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Abstract 

 

Husam Alfergani 

UNSUPERVISED LEARNING FOR ANOMALY DETECTION IN REMOTE 

SENSING IMAGERY 

2020-2021 

Nazari Rouzbeh, Ph.D. 

Doctor of Philosophy 

  

Landfill fires is a potential hazard of waste mismanagement, and could occur both on and 

below the surface of active and closed sites. Timely identification of temperature anomalies is 

critical in monitoring and detecting landfill fires, to issue warnings that can help extinguish fires 

at early stages. The overarching objective of this research is to demonstrate the applicability and 

advantages of remote sensing data, coupled with machine learning techniques, to identify landfill 

thermal states that can lead to fire, in the absence of onsite observations. This dissertation 

proposed unsupervised learning techniques, notably variational auto-encoders (VAEs), to identify 

temperature anomalies from aerial landfill imagery. Twenty years of Landsat satellite 

observations at a number of landfills were examined for hotspots that may be associated with or 

leading to subsurface fires. The main contribution of this dissertation is to detect temperature 

anomalies in landfills using the state-of-the-art unsupervised deep learning technique of VAE 

based on both model reconstruction error and encoder module feature extraction. Additionally, a 

simple framework for assessing the health state of the landfill at any given time was established 

by using the clustering findings to generate a past behavior for each location in the landfill and 

eventually assigning it to one of four risk categories (No Risk, Low Risk, Moderate Risk and 

High Risk). This framework can function as a monitoring system, inferring information such as 

past landfill temperature profiles, predicting possible heat elevation or smoldering events as new 

observations are added, and identifying the percentage of each of the four risk categories and how 

they increase or decrease over the lifetime of the landfill. 

 



vi 
 

Table of Contents 

Abstract ............................................................................................................................v 

 

List of Figures ..................................................................................................................x 

 

List of Tables ...................................................................................................................xii 

 

Chapter 1: Introduction ....................................................................................................1 

 

 1.1 Unsupervised Machine Learning .........................................................................1 

 

 1.2 Clustering .............................................................................................................2 

 

 1.3 K-Means Algorithm .............................................................................................2 

 

 1.4 Anomaly Detection  .............................................................................................3 

 

 1.5 Problem Statement and Background ....................................................................4 

 

 1.6 Research Objectives and Contributions ...............................................................5 

 

 1.7 Organization of the Dissertation ..........................................................................6 

 

Chapter 2: Literature Review ...........................................................................................9 

 

 2.1 Reasons Behind Landfill Heat Elevation .............................................................9 

 

 2.2 Application of Remote Sensing in Temperature Change Detection ....................10 

 

 2.3 Statistical Approach in Temperature Change Detection ......................................10 

 

 2.4 Unsupervised Data Driven Approach in Anomaly Detection..............................11 

 

 2.5 Considerations When Detecting Anomalies in Landfills .....................................12 

 

Chapter 3: Satellite Data Acquisition and Processing .....................................................14 

 

 3.1 Data Acquisition ..................................................................................................14 

 



vii 
 

Table of Contents (Continued) 

 

 3.2 Data Processing to Calculate Land Surface Temperature (LST) .........................16 

 

 3.3 Data Post-Processing ...........................................................................................18 

 

 3.4 Data Formats ........................................................................................................18 

 

  3.4.1 Image Data ..................................................................................................18 

 

  3.4.2 Video Data ..................................................................................................19 

 

  3.4.3 Datasets for Anomaly Detection Using VAE .............................................19 

 

Chapter 4: Spatio-Temporal Statistical Sequential Analysis for Temperature Change 

Detection in Satellite Imagery .........................................................................................20 

 

 4.1 Basic Definitions ..................................................................................................21 

 

  4.1.1 Change Detection Using Remote Sensing ..................................................21 

 

  4.1.2 Online/Real-Time Change Detection ..........................................................21 

 

  4.1.3 Additive Modeling ......................................................................................21 

 

  4.1.4 Sequential Statistical Change Detection .....................................................22 

 

 4.2 Dimensionality Reduction and Feature Vector Representation ...........................22 

 

 4.3 Statistical Sequential Analysis .............................................................................23 

 

 4.4 Simulation Results ...............................................................................................26 

 

