
Rowan University Rowan University

Rowan Digital Works Rowan Digital Works

Theses and Dissertations

6-11-2021

Rebalancing shared mobility systems by user incentive scheme Rebalancing shared mobility systems by user incentive scheme

via reinforcement learning via reinforcement learning

Matthew Brian Schofield
Rowan University

Follow this and additional works at: https://rdw.rowan.edu/etd

 Part of the Computer Engineering Commons, and the Computer Sciences Commons

Recommended Citation Recommended Citation
Schofield, Matthew Brian, "Rebalancing shared mobility systems by user incentive scheme via
reinforcement learning" (2021). Theses and Dissertations. 2912.
https://rdw.rowan.edu/etd/2912

This Thesis is brought to you for free and open access by Rowan Digital Works. It has been accepted for inclusion
in Theses and Dissertations by an authorized administrator of Rowan Digital Works. For more information, please
contact graduateresearch@rowan.edu.

https://rdw.rowan.edu/
https://rdw.rowan.edu/etd
https://rdw.rowan.edu/etd?utm_source=rdw.rowan.edu%2Fetd%2F2912&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=rdw.rowan.edu%2Fetd%2F2912&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=rdw.rowan.edu%2Fetd%2F2912&utm_medium=PDF&utm_campaign=PDFCoverPages
https://rdw.rowan.edu/etd/2912?utm_source=rdw.rowan.edu%2Fetd%2F2912&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:graduateresearch@rowan.edu

REBALANCING SHARED MOBILITY SYSTEMS BY USER INCENTIVE

SCHEME VIA REINFORCEMENT LEARNING

by

Matthew Schofield

A Thesis

Submitted to the

Department of Computer Science

College of Science and Mathematics

In partial fulfillment of the requirement

For the degree of

Master of Science in Computer Science

at

Rowan University

May 6, 2021

Thesis Chair: Shen-Shyang Ho, Ph.D.

Committee Members:

Ning Wang, Ph.D.

Anthony Breitzman, Ph.D.

© 2021 Matthew Brian Schofield

Dedication

 I dedicate this manuscript to my loving and supportive family and friends who

have made this journey and its continuation possible. My parents, Brian and Wendy

Schofield, have always nurtured my academic interests and abilities, for that I thank

them.

iv

Acknowledgment

I would like to sincerely thank my thesis committee members Dr. Wang and Dr.

Breitzman whose generous guidance and support have not only shaped this work but

have shaped my professional abilities.

I would like to particularly thank my thesis committee chair Dr. Shen-Shyang Ho

who has guided me through-out my time at Rowan University from my Freshman year

until now. It has been an honor to be a part of his lab and I will greatly miss working

together on various research projects.

v

Abstract

Matthew Schofield

REBALANCING SHARED MOBILITY SYSTEMS BY USER INCENTIVE SCHEME

VIA REINFORCEMENT LEARNING

2020-2021

Shen-Shyang Ho, Ph.D.

Master of Science in Computer Science

Shared mobility systems regularly suffer from an imbalance of vehicle supply

within the system, leading to users being unable to receive service. If such imbalance

problems are not mitigated some users will not be serviced. There is an increasing

interest in the use of reinforcement learning (RL) techniques for improving the resource

supply balance and service level of systems. The goal of these techniques is to produce an

effective user incentivization policy scheme to encourage users of a shared mobility

system to slightly alter their travel behavior in exchange for a small monetary incentive.

These slight changes in user behavior are intended to over time increase the service level

of the shared mobility system and improve user experience.

In this thesis, two important questions are explored: (1) What state-action

representation should be used to produce an effective user incentive scheme for a shared

mobility system? (2) How effective are reinforcement learning-based solutions on the

rebalancing problem under varying levels of resource supply, user demand, and budget?

Our extensive empirical results based on data-driven simulation show that:

1. A state space with predicted user behavior coupled with a simple action mechanism

produces an effective incentive scheme under varying environment scenarios.

2. The reinforcement learning-based incentive mechanisms perform at varying degrees

of effectiveness under different environmental scenarios in terms of service level.

vi

Table of Contents

Abstract ... v

List of Figures .. ix

List of Tables ... xi

Chapter 1: Introduction ... 1

1.1 Bikeshare Systems .. 2

1.2 Application of Reinforcement Learning ... 4

1.3 Scope and Contribution... 6

Chapter 2: Literature Review .. 8

2.1 Bikeshare Rebalancing.. 8

2.2 Reinforcement Learning ... 12

Chapter 3: Background ... 15

3.1 Reinforcement Learning Framework .. 15

3.2 Key Concepts in Reinforcement Learning .. 18

3.3 Policy-Gradient Paradigm ... 20

Chapter 4: Problem Setting ... 24

4.1 Environment .. 24

4.2 User Model.. 25

4.3 Objective ... 27

4.4 One-Dimensional Scenario ... 28

4.4.1 Problem Setting .. 28

4.4.2 System Simulation ... 29

vii

Table of Contents (Continued)

Chapter 5: System Simulation .. 31

5.1 User Demand Interests .. 32

5.2 Distributions .. 36

5.3 Limitations .. 39

Chapter 6: Representations Description ... 41

6.1 Representations Without Using Predictive Model .. 43

6.1.1 SADUE-A .. 43

6.1.2 S-A ... 45

6.1.3 S-A+ ... 46

6.2 Representations Including a Predictive Model ... 48

6.2.1 SA’D’-A+ .. 48

6.2.2 SA’D’-A+D+ ... 49

6.2.3 Predicting Departures Using Long-Short Term Memory Network 50

Chapter 7: Experiments and Results ... 52

7.1 Metrics and Baselines Description.. 52

7.2 One-Dimensional Scenario Results .. 53

7.3 Reinforcement Learning Algorithm Comparison ... 55

7.4 Representation Comparison .. 57

7.5 Constraint Comparison ... 61

Chapter 8: Conclusion .. 65

8.1 Summary ... 65

viii

Table of Contents (Continued)

8.2 Future Work .. 67

8.2.1 Heirarchical Appraoches .. 67

8.2.2 Per User Incentivization ... 68

8.2.3 Cluster-Based Regions ... 69

References .. 71

ix

List of Figures

Figure Page

Figure 1. Example Markov Decision Process for the Game of Tic-Tac-Toe17

Figure 2. Trips per Year in the Capital Bikeshare System ..32

Figure 3. Average Trips per Month in the Capital Bikeshare System 2015-201933

Figure 4. Trips per Weekday in the Capital Bikeshare System 2015-201934

Figure 5. Average Trips per Hour in the Capital Bikeshare System 2015-201935

Figure 6. Illustration of the Daily Initial Supply, Hourly Destination, and Hourly

 Arrival Distributions for System Simulation ..37

Figure 7. SADUE-A Representation Diagram...43

Figure 8. S-A Representation Diagram ..45

Figure 9. S-A+ Representation Diagram ...46

Figure 10. SA’D’-A+ Representation Diagram ...48

Figure 11. SA’D’-A+D+ Representation Diagram ..49

Figure 12. Performance Across Distributions. ...54

Figure 13. Comparison of Reinforcement Learning Algorithm Performance55

Figure 14. Performance on a Simple Scenario Across Representations and Budgets….57

Figure 15. Performance on a Difficult Scenario Across Representations and

 Budgets. ...58

Figure 16. Performance on All Tested Scenarios Across Representations and

 Budgets. ...59

Figure 17. Performance Comparison Across User and Supply Parameters.61

Figure 18. Performance on Varying User Demand Scenarios Across

 Representations. ..62

Figure 19. Performance on Varying Supply Scenarios Across Representations.64

x

List of Figures (Continued)

Figure Page

Figure 20. Cluster-Based Region System. ...69

xi

List of Tables

Table Page

Table 1. State and Action Representation Symbols ...42

Table 2. Representation Summaries ..42

1

Chapter 1

Introduction

The sub-field of machine learning known as reinforcement learning has rapidly

grown in capability and popularity in recent years. In reinforcement learning, agents are

trained to learn a policy that they can utilize to perform a task through interacting with an

environment based on a performance signal, much like humans. These approaches excel

at taking many actions to influence an environment in order to maximize a long-term,

often noisy, cumulative reward. Due to this set of strengths, this paradigm has seen great

success in the financial markets, robotics, and gaming domains [1] [2] [3] [4]. As the

field of reinforcement learning continues to further advance, coupled with the rapid

growth of computational power, its use in everyday systems large and small will continue

to expand. This field and class of algorithms show tremendous performance potential as

long as a particular environment’s state, action space, and reward signal can be

adequately represented in a way that translates well to the true environment.

