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Abstract 

Matthew Schofield 

REBALANCING SHARED MOBILITY SYSTEMS BY USER INCENTIVE SCHEME 

VIA REINFORCEMENT LEARNING 

2020-2021 

Shen-Shyang Ho, Ph.D. 

Master of Science in Computer Science 

 

Shared mobility systems regularly suffer from an imbalance of vehicle supply 

within the system, leading to users being unable to receive service. If such imbalance 

problems are not mitigated some users will not be serviced. There is an increasing 

interest in the use of reinforcement learning (RL) techniques for improving the resource 

supply balance and service level of systems. The goal of these techniques is to produce an 

effective user incentivization policy scheme to encourage users of a shared mobility 

system to slightly alter their travel behavior in exchange for a small monetary incentive. 

These slight changes in user behavior are intended to over time increase the service level 

of the shared mobility system and improve user experience. 

In this thesis, two important questions are explored: (1) What state-action 

representation should be used to produce an effective user incentive scheme for a shared 

mobility system? (2) How effective are reinforcement learning-based solutions on the 

rebalancing problem under varying levels of resource supply, user demand, and budget?  

Our extensive empirical results based on data-driven simulation show that: 

1. A state space with predicted user behavior coupled with a simple action mechanism 

produces an effective incentive scheme under varying environment scenarios. 

2. The reinforcement learning-based incentive mechanisms perform at varying degrees 

of effectiveness under different environmental scenarios in terms of service level. 
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Chapter 1 

Introduction 

The sub-field of machine learning known as reinforcement learning has rapidly 

grown in capability and popularity in recent years. In reinforcement learning, agents are 

trained to learn a policy that they can utilize to perform a task through interacting with an 

environment based on a performance signal, much like humans. These approaches excel 

at taking many actions to influence an environment in order to maximize a long-term, 

often noisy, cumulative reward. Due to this set of strengths, this paradigm has seen great 

success in the financial markets, robotics, and gaming domains [1] [2] [3] [4]. As the 

field of reinforcement learning continues to further advance, coupled with the rapid 

growth of computational power, its use in everyday systems large and small will continue 

to expand. This field and class of algorithms show tremendous performance potential as 

long as a particular environment’s state, action space, and reward signal can be 

adequately represented in a way that translates well to the true environment. 

A particular area of interest for the use of reinforcement learning is in large-scale 

shared-mobility systems [5] [6]. With the rapid growth in popularity of shared mobility 

systems, i.e. car-sharing, bike-sharing, scooter-sharing, as a means of alternative travel 

options issues surrounding resource management within these systems have presented 

themselves. Due to the combination of the popularity of these systems and the open-data 

strategy of their operators, there exists a large amount of data available for analysis 

towards solving such issues. These systems are based upon a large number of small 

interactions contributing to overall system performance. This presents an opportune 

problem setting for reinforcement learning. 
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1.1 Bikeshare Systems 

 Shared mobility systems are rapidly growing  in popularity in major metropolitan 

areas. Bikeshare systems operate over a particular geographic area, such as a city or 

university campus, areas that often have a high volume of both foot and vehicular traffic. 

These systems allow users to rent a bicycle, or often scooters as well, for a small fee to 

take short-duration trips. These systems have two popular structures, either they are 

docked or dock-less. In a docked system there are dock repositories distributed 

throughout the system’s geographic area where bikes can be loaded or unloaded for use. 

In a dock-less setting, the system’s bikes are stand-alone and can be deposited anywhere 

throughout the system. Both systems also typically employ Global Positioning Systems 

(GPS) to lock the vehicle if they were to exit the system’s geofence. 

Over one thousand cities globally have an established bikeshare network. The 

largest bikeshare network is Hangzhou Public Bicycle in the city of Hangzhou, China 

launched in October of 2008 with a supply of over 78,000 bicycles currently. One of the 

most active bikeshare systems in the United States of America is the Capital Bikeshare 

network with almost 5,000 bicycles and over 3 million users annually. These systems are 

often operated by a combination of private organizations working with local 

governments. For example, Motivate LLC acquired by Lyft Inc. operates some of the 

largest bikeshare systems in the United States, such as the San Francisco Bay Area’s Bay 

Wheels system, Boston’s Blue Bikes, Washington D.C.’s Capital Bikeshare, and many 

more.  

The rapid expansion and popularity of bikeshare systems are due to their main 

benefits in filling a gap in metropolitan commutes, providing an outlet for exercise, 
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promoting tourism, and they are environmentally friendly. Due to their convenience 

relative to the traffic and limited parking in urban areas, these systems aid in alleviating 

the ‘last-mile’ problem as well as serving longer duration commutes across a city. Also, 

bikeshare systems provide an inexpensive means of exercise and activity for residents. 

Further, these systems provide a means for tourists to quickly explore various points of 

interest. The main benefit of these systems is their capacity to alleviate traffic in an 

environmentally friendly manner that improves the health of users.  

A major problem and critique that these systems suffer from are that they 

regularly become imbalanced and cause clutter in pedestrian pathways. Due to highly 

correlated user interests and behaviors, vehicles will often be depleted from one area of 

the system and become congested in another. Resulting in a poor user experience as users 

cannot reliably secure a bicycle when they are interested in requesting one. For example, 

in the morning hours, the bicycles in residential areas may all be moved to commercial 

areas of a city resulting in users in residential areas that arrive later being unable to have 

their request for a bicycle satisfied. Bikeshare operators often utilize inefficient and 

expensive methods of maintaining balance, such as using vans or employees to manually 

move bicycles. Such methods are slow to respond and further add to traffic, which 

bikeshare systems are intending to alleviate. Capital Bikeshare reported that over half of 

their operating expenses were tied to rebalancing operations. Recently, methods towards 

solving this rebalancing problem have become a popular topic in the research 

community. 
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1.2 Application of Reinforcement Learning  

  Reinforcement learning is a paradigm of machine learning that seeks to create an 

agent that maximizes a reward signal through interacting with an environment [7]. An 

agent is trained to complete a task or tasks within said environment over a large number 

of episodes. An episode can be thought of as a game where the agent regularly observes a 

representation of the environment’s current state and takes some action to influence the 

environment. The agent receives a reward signal after every interaction and seeks to 

produce the highest possible cumulative long-term reward when the episode ends. 

Reinforcement learning has benefitted greatly in recent years with its fusions with 

deep learning to produce deep reinforcement learning methods, most strongly seen in 

policy gradient methods. These techniques have produced such achievements as 

AlphaGo, AlphaStar, and OpenAI Five [2]  [3]  [4] each respectively learn how to play 

the games Go, StarCraft 2, and DOTA 2, at a human world champion level. This is an 

incredible achievement as these games have an effectively infinite number of game 

states. The latest advancement being forwarded by DeepMind is MuZero, an agent that is 

able to both learn the rules and surpass a human world champion level ability at classic 

games such as Chess, Go, and Shogi [8]. 

 Reinforcement learning methods can be utilized to create an agent that can aid in 

solving the rebalancing problem. A bikeshare system can be represented as an 

environment through capturing system information, such as its current distribution of 

supply and past or anticipated user travel interests along with a variety of other 

environment features. An agent can then interact with the system through offering users 

incentives that slightly alter their behavior. By slightly influencing the behavior of 
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individual users, large changes in the operation of the system can be achieved. This agent 

can receive a reward signal in the form of the ratio of the number of users who requested 

a bicycle that were able to receive one, this captures an improvement in the overall user 

experience and system functionality. The agent can also be further constrained by a 

budget that it must learn to strategically utilize to maximize the system’s level of service. 