Chapter 5: Evaluating the Spatial Temperature Trends Using Clustering .......................31 

 

 5.1 Temporal Behavior of the Landfill (Temporal Temperature Trends) .................31 

 

 5.2 Spatial Behavior of the Landfill at Pixel Level ...................................................34 

 

  5.2.1 K-means Clustering ....................................................................................34 



viii 
 

Table of Contents (Continued) 

 

  5.2.2 Heat Index (HI) and Accumulated Heat Index (AHI) ................................37 

  

 5.3 Spatio-Temporal Behavior of the Landfill ...........................................................39 

 

  5.3.1 Accumulated Heat Index (AHI) ..................................................................39 

 

  5.3.2 Frequency of Maxima (FM)/Frequency of Near Maxima (FNM) ..............40 

 

Chapter 6: Application of Remote Sensing and Deep Learning in Detecting Internal 

Temperature Anomalies in Landfills ...............................................................................42 

 

 6.1 Variational Auto-Encoders (VAE) Overview ......................................................42 

 

 6.2 VAE K-Means Clustering ....................................................................................45 

 

 6.3 Variational Auto-Encoder for Anomaly Detection and Localization Based on  

      Reconstruction Error ..................................................................................................48 

 

Chapter 7: Internal Clustering Validation and Determining Optimal Number of  

Clusters ............................................................................................................................52 

 

 7.1 Elbow Method ......................................................................................................53 

 

  7.1.1 Elbow Analysis for Conventional K-means Clustering ..............................54 

 

  7.1.2 Elbow Analysis for VAE K-means Clustering ...........................................54 

 

 7.2 Silhouette Method ................................................................................................56 

 

  7.2.1 Silhouette Analysis for Conventional K-means and VAE K-means 

            Clustering .............................................................................................................58 

 

 7.3 Summary of the Internal Clustering Validation ...................................................59 

 

Chapter 8: Simplified Framework for Quantifying Landfill Health State .......................64 

 

 8.1 The Interpretation of Heat Indices and Quantification of Landfill  

      Healthiness .................................................................................................................70 



ix 
 

Table of Contents (Continued) 

 

Chapter 9: Discussion and Conclusions ...........................................................................72 

 

References ........................................................................................................................75 

 

Appendix A: Video Links for South New Jersey Landfills Results ................................82 

 

Appendix B: Dimensionality Reduction in Temporal Domain Used in Chapter 4 .........87 

 

 

 

 

 

 

 

 

 

  



x 
 

List of Figures 

Figure Page 

Figure 1. Dimensionality Reduction Using Discrete Cosine Transform Followed 

                by Principle Component Analysis (PCA) ........................................................23 

 

Figure 2. Simulating Temporal Change Detection. Each Observation is Replicated 14  

               Times to Form a Homogeneous Scene; (a) No Noise; (b) Gaussian Noise ......27 

 

Figure 3. Temporal Change Detection. A Homogeneous Scene Has 15 Frames (1 Original 

               + 14 Replicas) ...................................................................................................28 

 

Figure 4. Spatial Change Detection of Bridgeton, MI, Landfill. The Area of Change is  

               Colored in Red for Images Dated on (a) January 27, 2000; (b) August 9, 2001; 

               (c) January 24, 2005; (d) May 4, 2011..............................................................29 

 

Figure 5. (a) Comparison of LSTmin and LSTmax Temperature at Deerfield; (b) Smoothing 

                the Deerfield Curve Using Moving Average (W = 20); (c) Comparison LSTmin 

                and LSTmin Temperature at South Harrison Using Smoothed Curves With 

                Moving Average (W = 20) ...............................................................................33 

 

Figure 6. K-Means Clustering Results for LST Observation on  July 19, 2013 Deerfield 

               Landfill ..............................................................................................................35 

 

Figure 7. Developing of Hotspots in Deerfield Landfill, NJ From February to August 

               2014...................................................................................................................36 

 

Figure 8. Block Diagram of Algorithm 1 Calculating Heat Index (HI) and Accumulated 

               Heat Index (AHI) ..............................................................................................37 

 

Figure 9. Comparing K-Means Clustering and Heat Index (HI) .....................................40 