A particular area of interest for the use of reinforcement learning is in large-scale

shared-mobility systems [5] [6]. With the rapid growth in popularity of shared mobility

systems, i.e. car-sharing, bike-sharing, scooter-sharing, as a means of alternative travel

options issues surrounding resource management within these systems have presented

themselves. Due to the combination of the popularity of these systems and the open-data

strategy of their operators, there exists a large amount of data available for analysis

towards solving such issues. These systems are based upon a large number of small

interactions contributing to overall system performance. This presents an opportune

problem setting for reinforcement learning.

2

1.1 Bikeshare Systems

 Shared mobility systems are rapidly growing in popularity in major metropolitan

areas. Bikeshare systems operate over a particular geographic area, such as a city or

university campus, areas that often have a high volume of both foot and vehicular traffic.

These systems allow users to rent a bicycle, or often scooters as well, for a small fee to

take short-duration trips. These systems have two popular structures, either they are

docked or dock-less. In a docked system there are dock repositories distributed

throughout the system’s geographic area where bikes can be loaded or unloaded for use.

In a dock-less setting, the system’s bikes are stand-alone and can be deposited anywhere

throughout the system. Both systems also typically employ Global Positioning Systems

(GPS) to lock the vehicle if they were to exit the system’s geofence.

Over one thousand cities globally have an established bikeshare network. The

largest bikeshare network is Hangzhou Public Bicycle in the city of Hangzhou, China

launched in October of 2008 with a supply of over 78,000 bicycles currently. One of the

most active bikeshare systems in the United States of America is the Capital Bikeshare

network with almost 5,000 bicycles and over 3 million users annually. These systems are

often operated by a combination of private organizations working with local

governments. For example, Motivate LLC acquired by Lyft Inc. operates some of the

largest bikeshare systems in the United States, such as the San Francisco Bay Area’s Bay

Wheels system, Boston’s Blue Bikes, Washington D.C.’s Capital Bikeshare, and many

more.

The rapid expansion and popularity of bikeshare systems are due to their main

benefits in filling a gap in metropolitan commutes, providing an outlet for exercise,

3

promoting tourism, and they are environmentally friendly. Due to their convenience

relative to the traffic and limited parking in urban areas, these systems aid in alleviating

the ‘last-mile’ problem as well as serving longer duration commutes across a city. Also,

bikeshare systems provide an inexpensive means of exercise and activity for residents.

Further, these systems provide a means for tourists to quickly explore various points of

interest. The main benefit of these systems is their capacity to alleviate traffic in an

environmentally friendly manner that improves the health of users.

A major problem and critique that these systems suffer from are that they

regularly become imbalanced and cause clutter in pedestrian pathways. Due to highly

correlated user interests and behaviors, vehicles will often be depleted from one area of

the system and become congested in another. Resulting in a poor user experience as users

cannot reliably secure a bicycle when they are interested in requesting one. For example,

in the morning hours, the bicycles in residential areas may all be moved to commercial

areas of a city resulting in users in residential areas that arrive later being unable to have

their request for a bicycle satisfied. Bikeshare operators often utilize inefficient and

expensive methods of maintaining balance, such as using vans or employees to manually

move bicycles. Such methods are slow to respond and further add to traffic, which

bikeshare systems are intending to alleviate. Capital Bikeshare reported that over half of

their operating expenses were tied to rebalancing operations. Recently, methods towards

solving this rebalancing problem have become a popular topic in the research

community.

4

1.2 Application of Reinforcement Learning

 Reinforcement learning is a paradigm of machine learning that seeks to create an

agent that maximizes a reward signal through interacting with an environment [7]. An

agent is trained to complete a task or tasks within said environment over a large number

of episodes. An episode can be thought of as a game where the agent regularly observes a

representation of the environment’s current state and takes some action to influence the

environment. The agent receives a reward signal after every interaction and seeks to

produce the highest possible cumulative long-term reward when the episode ends.

Reinforcement learning has benefitted greatly in recent years with its fusions with

deep learning to produce deep reinforcement learning methods, most strongly seen in

policy gradient methods. These techniques have produced such achievements as

AlphaGo, AlphaStar, and OpenAI Five [2] [3] [4] each respectively learn how to play

the games Go, StarCraft 2, and DOTA 2, at a human world champion level. This is an

incredible achievement as these games have an effectively infinite number of game

states. The latest advancement being forwarded by DeepMind is MuZero, an agent that is

able to both learn the rules and surpass a human world champion level ability at classic

games such as Chess, Go, and Shogi [8].

 Reinforcement learning methods can be utilized to create an agent that can aid in

solving the rebalancing problem. A bikeshare system can be represented as an

environment through capturing system information, such as its current distribution of

supply and past or anticipated user travel interests along with a variety of other

environment features. An agent can then interact with the system through offering users

incentives that slightly alter their behavior. By slightly influencing the behavior of

5

individual users, large changes in the operation of the system can be achieved. This agent

can receive a reward signal in the form of the ratio of the number of users who requested

a bicycle that were able to receive one, this captures an improvement in the overall user

experience and system functionality. The agent can also be further constrained by a

budget that it must learn to strategically utilize to maximize the system’s level of service.

 Bicycle supply balance is an important element for a bikeshare system’s

operation, however the main concern for bikeshare system operation is maximizing the

number of users that are able to receive service within the confines of a given budget.

Likewise, what should be optimized is not a representation of the equal distribution of

bikes throughout the system, but instead the number of successfully serviced user. While

an equal supply distribution is not directly being optimized it is likely to still be produced

as to offer the highest servicing opportunity for users. Further, if a high service level for

users can be maintained the supply of bicycles within the system can be reduced. Lastly,

a high service level will improve the user experience of the system and it can be

reasonably speculated that this will grow the popularity of system, something operators

would be very interested in.

It is critical to analyze the effectiveness of varying state and action representations

as well as the impacts of varying levels of system constraints and environment

parameters. Many current approaches have a very large state space or a very difficult to

utilize action mechanism, analyzing how these representations can be tuned can lead to

much greater performance. The impact of varying budgets, user demands and interests,

and supply distributions, is a critical component in understanding the comparative

performance of these various representations.

6

1.3 Scope and Contribution

 Methods for improving the service level of a bikeshare system can be further

extended to apply to other shared mobility networks as well as general resource networks.

Ride-sharing services can benefit from these findings to implement similar incentive

structures to promote a wider availability for their service in particular areas to improve

overall user experience. While they may see a reduction in profit for individual rides

through utilizing incentivization, they are likely to see an increase in positive user

experience and brand reputation that can lead to larger volumes. Larger generalized

resource networks can use incentives to improve resource availability in areas of a system

that would otherwise have requests unfulfilled.

 In this work I compare the effectiveness of various structures of reinforcement

learning agents and representations as well as their performance over varying bikeshare

system environmental constraints and representations. Synthetic data used in

experimentation and analysis is derived from real user trip data made publicly available

by Washington D.C.’s Capital Bikeshare system. Key contributions of this work are:

• Empirical results show that space representations of shared mobility systems can

be improved through a reduction in dimensionality and through the incorporation

of predictive models.

• Empirical results show that action mechanisms in a shared mobility system’s

reinforcement learning framework can be improved by incorporating incentives

for users to move specifically in each direction rather than in any direction

arbitrarily.

7

• An in-depth analysis showing the impact of varying environmental constraints

such as the level of supply, user demand, and available budget.

8

Chapter 2

Literature Review

 This literature review seeks to identify the current standards and past paths in both

reinforcement learning research and computational techniques for the bikeshare

rebalancing problem.