 Bicycle supply balance is an important element for a bikeshare system’s 

operation, however the main concern for bikeshare system operation is maximizing the 

number of users that are able to receive service within the confines of a given budget. 

Likewise, what should be optimized is not a representation of the equal distribution of 

bikes throughout the system, but instead the number of successfully serviced user. While 

an equal supply distribution is not directly being optimized it is likely to still be produced 

as to offer the highest servicing opportunity for users. Further, if a high service level for 

users can be maintained the supply of bicycles within the system can be reduced. Lastly, 

a high service level will improve the user experience of the system and it can be 

reasonably speculated that this will grow the popularity of system, something operators 

would be very interested in.  

It is critical to analyze the effectiveness of varying state and action representations 

as well as the impacts of varying levels of system constraints and environment 

parameters. Many current approaches have a very large state space or a very difficult to 

utilize action mechanism, analyzing how these representations can be tuned can lead to 

much greater performance. The impact of varying budgets, user demands and interests, 

and supply distributions, is a critical component in understanding the comparative 

performance of these various representations.  
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1.3 Scope and Contribution 

 Methods for improving the service level of a bikeshare system can be further 

extended to apply to other shared mobility networks as well as general resource networks. 

Ride-sharing services can benefit from these findings to implement similar incentive 

structures to promote a wider availability for their service in particular areas to improve 

overall user experience. While they may see a reduction in profit for individual rides 

through utilizing incentivization, they are likely to see an increase in positive user 

experience and brand reputation that can lead to larger volumes. Larger generalized 

resource networks can use incentives to improve resource availability in areas of a system 

that would otherwise have requests unfulfilled.   

 In this work I compare the effectiveness of various structures of reinforcement 

learning agents and representations as well as their performance over varying bikeshare 

system environmental constraints and representations. Synthetic data used in 

experimentation and analysis is derived from real user trip data made publicly available 

by Washington D.C.’s Capital Bikeshare system. Key contributions of this work are: 

• Empirical results show that space representations of shared mobility systems can 

be improved through a reduction in dimensionality and through the incorporation 

of predictive models. 

• Empirical results show that action mechanisms in a shared mobility system’s 

reinforcement learning framework can be improved by incorporating incentives 

for users to move specifically in each direction rather than in any direction 

arbitrarily.  
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• An in-depth analysis showing the impact of varying environmental constraints 

such as the level of supply, user demand, and available budget.  
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Chapter 2 

Literature Review 

     This literature review seeks to identify the current standards and past paths in both 

reinforcement learning research and computational techniques for the bikeshare 

rebalancing problem. 

2.1 Bikeshare Rebalancing 

 Bikeshare systems are a relatively popular area of research interest due to the 

focus on open data by their operators. This access to real world data of crowd behaviors 

is enticing to many researchers and is beneficial to bikeshare system operators who can 

receive large amounts of analysis. As of April of 2021, google scholar has indexed 

roughly 260 academic works focused specifically on bikeshare system rebalancing and 

optimization. 

One of the earliest works on learning a dynamic user incentive pricing strategy to 

promote balancing in a Bikeshare system is Pfrommer et. al. [9]. They propose an 

incentivization mechanism that encourages users to slightly modify their destination 

behavior to position bikes near underfilled stations as to reduce manual repositioning 

costs. Additionally, they propose that during rush hours a truck routing scheme for added 

redistribution capabilities. Further, they model their simulations based on historical 

London’s Barclays Cycle and they compare their algorithms performance of payouts to 

users versus the cost of hiring repositioning staff.  

The first case of an online learning system to generate an optimal pricing policy 

deployed into a real system is Singla et al. [10]. They call their algorithm DBP-UCB 
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Dynamic Budgeted Procurement using Upper Confidence Bounds, with the idea that the 

learning of how to attribute a budget B across N users can be decoupled from the specific 

parameter settings of B and N. Their system learns through regret minimization how to 

best propose alternative pick up and drop off locations in exchange for a monetary 

incentive. This system was beta tested in a European city by the bikeshare operator 

MVGmeinRad and showed success over a 30-day period versus a truck based rebalancing 

approach. 

Ghosh et al. [11] proposed an optimization model that would assign re-positioning 

tasks to users. They created a model of this problem setting known as Dynamic 

Repositioning and Routing Problem using Trailers (DRRPT) where users would utilize 

trailers to rebalance bicycles and they would compete within an auction to bid for 

repositioning tasks. Their algorithm relies on the Vickrey-Clarke-Groves (VCG) 

mechanism to assign tasks to bidders. 

Lv et. al. [12] proposed a crowd sourcing approach through an auction method 

Truthful Predicted Task revenue TruPreTar. Under a budget constraint, users are able to 

bid for repositioning tasks, and then the system will determine rebalancing task allocation 

and payments. They utilize a bipartite graph matching technique, where a graph G 

maintains users and tasks bid on. Then in a sub-graph of G known as G’ a pairing from 

tasks to users is satisfied where high-value tasks and low-cost users are prioritized. 

Chahchoub et al. [13] utilize an outlier detection methodology to identify stations 

that are either nearly empty or full based on a simple occupancy rate calculation. Outliers 

are determined based on Gower’s similarity degree and a Moran scatterplot that isolate 
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stations that are outliers relative to other nearby stations in their ‘neighborhood’. Then 

users are suggested slightly altered routes that will help to rectify these outliers. 

Chiariotti et al. [14] consider the rebalancing and incentive problem as a joint 

optimization problem given the current state, arrival, and departure rate. A three-step 

procedure is used to approximate the solution and compute the new state, adjusted arrival 

rate, and adjusted departure rate. The approach requires users to pick up or drop off their 

bikes to enable rebalancing.  

Li et al. [15] proposed two algorithms that within a static setting seek to maximize 

the number of the served users and minimize their trip time. They formulated this 

optimization problem as the weighted k-set packing problem. They designed a Greedy 

Trip Planning algorithm (GTP) and a Humble Trip Planning algorithm (HTP). They 

compare their two proposed algorithms versus a Random Trip Planning algorithm (RTP) 

and report to show that both GTP and HTP outperform RTP. They analyze the various 

environmental conditions that impact the performance of their various algorithms. 

Tomaras et al. [16] proposed the algorithm MultimOdal Trip Rebalancing 

(MOToR) which seeks to combine previous approaches of predicting demand and 

applying a-posteriori rebalancing methods. They utilize the OpenTripPlanner framework, 

a popular collection of open-source projects that coordinate analysis of interconnecting 

transportation networks. They incorporate real-world travel delays into their simulations 

and attempt to optimize for system supply balance. 

An et al. [5] propose an actor-critic reinforcement learning approach to learn a 

rewarding mechanism (picking up/parking bonus) for a car-sharing system and allows 
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continuous action space. The reward mechanism is used to guide the users’ behaviors 

through price leverage to ensure cars are parked in areas in need of supply and prioritize 

picking up where cars are in a high supply, boosting the company's profit and service 

level. 

Pan et al. [6] have proposed a hierarchical reinforcement learning algorithm 

known as Hierarchical Reinforcement Pricing (HRP) to learn a policy using the deep 

deterministic policy gradient (DDPG) algorithm to incentivize users under a budget 

constraint to optimize the system’s service level. A static incentive is applied to each 

region at the start of each time slot that is used to incentivize users to move to a 

neighboring region if they would otherwise be unable to begin their trip. A key point of 

their hierarchical approach is that each region computes a local Q value based on the 

action’s performance and then a summation of these Q values is used to train the Critic 

and by extension the Actor networks of HRP’s DDPG component. They primarily utilize 

the metric service level, rather than system balance. 

