutations out of 256 increases to 

2,063,062,690,012,022,711,962,604,920,118,953,278,227,813,467,422,720,000,000. 

The Summit supercomputer [62], the fastest supercomputer in the United States, 

can perform a maximum of two hundred quadrillion calculations per second [63]. It 

would take the Summit supercomputer 82.58 seconds running at maximum capacity to 

calculate all the 16,517,640,193,528,320,000 different permutations. If the number of 

evaluation bits is increased to the next multiple of eight, 16 bits, then it will take the 
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Summit supercomputer 1.05 × 1021 seconds to make its way through 

210,875,602,102,456,269,086,537,616,669,081,600,000 permutations. Since the 

permutations are generated via a random number generator which is seeded with the 

shared secret key, even if the attacker knows every single detail about the implementation 

and the algorithm, they cannot recreate the specific permutation used to evaluate n bits of 

secret data without the key. Also, since the permutation changes for every n bits of data, 

the attacker has a very short time to guess the create the permutation array before it 

changes. 

Parameters used in the probability analysis and later in the data transfer analysis 

are show in Table 2. 

 

Table 2 

Probability and data transfer equation parameters 

Variable Value 

w Size of the hash 

s Size of the permutation 

n Number of evaluation bits 

p Transmission rate in packets per second 

y Data transfer rate in bits per second 

q Data to transfer in bits 
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The probability of the attacker correctly guessing the permutation indexes is 

defined in Equation 1: 

P(Correct permutation) =  
1

𝑤!
(𝑤 − 𝑠)!

=  
(𝑤 − 𝑠)!

𝑤!
 (1) 

Using equation 1, in the scenario where n and s are 8 respectively and w is 256, 

the probability of the attacker finding the correct permutation is the following: 

P(Correct permutation, where n = s = 8 & w = 256) =  
(256 − 8)!

(256!)
 

P(Correct permutation, where n = s = 8 & w = 256) =  6.05 × 10−20 

The attacker must know the secret key to generate the correct permutation in the 

correct order. Without the secret key, the attacker cannot generate the correct permutation 

which tell them in which order the bits are evaluated, and therefore cannot read the secret 

data.  

Performance 

In this section, the performance of the general algorithm and the implementation 

is analyzed. Equation 2, the data transfer equation is introduced and discussed. Results of 

timing measurements are also analyzed. The performance of a covert channel is 

important to measure because it is used to determine how dangerous a covert channel is. 

Any covert channel with a rate greater than one bit per second can be considered a high-

rate covert channel [64].  
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Theoretical performance. The theoretical performance of the general algorithm 

is determined by the probability of matching n bits of the binary packet hash located at 

the permutation indexes with n bits of secret data along with the packet transmission rate 

between the sender and the receiver. The time it takes to create the TCP/IP packet, 

generate a permutation, compare the bits, and other minutia in the algorithm and proof of 

concept are not considered in the theoretical performance calculations.  Equation 2 

describes the data transfer equation: 

P(Matching n bits of the binary packet hash with n bits of covert data) = 
1

2𝑛 

Total possible packets per second based on p =  𝑛 
𝑏𝑖𝑡𝑠

𝑝𝑎𝑐𝑘𝑒𝑡
 × 𝑝 

𝑝𝑎𝑐𝑘𝑒𝑡𝑠

𝑠𝑒𝑐𝑜𝑛𝑑
 

1

2𝑛
 ×  [𝑛 

𝑏𝑖𝑡𝑠

𝑝𝑎𝑐𝑘𝑒𝑡
 × 𝑝 

𝑝𝑎𝑐𝑘𝑒𝑡𝑠

𝑠𝑒𝑐𝑜𝑛𝑑
] = 𝑦 

𝑏𝑖𝑡𝑠

𝑠𝑒𝑐𝑜𝑛𝑑
 

Total seconds to transfer q bits of information =  𝑇𝑠 =  
𝑞 𝑏𝑖𝑡𝑠

𝑦 
𝑏𝑖𝑡𝑠

𝑠𝑒𝑐𝑜𝑛𝑑

  

Therefore: 