2.1 Bikeshare Rebalancing

 Bikeshare systems are a relatively popular area of research interest due to the

focus on open data by their operators. This access to real world data of crowd behaviors

is enticing to many researchers and is beneficial to bikeshare system operators who can

receive large amounts of analysis. As of April of 2021, google scholar has indexed

roughly 260 academic works focused specifically on bikeshare system rebalancing and

optimization.

One of the earliest works on learning a dynamic user incentive pricing strategy to

promote balancing in a Bikeshare system is Pfrommer et. al. [9]. They propose an

incentivization mechanism that encourages users to slightly modify their destination

behavior to position bikes near underfilled stations as to reduce manual repositioning

costs. Additionally, they propose that during rush hours a truck routing scheme for added

redistribution capabilities. Further, they model their simulations based on historical

London’s Barclays Cycle and they compare their algorithms performance of payouts to

users versus the cost of hiring repositioning staff.

The first case of an online learning system to generate an optimal pricing policy

deployed into a real system is Singla et al. [10]. They call their algorithm DBP-UCB

9

Dynamic Budgeted Procurement using Upper Confidence Bounds, with the idea that the

learning of how to attribute a budget B across N users can be decoupled from the specific

parameter settings of B and N. Their system learns through regret minimization how to

best propose alternative pick up and drop off locations in exchange for a monetary

incentive. This system was beta tested in a European city by the bikeshare operator

MVGmeinRad and showed success over a 30-day period versus a truck based rebalancing

approach.

Ghosh et al. [11] proposed an optimization model that would assign re-positioning

tasks to users. They created a model of this problem setting known as Dynamic

Repositioning and Routing Problem using Trailers (DRRPT) where users would utilize

trailers to rebalance bicycles and they would compete within an auction to bid for

repositioning tasks. Their algorithm relies on the Vickrey-Clarke-Groves (VCG)

mechanism to assign tasks to bidders.

Lv et. al. [12] proposed a crowd sourcing approach through an auction method

Truthful Predicted Task revenue TruPreTar. Under a budget constraint, users are able to

bid for repositioning tasks, and then the system will determine rebalancing task allocation

and payments. They utilize a bipartite graph matching technique, where a graph G

maintains users and tasks bid on. Then in a sub-graph of G known as G’ a pairing from

tasks to users is satisfied where high-value tasks and low-cost users are prioritized.

Chahchoub et al. [13] utilize an outlier detection methodology to identify stations

that are either nearly empty or full based on a simple occupancy rate calculation. Outliers

are determined based on Gower’s similarity degree and a Moran scatterplot that isolate

10

stations that are outliers relative to other nearby stations in their ‘neighborhood’. Then

users are suggested slightly altered routes that will help to rectify these outliers.

Chiariotti et al. [14] consider the rebalancing and incentive problem as a joint

optimization problem given the current state, arrival, and departure rate. A three-step

procedure is used to approximate the solution and compute the new state, adjusted arrival

rate, and adjusted departure rate. The approach requires users to pick up or drop off their

bikes to enable rebalancing.

Li et al. [15] proposed two algorithms that within a static setting seek to maximize

the number of the served users and minimize their trip time. They formulated this

optimization problem as the weighted k-set packing problem. They designed a Greedy

Trip Planning algorithm (GTP) and a Humble Trip Planning algorithm (HTP). They

compare their two proposed algorithms versus a Random Trip Planning algorithm (RTP)

and report to show that both GTP and HTP outperform RTP. They analyze the various

environmental conditions that impact the performance of their various algorithms.

Tomaras et al. [16] proposed the algorithm MultimOdal Trip Rebalancing

(MOToR) which seeks to combine previous approaches of predicting demand and

applying a-posteriori rebalancing methods. They utilize the OpenTripPlanner framework,

a popular collection of open-source projects that coordinate analysis of interconnecting

transportation networks. They incorporate real-world travel delays into their simulations

and attempt to optimize for system supply balance.

An et al. [5] propose an actor-critic reinforcement learning approach to learn a

rewarding mechanism (picking up/parking bonus) for a car-sharing system and allows

11

continuous action space. The reward mechanism is used to guide the users’ behaviors

through price leverage to ensure cars are parked in areas in need of supply and prioritize

picking up where cars are in a high supply, boosting the company's profit and service

level.

Pan et al. [6] have proposed a hierarchical reinforcement learning algorithm

known as Hierarchical Reinforcement Pricing (HRP) to learn a policy using the deep

deterministic policy gradient (DDPG) algorithm to incentivize users under a budget

constraint to optimize the system’s service level. A static incentive is applied to each

region at the start of each time slot that is used to incentivize users to move to a

neighboring region if they would otherwise be unable to begin their trip. A key point of

their hierarchical approach is that each region computes a local Q value based on the

action’s performance and then a summation of these Q values is used to train the Critic

and by extension the Actor networks of HRP’s DDPG component. They primarily utilize

the metric service level, rather than system balance.

Duan et al. [17] expand upon Pan et al.’s framework to include an incentive to

alter the destination selection behavior of users to further improve a system’s long-term

performance. They propose utilizing a separate budget allocation for the source interest

deviation incentives and the destination interest deviation incentives. Further, they

introduce a maximum detour distance constraint calculation, such that if this constraint is

not satisfied the user would reject the deviation incentive.

12

2.2 Reinforcement Learning

 This section of the literature review provides background regarding reinforcement

learning, particularly its evolution towards today’s deep reinforcement learning.

According to Sutton and Barto [18] reinforcement learning’s early history involves two

separate threads in animal psychology research and optimal control in system dynamics

research. Today reinforcement learning research has combined these threads and is

primarily focused on training deep neural networks as underlying policies.

 In the 1950s and 1960s, Richard Bellman laid much of the groundwork for

reinforcement learning through his work in optimal system control [19] [20]. He

introduced concepts that evolved to today be known as dynamic programming, Markov

Decision Processes (MDPS), and the Bellman Equation. Later work in the 1970s through

1990s focused on dynamic programming and introduced further concepts such as

partially observable MDPs, approximations, and asynchronous search that evolved into

reinforcement learning. In combination with psychology research that described the

concept of trial-and-error search and the “Law of Effect” [21], where it was observed that

positive and negative reinforcement in connection with events leads to changes in the

behavior of animals [18].

One popular branch of modern reinforcement learning is Q-learning, originally

introduced by Chris Watkins in his Ph. D. thesis as a means to solve delayed reward tasks

in MDPs. The idea of Q learning is to estimate a value through trial-and-error for each

action that can be taken in a state that correlates to that action’s long-term reward. Mnih

et al. [22] proposed the Deep Q Network (DQN) algorithm which trains a neural network

to estimate the Q-values for each action given the environment’s current state as an input.

13

Silver et al. [23] expanded on the DQN algorithm to introduce the Deterministic Policy

Gradient algorithm (DPG) which directly predicts an action, allowing for continuous

actions, rather than DQNs limitation to only produce a probability distribution over a

discrete set of actions.

Recent developments in Q-learning are focused on the use of the Actor-Critic

architecture [24] [25]. Silver et al. [26] proposed the Deep Deterministic Policy Gradient

(DDPG) algorithm where one neural network, the Actor, predicts an action based on an

input state and a second neural network, the Critic, estimates the Q-value for the current

state and the predicted action. This provides added stability over the single network used

in the DPG algorithm. Mnih et al. [27] proposed Advantage Actor-Critic (A2C) where

there is one critic network that learns from multiple actor networks that work in parallel

and sync every iteration.

Schulman et al. [28] introduce Trust Region Policy Optimization (TRPO). TRPO

is proposed as a policy gradient method with a focus on reliable monotonic improvement

within a large neural network policy. TRPO utilizes an approximation of the Kullback-

Leibler divergence between the current policy and a policy update as a constraint to

ensure that a new policy is similar in performance. This is to avoid large shifts in a policy

that can damage performance. Empirically TRPO achieves steady performance

improvements while not suffering from the instability seen in other methods.

