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Chapter 1 

Introduction 

 Materials science and engineering (MSE) is a discipline that is intimately 

connected with the technological progression of mankind. Historical terms which 

highlight technological progress such as the “Bronze Age” (3500 BCE) which demarks 

the use of Cu-Sn alloys to develop harder tools and weapons or the “Iron Age” (1500 

BCE) in which further progression was achieved through the use and alloying of Fe and 

Fe-based compounds to create even stronger tools resulting in even greater changes to 

society are a few such examples. Regardless of the era, it is clear that materials science 

and engineering plays a pivotal role in the advancement of human civilization.   

Materials science involves the investigation and classification of the relationship 

between the structure and properties of a material while materials engineering involves 

the design or engineering of material structures to exhibit certain desired properties. The 

scope of material structures ranges from subatomic such as electronic structure, to atomic 

which includes arrangements of atoms, to micro and macroscopic structures i.e., those 

that can be observed with a microscope device or with the naked eye. Material properties 

on the other hand, can be characterized into seven categories. These include biological, 

mechanical, electrical, magnetic, optical, thermal, and chemical.  In addition to the 

structure-property relationships, the synthesis and performance of materials are also 

critical components to MSE. Thus, the discipline of MSE can be wholly defined as the 

interrelationship between the process, structure, properties, and performance of materials 

(Fig. 1.1).  
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Figure 1.1. The four characteristics which define materials science and engineering and 

their interrelationship. 

 

 

1.1 Ceramics 

 Ceramics are compounds that are often but are not limited to materials consisting 

of one or more metallic elements and one or more non-metallic elements. These materials 

include but are not limited to oxides, nitrides, carbides, and sulfides. The bonding of 

ceramic materials ranges from ionic to fully covalent or a combination of both. More 

often ceramics bond ionically with the metallic atom acting as the cation (positive 

charge) and the non-metallic atom acting as the anion (negative charge). The crystal 

structure of ceramics must obey the law of neutrality (the crystal structure must be 

electrically neutral); thus, the oxidation states and the relative sizes of the cations and 

anions will influence the crystal structure to meet this criterion. 

 The properties of ceramic compounds are dictated by their constituent elements 

and the types of bonding that occur. For instance, bulk ceramics are brittle due to the 
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strength of ionic and covalent bonds which is in contrast to metals which tend to be more 

ductile due to the comparatively weak metallic bond strengths. In addition to brittleness, 

ceramic compounds are likely to possess characteristics such as transparency, chemical 

durability, hardness, high melting point, and under most circumstances, these materials 

are electrically and thermally insulating. Some exceptions to these characteristics exist 

such as those observed in perovskites (14,15), MAX phase carbides and nitrides (16–18), 

and solid catalysts (19,20). 

1.2 Thin Films 

 Thin films are materials that can range from a few nanometers to several microns 

thick and act as an intermediary between monolayer and bulk properties and are utilized 

in a variety of applications which include those shown in Table 1.1. Thin films can be 

defined in many ways. Some constraints include having a high surface to volume ratio, 

possessing material properties that are volume dependent, as well as possessing surface 

and near surface properties that may deviate substantially from their bulk counterparts. 

Additional differences in thin films from their bulk counterparts result from the non-

equilibrium conditions common during synthesis which can lead to the growth of 

metastable structures with unique and unusual properties not achievable in bulk materials. 

Unlike bulk solids which have consistent properties throughout their volume, the 

aforementioned surface and near surface properties of thin films can be tuned through 

alteration of synthesis parameters such as background pressure, gas and impurity 

concentrations, particle energies, substrate temperature, material, and orientation, as well 

as a host of other parameters. As a consequence, the material properties of thin films can 

be engineered with relative ease to meet specific design criteria with high reproducibility.  
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Table 1.1 

Thin Film Properties and Applications 

Thin Film Property Applications 

Biological Osteointegration, Fibrointegration, Anti-fouling 

Electrical Insulation and Conduction, Photo and Piezoelectric, 

Semiconductors 

Magnetic Data Storage, Antennas 

Mechanical Tribological, Hardness, Adhesion, Tolerance, 

Micromechanics 

Thermal Thermocouple sensors, Heat Sinks, Thermal Barriers 

Chemical Catalysis, Electrocatalysis, pH Sensors, Corrosion 

Resistance 

Optical Reflection/Anti-reflection,  Optical Interference, 

Optoelectronics 

 