 

Figure 10. The Number of Times a Given Spot in Deerfield Landfill Has Recorded .....41 

 

Figure 11. Variational AutoEncoder (VAE) as a Probabilistic Generative Model ..........43 

 

Figure 12. The Structure of VAE .....................................................................................45 

  



xi 
 

List of Figures (Continued) 

 

Figure Page 

 

Figure 13. VAE Schematic for Feature Extraction From an Image, Then Passed to a K 

                 Means Algorithm for Clustering .....................................................................46 

 

Figure 14. Tracing Hotspots in Deerfield Landfill From February to August 2014 ........48 

 

Figure 15. VAE to Detect and Localize the Anomaly Areas in Landfills .......................49 

 

Figure 16. VAE to Detect and Localize the Anomaly Areas in Landfills .......................50 

 

Figure 17. The Elbow Analysis for Observation Form February to August 2014 (Figure 

                  14 row 2). Red Stars Indicate the Optimal Number of Clusters k for These  

                  Observations  .................................................................................................55 

 

Figure 18. The Elbow Analysis Based on Minimum WCSS for Observation Form 

                  February to August 2014 (Figure 14 row 2). Red Stars Indicate the Optimal 

                  Number of Clusters k  ....................................................................................57 

 

Figure 19. The Silhouette Analysis for Observation Form February to August 2014 .....61 

 

Figure 20. Block Diagram of Algorithm 3.(Left Block) Extracting Health State 

                 Indices;(Right Block) Plotting Indices............................................................64 

 

Figure 21. Accumulated Heat Index for Deerfield Landfill by the End of Study Period on 

                 25-11-2019 ......................................................................................................67 

 

Figure 22. {Accumulated Heat Index for South Harrison Landfill by the End of Study 

                 Period on 25-11-2019 .....................................................................................68 

 

Figure 23. Deerfield Landfill Thermal State Patterns From Year 2000-2019 .................69 



xii 
 

List of Tables 

Table Page 

Table 1. The Location and Profile of the Selected Landfills ...........................................15 

Table 2. Brightness Temperature Constant Values for Use with Equation 4 ..................16 

Table 3. Summary of the Internal Clustering Validation .................................................63 

Table 4. Summary of Percentage per Index for Landfills Listed in Table 1 by the End of  

              Study Period (25/11/2019) .................................................................................71 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 1

Introduction

Remote sensing imagery acquired from satellites can be converted to land surface

temperature (LST). The calculated LST can be analyzed to show the temperature variation

within landfills. To validate the results obtained from studying heat elevation data using

LST observations, it is essential to have ground truth data measured at the landfill. Un-

fortunately, not all landfill operators keep or publish heat elevation data and many landfills

are not equipped with a landfill gas extraction system to control subsurface temperatures

generated from the chemical reactions within. Hence, the calculated LST’s are not sup-

ported by ground truth data that can be used to validate fire events or anomaly temperature

areas within the landfill that should be controlled. To address the problem of the absence

of onsite observations, one of the main goals of this study is the demonstration of the appli-

cability and advantages of remote sensing data coupled with machine learning techniques

necessary to identify landfill thermal states that can lead to fire events. On one hand, re-

mote sensing can be used to locate hotspots by monitoring the thermal signature of these

landfills. On the other hand, the machine learning algorithms will address the problem of

the missing ground truth data ”labeled data” by applying unsupervised machine learning

methods to detect the thermal states of the landfills and to detect anomalies.

1.1 Unsupervised Machine Learning

Unsupervised machine learning has been defined as using ”machine learning algo-

rithms to analyze and cluster unlabeled datasets. These algorithms discover hidden patterns

or data groupings without the need for human intervention.” [1]. Therefore, unsupervised

learning algorithms are self-learning without the need for any ground truth data (labeled

data) and they will be able to find the relations in the given data. Unsupervised learning
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is built on the idea of passing large volumes of unstructured data to algorithms or neural

networks and enabling them to learn and infer from it [2].