Wu et al. [29] introduce Actor Critic using Kronecker-Factored Trust Region

(ACKTR). This seeks to improve on TRPO by utilizing a Kronecker-factored

approximation in its gradient calculation to improve sample efficiency and reduce

14

computational complexity. Kronecker-Factored updates can update the network layer-by-

layer rather than updating all layers at once, making it much faster to update a large dense

neural network policy.

Schulman et al. [30] expand upon their TRPO algorithm and propose the use of

Proximal Policy Optimization (PPO) Algorithms. They claim that PPO maintains

TRPO’s reliable performance, but has a simplified implementation, improved sample

complexity, and they suggest it is more robust in requiring less hyperparameter tuning.

PPO introduces a clipped objective function that bounds a policy’s change in

performance on updates replacing TRPO’s KL Divergence constraint.

15

Chapter 3

Background

 In this chapter, I will discuss the typical framework of reinforcement learning as

well as key concepts, trade-offs, and types of algorithms. Machine learning is often

viewed as having two paradigms, supervised and unsupervised learning. However,

reinforcement learning presents itself as a third lesser-known paradigm [18]. In

supervised learning, an expert provides a set of labeled objects to train a model in the

hopes of the model generalizing to successfully label similar objects outside of its

provided training data. In unsupervised learning, an algorithm is used to identify structure

and associations in unlabeled data. reinforcement learning utilizes techniques and

concepts from both paradigms, as well as applying its own unique techniques.

reinforcement learning relies on a well-designed simulation environment which can be

seen as analogous to an expert labeled input in supervised learning [18]. However, much

of reinforcement learning is self-guided exploration with only noisy reward feedback

which can be seen as similar to unsupervised learning.

3.1 Reinforcement Learning Framework

Reinforcement learning is often formalized using a Markov Decision Process

(MDP), a classic method of formalizing sequential decision making. An MDP is a 4-

length tuple that described a process comprised of the process’s state space, action space,

transition probabilities, and transition rewards, or (S, A, Pa, Ra). The state space is the set

of all possible states that may be produced by an environment as represented to an

observer. An MDP’s state space can be designed to highlight high-level information

16

about an environment, or it can present a very high-dimensional representation whose

structure must also be learned by an actor attempting to learn to perform within the MDP.

For example, a state-space for the Atari game Pong may represent the environment as the

x and y coordinate locations of the two players and the ball, or the environment may be

represented directly by a screenshot of its 160x192 pixel screen.

An MDP’s action space defines how an actor is able to interact with the

environment. For example, the action space in the aforementioned game Pong would be

moving the player’s paddle vertically up or down. An MDP’s transition probabilities Pa

maps the dynamics of changing from the current environment state, s, to a new state, s’,

based on the action, a, taken by the actor, defined as P(s’ | s=s, a=a). For example, in the

game blackjack at any particular game state a player may take the hit action which has

varying probabilities of moving the current state to a new state as represented by the

cards in the player's possession and remaining in the deck. Lastly, the reward function

Ra(s, s’) outputs the reward after taking an action a in state s and arriving in state s’. An

MDP’s dynamics can be summarized by Equation 1. The goal in ‘solving’ an MDP is to

create a policy π(s) that maps the current state, s, to the action that will maximize the

cumulative long-term reward received.

𝑝(𝑠′, 𝑟 | 𝑠, 𝑎) = 𝑃𝑟{𝑆𝑡 = 𝑠′, 𝑅𝑡 = 𝑟 | 𝑆𝑡−1 = 𝑠, 𝐴𝑡−1 = 𝑎} (1)

17

Figure 1

Example Markov Decision Process for the Game of Tic-Tac-Toe

Figure 1 shows an example diagram of an MDP in the context of a tic-tac-toe

game versus a random opponent agent. The game begins with a static initial state, S0, an

empty board shown furthest to the left and the player is presented with the action space

A={1,…, 9} where the player’s ‘O’ is to be placed. The random agent then has a 1/8

probability to place an ‘X’ in any of the remaining eight squares. Even in this simple

game of tic-tac-toe, its MDP allows for over a quarter million possible games. Likewise,

in more complex environments with higher dimensional state and action spaces, and

probabilities state transitions there can be a greater number of possible trajectories than

atoms in the universe [4].

18

3.2 Key Concepts in Reinforcement Learning

 A key concept in reinforcement learning is the trade-off between exploration and

exploitation. This is in reference to the dilemma that in order to obtain a high cumulative

reward the agent must exploit their policy which represents their current best

understanding to achieve a high reward. However, in order to discover new and possibly

more lucrative opportunities an agent must explore new states and actions. A general

standard has been adopted that agents are designed to have a strong initial exploration

bias that then decays over time towards agents arriving at a strong exploitative bias.

Conceptually this can be seen as when first introduced to a new environment

experimenting with its various inputs to form an understanding of its outputs. Then as the

general mechanisms are understood, utilizing current knowledge to arrive at a more

distant state and occasionally attempting new inputs to observe if a better path can be

found. In reinforcement learning the probability that an agent will take an explorative

action is denoted as epsilon, ϵ, and as the agent continues to learn in the environment ϵ is

decayed often to a fixed minimum. An interesting side effect of this is that an optimal

agent’s average return will be bounded to the optimal return minus the fixed minimum ϵ,

as there is a minimum ϵ chance at any timestep that even an optimal agent will take a

non-optimal action [18].

Another core concept in reinforcement learning is the idea of delayed reward. The

overall goal of reinforcement learning is to maximize the cumulative reward from

interacting within an MDP by maximizing the Equation 2. However, this does fail to

recognize infinite MDPs and the concept of near-term rewards often being superior to

future rewards. A discount rate denoted as gamma, γ, is utilized to apply a discount to

19

future rewards as shown in Equation 3. γ is in the range [0, 1), where 0 indicates the

agent is only interested in immediate reward and values close to 1 indicate that the agent

is just as interested in long term reward as they are immediate. Typically, in practice γ is

set in the range [0.9, 1.0), providing a strong incentive for long-term reward.

𝐺𝑡 = ∑ 𝑅𝑡

𝑇

𝑡=1

(2)

𝐺𝑡 = ∑ 𝛾𝑘

∞

𝑘=0

𝑅𝑡+𝑘+1 (3)

Value functions are popular components of reinforcement learning algorithms,

these seek to quantify the value of a given state, the expected future reward from a given

state if the current policy is followed. In Equation 4 we can see the definition of the value

function, where given the current state, s, the expected cumulative reward considering

taking all following actions, a, according to the current policy, π. This is often used when

an agent is planning ahead, given the option to choose between a set of states the agent

can estimate a comparative value for each. There also exists a theoretical variant of the

value function Vπ(s) that is V*(s) where * denotes the theoretical optimal policy, thus

V*(s) would return the ground-truth value of a state.

𝑉𝜋(𝑠) = 𝐸𝑎~𝜋[𝐺𝑡|𝑆𝑡 = 𝑠] (4)

 The Q function, also known as the action-value function, is to quantify the benefit

of taking a particular action in a particular state. Many reinforcement learning algorithms

seek to calculate or predict Q values for each possible action given the current state, then

take the action that is associated with the highest Q value. In Equation 5 the definition of

20

the action-value function is described, where given the action, a, in state, s, the

cumulative reward is calculated if then the current policy, π, is followed. Similar to the

optimal value function there also exists an equivalent optimal action-value function in

𝑄∗(𝑠, 𝑎).

𝑄𝜋(𝑠, 𝑎) = 𝐸𝑎~𝜋[𝐺𝑡|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎] (5)

 A popular combination of both value and action-value functions is the advantage

function, A(s,a). This is defined in Equation 6 and quantifies the advantage of taking an

action in a given state versus following the action that would be prescribed by the current

policy 𝜋. This is often used in comparing the effects of a new policy relative to the

current policy.