Duan et al. [17] expand upon Pan et al.’s framework to include an incentive to 

alter the destination selection behavior of users to further improve a system’s long-term 

performance. They propose utilizing a separate budget allocation for the source interest 

deviation incentives and the destination interest deviation incentives. Further, they 

introduce a maximum detour distance constraint calculation, such that if this constraint is 

not satisfied the user would reject the deviation incentive. 
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2.2 Reinforcement Learning 

          This section of the literature review provides background regarding reinforcement 

learning, particularly its evolution towards today’s deep reinforcement learning. 

According to Sutton and Barto [18] reinforcement learning’s early history involves two 

separate threads in animal psychology research and optimal control in system dynamics 

research. Today reinforcement learning research has combined these threads and is 

primarily focused on training deep neural networks as underlying policies. 

 In the 1950s and 1960s, Richard Bellman laid much of the groundwork for 

reinforcement learning through his work in optimal system control [19] [20]. He 

introduced concepts that evolved to today be known as dynamic programming, Markov 

Decision Processes (MDPS), and the Bellman Equation. Later work in the 1970s through 

1990s focused on dynamic programming and introduced further concepts such as 

partially observable MDPs, approximations, and asynchronous search that evolved into 

reinforcement learning. In combination with psychology research that described the 

concept of trial-and-error search and the “Law of Effect” [21], where it was observed that 

positive and negative reinforcement in connection with events leads to changes in the 

behavior of animals [18]. 

One popular branch of modern reinforcement learning is Q-learning, originally 

introduced by Chris Watkins in his Ph. D. thesis as a means to solve delayed reward tasks 

in MDPs. The idea of Q learning is to estimate a value through trial-and-error for each 

action that can be taken in a state that correlates to that action’s long-term reward. Mnih 

et al. [22] proposed the Deep Q Network (DQN) algorithm which trains a neural network 

to estimate the Q-values for each action given the environment’s current state as an input. 
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Silver et al.  [23] expanded on the DQN algorithm to introduce the Deterministic Policy 

Gradient algorithm (DPG) which directly predicts an action, allowing for continuous 

actions, rather than DQNs limitation to only produce a probability distribution over a 

discrete set of actions.  

Recent developments in Q-learning are focused on the use of the Actor-Critic 

architecture [24] [25]. Silver et al. [26] proposed the Deep Deterministic Policy Gradient 

(DDPG) algorithm where one neural network, the Actor, predicts an action based on an 

input state and a second neural network, the Critic, estimates the Q-value for the current 

state and the predicted action. This provides added stability over the single network used 

in the DPG algorithm. Mnih et al. [27] proposed Advantage Actor-Critic (A2C) where 

there is one critic network that learns from multiple actor networks that work in parallel 

and sync every iteration.  

Schulman et al. [28] introduce Trust Region Policy Optimization (TRPO). TRPO 

is proposed as a policy gradient method with a focus on reliable monotonic improvement 

within a large neural network policy. TRPO utilizes an approximation of the Kullback-

Leibler divergence between the current policy and a policy update as a constraint to 

ensure that a new policy is similar in performance. This is to avoid large shifts in a policy 

that can damage performance. Empirically TRPO achieves steady performance 

improvements while not suffering from the instability seen in other methods. 

Wu et al. [29] introduce Actor Critic using Kronecker-Factored Trust Region 

(ACKTR). This seeks to improve on TRPO by utilizing a Kronecker-factored 

approximation in its gradient calculation to improve sample efficiency and reduce 
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computational complexity. Kronecker-Factored updates can update the network layer-by-

layer rather than updating all layers at once, making it much faster to update a large dense 

neural network policy. 

Schulman et al. [30] expand upon their TRPO algorithm and propose the use of 

Proximal Policy Optimization (PPO) Algorithms. They claim that PPO maintains 

TRPO’s reliable performance, but has a simplified implementation, improved sample 

complexity, and they suggest it is more robust in requiring less hyperparameter tuning. 

PPO introduces a clipped objective function that bounds a policy’s change in 

performance on updates replacing TRPO’s KL Divergence constraint.  

 

 

 

 

 

 

 

 

 

 



15 

 

Chapter 3 

Background 

 In this chapter, I will discuss the typical framework of reinforcement learning as 

well as key concepts, trade-offs, and types of algorithms. Machine learning is often 

viewed as having two paradigms, supervised and unsupervised learning. However, 

reinforcement learning presents itself as a third lesser-known paradigm [18]. In 

supervised learning, an expert provides a set of labeled objects to train a model in the 

hopes of the model generalizing to successfully label similar objects outside of its 

provided training data. In unsupervised learning, an algorithm is used to identify structure 

and associations in unlabeled data. reinforcement learning utilizes techniques and 

concepts from both paradigms, as well as applying its own unique techniques. 

reinforcement learning relies on a well-designed simulation environment which can be 

seen as analogous to an expert labeled input in supervised learning [18]. However, much 

of reinforcement learning is self-guided exploration with only noisy reward feedback 

which can be seen as similar to unsupervised learning. 

3.1 Reinforcement Learning Framework 

Reinforcement learning is often formalized using a Markov Decision Process 

(MDP), a classic method of formalizing sequential decision making. An MDP is a 4-

length tuple that described a process comprised of the process’s state space, action space, 

transition probabilities, and transition rewards, or (S, A, Pa, Ra).  The state space is the set 

of all possible states that may be produced by an environment as represented to an 

observer. An MDP’s state space can be designed to highlight high-level information 
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about an environment, or it can present a very high-dimensional representation whose 

structure must also be learned by an actor attempting to learn to perform within the MDP. 

For example, a state-space for the Atari game Pong may represent the environment as the 

x and y coordinate locations of the two players and the ball, or the environment may be 

represented directly by a screenshot of its 160x192 pixel screen.  

An MDP’s action space defines how an actor is able to interact with the 

environment. For example, the action space in the aforementioned game Pong would be 

moving the player’s paddle vertically up or down. An MDP’s transition probabilities Pa 

maps the dynamics of changing from the current environment state, s, to a new state, s’, 

based on the action, a, taken by the actor, defined as P(s’ | s=s, a=a). For example, in the 

game blackjack at any particular game state a player may take the hit action which has 

varying probabilities of moving the current state to a new state as represented by the 

cards in the player's possession and remaining in the deck. Lastly, the reward function 

Ra(s, s’) outputs the reward after taking an action a in state s and arriving in state s’. An 

MDP’s dynamics can be summarized by Equation 1. The goal in ‘solving’ an MDP is to 

create a policy π(s) that maps the current state, s, to the action that will maximize the 

cumulative long-term reward received. 

𝑝(𝑠′, 𝑟 | 𝑠, 𝑎) = 𝑃𝑟{𝑆𝑡 = 𝑠′, 𝑅𝑡 = 𝑟 | 𝑆𝑡−1 = 𝑠, 𝐴𝑡−1 = 𝑎} (1) 
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Figure 1 

Example Markov Decision Process for the Game of Tic-Tac-Toe 

 

 

Figure 1 shows an example diagram of an MDP in the context of a tic-tac-toe 

game versus a random opponent agent. The game begins with a static initial state, S0, an 

empty board shown furthest to the left and the player is presented with the action space 

A={1,…, 9} where the player’s ‘O’ is to be placed. The random agent then has a 1/8 

probability to place an ‘X’ in any of the remaining eight squares. Even in this simple 

game of tic-tac-toe, its MDP allows for over a quarter million possible games. Likewise, 

in more complex environments with higher dimensional state and action spaces, and 

probabilities state transitions there can be a greater number of possible trajectories than 

atoms in the universe [4]. 
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3.2 Key Concepts in Reinforcement Learning 

 A key concept in reinforcement learning is the trade-off between exploration and 

exploitation. This is in reference to the dilemma that in order to obtain a high cumulative 

reward the agent must exploit their policy which represents their current best 

understanding to achieve a high reward. However, in order to discover new and possibly 

more lucrative opportunities an agent must explore new states and actions. A general 

standard has been adopted that agents are designed to have a strong initial exploration 

bias that then decays over time towards agents arriving at a strong exploitative bias. 