1.2 Clustering

Clustering is an unsupervised machine learning technique that separates data into a

predefined number of clusters, with observations of similar features are clustered together

in one cluster. The most often used clustering approach is centroid clustering, also known

as partitioning clustering, in which data points within the same cluster have the shortest

distance [3]. Hard or exclusive clustering, is when each data point belongs to one and only

one cluster. To achieve this for a given dataset, (1) data within the same cluster should have

minimum distance, and (2) data of different clusters should have maximum distance [4].

1.3 K-Means Algorithm

K-means is one of the most commonly used unsupervised clustering algorithms,

in which a given observation is allocated to a preset number of clusters k, in such a way

that the clustered observations have maximum variance between clusters and minimum

variation within the same cluster [2]. K-means is a partitioning-based clustering algorithm

that organizes observations into k clusters based on distance measures [5]. It is an iterative

clustering algorithm that attempts to find the local maxima by minimizing the objective

function J in each iteration by assigning new clusters centroids [3, 6].

J =
k

∑
i=1

∑
x∈Ci

‖xi−µi‖2 (1)

where ‖xi−µi‖2, is the Euclidean distance (square norm) between the ith observation and

the cluster center µi and Ci is the number of observation assigned to cluster i. Therefore for

a given number of observations x1, ...,xi for xi ∈ Rn, the goal is to minimize the objective

function, i.e. to minimize the Euclidean distance between the observation and its cluster
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center Ci.

argmin
Ck

k

∑
i=1

∑
x∈Ci

‖xi−µi‖2 (2)

Where Ck is the kth cluster. If the distance used is Euclidean distance, then the distance

from the observation to its centriod represents the variance. Equation 2 will calculate the

distance of xi to all clusters and assign the observation to the cluster with the lowest dis-

tance.

Equation 3 is used to update the centroid’s positions after each iteration.

µi =
1
Ci

∑
x∈Ci

xi (3)

1.4 Anomaly Detection

Anomalies or outliers “are patterns in data that do not conform to a well-defined

notion of normal behavior” (Chandola et al., 2009). Hence, the need for a process of iden-

tifying abnormal observation occurrences in unlabeled datasets that deviate from normal

behavior. Unsupervised anomaly detection is frequently used since it does not require la-

beled data, which is rarely available. Labeling datasets is an expensive and time-consuming

procedure. Unsupervised anomaly detection, on the other hand, is based on two fundamen-

tal assumptions:

• Anomalies occur seldom in comparison to regular cases in any dataset [7].

• They have considerably different characteristics than typical cases.

Therefore, using clustering as unsupervised anomaly detection will lead to another assump-

tion that is normal data instances belong to large and dense clusters, while anomalies belong

to small clusters [7, 8]. The output for an anomaly detection algorithm is in the form of

scores to identify if it is a normal or an anomaly cluster.
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1.5 Problem Statement and Background

Currently, there is no reliable and cost-effective method available in the United

States (U.S.) for detecting and monitoring subsurface smoldering events (SSEs) and related

thermal imbalances at U.S. landfills [9]. Such a method is needed as a timely warning tool

for the identification of the location and spatiotemporal extent of subsurface “hotspots,”

while also aiding in the prevention or minimization of costly subsurface fires and thermal

damage to liners and gas/leachate handling systems. The space borne remote sensing of

landfill surface temperatures by thermal infrared sensing offers a promising approach. The

interpretation of the publicly available Landsat data archive enables the monitoring of large

areas, such as landfills. The nondestructive, noninvasive methods described in this work

allow for the observation of multiple locations quickly and at low-to-no cost and the as-

sembly of a satellite image archive that indicates changes in the thermal state of landfill

surfaces over time. Further algorithmic interpretations of these thermal–areal time series

can be used to isolate persistent hotspot signatures by filtering externally forced thermal

variations (e.g., from seasonal thermal trends) and short-term thermal excursions [10].

Despite all the advantages of remote sensing data mentioned above, it is still lack-

ing day by day ground truth data necessary to validate it. For instance, not all active landfill

operators keep or publish heat elevation data, not to mention the closed, neglected and ille-

gal waste sites where there are no data of any kind available. Furthermore, some landfills

closed for years and still have some subsurface activity [11] .