𝐴𝜋(𝑠, 𝑎) = 𝑄𝜋(𝑠, 𝑎) − 𝑉𝜋(𝑠) (6)

3.3 Policy-Gradient Paradigm

 One of the major paradigms of reinforcement learning is Policy-Gradient (PG), in

experimentation I will primarily focus on this paradigm due to its latest advancements

[29] [28] [30]. PG algorithms are on-policy approaches that seek to optimize a policy

directly as it interacts with the target environment. A trade-off of on-policy approaches is

that they cannot reuse old experiences, however the experiences that these approaches do

learn from are very relevant to the agent. PG approaches are designed to increase the

probability of high reward actions and decrease the probability of low reward actions for

each given state. These methods are also known as model-free as they do not need access

to a complete model of the environment they are interacting with.

21

 The core objective of PG approaches is to optimize a parameterized policy 𝜋𝜃, a

deep neural network, through its parameters 𝜃 using the gradient ∇𝜃𝐽(𝜋𝜃). The Vanilla

Policy Gradient (VPG) is a foundational approach to policy gradient. Episodes collected

through interaction with an environment are used to optimize an agent’s underlying

policy. Gradient updates, as denoted by ∇𝜃𝐽(𝜋𝜃), are applied to the current policy

parameters 𝜃𝑘 given a learning rate a to produce the next iteration of the policy

parameters 𝜃𝑘+1 according to Equation 7. Equation 8 shows the gradient update

calculation after an episode. The term ∇𝜃log 𝜋𝜃(𝑎𝑡|𝑠𝑡) is the gradient of the log

probability or change in probability of arriving at the action at given the input

environment state st. Further, 𝐴𝜋𝜃(𝑠, 𝑎) is the advantage function which denotes the

‘advantage’ of taking action a in state s over following the action prescribed by the

current policy 𝜋𝜃. Equation 8 produces a gradient that increases the probability of taking

actions that are an improvement over the current policy’s action choice given state s and

decreases the probability of taking actions that reduce performance.

𝜃𝑘+1 = 𝜃𝑘 + 𝑎∇𝜃𝐽(𝜋𝜃)|𝜃𝑘
(7)

∇𝜃𝐽(𝜋𝜃) = 𝐸𝑒~𝜋𝜃
[∑ ∇𝜃 log 𝜋𝜃(𝑎𝑡|𝑠𝑡)𝐴𝜋𝜃(𝑠, 𝑎)

𝑇

𝑡=0

] (8)

 One of the latest advancements in policy gradient approaches is the Trust region

Policy Optimization algorithm (TRPO) [28]. Many reinforcement learning algorithms

suffer from instability due to parameter updates that greatly change policy behavior.

TRPO seeks to address this issue by applying a trust region constraint in order to keep

policy updates close in performance rather than simply close in parameter space. This

22

trust region constraint is really a KL-divergence constraint on the change in action

probability distributions. An update to the policy will only be allowed if the following

constraint is satisfied for hyper-parameter δ:

𝐷𝐾𝐿(𝜃||𝜃𝑘) ≤ δ (9)

Further, rather than considering the change in log probabilities of actions TRPO

considers how a proposed policy performs compared to the previous policy iteration

through the surrogate advantage function. Shown in Equation 10, the probability of

selecting an action, a, given state, s, between the proposed policy 𝜃 and the old policy 𝜃𝑘

is evaluated using old data. If the L(𝜃, 𝜃𝑘) is positive and the new policy 𝜃 satisfies the

KL divergence constraint shown in Equation 9, then the policy is updated to the proposed

new policy 𝜃.

𝐿(𝜃, 𝜃𝑘) = 𝐸𝑠,𝑎~𝜋𝜃
[

𝜋𝜃(𝑎|𝑠)

𝜋𝜃𝑘
(𝑎|𝑠)

𝐴𝜋𝜃𝑘 (𝑠, 𝑎)] (10)

 Following TRPO the algorithm Proximal Policy Optimization (PPO) was

proposed as a way to reduce the implementation complexity, reduce the computational

complexity, and improve the sample efficiency of TRPO through the use of a clipped

objective function. PPO utilizes mini-batches of Stochastic Gradient Descent to propose a

new policy 𝜃. Then rather than seeking to satisfy the KL Divergence constraint, the

clipped objective function shown in Equation 11 is used. This equation is

computationally much more efficient and is simpler to implement. The first argument to

the min operator is intended to undo an update that results in a disadvantages action

becoming more likely, as this will only be the min of the two arguments when the

23

advantage function 𝐴𝜋𝜃𝑘 (𝑠, 𝑎) is negative. The output of clipping function will otherwise

be utilized in an update. The purpose of clipping is to bound the impact of an update even

if it is seemingly very good, do to 𝐴𝜋𝜃𝑘 (𝑠, 𝑎) being an unreliable estimator in practice as

it is approximated by a neural network itself.

𝐸𝑠,𝑎~𝜋𝜃
[min (

𝜋𝜃(𝑎|𝑠)

𝜋𝜃𝑘
(𝑎|𝑠)

𝐴𝜋𝜃𝑘 (𝑠, 𝑎), 𝑐𝑙𝑖𝑝(
𝜋𝜃(𝑎|𝑠)

𝜋𝜃𝑘
(𝑎|𝑠)

, 1 − 𝜖, 1 + 𝜖)𝐴𝜋𝜃𝑘 (𝑠, 𝑎)] (11)

24

Chapter 4

Problem Setting

 In this chapter, the problem setting will be fully defined as to better understand

following discussions around data simulation, experimentation, and analysis. This chapter

details how the constructed problem circumstance maps to the modeled real-world

setting.

4.1 Environment

 The environment models a shared mobility system, specifically a bikeshare

system, as a 2-D n x m matrix spatial representation. This matrix, R, represents each

region in the system R = {r11, r12, …, rnm}. Each element r represents the features of each

region giving the matrix R a channel depth determined by the region features included in

a representation’s implementation, such as supply, user arrivals, and user destinations.

The activity within a shared mobility system is discretized into T time slots, e.g. time

slots {t0, t1, …, tT}. In experimentation, an hourly-based system is utilized where T=24 is

utilized to represent the 24 hours of a day. Before the simulation begins at t0 the system

will be initialized with a supply represented as S of vehicles distributed according to a

given statistical distribution across regions. Every time slot the supply of resources

available in each region will change due to dynamics in user arrivals in the current time

slot and destination patterns from trips that began in the previous time slot.

Each day N users will appear in the system in need of service distributed amongst

each time slot according to an arbitrary hourly user activity distribution. When a user

appears, they will have an intended arrival location rij
a. If there exists a resource in rij

a the

25

user will occupy that resource, removing it from the region, and begin their trip to their

intended destination region rij
d. However, if the user appears in rij

a and there exists no

available resource, an incentive can be offered to the user such that they may be

incentivized to move to a neighboring region that does have an available resource. If

successfully incentivized, this neighboring region is then the user’s new arrival region

and they will begin their trip to their intended destination region rij
d. Also, note that in

some extended implementations the user can also always receive an offer to similarly

alter their destination region. The neighboring regions available for a user to move to

from their current region, rij
a, is defined by the neighbor region vector:

𝑁(𝑟𝑖𝑗) = (𝑟𝑖+1,𝑗, 𝑟𝑖−1,𝑗, 𝑟𝑖,𝑗+1, 𝑟𝑖,𝑗−1) (12)

 The dynamics of a user’s trip is as follows. When a user’s request is satisfied and

the user chooses to occupy a resource, that resource is removed from its current region

and placed into a buffer known as the “Travel Buffer”. At the end of the current time slot,

after all users have either begun a trip or have left the system having failed to be serviced,

this buffer will resolve to allocate all resources stored within to their destination region

ready to be used in the following time slot. This buffered approach is to simulate the time

requirement of users traveling with a resource.

4.2 User Model

 In this environment, an agent can offer a user an incentive to slightly alter their

behavior, through altering the region in which they select a resource or in some instances

alter where they deposit the resource. The agent can supply an offer vector with offers

opq
t at time slot t for all neighboring regions, denoted rpq, in the neighbor set N(rij) for the

26

user’s arrival region rij. An offer opq
t must be in the range [0, Imax], where Imax is set by the

environment as the maximum incentive allowed to be offered to a user. This Imax

limitation is imposed as if implemented in a wider system there would a set maximum

possible incentive as to avoid exploitation. Offers also cannot be negative as the user

would simply not accept such an offer and may execute that action outside of the system

regardless.