Conceptually this can be seen as when first introduced to a new environment 

experimenting with its various inputs to form an understanding of its outputs. Then as the 

general mechanisms are understood, utilizing current knowledge to arrive at a more 

distant state and occasionally attempting new inputs to observe if a better path can be 

found. In reinforcement learning the probability that an agent will take an explorative 

action is denoted as epsilon, ϵ, and as the agent continues to learn in the environment ϵ is 

decayed often to a fixed minimum. An interesting side effect of this is that an optimal 

agent’s average return will be bounded to the optimal return minus the fixed minimum ϵ, 

as there is a minimum ϵ chance at any timestep that even an optimal agent will take a 

non-optimal action [18]. 

Another core concept in reinforcement learning is the idea of delayed reward. The 

overall goal of reinforcement learning is to maximize the cumulative reward from 

interacting within an MDP by maximizing the Equation 2. However, this does fail to 

recognize infinite MDPs and the concept of near-term rewards often being superior to 

future rewards. A discount rate denoted as gamma, γ, is utilized to apply a discount to 
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future rewards as shown in Equation 3. γ is in the range [0, 1), where 0 indicates the 

agent is only interested in immediate reward and values close to 1 indicate that the agent 

is just as interested in long term reward as they are immediate. Typically, in practice γ is 

set in the range [0.9, 1.0), providing a strong incentive for long-term reward. 

𝐺𝑡 = ∑ 𝑅𝑡

𝑇

𝑡=1

(2) 

𝐺𝑡 = ∑ 𝛾𝑘

∞

𝑘=0

𝑅𝑡+𝑘+1 (3) 

Value functions are popular components of reinforcement learning algorithms, 

these seek to quantify the value of a given state, the expected future reward from a given 

state if the current policy is followed. In Equation 4 we can see the definition of the value 

function, where given the current state, s, the expected cumulative reward considering 

taking all following actions, a, according to the current policy, π. This is often used when 

an agent is planning ahead, given the option to choose between a set of states the agent 

can estimate a comparative value for each. There also exists a theoretical variant of the 

value function Vπ(s) that is V*(s) where * denotes the theoretical optimal policy, thus 

V*(s) would return the ground-truth value of a state. 

𝑉𝜋(𝑠) = 𝐸𝑎~𝜋[𝐺𝑡|𝑆𝑡 = 𝑠] (4) 

 The Q function, also known as the action-value function, is to quantify the benefit 

of taking a particular action in a particular state. Many reinforcement learning algorithms 

seek to calculate or predict Q values for each possible action given the current state, then 

take the action that is associated with the highest Q value. In Equation 5 the definition of 
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the action-value function is described, where given the action, a, in state, s, the 

cumulative reward is calculated if then the current policy, π, is followed. Similar to the 

optimal value function there also exists an equivalent optimal action-value function in 

𝑄∗(𝑠, 𝑎).  

𝑄𝜋(𝑠, 𝑎) = 𝐸𝑎~𝜋[𝐺𝑡|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎] (5) 

 A popular combination of both value and action-value functions is the advantage 

function, A(s,a). This is defined in Equation 6 and quantifies the advantage of taking an 

action in a given state versus following the action that would be prescribed by the current 

policy 𝜋. This is often used in comparing the effects of a new policy relative to the 

current policy. 

𝐴𝜋(𝑠, 𝑎) = 𝑄𝜋(𝑠, 𝑎) − 𝑉𝜋(𝑠) (6) 

 

3.3 Policy-Gradient Paradigm  

 One of the major paradigms of reinforcement learning is Policy-Gradient (PG), in 

experimentation I will primarily focus on this paradigm due to its latest advancements 

[29] [28] [30]. PG algorithms are on-policy approaches that seek to optimize a policy 

directly as it interacts with the target environment. A trade-off of on-policy approaches is 

that they cannot reuse old experiences, however the experiences that these approaches do 

learn from are very relevant to the agent. PG approaches are designed to increase the 

probability of high reward actions and decrease the probability of low reward actions for 

each given state. These methods are also known as model-free as they do not need access 

to a complete model of the environment they are interacting with. 
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 The core objective of PG approaches is to optimize a parameterized policy 𝜋𝜃, a 

deep neural network, through its parameters 𝜃 using the gradient ∇𝜃𝐽(𝜋𝜃). The Vanilla 

Policy Gradient (VPG) is a foundational approach to policy gradient. Episodes collected 

through interaction with an environment are used to optimize an agent’s underlying 

policy. Gradient updates, as denoted by  ∇𝜃𝐽(𝜋𝜃),  are applied to the current policy 

parameters 𝜃𝑘 given a learning rate a to produce the next iteration of the policy 

parameters 𝜃𝑘+1 according to Equation 7. Equation 8 shows the gradient update 

calculation after an episode. The term ∇𝜃log 𝜋𝜃(𝑎𝑡|𝑠𝑡) is the gradient of the log 

probability or change in probability of arriving at the action at given the input 

environment state st. Further, 𝐴𝜋𝜃(𝑠, 𝑎) is the advantage function which denotes the 

‘advantage’ of taking action a in state s over following the action prescribed by the 

current policy 𝜋𝜃. Equation 8 produces a gradient that increases the probability of taking 

actions that are an improvement over the current policy’s action choice given state s and 

decreases the probability of taking actions that reduce performance. 

𝜃𝑘+1 =  𝜃𝑘 + 𝑎∇𝜃𝐽(𝜋𝜃)|𝜃𝑘
(7) 

∇𝜃𝐽(𝜋𝜃) =  𝐸𝑒~𝜋𝜃
[∑ ∇𝜃 log 𝜋𝜃(𝑎𝑡|𝑠𝑡)𝐴𝜋𝜃(𝑠, 𝑎)

𝑇

𝑡=0

] (8) 

 One of the latest advancements in policy gradient approaches is the Trust region 

Policy Optimization algorithm (TRPO) [28]. Many reinforcement learning algorithms 

suffer from instability due to parameter updates that greatly change policy behavior. 

TRPO seeks to address this issue by applying a trust region constraint in order to keep 

policy updates close in performance rather than simply close in parameter space. This 
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trust region constraint is really a KL-divergence constraint on the change in action 

probability distributions. An update to the policy will only be allowed if the following 

constraint is satisfied for hyper-parameter δ: 

𝐷𝐾𝐿(𝜃||𝜃𝑘) ≤ δ (9) 

Further, rather than considering the change in log probabilities of actions TRPO 

considers how a proposed policy performs compared to the previous policy iteration 

through the surrogate advantage function. Shown in Equation 10, the probability of 

selecting an action, a, given state, s, between the proposed policy 𝜃 and the old policy 𝜃𝑘 

is evaluated using old data. If the L(𝜃, 𝜃𝑘) is positive and the new policy 𝜃 satisfies the 

KL divergence constraint shown in Equation 9, then the policy is updated to the proposed 

new policy 𝜃. 