 

 

1.3 Neural Interfacing Devices 

 Neural interfacing devices can broadly be defined as devices which are able to 

record or modulate electrophysiological information by directly interfacing with neural 

tissues via an electrode-tissue interface. A depiction of the electrode-tissue interface 

interaction is provided in Fig. 1.2 (21,22). Generally, devices that measure or monitor 

neuronal signals in the body are referred to as recording devices while devices which 

inhibit or stimulate neuronal signals in the body are referred to as neurostimulation 

devices. Implantable neural interfacing devices are utilized in a wide range of 

applications including but not limited to the investigation of neuronal signals in the brain 

with high spatial resolution to better understand and diagnose neurological diseases and 

disorders (23–25), cardiac modulation and defibrillation through cardiac stimulation  and 
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sensing (26–31), robotic limb control and restoration of motor function through recording 

and transmittance of neural signals from the motor cortex to prosthetic devices (24,32–

36), treatment of chronic pain through spinal cord and peripheral nerve stimulation (37–

40), treatment of diseases such as Parkinson’s and epilepsy through vagus nerve via deep 

brain stimulation (41–47), as well as sensory restoration through the use of cortical and 

cochlear neuroprosthetic implants (48–51).  

 

 

 
Figure 1.2. (a) Schematic of a pulse waveform for a stimulation pulse in tissue from an 

electrode to neuronal tissue (b) Neuron polarization/depolarization response to a 

neurostimulation pulse. 

 

 

1.3.1 Electrode Materials 

 Electrode materials, due to their role in directly interacting with neural tissue 

(through either modulation or recording of neural signals), must be selected carefully to 
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ensure that no irreversible damage occurs to the tissue or electrode while 

implanted(21,52–55). Thus, to ensure long-term efficacy of devices, electrode materials 

must be biocompatible to reduce the occurrence of fibrotic encapsulation. Otherwise 

performance will be reduced over time due to the insulative nature of the fibrous capsule, 

or, in some circumstances may result in implant rejection (56–60). Another important 

factor is the chemical stability of electrode materials (corrosion resistant). This 

characteristic is important in sustaining electrode electrical properties as well as 

minimizing the generation of toxic metal ions in the body which can lead to large scale 

inflammation (61–63). Some additional considerations include having good mechanical 

properties such as compliance and adhesion to ensure electrodes can be handled and 

implanted without loss of functionality, good electrical conductivity, and excellent 

reduction-oxidation (redox) stability to ensure long-term charge injection capabilities 

(52,53,64).  As shown in Table 1.2 many metals and alloys have been evaluated for use 

as electrode materials. Among the materials tested, those that match closely with the 

aforementioned criteria are the heavier transition metals such as gold (Au) (65–67), 

platinum (Pt) (68–70), iridium (Ir) (71), and alloys such as Pt-10%Ir (53,72,73).  

 No material exchanges charge strictly through faradaic or double layer 

mechanisms. Instead one mechanism (though not always the case) will dominate 

depending on reaction rate, potential window, structure, and chemical stability of the 

electrode material (74–77). Noble metal materials are able to inject charge primarily 

through faradaic redox reactions with small contributions from a pseudo-double layer 

related to ion confinement and diffusion at the surface (22,64,78). Non-noble metals such 

as stainless steel, nickel chromium, and titanium, due to their comparatively slower 
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faradaic processes, primarily exchange charges through pseudo-double layer capacitance 

via adsorption and desorption of a counter-ion monolayer (53,55). Regardless of the type 

of metal, electrode dissolution can occur wherein oxidized metal ions at the surface will 

diffuse away before they are reduced and redeposited back on the interface which can 

reduce performance and cause harm to surrounding tissue over time (79). This effect is 

much stronger in the non-noble metals and alloys, as a consequence they’re used on 

much shorter time scales.  
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Table 1.2 

Neural Interfacing Electrode Materials 

Electrode Material Suitability Failure Mechanism 

Gold Suitable Corrosion (very long time scale) 

Iridium Suitable Corrosion (long time scale) 

Platinum Suitable Corrosion (long time scale) 

Tungsten Suitable (short term) Corrosion 

Tantalum Suitable (short term Corrosion 

Titanium Suitable (short term) Corrosion 

Copper Unsuitable Corrosion/Necrotic/Inflammatory 

Silver Unsuitable Corrosion/Necrotic/Inflammatory 

Iron Unsuitable Corrosion/Necrotic/Inflammatory 

Nickel Unsuitable Corrosion/Necrotic/Inflammatory 

Platinum-10% Iridium Suitable Corrosion (long time scale) 