 Given an offer, a user will be modeled as considering an offer through the user

cost model shown in Equation 13, described by Pan et al. [6]. In Equation 13, d is the

Euclidean walking distance from the user’s location in region rij to the closest resource in

region rpq and 𝜂 is a positive weight to account for currency adjustment. In this

environment a resource in the same region as the user costs nothing, 0, to move to.

Further, if the resource’s region is not immediately adjacent to the user’s region i.e., rpq is

not in the neighbors vector for rij, then it is simulated that the user would not consider

moving to it and their cost is represented as ∞.

𝑐𝑜𝑠𝑡(𝑟𝑖𝑗, 𝑟𝑝𝑞 , 𝑑) = {

0, 𝑟𝑝𝑞 = 𝑟𝑖𝑗

𝜂𝑑2, 𝑟𝑝𝑞𝜖 𝑁(𝑟𝑖𝑗)

+∞, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(13)

 Once both an offer and the cost to accept said offer has been established for a

user, then the utility of the offer to the user will be calculated according to Equation 14.

The incentive utility upq determines how beneficial to a user a given offer to move from

region rij to region rpq for an available resource is. If upq is positive, then accepting the

offer is a net benefit to the user and they would be willing to follow through. If upq is

negative, then accepting the offer would not be beneficial to the user and the user would

27

not accept the associated offer. Lastly if upq is 0, then the offer’s utility to the user is net

neutral and the user would be willing to follow through with the associated offer.

𝑢𝑝𝑞 = 𝑜𝑝𝑞
𝑡 − 𝑐𝑜𝑠𝑡(𝑟𝑖𝑗, 𝑟𝑝𝑞 , 𝑑) (14)

A user’s decision regarding a given offer vector is determined by the

circumstances and equations defined above coupled with the following final

determination logic. A user will be simulated to consider the utilities for each offer and

neighbor region constructed as a vector described in Equation 15. If argmax(û) >= 0, then

the user will move to the associated region rpq that corresponds to the maximum upq and

their request will be satisfied. Otherwise, if argmax(û) is negative then the user’s request

will not be serviced.

û = 𝑢𝑝𝑞 , ∀𝑟𝑝𝑞𝜖𝑁(𝑟𝑖𝑗), 𝑤ℎ𝑒𝑟𝑒 𝑟𝑝𝑞 𝑠𝑢𝑝𝑝𝑙𝑦 > 0 (15)

4.3 Objective

 The primary objective in this problem setting is for an agent to maximize the

number of satisfied user requests, or as a ratio defined as service level according to

Equation 16. Additionally, there exists a budget constraint B where every time a user

accepts an offer that offer amount is deducted from the budget B. If the offer is greater

than the remaining budget B, opq
t > B, the offer cannot be carried out and the user’s

request will not be satisfied. Using reinforcement learning a policy can be constructed

that is able to effectively utilize a given budget B to improve the service level

performance within a shared mobility system. Through analysis and experimentation,

various reinforcement learning representations will be evaluated regarding their

performance towards this objective.

28

𝑆𝑒𝑟𝑣𝑖𝑐𝑒 𝐿𝑒𝑣𝑒𝑙 = 𝑆𝐿 =
𝑓𝑢𝑙𝑓𝑖𝑙𝑙𝑒𝑑 𝑢𝑠𝑒𝑟 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠

𝑡𝑜𝑡𝑎𝑙 𝑢𝑠𝑒𝑟 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠
(16)

4.4 One-Dimensional Scenario

 Prior to conducting experimentation in the previously detailed problem setting a

simplified one-dimensional scenario was explored for familiarization with the problem

domain. In this section, I will detail the one-dimensional problem setting and

distributions used in simulation [31].

4.4.1 Problem Setting

 In the one-dimensional setting the system is represented as a vector of length n R=

{r1, r2, …, rn}, rather than as an n x m matrix in the two-dimensional setting. Similarly,

each element of the spatial layout of the system represents a region. As this is a one-

dimensional setting the neighbors vector for a region is represented as the regions

immediately adjacent to the current region, ri-1 and ri+1. Temporally the system is also

simulated as conducting over 24 time slots to represent 24 hours.

 The user model is equivalent to the previously described setting in terms of the

budget, user cost model, providing offers to users, and the utility calculation. Similarly,

the service level of the system is the primary metric seeking to be optimized. Users are

simulated as tuple of length two with a continuous arrival interest location and

destination interest location each prescribed by a related distribution. Bikes are simulated

as being placed in regions according to a distribution at the start of the simulation. The

supply at each region changes throughout the simulation dynamically according to user

behavior.

29

4.4.2 System Simulation

 The main focus of this setting is to compare the effects of varying user interest

and supply distributions. These distributions were determined by beta-variate

distributions. Beta-variate distributions allow for flexibility in the shape of the

distribution as determined by two parameters α > 0 and β > 0. The beta distribution

function is shown below in Equation 17 and the beta function utilized in the distribution

function is shown in Equation 18.

𝐵𝑒𝑡𝑎(𝛼, 𝛽) =
𝑥𝛼−1(1 − 𝑥)𝛽−1

𝐵(𝛼, 𝛽)
(17)

𝐵(𝛼, 𝛽) = ∫ 𝑡𝛼−1(1 − 𝑡)𝛽−1𝑑𝑡
1

0

(18)

Specifically in experimentation 5 beta-variate distributions were selected

B1=B(α=0.5,β=0.5), B2=B(α=5,β=1), B3=B(α=1,β=3), B4=B(α=2,β=2), and

B5=B(α=2,β=5). All combinations of these distributions were utilized in experimentation

to determine, initial supply distribution, user arrival interests and user destination interest

for a total of 125 combinations or scenarios. By varying the distributions that determine

user behavior and supply distribution will provide insight on the impact of variations in

these crucial distributions.

In the two-dimensional problem setting varying representations for the agent to

observe and interact with the environment are evaluated. In this one-dimensional problem

setting evaluation is primarily focused on varying distributions in a static environment.

Only the supply at each region is provided as a state representation. Further, an incentive

30

is attached to each region to incentivize unserviceable users to move away from their

current region in any direction at every timeslot.

31

Chapter 5

System Simulation

 Bikeshare operators often publish their data publicly according to the General

Bikeshare Feed Specification (GBFS) outlined by the North America Bike Share

Association (NABSA). This specification is an open data standard for bikeshare systems

designed to allow for internal and external parties to better communicate and understand

bikeshare system data. The primary information conveyed in a bikeshare’s GBFS feed is

the station information JSON and station status JSON. The station information JSON

includes a record of static information for each publicly available station detailing its

location, name, identifier, and total capacity. The station status JSON includes dynamic

information for each station regarding the number of currently available bikes and docks.

In experimentation, the station information JSON records are used to understand the

layout of the system and match stations to regions.

To understand and simulate user behavior in analysis and experimentation

bikeshare system trip data has been acquired from Washington D.C.’s Capital Bikeshare

website under their System Data – Trip Data repository [32]. Here the Capital Bikeshare

system operators maintain an index of files that detail information about each trip that

occurred over a specific period of time. These trip data files include the duration,

start/end datetime, and start/end latitude/longitude locations for each trip. This data is

used to parse various user behavior distributions for generating simulations in

experimentation and evaluation.

32

5.1 User Demand Interests

 It is important to understand how the popularity of the Capital Bikeshare system

has changed over time and continues to change based on temporal circumstances across

various seasons, months, weekdays, and hours. In this section, various temporal slices

will be analyzed across collected Capital Bikeshare data.

Figure 2

Trips per Year in the Capital Bikeshare System

In Figure 2, we see the number of trips per year in the Capital Bikeshare system.