Landfill subsurface heat is a normal and constantly active during the lifetime of a

landfill. Subsurface smoldering events (SSE) that lead to surface fire do not happen mo-

mentarily, they have a long history that can extend to months and even years of continuous

heat elevation. Therefore, a few remote sensing observations cannot tell us about the initi-
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ations of these events, especially with the lack of ground truth data. Rather there must be

a monitoring system that can shed a light on past events, estimate the initiation of current

heat elevation events and be able to predict the future events.

1.6 Research Objectives and Contributions

In this work, we introduce methodologies for the remote satellite monitoring of the

location and movement of subsurface thermal events within landfills, such as smolders and

fires. As a case study, these methods were applied to the Bridgeton Sanitary Landfill in

Bridgeton, Missouri, U.S., and several landfills in South New Jersey, U.S. Abnormal sub-

surface thermal activity has been ongoing at Bridgeton landfill since 2010 [12, 13, 14].

Considering that an anomaly is an unusual event that needs to be identified and

monitored for the lifetime of landfills, and not as an outlier to be removed, the lack of

labeled data from landfill operators imposes the use of unsupervised clustering methods

for anomaly detection. Under these circumstances, we proposed the use of unsupervised

deep learning Variationa Auto-Encoder (VAE) to extract low-dimensional salient features

of the image from the encoder module of the VAE and feed them to a K-means clustering

algorithm (VAE K-means) . VAE K-means is used to either cluster the thermal status of the

landfill with K = 4 or to detect anomaly areas with K = 2.

With K = 4, the landfill is segmented into 4 areas labeled as no risk area, lower risk

area, moderate risk area and higher risk area equivalent to clusters (1, 2, 3, and 4). The four

areas are traced to 20 years back to build the temperature profile of the landfill. With K = 2,

the landfill is segmented in two clusters, one cluster shows the anomaly area that exhibits

the pixels with the highest temperature in the landfill, while the other cluster will show the

remaining pixels of the landfill regardless of their thermal state
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Another deep learning model based on VAE was proposed, where the VAE was

trained to learn the distribution of normal data (without anomaly). When a new data with

anomaly is fed to the model, the anomaly areas can be identified and localized using the

reconstruction error. The results of this model can be compared to the previous model with

K = 2.

The main contributions of this dissertation are to:

1. Leverage state-of-the-art unsupervised deep learning method of VAE to detect tem-

perature anomalies in landfills based on both the reconstruction error of the model

and feature extraction of the encoder module.

2. Quantify the health status of the landfill at any given time using the clustering results

to build a historical behavior for each region in the landfill, and ultimately to label

it to one of the four categories (No Risk, Lower Risk, Moderate Risk and Higher

Risk). This framework is in the form of tables and graphs that constitute a monitoring

system, where the following information can be inferred:

• The past landfill temperatures profile.

• Predict the possible heat elevation that may lead to a smoldering events as we

keep adding new observations.

• Identify the percentage of each of the four categories (No Risk, Lower Risk,

Moderate Risk and Higher Risk) and how they increase/decrease along the life-

time of the landfill.

1.7 Organization of the Dissertation

In chapter 2, we reviewed the primary cause of landfill heat elevation as well as

the applicability of remote sensing data in detecting temperature changes. In addition, we

discussed the statistical approach in anomaly detection and change detection. We reviewed
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the state-of-the-art unsupervised data-driven models for anomaly detection utilizing deep

learning models. Finally, we highlighted the important factors that must be considered

when detecting anomalies in landfills.

We dedicated chapter 3 to Satellite Data Acquisition and Processing. First acquir-

ing satellite imagery for the areas of interest, then we showed the steps of calculating Land

Surface Temperature (LST). Second, each LST observation is reduced to a suitable size for

efficient processing time and memory use. During the processing of LST observation we

generated multiple data formats such as: images, temperature data in TIF files, and videos

that are used throughout this work. Furthermore, the resulting images are used to form two

datasets to train variational autoencoders (VAE) in chapter 4.

In chapter 4, we introduced a new approach to the problem of change detection in

LST remote sensing observations based on statistical sequential analysis theory. The re-

duced dimensionality aims at increasing the computational efficiency taking into account

the large size of remote sensing data. The statistical approach is based on detecting the

change in the mean parameter of the generative distribution of the stochastic data.