Platinum-8% Tungsten Suitable Corrosion (long time scale) 

Platnium-10% 

Rhodium 
Suitable Corrosion (long time scale) 

Stainless Steel Suitable (short term) Corrosion 

Nichrome Suitable (short term) Corrosion 

 

 

 The trajectory for further refinement of neural interfacing devices is in large part 

predicated on increased miniaturization of devices and electrodes which enable higher 

spatial resolution, precision, and reliability (21,52); these characteristics are particularly 

important in improving operation and efficacy of neuroprostheses which require single 

unit (recording of one type of neuronal cell) or multi-unit (simultaneous recording of two 

or more types of neuronal cells) recordings of neuronal cells (80–82).  Additionally, 

increased miniaturization of neural interfacing electrodes and devices will further reduce 
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trauma in patients during implantation leading to faster recovery times, a lowered risk of 

infection, and improved quality of life. To this end, bare metal electrodes are effective in 

applications not constrained by larger electrode geometric surface areas (GSA) or lower 

charge injection limits (83–85). However, they lack the charge injection and low 

impedance characteristics necessary to operate as microelectrodes without exceeding the 

potentials and currents where water electrolysis can occur (water window) which can 

cause irreversible damage to itself and/or the surrounding neural tissue (62,63).  

1.3.2 Electrode Coatings 

 The ideal electrode/microelectrode coating possesses properties such as high 

charge storage capacity (CSC), high charge injection (Qinj), low interface (electrode-

tissue) impedance, a high electrochemically available surface area (ESA) to GSA ratio, 

excellent redox and chemical stability, excellent biocompatibility, mechanical stability, as 

well as the ability to be deposited on nearly any type of electrode regardless of shape, 

size, or electrode material. In an effort to match these criteria many materials (Table 1.3) 

have been investigated for use as electrode and microelectrode coatings. Platinum group 

metal (PGM)-based electrode coatings are often used due to their pseudocapacitive 

charge exchange mechanisms which allow for high charge injection, making them useful 

for interfacing with neural tissues which have high dielectric constants and threshold 

voltages (84,85), such as those found in the brain, as well as applications which require 

high specificity (microelectrodes/neuroprosthetics) when interfacing with neural tissue. 

Typical PGM-based electrode coatings include ceramics such iridium oxide (IrOx) 

(71,86–88) and more recently ruthenium oxide (RuOx) (89–91) thin films, as well as high 

surface area metals such as porous platinum and platinum black (92,93). For applications 
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where tissue requires lower charge injection such as cardiac sensing and pacing, films 

which utilize double layer capacitance (effectively no chemical reaction) are utilized. 

Typical materials include fractal zirconium (ZrN) and titanium nitrides (TiN) due to their 

chemical and mechanical stability, high charge storage, and high ESA (low impedance).  

In addition, non-ceramic and non-metallic materials have been investigated including 

conductive polymers such as poly(3,4-ethylene dioxythiophene)(PEDOT) (94) and 

polypyrrole (PPy) (95,96), and various carbon allotropes (25,97,98).  

 

 

Table 1.3 

Typical Neural Interfacing Electrode Coatings 

Electrode Material Primary Charge Exchange Mechanism 

Iridium Oxide Pseudocapacitive 

Ruthenium Oxide Pseudocapacitive 

Porous Platinum Faradaic 

Platinum Black Faradaic 

Titanium Nitride Double Layer 

Zirconium Nitride Double Layer 

PEDOT (doped) Pseudocapacitive 

Polypyrrole Faradaic 

Carbon (graphene, CNT) Faradaic 

 

 

1.4 Motivation and Objectives 

 The treatment of many neurological diseases and disorders are traditionally 

achieved through the use of pharmaceuticals and major surgery. The use of 
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pharmaceuticals is appealing due the diverse number of drugs that are available in the 

treatment of a wide range of conditions, the relative ease of intake by the patient, and the 

relative ease of production. However, pharmaceuticals lack specificity in their treatment 

and can become less effective over time due to drug tolerance development (99). 