𝐿(𝜃, 𝜃𝑘) = 𝐸𝑠,𝑎~𝜋𝜃
[

𝜋𝜃(𝑎|𝑠)

𝜋𝜃𝑘
(𝑎|𝑠)

𝐴𝜋𝜃𝑘 (𝑠, 𝑎)] (10) 

 Following TRPO the algorithm Proximal Policy Optimization (PPO) was 

proposed as a way to reduce the implementation complexity, reduce the computational 

complexity, and improve the sample efficiency of TRPO through the use of a clipped 

objective function. PPO utilizes mini-batches of Stochastic Gradient Descent to propose a 

new policy 𝜃. Then rather than seeking to satisfy the KL Divergence constraint, the 

clipped objective function shown in Equation 11 is used. This equation is 

computationally much more efficient and is simpler to implement. The first argument to 

the min operator is intended to undo an update that results in a disadvantages action 

becoming more likely, as this will only be the min of the two arguments when the 
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advantage function 𝐴𝜋𝜃𝑘 (𝑠, 𝑎) is negative. The output of clipping function will otherwise 

be utilized in an update. The purpose of clipping is to bound the impact of an update even 

if it is seemingly very good, do to 𝐴𝜋𝜃𝑘 (𝑠, 𝑎) being an unreliable estimator in practice as 

it is approximated by a neural network itself. 

𝐸𝑠,𝑎~𝜋𝜃
[min (

𝜋𝜃(𝑎|𝑠)

𝜋𝜃𝑘
(𝑎|𝑠)

𝐴𝜋𝜃𝑘 (𝑠, 𝑎), 𝑐𝑙𝑖𝑝(
𝜋𝜃(𝑎|𝑠)

𝜋𝜃𝑘
(𝑎|𝑠)

, 1 −  𝜖, 1 + 𝜖)𝐴𝜋𝜃𝑘 (𝑠, 𝑎)] (11) 
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Chapter 4 

Problem Setting 

           In this chapter, the problem setting will be fully defined as to better understand 

following discussions around data simulation, experimentation, and analysis. This chapter 

details how the constructed problem circumstance maps to the modeled real-world 

setting.  

4.1  Environment 

 The environment models a shared mobility system, specifically a bikeshare 

system, as a 2-D n x m matrix spatial representation. This matrix, R, represents each 

region in the system R = {r11, r12, …, rnm}. Each element r represents the features of each 

region giving the matrix R a channel depth determined by the region features included in 

a representation’s implementation, such as supply, user arrivals, and user destinations. 

The activity within a shared mobility system is discretized into T time slots, e.g. time 

slots {t0, t1, …, tT}. In experimentation, an hourly-based system is utilized where T=24 is 

utilized to represent the 24 hours of a day. Before the simulation begins at t0 the system 

will be initialized with a supply represented as S of vehicles distributed according to a 

given statistical distribution across regions. Every time slot the supply of resources 

available in each region will change due to dynamics in user arrivals in the current time 

slot and destination patterns from trips that began in the previous time slot. 

Each day N users will appear in the system in need of service distributed amongst 

each time slot according to an arbitrary hourly user activity distribution. When a user 

appears, they will have an intended arrival location rij
a. If there exists a resource in rij

a the 
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user will occupy that resource, removing it from the region, and begin their trip to their 

intended destination region rij
d.  However, if the user appears in rij

a and there exists no 

available resource, an incentive can be offered to the user such that they may be 

incentivized to move to a neighboring region that does have an available resource. If 

successfully incentivized, this neighboring region is then the user’s new arrival region 

and they will begin their trip to their intended destination region rij
d. Also, note that in 

some extended implementations the user can also always receive an offer to similarly 

alter their destination region. The neighboring regions available for a user to move to 

from their current region, rij
a, is defined by the neighbor region vector: 

𝑁(𝑟𝑖𝑗) = (𝑟𝑖+1,𝑗, 𝑟𝑖−1,𝑗, 𝑟𝑖,𝑗+1, 𝑟𝑖,𝑗−1) (12) 

 The dynamics of a user’s trip is as follows. When a user’s request is satisfied and 

the user chooses to occupy a resource, that resource is removed from its current region 

and placed into a buffer known as the “Travel Buffer”. At the end of the current time slot, 

after all users have either begun a trip or have left the system having failed to be serviced, 

this buffer will resolve to allocate all resources stored within to their destination region 

ready to be used in the following time slot. This buffered approach is to simulate the time 

requirement of users traveling with a resource. 

4.2  User Model 

 In this environment, an agent can offer a user an incentive to slightly alter their 

behavior, through altering the region in which they select a resource or in some instances 

alter where they deposit the resource. The agent can supply an offer vector with offers 

opq
t at time slot t for all neighboring regions, denoted rpq, in the neighbor set N(rij) for the 
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user’s arrival region rij. An offer opq
t must be in the range [0, Imax], where Imax is set by the 

environment as the maximum incentive allowed to be offered to a user. This Imax 

limitation is imposed as if implemented in a wider system there would a set maximum 

possible incentive as to avoid exploitation. Offers also cannot be negative as the user 

would simply not accept such an offer and may execute that action outside of the system 

regardless. 

 Given an offer, a user will be modeled as considering an offer through the user 

cost model shown in Equation 13, described by Pan et al. [6]. In Equation 13, d is the 

Euclidean walking distance from the user’s location in region rij to the closest resource in 

region rpq and 𝜂 is a positive weight to account for currency adjustment. In this 

environment a resource in the same region as the user costs nothing, 0, to move to. 

Further, if the resource’s region is not immediately adjacent to the user’s region i.e., rpq is 

not in the neighbors vector for rij, then it is simulated that the user would not consider 

moving to it and their cost is represented as ∞. 

𝑐𝑜𝑠𝑡(𝑟𝑖𝑗, 𝑟𝑝𝑞 , 𝑑)  = {

0, 𝑟𝑝𝑞 = 𝑟𝑖𝑗

𝜂𝑑2, 𝑟𝑝𝑞𝜖 𝑁(𝑟𝑖𝑗)

+∞, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(13) 

 Once both an offer and the cost to accept said offer has been established for a 

user, then the utility of the offer to the user will be calculated according to Equation 14. 

The incentive utility upq determines how beneficial to a user a given offer to move from 

region rij to region rpq for an available resource is. If upq is positive, then accepting the 

offer is a net benefit to the user and they would be willing to follow through. If upq is 

negative, then accepting the offer would not be beneficial to the user and the user would 
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not accept the associated offer. Lastly if upq is 0, then the offer’s utility to the user is net 

neutral and the user would be willing to follow through with the associated offer. 

𝑢𝑝𝑞  =  𝑜𝑝𝑞
𝑡 −  𝑐𝑜𝑠𝑡(𝑟𝑖𝑗, 𝑟𝑝𝑞 , 𝑑) (14) 

A user’s decision regarding a given offer vector is determined by the 

circumstances and equations defined above coupled with the following final 

determination logic. A user will be simulated to consider the utilities for each offer and 

neighbor region constructed as a vector described in Equation 15. If argmax(û) >= 0, then 

the user will move to the associated region rpq that corresponds to the maximum upq and 

their request will be satisfied. Otherwise, if argmax(û) is negative then the user’s request 

will not be serviced. 