𝑇𝑠 =    
𝑞 𝑏𝑖𝑡𝑠

1

2𝑛 × [𝑛 
𝑏𝑖𝑡𝑠

𝑝𝑎𝑐𝑘𝑒𝑡
 × 𝑝 

𝑝𝑎𝑐𝑘𝑒𝑡𝑠

𝑠𝑒𝑐𝑜𝑛𝑑
]
  (2) 

By multiplying the probability of having one n bit match per packet by the total 

possible packets that are being sent per second, the number of possible bits per second, y,  

is derived based on the number of evaluation bits, n,  and a packet transfer rate p. For the 

example scenario, n is 8, p is 100 packets per second, and the data to send is “Hello” 

which is 40 bits of information. 
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First, the bits per second rate must be calculated: 

1

28
 ×  [8 

𝑏𝑖𝑡𝑠

𝑝𝑎𝑐𝑘𝑒𝑡
 × 100 

𝑝𝑎𝑐𝑘𝑒𝑡𝑠

𝑠𝑒𝑐𝑜𝑛𝑑
] = 3.125 

𝑏𝑖𝑡𝑠

𝑠𝑒𝑐𝑜𝑛𝑑
 

Based on the denominator of equation 2, the algorithm evaluating 8 bits of data 

per packet transferring packets at 100 packets per second can transfer 3.125 bits per 

second which is about three times greater than the 1 bit per second high covert channel 

benchmark [2].  

𝑇𝑠 =  
40 𝑏𝑖𝑡𝑠

3.125 
𝑏𝑖𝑡𝑠

𝑠𝑒𝑐𝑜𝑛𝑑

= 12.8 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 

Using equation 2, transferring 40 bits of data at a rate of 3.125 bits per second will 

take 12.8 seconds.  

 Experimental performance. To get an accurate representation of how the proof 

of concept’s run times compared with the theoretical calculations, 26 trials were 

conducted, each trial running 100 times resulting in a total of 2600 total proof of concept 

runs. The amount of data for every consecutive trial was increased by 8 bits, starting with 

the letter “a” (8 bits) and ending with the entire alphabet “abcdefghijklmnopqrstuvwxyz” 

(208 bits). Two sets of 26 trials were ran with a controlled packet transmission rate, 75 

packets per second and 100 packets per second respectively. The third set of 26 trials 

were ran with transmission rates controlled by the operating system, i.e., no packet rate 

limitations were applied, the system determined how fast the packets were transmitted 

between the virtual machines. 
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Figures 16 - 18 show the theoretical times compared to the simulated times. The 

theoretical time (orange line), calculated using equation 2 described in the previous 

section, increases in a linear fashion with every 8 bits of data that is added. The simulated 

time (blue line), measured from the proof of concept, also increases linearly, closely 

following the points of the theoretical times. The slight differences in the theoretical and 

simulated times are due to the implementation of the proof of concept and the virtual 

machine environment. The Alice and Bob virtual machines are hosted on a Windows 10 

PC. The PC must divide its resources between the host operating system and the two 

virtual machines. Some sluggishness in the processing capability is to be expected due to 

the division of processor power, RAM, and storage. Even with the expected slower 

computational speed of the virtual machines, the simulated times are very similar to the 

theoretical times.  

Equation 2 can be used to calculate the average time in seconds the algorithm will 

take to send q bits of information, with a transfer rate of p packets per second, while 

evaluating n bits of data per packet. Figure 18’s transmission rate is set by the operating 

system of the virtual machine; therefore, the times are not increasing linearly. The 

operating system is determining the transmission rate for each trial and that is why the 

times are fluctuating more than figures 16 and 17. Nevertheless, equation 2 still holds in 

figure 18 because the algorithm is the same, the only difference is that the transmission 

time is determined by the operating system instead of the user. 
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Figure 16. Theoretical vs. experimental run times for n = 8, and p = 75 p/s 
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Figure 17. Theoretical vs. experimental run times for n = 8, and p = 100 p/s 
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Figure 18. Theoretical vs. experimental run times for n = 8, and p = variable p/s 
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Figures 19 - 21 show the average packet transfer rates. The packet transfer rates 

for each run are collected by taking the average of the 100 runs’ individual packet 

transfer rates. Controlling the packet transfer rate is done by implementing a slight delay 

between sending packets. An automatic transmission rate correction feature was 

implemented in the proof of concept which would increase or decrease the interval of 

time between the packets based on the transmission rate of each run in the trial. The 

simulated packet transfer rates are very close to packet transfer rates used for the 

theoretical time calculations. The minor fluctuations are due to numerous mechanisms 

such as internal program delays, operating system delays, and transmission delays. Figure 