Additionally, pharmaceuticals can come with many peripheral and downstream adverse 

effects on immune, pulmonary, cardiac, and sexual function (100–103). Furthermore, 

extended use can also result in insomnia, depression, fatigue, and dependency 

development which can lead to overdose.  On the other hand, major surgical treatments 

while necessary in some circumstances can often be very traumatic to the body and 

comes with a greater risk of infection. Moreover, this treatment option often requires the 

use of pharmaceuticals to assist in the long recovery times needed to restore quality of 

life.  When compared to more traditional methods of treatment, implantable neural 

interfacing devices supplant many pharmaceuticals and major surgical treatments due to 

their high specificity and efficacy which minimize or outright eliminate many of the 

peripheral and downstream effects associated with pharmaceuticals. These devices often 

require only minimally invasive implantation leading to shorter recovery times and 

reduced risk of infection, and because of their method of operation, negative effects such 

as dependence or treatment tolerance are not present granting long term efficacy via 

chronic implantation. 

 As previously mentioned, the continued advancement of implantable neural 

interfacing devices is in large part predicated on the development of materials that 

enhance communication between the tissue-electrode interface and thereby increase 

miniaturization. The investigation of new platinum group metal oxides for neural 
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interfacing applications has been limited to primarily IrOx and more recently RuOx (89–

91). IrOx coatings have been extensively investigated due to their excellent charge 

exchange characteristics, biocompatibility, and chemical stability. Cogan et al. has 

studied various types of IrOx, including electrodeposited and sputtered IrOx thin films, 

based on earlier work by Kang et al.(22,104–106). While others have explored thermally 

prepared IrOx thin films (86,107,108). Wessing et al. describes the use of RF sputtering 

and synthesis pressure dependence on IrOx thin films in his thesis (109), while Chen et al. 

details the use of chemical bath deposition (88). The numerous fabrication methods for 

IrOx have been thoroughly detailed by Jang and Lee (87) in their review. Among the 

methods of synthesis, reactive magnetron sputtering stands out due to excellent coating 

uniformity, the high degree of control of deposition parameters, and repeatability, making 

it the dominant synthesis method for neural interface coating fabrication. Synthesis 

methods for RuOx on the other hand have not been as extensively investigated for neural 

interfacing purposes though Atmaramani et al. and this author both have used reactive 

magnetron sputtering to create RuOx thin film coatings (89,90).  

 The properties of IrOx including biocompatibility, stability, and degradation have 

been intensively investigated. Maeng et al. studied the cytotoxicity of neuronal cells in a 

viability assay (110), while Gobbels et al. performed a similar viability assay with a 

different polymorph of IrOx (81). Additional in-vitro tests performed by Cogan et al. were 

also performed which investigated two different physiological electrolytic solutions, as 

well as in-vitro comparisons of charge injection limits of Pt and IrOx microelectrodes 

(22), while Negi et al. performed a similar investigation of charge injection capacity in-

vitro of platinum and iridium oxide microelectrodes (111). The breadth of in-vitro and in-
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that the Ir(1-x-z)PdxRhzOy films adopt microstructural characteristics resembling that of the 

single and binary metal Pd and Rh oxides, respectively.  

 

 

 
Figure 7.4. SEM micrographs of Ir(1-x-z)PdxRhzOy deposited on 316 SS substrates with  (a) 

x = 0.12, z = 0.07 (b) x = 0.13, z = 0.12, (c) x = 0.92, z =0.02, and (d) x = 0.21, z = 0.59. 

 

 

 The CSCC of the various compositions of Ir(1-x-z)PdxRhzOy are presented in the 

ternary density plot shown in Fig. 7.5. The high CSCC region in which Ir is the dominant 

metal are identified to be between 0.13 ≤ x ≤ 0.40, and = 0.04 ≤ z ≤ 0.20. This region 

has microstructure similar to what is presented in Fig. 7.4a and 7.4b, and the intermediate 

solid solution microstructures (i.e., Fig. 7.2). An additional high CSCC compositional 

region of interest where Pd is the dominant metal exists between  0.50 < x < 0.60 and 
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0.03 < z < 0.16, with microstructure resembling the intermediate solid solution 

microstructure depicted in Fig. 7.2.  

 

 

 
Figure 7.5. Ternary density plot CSCC for the Ir(1-x-z)PdxRhzOy coatings measured on 316 

SS substrates. 