û = 𝑢𝑝𝑞 , ∀𝑟𝑝𝑞𝜖𝑁(𝑟𝑖𝑗), 𝑤ℎ𝑒𝑟𝑒 𝑟𝑝𝑞 𝑠𝑢𝑝𝑝𝑙𝑦 > 0 (15)  

4.3 Objective  

 The primary objective in this problem setting is for an agent to maximize the 

number of satisfied user requests, or as a ratio defined as service level according to 

Equation 16. Additionally, there exists a budget constraint B where every time a user 

accepts an offer that offer amount is deducted from the budget B. If the offer is greater 

than the remaining budget B, opq
t > B, the offer cannot be carried out and the user’s 

request will not be satisfied. Using reinforcement learning a policy can be constructed 

that is able to effectively utilize a given budget B to improve the service level 

performance within a shared mobility system. Through analysis and experimentation, 

various reinforcement learning representations will be evaluated regarding their 

performance towards this objective. 
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𝑆𝑒𝑟𝑣𝑖𝑐𝑒 𝐿𝑒𝑣𝑒𝑙 = 𝑆𝐿 =  
𝑓𝑢𝑙𝑓𝑖𝑙𝑙𝑒𝑑 𝑢𝑠𝑒𝑟 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠

𝑡𝑜𝑡𝑎𝑙 𝑢𝑠𝑒𝑟 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠
(16) 

4.4 One-Dimensional Scenario 

 Prior to conducting experimentation in the previously detailed problem setting a 

simplified one-dimensional scenario was explored for familiarization with the problem 

domain. In this section, I will detail the one-dimensional problem setting and 

distributions used in simulation [31].  

4.4.1 Problem Setting 

 In the one-dimensional setting the system is represented as a vector of length n R= 

{r1, r2, …, rn}, rather than as an n x m matrix in the two-dimensional setting. Similarly, 

each element of the spatial layout of the system represents a region. As this is a one-

dimensional setting the neighbors vector for a region is represented as the regions 

immediately adjacent to the current region, ri-1 and ri+1. Temporally the system is also 

simulated as conducting over 24 time slots to represent 24 hours. 

 The user model is equivalent to the previously described setting in terms of the 

budget, user cost model, providing offers to users, and the utility calculation. Similarly, 

the service level of the system is the primary metric seeking to be optimized. Users are 

simulated as tuple of length two with a continuous arrival interest location and 

destination interest location each prescribed by a related distribution. Bikes are simulated 

as being placed in regions according to a distribution at the start of the simulation. The 

supply at each region changes throughout the simulation dynamically according to user 

behavior. 
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4.4.2 System Simulation 

 The main focus of this setting is to compare the effects of varying user interest 

and supply distributions. These distributions were determined by beta-variate 

distributions. Beta-variate distributions allow for flexibility in the shape of the 

distribution as determined by two parameters α > 0 and β > 0. The beta distribution 

function is shown below in Equation 17 and the beta function utilized in the distribution 

function is shown in Equation 18.  

𝐵𝑒𝑡𝑎(𝛼, 𝛽) =
𝑥𝛼−1(1 − 𝑥)𝛽−1

𝐵(𝛼, 𝛽)
(17) 

𝐵(𝛼, 𝛽) = ∫ 𝑡𝛼−1(1 − 𝑡)𝛽−1𝑑𝑡
1

0

(18) 

Specifically in experimentation 5 beta-variate distributions were selected 

B1=B(α=0.5,β=0.5), B2=B(α=5,β=1), B3=B(α=1,β=3), B4=B(α=2,β=2), and 

B5=B(α=2,β=5). All combinations of these distributions were utilized in experimentation 

to determine, initial supply distribution, user arrival interests and user destination interest 

for a total of 125 combinations or scenarios. By varying the distributions that determine 

user behavior and supply distribution will provide insight on the impact of variations in 

these crucial distributions. 

In the two-dimensional problem setting varying representations for the agent to 

observe and interact with the environment are evaluated. In this one-dimensional problem 

setting evaluation is primarily focused on varying distributions in a static environment. 

Only the supply at each region is provided as a state representation. Further, an incentive 
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is attached to each region to incentivize unserviceable users to move away from their 

current region in any direction at every timeslot. 
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Chapter 5 

System Simulation 

 Bikeshare operators often publish their data publicly according to the General 

Bikeshare Feed Specification (GBFS) outlined by the North America Bike Share 

Association (NABSA). This specification is an open data standard for bikeshare systems 

designed to allow for internal and external parties to better communicate and understand 

bikeshare system data. The primary information conveyed in a bikeshare’s GBFS feed is 

the station information JSON and station status JSON. The station information JSON 

includes a record of static information for each publicly available station detailing its 

location, name, identifier, and total capacity. The station status JSON includes dynamic 

information for each station regarding the number of currently available bikes and docks. 

In experimentation, the station information JSON records are used to understand the 

layout of the system and match stations to regions. 

To understand and simulate user behavior in analysis and experimentation 

bikeshare system trip data has been acquired from Washington D.C.’s Capital Bikeshare 

website under their System Data – Trip Data repository [32]. Here the Capital Bikeshare 

system operators maintain an index of files that detail information about each trip that 

occurred over a specific period of time. These trip data files include the duration, 

start/end datetime, and start/end latitude/longitude locations for each trip. This data is 

used to parse various user behavior distributions for generating simulations in 

experimentation and evaluation. 
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5.1 User Demand Interests 

 It is important to understand how the popularity of the Capital Bikeshare system 

has changed over time and continues to change based on temporal circumstances across 

various seasons, months, weekdays, and hours. In this section, various temporal slices 

will be analyzed across collected Capital Bikeshare data. 

 

Figure 2 

Trips per Year in the Capital Bikeshare System 

 

 

In Figure 2, we see the number of trips per year in the Capital Bikeshare system. 

The number of trips per year for the Capital Bikeshare system begins to plateau in the 

year 2015 with the number of trips per year settling to roughly three and a half million 
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after large year of year growth 2011 through 2015. Further, due to the COVID-19 

pandemic and associated countermeasures bikeshare data for 2020 will not be included in 

analysis and experimentation due to its radical deviation in user behavior distributions 

relative to prior years. From now on only the Capital Bikeshare trip data inclusively 

between the years 2015 and 2019 will be used in analysis and experimentation, due to a 

similar number of users across this time span year over year. 

 

Figure 3 

Average Trips per Month in the Capital Bikeshare System 2015-2019 

 

 

The average number of trips in the Capital Bikeshare system is also highly 

contingent on seasonal and monthly patterns as seen in Figure 3. The average number of 

trips per month peaks in the summer months June, July, and August, with almost triple 
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the number of trips relative to the winter months. The system also maintains relatively 

high levels of user activity in the late spring and early Fall months of April, May, 

September, and October. The average number of trips is greatly reduced between the late 

fall to early spring months November through March, attributable to user preferences 

regarding inclement weather and reduced tourism in these months. Likewise, from now 

on only the trip data inclusively between the months April to October will be used in 

analysis and experimentation, due to high levels of user activity. 

 

Figure 4 

Trips per Weekday in the Capital Bikeshare System 2015-2019

 

 

The average number of trips per weekday shows an unexpectedly little amount of 

variation. It would be expected that there would be fewer trips on weekends due to a 

reduction in commuting, however as seen in Figure 4 there is little variance in demand 
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per weekday. Perhaps the reduction in standard commutes is overcome by an increase in 

weekend leisure activities. Likewise, we will not consider special cases for any day of the 

week in experimentation.  