21 shows the average packet transfer rate of the trial where the transfer rate is handled by 

the system. There is a large variance in transfer rates from 290 packets per second to 375 

packet per second because the virtual machine operating systems determined the 

transmission speed for each trial. Additionally, there are many variables that the 

operating systems decides on that contributes to the fluctuations in the packet 

transmission speed. Equation 2, the data transfer equation, still holds in this scenario 

because each run’s transfer time is calculated with its specific transmission rate instead of 

a set transmission rate. 
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Figure 19. Average packet transfer rates for p = 75 p/s 

 

 

 

 

 

 

 

 

 

 

 

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

105

110

115

120

125
A

V
ER

A
G

E 
P

A
C

K
ET

 R
A

TE
 (

P
A

C
K

ET
S/

SE
C

O
N

D
)

DATA (BITS)

EXPERIMENTAL AVERAGE PACKET TRANSFER 
RATE FOR P = 75 P/S



57 
 

 

Figure 20. Average packet transfer rates for p = 100 p/s 
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Figure 21. Average packet transfer rates for p = variable p/s 
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Figure 22 shows an interesting relationship between the packet transfer rate and 

the time it takes to transfer 208 bits of information at those packet transfer rates. The time 

to complete the transmission is logarithmically decreasing the higher the packet rate is. 

The fastest average packet rate for the proof of concept was 379 packets per second using 

virtual network interfaces. Business and enterprise grade routers and networking 

equipment can send many more packets per second than 379 thus increasing the 

bandwidth of the scheme and allowing the sender to increase the amount of data sent 

while reducing the transmission time. Equation 2 will still hold in these cases regardless 

of the transmission speeds because the algorithm being used is still the same and relies on 

the probability of the packet hash matching n bits of the secret data and the transmission 

speed of the data packets. 

 

 

 

Figure 22. Times for transmitting 208 bits of data 
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Detectability and Mitigation 

No network steganography method is completely secure. The following is a 

detectability and mitigation analysis of the general algorithm. Steganalysis is the process 

of detecting the presence of and ultimately extracting covert data from a carrier [65] [66]. 

There is one way that the scheme could be exposed. It is important to note that since the 

“embedding” of covert data happens by comparing indexes of the packet hash with covert 

data, the covert data is never stored inside a packet. The packet represents covert data and 

without the appropriate key and the correct permutation, it is nearly impossible to extract 

the covert information so even if the scheme is discovered, the warden is not able to read 

the data. 

The way to detect if a covert channel is being used is by the marking of the 

packet. The mark tells the receiver which packets have hidden information. The general 

algorithm describes that the marking of the packets is was done with the TCP push flag, 

if it generates a custom packet stream, which is used to push data from the user to the 

receiver [24]. If the general algorithm uses an already available packet stream, the 

marking scheme is left for future research. If the warden realizes that the push flag is 

used to send data other than what’s in the data portion, i.e. covert data, he can shut down 

the channel. But since the push flag is described by the TCP standard to be used when 

sending data, the warden cannot differentiate whether covert data is also being sent in 

addition to the plaintext data. 