 

 

7.2.2 Summary and Conclusions 

 Similar to the Ir(1-x-z)PdxRuzOy system, the Ir(1-x-z)PdxRhzOy system is able to 

suppress nanoflake growth partially or completely in all compositions investigated. The 

low solute concentrations required for nanoflake suppression is presumably due to the 
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presence of Pd. The mechanisms behind the microstructural changes are believed to be 

largely identical to those previously described for the binary metal oxide films (Section 

6.1.1). Additionally, when x ≥ 0.13 nanoflake microstructure is suppressed completely in 

the Ir(1-x-z)PdxRhzOy  system. The range of compositions and corresponding 

microstructures which have exceptional electrochemical performance have been 

identified to be 13 ≤ x ≤ 0.40, and = 0.04 ≤ z ≤ 0.20 for Ir-dominant compositions, and 

0.50 ≤ x ≤ 0.60, and 0.03 ≤ z ≤ 0.16 for Pd-dominant compositions.  

7.3 Ir(1-x-z)RuxRhz Oxide Thin Films 

 In the following sections the characterization of Ir(1-x-z)RuxRhzOy thin films 

deposited by combinatorial synthesis as outlined in section 3.4.3 is discussed. 

Approximately 90 unique compositions were characterized from two depositions. The 

CSCC was measured on the as-deposited Ir(1-x-z)RuxRhzOy films deposited on 316 SS 

substrates.  

7.3.1 Results and Discussion 

 The microstructures representative of the Ir(1-x-z)RuxRhzOy system are presented in 

Fig. 7.6. For a large range of compositions, the microstructure is dominated by nanoflake 

or a combination of nanoflake and nano-spherical grain growth as is depicted in Fig. 7.6a. 

Intermediary compositions where x > 0.15 and z < 0.15, and x > 0.20 and z < 0.34 

develop the familiar nanosized grain clusters shown in Fig. 7.6b. The Ir(1-x-z)RuxRhzOy  

films begin to adopt the microstructure of the single and binary metal oxide endmembers 

as composition approaches the primary solid solution range as shown in Fig. 7.6c and 

7.6d, for high Ru and high Rh content, respectively.  
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Chapter 8 

Summary, Future Work, and Concluding Remarks 

8.1 Summary 

 In this thesis, four single metal PGM oxides, three binary metal oxide systems, 

and three ternary metal oxide systems were synthesized by reactive magnetron sputtering. 

Of the materials investigated, PdO and RhxOy, as well as the binary and ternary metal 

oxide have not been previously considered or investigated for use as electrode coatings 

for implantable neural interface applications. Additionally, the synthesis of the binary and 

ternary metal oxides by reactive magnetron sputtering have never been reported.  

 All single metal oxide films demonstrated a qualitative increase in porosity and 

thereby an increase in the ESA when synthesized at higher WPs. These microstructural 

changes were confirmed by SEM, EIS, and was further supported by ECM. As a result, 

the electrochemical performance was considerably improved and was shown to have a 

strong thickness dependence. Thus, across all single metal oxide systems, synthesis at 30 

mTorr WP and 20% OPP and lower power densities (≤ 4.9 W/cm2) are considered to be 

the optimum synthesis parameters. Furthermore, preliminary cytotoxicity testing suggests 

that all single metal oxide materials are non-cytotoxic in-vitro. This is an important first 

step to fully assessing the biocompatibility of the materials.  Among the single metal 

oxides investigated, the RuOx, IrOx, RhxOy, and PdO were the highest to lowest 

performing electrochemically as measured by their CSCC and impedance.  

 The use of the combinatorial sputtering method allowed for the rapid synthesis of 

hundreds of compositions of materials between the binary and ternary metal oxides from 
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only a handful of depositions. The compositional ranges in which suppressed nanoflake 

growth in the binary and ternary metal oxide solid solutions were identified. It is believed 

these values are related to the solubility limits of the alloying metals and thereby the 

transition from a primary to an intermediary solid solution. Regardless of the underlying 

mechanism behind nanoflake suppression, the films were found to have exceptional 

electrochemical properties and favorable microstructures. Film thickness was shown to 

have a greater influence on electrochemical performance than their single metal oxide 

endmembers. As a result, the binary metal oxide films had to be grown at thicknesses 

generally ≥ 750 nm in order to outperform their single metal oxide endmembers. Among 

the binary metal oxides investigated, it is determined that due to the lower concentration 

of solute needed to suppress nanoflake microstructure while still maintaining high 

electrochemical performance, the Ir(1-x)PdxOy and Ir(1-x)RuxOy systems show significant 

promise for implantable neural interfacing applications.  