 

Figure 5 

Average Trips per Hour in the Capital Bikeshare System 2015-2019 

 

 

 

The average number of trips per hour as shown in Figure 5 shows temporal 

behavior that is expected in relation to standard commute patterns. There is a large peak 

in demand in the mid-morning and mid-afternoon hours of 8am to 10am and 5pm to 7pm 

as would be expected of users commuting to and from their workplaces and their 

residences. There is modest mid-day activity between the hours of 11am to 4pm likely 

due to general tourism and leisure activities. After 7pm, as would be expected through 

nighttime hours, the system’s demand rapidly drops resulting in very little activity 
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between the hours of 11pm to 6am. This hourly activity distribution will be accounted for 

in experimentation. The number of users per day will not be distributed uniformly across 

all time slots, instead they will be distributed according to this hourly activity 

distribution. 

To summarize, based on this temporal activity analysis, data used for further 

analysis and in experimentation will be between the years 2015 to 2019 and will consist 

of the warmer months April through October. Further, the distribution of users per hour 

throughout the day will be accounted for. Additionally, there will be no special 

consideration applied to the day of the week. 

5.2 Distributions 

Users are simulated as user objects introduced to the system as represented by a 

tuple of length two. The first element being their arrival region interest and the second 

their destination region interest represented by each region’s respective integer identifier. 

For example, a user may be represented as (82, 3) where the user’s arrival region is 82 or 

r8,2 and their destination region is 3 or r0,3. Both a user’s arrival region and destination 

region interests are determined by distributions based on the hour in which a user 

appears. 

The initial supply distribution is calculated based on placing bicycles at each 

region throughout the system according to a set supply distribution. This distribution is 

then used to distribute the number of bikes provided by the supply parameter to the 

environment i.e., if the system is to have 4,500 bikes then so many bikes will be 

distributed proportionally throughout the regions of the system before the simulation 

begins. If the distribution is set to purely uniform, then each of the 100 regions would 
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receive 45 bikes. The supply distribution is then organically altered as the simulation 

executes through user arrival and destination interests and behaviors, as additionally 

influenced by an agent offering incentives. 

 

Figure 6 

Illustration of the Daily Initial Supply, Hourly Destination, and Hourly Arrival 

Distributions for System Simulation 

 

 

In Figure 6, we illustrate how daily initial supply, hourly destination, and hourly 

arrival distributions are used in environment simulations. The leftmost distribution is the 

supply distribution responsible for the initial resource supply layout of the system. The 

following distributions to the right of Figure 6 show distributions responsible for 
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determining user arrival and destination interests. There is a distribution for each hour for 

both arrival and destination interests resulting in 48 total user interest distributions and 

one supply distribution in the environment generation system. 

The initial supply distribution used for Capital Bikeshare simulation is shown as 

the left most distribution in Figure 6. This distribution is based on the total relative 

destination popularity of each region in the hour 6 pm, plus a small increase as to 

distribute supply more evenly. This is described in Equation 19 where H is set to 18 (6 

pm) and N is set to 100 (100 regions). The hour 6 pm was selected as it is the last very 

popular hour for user activity and is likely to have a large impact on the next day's initial 

supply. Conversely this implies that the previous day’s 6 pm destination activity has a 

large impact on the initial supply distribution when a simulation begins. Then one is 

added to each element, to give each region some probability of receiving a bike. This 

extra step of giving each region some supply allows for more opportunities to reroute 

users. Lastly, this matrix is normalized to create this supply distribution. 

1 + 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐷𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑠 𝑓𝑜𝑟 𝑟𝑖𝑗𝑖𝑛 𝐻

𝑁 +  𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐷𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑠 𝑖𝑛 𝐻
 ∀ 𝑟𝑒𝑔𝑖𝑜𝑛𝑠 𝑟𝑖𝑗 (19) 

A user’s arrival interest and destination interest are both calculated based on the 

hour in which the user appears. Each hour indexes two distributions each with the 

probability of a user either arriving at or selecting as a destination for each region. The 

user arrival distribution is calculated based on historical user arrival patterns as shown in 

Equation 20. The user destination interest distribution is calculated similarly, where 

instead of utilizing historical arrivals, the distribution is calculated based on historical 
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destinations. P(A | H) shows the conditional probability for determining user arrival 

location interest, where A is the arrival region and H is the hour in which the user appears 

∑ 𝑎𝑟𝑟𝑖𝑣𝑎𝑙𝑠 𝑓𝑜𝑟 𝑟𝑖𝑗𝑖𝑛 𝐻

∑ 𝑡𝑜𝑡𝑎𝑙 𝑎𝑟𝑟𝑖𝑣𝑎𝑙𝑠 𝑖𝑛 𝐻
 ∀ 𝑟𝑒𝑔𝑖𝑜𝑛𝑠 𝑟𝑖𝑗∀ ℎ𝑜𝑢𝑟𝑠 𝐻 (20) 

5.3  Limitations  

 It is important to recognize that while this simulation environment is consistent 

with much of the related literature, as well as introducing subtle improvements, it still has 

many limitations and possible improvements. This simulation assumes that when a user 

occupies a resource that the resource will not appear in its destination region until the 

start of the next hour time slot. This is not an accurate representation of the trip duration 

dynamics of a bikeshare system as bicycles are constantly arriving and departing due to 

trips often being less than a half-hour in duration. This limitation is introduced as it 

greatly reduces the computational complexity of simulation and is assumed to not greatly 

impact simulation effectiveness.  

 In experimentation, the Capital Bikeshare system is divided into a 10x10 grid 

resulting in 100 equally sized regions. The largest trade-off in determining the input size 

of the system’s grid representation is the ratio of regions whose neighbors vector length is 

less than 4. Under the 10x10 grid size, there are 32 edge regions and 4 corners resulting 

in 36% of the regions having a neighbors vector less than 4. For comparison, under a 7x7 

grid size there are 26 edge and corner regions resulting in 53% of regions with a 

neighbors vector less than 4. With a grid of 100 regions, there is also a reasonable amount 

of separation between where users are typically interested in departing versus where they 

are intended to commute to. This is an important distinction as it is redundant to offer a 
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user an incentive to walk to a region that they were otherwise intending to travel by 

bicycle to. 

 The entire Capital Bikeshare system spans a wide area from Dulles International 

Airport, to Alexandria, to Capital Heights, to Gaithersburg. The size of the Capital 

Bikeshare system is reduced to its central area from Arlington to slightly South of Mt. 

Rainer. Specifically, the system is reduced from spanning from latitudes and longitudes 

(38.783, -77.368) to (39.124, -76.826) to spanning the latitudes and longitudes (38.875, -

77.1) to (38.935, -76.98). This reduced system size still captures roughly 90% of trips in 

user activity data and is less than half of the original spatial area covered by the system. 

This reduction in coverage area makes regions more meaningful as they better capture 

specific locations, and it is more likely that a user will travel to a region further than a 

neighboring region. 

 Another limitation of this simulation is its assumption that all users will behave 

according to the same cost model. In practice, the walking distance cost for each 

individual is likely to have a wide variance dependent on a variety of internal and 

external factors to the user. Someone engaging in exercise will likely need a much lower 

incentive than someone who is commuting to their workplace in order to depart from a 

bicycle further away. Likewise, due to various weather circumstances or road blockages a 

user may find it more difficult than our model would anticipate to move to a new 

location. This is not a significant limitation as it is likely that the cost model will capture 

an approximation of average user behavior and given such a large amount of simulated 

users will be representative. 
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Chapter 6 

Representations Description 

 In this chapter, descriptions are provided of the various representations that will 

be utilized in experimentation. Five representations are employed for the environment’s 

state and action mechanism to observe performance impacts, as summarized in Table 1 

and Table 2. 

Agents received the reward signal reduced unservice level, shown in Equation 21. 