If the warden is an active warden, he can manipulate the fields of the packet and 

change the values. A point to note is that an active warden is akin to a man in the middle 

who has total control over the network channel. The only way to stop an active warden is 
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to prevent them from detecting the covert channel in the first place. Since no covert data 

is hidden inside the protocol, the two ways to mitigate this covert channel are to change 

the values that are used to calculate the hash (source IP address, destination IP address 

etc.) or to stop the communication channel entirely. Doing both will result in 

performance loss between the sender and the receiver and may not be worth it for 

network administrators since closing the communication channel is the same as shutting 

off the Internet for that process, and changing the contents of packet may have negative 

effects on legitimate processes. 
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Chapter 5 

Conclusion and Future Work 

Conclusion 

The field of information hiding is a broad field with many different techniques used daily 

to keep information hidden and away from prying eyes. One of those techniques is 

network steganography. Network steganography is a branch of information hiding that 

uses network protocols as information carriers to hide and transmit covert information. 

The widespread adoption of the Internet, and its open system architecture make it an 

attractive candidate for information hiding. Two types of network steganography exist, 

storage channel and timing channel. Storage channel network steganography is a class of 

network steganography where the field values of protocol are manipulated to transmit 

secret data. Timing channel network steganography is a class of network steganography 

that modifies the timing of the events in a carrier to transmit secret data. Storage channel 

network steganography is more prevalent because it is easier to implement, allows for 

more control over the protocol, and there are many different protocols in the TCP/IP 

protocol suite.  

Many of the current approaches to storage channel network steganography suffer 

from a low transmission rate and the vulnerability of hiding covert data inside the 

protocol header and data fields. If the covert channel is discovered, the covert data can be 

read which is the ultimate breach of confidentiality. A new type of storage channel 

network steganography is introduced. It allows packets to represent the covert data 

instead of hiding it directly inside the packet. This new approach does not hide data 
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inside the packet but instead allows the receiver to re-create data out of data packets 

using a holistic packet evaluation algorithm. The algorithm utilizes hashing to create a 

unique signature of the packet and compares values from the hash to values of the secret 

data. If they match, then the packet is marked and sent to the receiver. The receiver 

creates the same signature of the marked packet and extracts the data from the packet 

hash. Additional security is added to the algorithm in the form of a moving target 

mechanism which changes the locations from which the data in the packet hash is 

evaluated. By implementing the moving target functionality, brute forcing the algorithm 

is impossible since the location is changing for every marked packet and the permutations 

are generated via a random permutation generator that is seeded with the shared secret 

key. Controlling the transmission rate of the packets and increasing the number of 

evaluation bits allows for increased transfer bandwidth.  

A proof of concept is developed to test the algorithm. Built using Python 3.8 and 

implemented on two virtual machines, the proof of concept implements a simplified 

version of the general algorithm. It creates a direct communication channel between the 

sender and receiver that is used as a covert channel.  Different packet transmission speeds 

are tested to evaluate the accuracy of the simulated times against the theoretical times. 

The simulated times are identical to the theoretical times. A probability analysis is 

performed to determine the probability of an attacker being able to brute force the 

algorithm and how the moving target mechanism mitigates it. A data transfer equation is 

developed to calculate how long in seconds the algorithm would take to transfer q bits of 

information with a transfer rate of p packets per second while evaluating n bits of data per 

packet. Finally, a mitigation and detection analysis is performed on the algorithm. 
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Future Work 

The most important part of the future work is to establish a more covert marking 

technique for the general algorithm and to improve the proof of concept. The general 

algorithm is robust enough to provide security against brute forcing because of the 

rotating permutations but if the marking mechanism is found by a third party who is 

monitoring the traffic, then the covert channel is discovered. Although the third party 

cannot read the data, they can shut down the channel which prevents covert 

communication. Another important part of the future work is to perform a through and in-

depth steganalysis by performing experiments on how an active or passive warden would 

behave in a scenario where this network steganography technique is applied.  

The proof of concept ignored the fact that most of the time, the users will not be 

in the same localized private network. Part of the future work should focus on 

augmenting the capabilities of the proof of concept. The proof of concept should be 

upgraded to have the ability to allow for communication between hosts outside of local 

networks. Additionally, the permutation and simulated ack features for mitigating 

dropped or altered data packets were not implemented. Adding those features would 

enhance the security of the proof of concept. Finally, allowing the proof of concept to use 

a packet that was not generated by the program, i.e. one that is already present between 

the two hosts, would increase the covertness of the program. 
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