The number of trips per year for the Capital Bikeshare system begins to plateau in the

year 2015 with the number of trips per year settling to roughly three and a half million

33

after large year of year growth 2011 through 2015. Further, due to the COVID-19

pandemic and associated countermeasures bikeshare data for 2020 will not be included in

analysis and experimentation due to its radical deviation in user behavior distributions

relative to prior years. From now on only the Capital Bikeshare trip data inclusively

between the years 2015 and 2019 will be used in analysis and experimentation, due to a

similar number of users across this time span year over year.

Figure 3

Average Trips per Month in the Capital Bikeshare System 2015-2019

The average number of trips in the Capital Bikeshare system is also highly

contingent on seasonal and monthly patterns as seen in Figure 3. The average number of

trips per month peaks in the summer months June, July, and August, with almost triple

34

the number of trips relative to the winter months. The system also maintains relatively

high levels of user activity in the late spring and early Fall months of April, May,

September, and October. The average number of trips is greatly reduced between the late

fall to early spring months November through March, attributable to user preferences

regarding inclement weather and reduced tourism in these months. Likewise, from now

on only the trip data inclusively between the months April to October will be used in

analysis and experimentation, due to high levels of user activity.

Figure 4

Trips per Weekday in the Capital Bikeshare System 2015-2019

The average number of trips per weekday shows an unexpectedly little amount of

variation. It would be expected that there would be fewer trips on weekends due to a

reduction in commuting, however as seen in Figure 4 there is little variance in demand

35

per weekday. Perhaps the reduction in standard commutes is overcome by an increase in

weekend leisure activities. Likewise, we will not consider special cases for any day of the

week in experimentation.

Figure 5

Average Trips per Hour in the Capital Bikeshare System 2015-2019

The average number of trips per hour as shown in Figure 5 shows temporal

behavior that is expected in relation to standard commute patterns. There is a large peak

in demand in the mid-morning and mid-afternoon hours of 8am to 10am and 5pm to 7pm

as would be expected of users commuting to and from their workplaces and their

residences. There is modest mid-day activity between the hours of 11am to 4pm likely

due to general tourism and leisure activities. After 7pm, as would be expected through

nighttime hours, the system’s demand rapidly drops resulting in very little activity

36

between the hours of 11pm to 6am. This hourly activity distribution will be accounted for

in experimentation. The number of users per day will not be distributed uniformly across

all time slots, instead they will be distributed according to this hourly activity

distribution.

To summarize, based on this temporal activity analysis, data used for further

analysis and in experimentation will be between the years 2015 to 2019 and will consist

of the warmer months April through October. Further, the distribution of users per hour

throughout the day will be accounted for. Additionally, there will be no special

consideration applied to the day of the week.

5.2 Distributions

Users are simulated as user objects introduced to the system as represented by a

tuple of length two. The first element being their arrival region interest and the second

their destination region interest represented by each region’s respective integer identifier.

For example, a user may be represented as (82, 3) where the user’s arrival region is 82 or

r8,2 and their destination region is 3 or r0,3. Both a user’s arrival region and destination

region interests are determined by distributions based on the hour in which a user

appears.

The initial supply distribution is calculated based on placing bicycles at each

region throughout the system according to a set supply distribution. This distribution is

then used to distribute the number of bikes provided by the supply parameter to the

environment i.e., if the system is to have 4,500 bikes then so many bikes will be

distributed proportionally throughout the regions of the system before the simulation

begins. If the distribution is set to purely uniform, then each of the 100 regions would

37

receive 45 bikes. The supply distribution is then organically altered as the simulation

executes through user arrival and destination interests and behaviors, as additionally

influenced by an agent offering incentives.

Figure 6

Illustration of the Daily Initial Supply, Hourly Destination, and Hourly Arrival

Distributions for System Simulation

In Figure 6, we illustrate how daily initial supply, hourly destination, and hourly

arrival distributions are used in environment simulations. The leftmost distribution is the

supply distribution responsible for the initial resource supply layout of the system. The

following distributions to the right of Figure 6 show distributions responsible for

38

determining user arrival and destination interests. There is a distribution for each hour for

both arrival and destination interests resulting in 48 total user interest distributions and

one supply distribution in the environment generation system.

The initial supply distribution used for Capital Bikeshare simulation is shown as

the left most distribution in Figure 6. This distribution is based on the total relative

destination popularity of each region in the hour 6 pm, plus a small increase as to

distribute supply more evenly. This is described in Equation 19 where H is set to 18 (6

pm) and N is set to 100 (100 regions). The hour 6 pm was selected as it is the last very

popular hour for user activity and is likely to have a large impact on the next day's initial

supply. Conversely this implies that the previous day’s 6 pm destination activity has a

large impact on the initial supply distribution when a simulation begins. Then one is

added to each element, to give each region some probability of receiving a bike. This

extra step of giving each region some supply allows for more opportunities to reroute

users. Lastly, this matrix is normalized to create this supply distribution.

1 + 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐷𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑠 𝑓𝑜𝑟 𝑟𝑖𝑗𝑖𝑛 𝐻

𝑁 + 𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐷𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑠 𝑖𝑛 𝐻
 ∀ 𝑟𝑒𝑔𝑖𝑜𝑛𝑠 𝑟𝑖𝑗 (19)

A user’s arrival interest and destination interest are both calculated based on the

hour in which the user appears. Each hour indexes two distributions each with the

probability of a user either arriving at or selecting as a destination for each region. The

user arrival distribution is calculated based on historical user arrival patterns as shown in

Equation 20. The user destination interest distribution is calculated similarly, where

instead of utilizing historical arrivals, the distribution is calculated based on historical

39

destinations. P(A | H) shows the conditional probability for determining user arrival

location interest, where A is the arrival region and H is the hour in which the user appears

∑ 𝑎𝑟𝑟𝑖𝑣𝑎𝑙𝑠 𝑓𝑜𝑟 𝑟𝑖𝑗𝑖𝑛 𝐻

∑ 𝑡𝑜𝑡𝑎𝑙 𝑎𝑟𝑟𝑖𝑣𝑎𝑙𝑠 𝑖𝑛 𝐻
 ∀ 𝑟𝑒𝑔𝑖𝑜𝑛𝑠 𝑟𝑖𝑗∀ ℎ𝑜𝑢𝑟𝑠 𝐻 (20)

5.3 Limitations

 It is important to recognize that while this simulation environment is consistent

with much of the related literature, as well as introducing subtle improvements, it still has

many limitations and possible improvements. This simulation assumes that when a user

occupies a resource that the resource will not appear in its destination region until the

start of the next hour time slot. This is not an accurate representation of the trip duration

dynamics of a bikeshare system as bicycles are constantly arriving and departing due to

trips often being less than a half-hour in duration. This limitation is introduced as it

greatly reduces the computational complexity of simulation and is assumed to not greatly

impact simulation effectiveness.

 In experimentation, the Capital Bikeshare system is divided into a 10x10 grid

resulting in 100 equally sized regions. The largest trade-off in determining the input size

of the system’s grid representation is the ratio of regions whose neighbors vector length is

less than 4. Under the 10x10 grid size, there are 32 edge regions and 4 corners resulting

in 36% of the regions having a neighbors vector less than 4. For comparison, under a 7x7

grid size there are 26 edge and corner regions resulting in 53% of regions with a

neighbors vector less than 4. With a grid of 100 regions, there is also a reasonable amount

of separation between where users are typically interested in departing versus where they

are intended to commute to. This is an important distinction as it is redundant to offer a

40

user an incentive to walk to a region that they were otherwise intending to travel by

bicycle to.

 The entire Capital Bikeshare system spans a wide area from Dulles International

Airport, to Alexandria, to Capital Heights, to Gaithersburg. The size of the Capital

Bikeshare system is reduced to its central area from Arlington to slightly South of Mt.

Rainer. Specifically, the system is reduced from spanning from latitudes and longitudes

(38.783, -77.368) to (39.124, -76.826) to spanning the latitudes and longitudes (38.875, -

77.1) to (38.935, -76.98). This reduced system size still captures roughly 90% of trips in

user activity data and is less than half of the original spatial area covered by the system.

This reduction in coverage area makes regions more meaningful as they better capture

specific locations, and it is more likely that a user will travel to a region further than a

neighboring region.