This is the percentage reduction in unservice level, directly derived from the service level 

metric, there will not be a case where a reduction or increase in one is not correlated with 

a reduction or increase in another. In reinforcement learning, it is critical that the reward 

function reflects the overall goal intended to be achieved within an environment. For 

example, for an agent to learn the game of chess the reward function should reflect 

whether the agent achieves victory or is defeated and not other metrics such as the 

number of pieces captured. While the system’s service level metric is the most critical 

measurement, this metric will typically be within a very small range whereas the reduced 

unservice level will typically be within a much larger range. If service level alone were 

relied upon as a reward function its small range would be difficult for an agent to 

interpret, therefore the reduced unservice level metric is utilized. 

Reduced Unservice Level =  RUL =  1 −  
1 − 𝑆𝐿𝑤𝑖𝑡ℎ 𝑎𝑔𝑒𝑛𝑡

1 − 𝑆𝐿𝑛𝑜 𝑎𝑔𝑒𝑛𝑡
(21) 
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Table 1 

State and Action Representation Symbols 

Symbol Description 

St Supply at each region at time slot t 

At User arrivals at each region during time slot t 

Dt Trip destinations for each region during time slot t 

Ut Unservice level for each region during time slot t 

Et Expense at each region during time slot t 

A’ Known trip arrivals for each region during time slot t 

D’ Predicted trip departures for each region during time slot t 

ot
ij- Offer to move to any neighboring region from region rij during time slot t 

ot
pq+ Offer to move to region rpq during time slot t 

ot
pq+’ Offer to change destination to region rpq during time slot t 

 

 

Table 2 

Representation Summaries 

Representations State Representations Action Mechanisms 

SADUE-A (St, A(t-1), D(t-1), U(t-1), E(t-1)) (ot
11-, o

t
12-,… , ot

nm-) 

S-A (St) (ot
11-, o

t
12-,… , ot

nm-) 

S-A+ (St) (ot
11+, ot

12+,… , ot
nm+) 

SA’D’-A+ (St, At’, Dt’) (ot
11+, ot

12+,… , ot
nm+) 

SA’D’-A+D+ (St, At’, Dt’) (ot
11+, ot

11+’, ot
12+, ot

12+’,… , ot
nm+, ot

nm+’) 
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6.1 Representations Without Using Predictive Model 

6.1.1 SADUE-A 

 

Figure 7 

SADUE-A Representation Diagram 

 

 

In Figure 7, a diagram of the first representation named SADUE-A is shown, this 

representation is largely inspired by the framework proposed by Pan et al. [6]. Under the 

SADUE-A representation a high-dimensional state space is utilized which captures a 

relatively large amount of information about the observed mobility-system environment. 

The first part of the representation’s name, SADUE, stands for its state representation a 

tuple (St, A(t-1), D(t-1), U(t-1), E(t-1)). St is a matrix which represents the current supply at 

each region, it is reasonably assumed that this is the most important feature to represent 
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the environment. The following matrices A(t-1) and D(t-1) respectively represent the 

number of resource arrivals and departures during the previous time slot (t-1), this is 

intended to inform the agent what may happen in the following time slot. The matrix U(t-

1) is a matrix which represents the unservice level at each region during the previous time 

slot (t-1), this is intended to highlight problematic regions. The last matrix E(t-1) 

represents the expense at each region during the last timestep, further highlighting 

problematic and high demand regions. This is a very high dimensional state space with 

high variability, that will require extra training time for an agent to understand key 

features of the state space. 

The action representation of SADUE-A is denoted as simply A, this action 

mechanism is designed based on the mechanism proposed by Pan et al. [6]. Under the 

action mechanism A, the agent applies an offer at the start of every time slot to 

incentivize users to move away from their current region to any neighbor. This action is 

represented as the vector (ot
11-, o

t
12-,… , ot

nm-), the - signifies that the agent is 

incentivized to move away from their current region in any direction for the same offer. 

The user in region rij will consider the offer ot
ij as it relates to movement cost to each of 

its neighbors N(rij), the offer vector the user receives is of the form (ot
ij, o

t
ij, o

t
ij, o

t
ij). 
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6.1.2 S-A 

 

Figure 8 

S-A Representation Diagram 

 

 

In Figure 8 a diagram of the next representation S-A is shown, this representation 

is designed to observe the effects of a reduction in SADUE-A’s state space. High 

dimensional state spaces typically cause a longer convergence time in machine learning 

based algorithms. As the input space grows there are more variables and combinations 

thereof to fit to the desired output. Worse in our problem setting it is reasonable to 

assume that each feature is extremely non-uniform in importance, thus requiring extra 

training time as the initialized model will give each feature roughly equal weighting. 

Under S-A the state space is reduced to only the current regional supply matrix St, 

omitting information (‘ADUE’) that only provides theoretically marginal information 
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about the environment. Information such as the previous time slot’s user arrivals and 

departures does provide some information regarding an expectation on activity in the 

current time slot, this will be missed though there will be a particular focus on the current 

supply. However, the unservice level and expense at each region is likely to only 

challenge the agent without providing significant usable information. The action 

mechanism A is the same as the action mechanism used under SADUE-A, for 

consistency in evaluating only the reduced state space. 

6.1.3 S-A+ 

 

Figure 9 

S-A+ Representation Diagram 
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In Figure 9 a diagram of the S-A+ representation is shown, this representation 

seeks to investigate the effectiveness of a theoretically more advantageous action 

mechanism A+, while maintaining the state space S found to be effective in comparison 

between SADUE-A and S-A. Under this new action mechanism, A+, the agent applies a 

static incentive to incentivize users to move to each specific neighboring region rather 

than to only move away from their current region. This action mechanism gives the agent 

more control over which regions the users move to or avoid. This action representation is 

represented as the vector (ot
11+, ot

12+, …, ot
nm+), the + signifies that the agent is 

incentivized to move to a region rather than away from a region in any direction. A user 

in region rij will consider the offer to move to each neighboring region in N(rij) as it 

relates to movement cost to each, the offer vector is of the form (ot
i+1,j,o

t
i-1,j,o

t
i,j+1,o

t
i,j-1). 
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6.2 Representations Including a Predictive Model 

6.2.1 SA’D’-A+ 

 

Figure 10 

SA’D’-A+ Representation Diagram 

 

 

In Figure 10 a diagram of the SA’D’-A+ representation is shown, this 

representation incorporates user behavior information to supplement the state 

representation of the environment. The term A’ represents the matrix At which quantifies 

the resource arrivals at each region for the current time slot t. At is known as users signify 

their destination regions, i.e. after the activity of users in time slot t-1 At is known. This 

does not provide significant novel information as these users already arrive and the 

supply is resolved for each respective arrival and region prior to the agent allocating a 

new incentive scheme. The term D’ represents the matrix Dt’ which quantifies the 

predicted user departures from each region in the current time slot t. This is intended to 
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aid the agent in understanding which regions will have a high demand as to more 

effectively allocate a budget. 

6.2.2 SA’D’-A+D+ 

 

Figure 11 

SA’D’-A+D+ Representation Diagram 

 

 

Lastly in Figure 11 a diagram of the representation SA’D’-A+D+ is shown, this 

representation seeks to investigate the benefits of a further expanded action mechanism 

A+D+. Under the A+D+ action mechanism the agent will apply not only a static 

incentive to move toward each respective neighboring region on user arrival, but as well 

static incentives for a user to change their destination region. This action mechanism 

provides the agent with even greater control over user behavior, however it also presents 

a greater challenge of budget management. The action representation as applied to each 