 The ternary metal oxides add an additional degree of complexity over the binary 

metal oxide systems. Despite this, similar compositional ranges which suppress nanoflake 

growth while maintaining high electrochemical performance were identified, among the 

three systems the Ir(1-x-z)PdxRuzOy and the  Ir(1-x-z)PdxRhzOy, and Ir(1-x-z)RuxRhzOy are more 

favored due to their near complete suppression of nanoflake microstructure over a 

sizeable range of compositions analyzed.  

8.2 Future Work 

 A considerable amount of research was performed in the investigation of the 

PGM oxides and their mixtures. Despite the scope of the research performed, there is 
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much more to be done. Fortunately, this thesis provides a strong foundation to move 

forward in many directions. This research demonstrated that viability of many newly 

investigated and developed PGM oxide materials for neural interfacing applications 

synthesized over a large parameter space. To this end, the following sections provide 

several routes to further investigate these materials. 

8.2.1 Microelectrode Development 

 Ultimately the goal for the materials investigated in this thesis is to use them as 

neural interface electrode/microelectrode coatings to enhance charge exchange between 

the electrode-tissue interface. To this end the oxides investigated in this thesis must still 

be investigated for use on microelectrodes. In order to fully demonstrate the viability as 

implantable neural interface coatings it is critical to develop industrially relevant 

microelectrode and microelectrode arrays to fully test the feasibility of these materials. 

8.2.2 Biocompatibility Testing 

 The research presented in this thesis would benefit from further biocompatibility 

testing. This could come in several forms. The first is an in-vitro fibroblast study in order 

to understand how the body may heal around an electrode coated with the many newly 

investigated and developed materials presented in this thesis. The second is pulse testing 

at biologically relevant pulse widths and intensities, as well as recording of relevant 

tissues and cells in-vitro. The final phase would be in-vivo testing of the materials from 

both a cytotoxic perspective as well as a from a functional device aspect, effectively a 

combination of phases one and two in-vivo.  

 



165 
 

8.2.3 Ternary Metal Oxide Thickness Dependence 

 The compositional ranges of the ternary metal oxides which suppress nanoflake 

growth with high CSC have been identified. It is this author opinion however that the 

ternary metal oxides are largely redundant. Nonetheless, in order to fully compare the 

single, binary, and ternary metal oxides, additional depositions are recommended to study 

the thickness dependence of the ternary metal oxides.  

8.3 Concluding Remarks 

 As standalone oxides, the IrOx and RuOx systems are the most viable while the 

RhxOy and PdO are least viable for neural interfacing applications based on 

electrochemical performance and ignoring the presence of nanoflake microstructure. 

However, the viability of the materials does change when considering the binary and 

ternary metal oxide systems. This is especially the case for the comparatively low 

performing PdO, which becomes pivotal in suppressing nanoflake growth in the binary 

and ternary metal oxide systems while maintaining high electrochemical performance. As 

a consequence, Pd is an invaluable alloying metal for the development of the binary and 

ternary metal oxide electrode coatings. RuOx and  Ir(1-x)RuxOy  had the highest 

electrochemical performance for the single and binary metal oxides, respectively. The 

performance in addition to the desirable microstructural characteristics demonstrates 

these materials are worthwhile further investigating.  

 Until this moment the cost of materials has been excluded from any discussion in 

this thesis. However, from a scalability standpoint it should be noted that the cost of Rh 

metal is substantially greater than the other three precursor PGMs (186). Considering the 
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electrochemical performance of RhxOy as a standalone single metal oxide, and the high 

concentrations required to suppress nanoflake growth in the binary and ternary metal 

oxides, along with its cost, the RhxOy and Rh containing binary and ternary metal oxide 

systems are considered to be the least viable materials for use an electrode/microelectrode 

coating for implantable neural interfacing applications.  

 From an industrial and scalability standpoint, the oxide materials can be 

synthesized by reactive magnetron sputtering by many different magnetron 

configurations. The magnetron configuration utilized is normally dependent upon the 

geometry of the electrode. For instance, planar electrodes can be coated using high 

throughput planar (187,188) and cylindrical rotating cathode systems (189,190). More 

complicated geometries such as a stent electrode can be coated with a hollow cathode 

system (191,192).  
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