 Another limitation of this simulation is its assumption that all users will behave

according to the same cost model. In practice, the walking distance cost for each

individual is likely to have a wide variance dependent on a variety of internal and

external factors to the user. Someone engaging in exercise will likely need a much lower

incentive than someone who is commuting to their workplace in order to depart from a

bicycle further away. Likewise, due to various weather circumstances or road blockages a

user may find it more difficult than our model would anticipate to move to a new

location. This is not a significant limitation as it is likely that the cost model will capture

an approximation of average user behavior and given such a large amount of simulated

users will be representative.

41

Chapter 6

Representations Description

 In this chapter, descriptions are provided of the various representations that will

be utilized in experimentation. Five representations are employed for the environment’s

state and action mechanism to observe performance impacts, as summarized in Table 1

and Table 2.

Agents received the reward signal reduced unservice level, shown in Equation 21.

This is the percentage reduction in unservice level, directly derived from the service level

metric, there will not be a case where a reduction or increase in one is not correlated with

a reduction or increase in another. In reinforcement learning, it is critical that the reward

function reflects the overall goal intended to be achieved within an environment. For

example, for an agent to learn the game of chess the reward function should reflect

whether the agent achieves victory or is defeated and not other metrics such as the

number of pieces captured. While the system’s service level metric is the most critical

measurement, this metric will typically be within a very small range whereas the reduced

unservice level will typically be within a much larger range. If service level alone were

relied upon as a reward function its small range would be difficult for an agent to

interpret, therefore the reduced unservice level metric is utilized.

Reduced Unservice Level = RUL = 1 −
1 − 𝑆𝐿𝑤𝑖𝑡ℎ 𝑎𝑔𝑒𝑛𝑡

1 − 𝑆𝐿𝑛𝑜 𝑎𝑔𝑒𝑛𝑡
(21)

42

Table 1

State and Action Representation Symbols

Symbol Description

St Supply at each region at time slot t

At User arrivals at each region during time slot t

Dt Trip destinations for each region during time slot t

Ut Unservice level for each region during time slot t

Et Expense at each region during time slot t

A’ Known trip arrivals for each region during time slot t

D’ Predicted trip departures for each region during time slot t

ot
ij- Offer to move to any neighboring region from region rij during time slot t

ot
pq+ Offer to move to region rpq during time slot t

ot
pq+’ Offer to change destination to region rpq during time slot t

Table 2

Representation Summaries

Representations State Representations Action Mechanisms

SADUE-A (St, A(t-1), D(t-1), U(t-1), E(t-1)) (ot
11-, o

t
12-,… , ot

nm-)

S-A (St) (ot
11-, o

t
12-,… , ot

nm-)

S-A+ (St) (ot
11+, ot

12+,… , ot
nm+)

SA’D’-A+ (St, At’, Dt’) (ot
11+, ot

12+,… , ot
nm+)

SA’D’-A+D+ (St, At’, Dt’) (ot
11+, ot

11+’, ot
12+, ot

12+’,… , ot
nm+, ot

nm+’)

43

6.1 Representations Without Using Predictive Model

6.1.1 SADUE-A

Figure 7

SADUE-A Representation Diagram

In Figure 7, a diagram of the first representation named SADUE-A is shown, this

representation is largely inspired by the framework proposed by Pan et al. [6]. Under the

SADUE-A representation a high-dimensional state space is utilized which captures a

relatively large amount of information about the observed mobility-system environment.

The first part of the representation’s name, SADUE, stands for its state representation a

tuple (St, A(t-1), D(t-1), U(t-1), E(t-1)). St is a matrix which represents the current supply at

each region, it is reasonably assumed that this is the most important feature to represent

44

the environment. The following matrices A(t-1) and D(t-1) respectively represent the

number of resource arrivals and departures during the previous time slot (t-1), this is

intended to inform the agent what may happen in the following time slot. The matrix U(t-

1) is a matrix which represents the unservice level at each region during the previous time

slot (t-1), this is intended to highlight problematic regions. The last matrix E(t-1)

represents the expense at each region during the last timestep, further highlighting

problematic and high demand regions. This is a very high dimensional state space with

high variability, that will require extra training time for an agent to understand key

features of the state space.

The action representation of SADUE-A is denoted as simply A, this action

mechanism is designed based on the mechanism proposed by Pan et al. [6]. Under the

action mechanism A, the agent applies an offer at the start of every time slot to

incentivize users to move away from their current region to any neighbor. This action is

represented as the vector (ot
11-, o

t
12-,… , ot

nm-), the - signifies that the agent is

incentivized to move away from their current region in any direction for the same offer.

The user in region rij will consider the offer ot
ij as it relates to movement cost to each of

its neighbors N(rij), the offer vector the user receives is of the form (ot
ij, o

t
ij, o

t
ij, o

t
ij).

45

6.1.2 S-A

Figure 8

S-A Representation Diagram

In Figure 8 a diagram of the next representation S-A is shown, this representation

is designed to observe the effects of a reduction in SADUE-A’s state space. High

dimensional state spaces typically cause a longer convergence time in machine learning

based algorithms. As the input space grows there are more variables and combinations

thereof to fit to the desired output. Worse in our problem setting it is reasonable to

assume that each feature is extremely non-uniform in importance, thus requiring extra

training time as the initialized model will give each feature roughly equal weighting.

Under S-A the state space is reduced to only the current regional supply matrix St,

omitting information (‘ADUE’) that only provides theoretically marginal information

46

about the environment. Information such as the previous time slot’s user arrivals and

departures does provide some information regarding an expectation on activity in the

current time slot, this will be missed though there will be a particular focus on the current

supply. However, the unservice level and expense at each region is likely to only

challenge the agent without providing significant usable information. The action

mechanism A is the same as the action mechanism used under SADUE-A, for

consistency in evaluating only the reduced state space.

6.1.3 S-A+

Figure 9

S-A+ Representation Diagram

47

In Figure 9 a diagram of the S-A+ representation is shown, this representation

seeks to investigate the effectiveness of a theoretically more advantageous action

mechanism A+, while maintaining the state space S found to be effective in comparison

between SADUE-A and S-A. Under this new action mechanism, A+, the agent applies a

static incentive to incentivize users to move to each specific neighboring region rather

than to only move away from their current region. This action mechanism gives the agent

more control over which regions the users move to or avoid. This action representation is

represented as the vector (ot
11+, ot

12+, …, ot
nm+), the + signifies that the agent is

incentivized to move to a region rather than away from a region in any direction. A user

in region rij will consider the offer to move to each neighboring region in N(rij) as it

relates to movement cost to each, the offer vector is of the form (ot
i+1,j,o

t
i-1,j,o

t
i,j+1,o

t
i,j-1).

48

6.2 Representations Including a Predictive Model

6.2.1 SA’D’-A+

Figure 10

SA’D’-A+ Representation Diagram

In Figure 10 a diagram of the SA’D’-A+ representation is shown, this

representation incorporates user behavior information to supplement the state

representation of the environment. The term A’ represents the matrix At which quantifies

the resource arrivals at each region for the current time slot t. At is known as users signify

their destination regions, i.e. after the activity of users in time slot t-1 At is known. This

does not provide significant novel information as these users already arrive and the

supply is resolved for each respective arrival and region prior to the agent allocating a

new incentive scheme. The term D’ represents the matrix Dt’ which quantifies the

predicted user departures from each region in the current time slot t. This is intended to

49

aid the agent in understanding which regions will have a high demand as to more

effectively allocate a budget.

6.2.2 SA’D’-A+D+

Figure 11

SA’D’-A+D+ Representation Diagram

Lastly in Figure 11 a diagram of the representation SA’D’-A+D+ is shown, this

representation seeks to investigate the benefits of a further expanded action mechanism

A+D+. Under the A+D+ action mechanism the agent will apply not only a static

incentive to move toward each respective neighboring region on user arrival, but as well

static incentives for a user to change their destination region. This action mechanism

provides the agent with even greater control over user behavior, however it also presents

a greater challenge of budget management. The action representation as applied to each