In chapter 5, we explored landfill heat elevation from different perspectives. First

we analyzed temporal trends of the landfill to look for any signs of heat elevation. Then we

used unsupervised K-means clustering and Heat Index (HI) to study the spatial temperature

trends, and to cluster the landfill into four thermal states (no, lower, moderate, and higher

risk areas) for each observation. Finally, we introduced the idea of accumulated indexes

and Frequency of Maxima (FM) as spatio-temporal analysis to shed light on the past his-

tory of heat elevation in landfills.

In chapter 6, we proposed using state-of-the-art unsupervised deep learning VAE to

7



detect and localize temperature anomaly in landfills based on both the reconstruction error

of the model and feature extraction of the encoder module.

In chapter 7, we evaluated the clustering results using quantitative methods, the El-

bow and the Silhouette as one of the most common internal cluster validation methods.

In chapter 8, we proposed a simplified framework to quantify the health state of

the landfill based on spatio-temporal analysis. The quantification of the health state of the

landfill can evaluate the current state of the landfill, past events and predict where the next

heat elevation or possible fire may occur.

Chapter 9, provides a brief summary and conclusions of this dissertation.
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Chapter 2

Literature Review

The US Federal Emergency Management Agency (FEMA) reports that approxi-

mately $8.4 million dollars of yearly damage to property is caused by landfill fires [15,

16]. There is a need for a timely warning tool that can identify location and spatiotempo-

ral extent of subsurface “hotspots”, perhaps aiding in prevention or minimization of costly

subsurface fires or thermal damage to liners and gas/leakage handling systems. To date, a

scalable, cost-effective, and reliable method to detect and monitor subsurface smoldering

events and related thermal imbalances at landfills remains broadly lacking [9, 17, 14].

2.1 Reasons Behind Landfill Heat Elevation

Biological degradation of organic and chemical waste is one of the main reasons for

temperature elevation in landfills. The degradation process passes through aerobic (charac-

terized by high percentage of oxygen) and anaerobic phases (characterized by the depletion

of oxygen and the existence of other gases such as methane and CO2) once a given mass of

waste is deposited in a landfill [15, 18, 19]. The byproduct of this process is heat, leachate,

and gas [20, 21, 22, 23] where rates of heat generation are higher during aerobic phases

[24, 25, 26, 27].

A case study found that landfill gas under normal operating conditions is at atmo-

spheric pressure and at a temperature of 40°C [28]. If subsurface temperature is elevated

to 100°C, the pressure would rise by approximately 20 kPa, and allow hot gasses to acc-

mulate by convection under the surface of the landfill. Under normal operating conditions,

the landfill temperature remains close to the air temperature at shallow depths and near the

edges of the landfill and reaches maximum values relative to the air and ground tempera-

tures near the areal center and at intermediate depths.
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2.2 Application of Remote Sensing in Temperature Change Detection

Previous studies indicated that a baseline “healthy” landfill thermal state can be

observed by satellite-based remote sensing [14]. Continuous and long-lasting subsurface

heating activities result in higher surface temperatures by the transfer of heat from the inte-

rior to the landfill surface [29, 10, 30]. Data from landfills experiencing SSEs, subsurface

oxidation events, or elevated temperatures suggest that temperatures inside landfills can

reach 150 °C [28]. Other studies indicated that satellite-based remote sensing applica-

tions can identify and map landfill sites based on differences between surface temperatures

and their surroundings. Remote sensing was used to map and monitor Al-Qurain landfill

in Kuwait, where temperature differences up to 4 °C were observed from the surrounding

desert area [31]. At the Trail Road landfill site near Ottawa, Canada, Kwarting and Al-

Enezi observed up to 9 °C and 14 °C temperature difference between surrounding areas

and air temperature from 1985 to 2009 [32]. However, none of these studies focused on the

detection and monitoring of persistent hotspots (anomaly temperatures) as an indicator of

landfill health disturbance.

2.3 Statistical Approach in Temperature Change Detection

Recently, we proposed a statistical on-line change detection algorithm [33]. We

formulated the problem of spatio-temporal Land Surface Temperature (LST) detection as

a statistical sequential change detection problem. LST images are modeled as stochastic

processes, with temperature changes reflected as changes in the mean parameter of the pro-

cess. A dimensionality reduction using Direct Cosine Transformation (DCT) followed by

Principal Component Analysis (PCA) was used to increase the computational efficiency

given the large size of remote sensing datasets. The results show that this approach can

detect gradual and abrupt changes in the landfill and as a special case, it was able to de-

tect anomaly changes compared to the mean taken over a large area of landfill. Statistical
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sequential analysis was investigated for temporal video scene detection in [34] and spatial

detection of macrocalcification in digital mammograms in [35].

Previous research using remote sensing of landfill surface temperatures using statis-

tical approaches focused on detecting coalmine fires from satellite imagery. Deterministic

techniques that rely on setting a detection threshold were used in [36, 37]. This approach

depends on previous knowledge of the terrain. Dynamic thresholding techniques [38, 39]

for subsurface coal fires detection use histogram analysis and varying-size moving window

methods. They define a threshold as the first local minimum after the local maximum of

the histogram within each window. A pixel is marked as “thermally anomalous” if it is

detected 70% of the time considering all window sizes. This process is followed by the

8-neighbours clustering method to identify the coal fire maps. A Gaussian process-based

online detection algorithm was used in [40] and reported 78% accuracy in detecting change

in the normalized difference vegetation index.

2.4 Unsupervised Data Driven Approach in Anomaly Detection

Recent research using deep learning showed promise in anomaly detection in var-

ious fields. For instance, Generative Adversarial Networks (GAN) were used in detecting

and localizing forgery in satellite images, which were watermarked by foreign objects of

different sizes [41]. The study assumed no forged images were available for training. How-

ever, the dataset used was small, i.e., 130 satellite images, including 30 images for training

and 100 images for validation. Fifty of the validation images were forged. A variational au-

toencoder (VAE) was used for unsupervised anomaly detection based on feature extraction

[42]. The extracted features were fed to different traditional unsupervised anomaly de-

tection methods: K-Nearest Neighbor (KNN), Local Outlier Factor (LOF), Cluster-Based

Local Outlier Factor (CBLOF), and One-Class Support Vector Machine (OC-SVM). The

VAE was trained with the MNIST dataset. The authors reported an Area Under the Curve
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(AUC) of 0.973 and 0.971 with KNN and OC-SVM using 900 -digit “7”- as normal data

and 100 random samples from the rest of the digits. Sabokrou et al. proposed an end-to-end

unsupervised model for a one-class classifier [43]. The model comprises of two networks.

The first is an autoencoder that learns to reconstruct the input with minimum error, and the

second is a discriminator with a scalar output (0,1) that generates an anomaly score. Both

networks are jointly trained to learn the distribution of anomaly-free data. The discrimina-

tor network is then used at test time to classify the anomaly input. The model was tested

on the Caltech-256 dataset and achieved an AUC and F1 of 0.942 and 0.928, respectively.

2.5 Considerations When Detecting Anomalies in Landfills

There are a few considerations when detecting anomalies in landfills:

1. Anomaly is an unusual event that needs to be identified and monitored for the lifetime

of landfills and not as an outlier to be removed.

2. The nature of heat elevation in landfills dictates that multiple anomaly areas can

exist in the same observation; hence, the detection problem should consider every

observation in small patches of reasonable size.

3. The lack of labeled data from landfill operators imposes the use of unsupervised

classification methods for anomaly detection.

In this work, we propose using unsupervised deep learning VAE in two ways to detect tem-

perature anomaly in landfills. In the first method, we train a VAE to learn the distribution

of normal data (without anomaly). When a new data with anomaly is fed to the model,

the anomaly areas can be identified and localized using the reconstruction error. In the

second method, we use the encoder module of the VAE to extract low-dimensional salient

features of the image and feed them to a K-means clustering algorithm (VAE K-means).

VAE K-means is used to either cluster the thermal status of the landfill with K = 4 or de-

tect anomaly areas with K = 2. Although, the methods use different techniques for anomaly

12



detection, VAE K-means of K = 2 can be compared to the first method based on reconstruc-

tion error as both methods only detect the anomalies without providing information on the

surrounding area. The second method with VAE K-means of K=4 provides a clearer view

of the thermal status of the anomaly area and surrounding in the landfill. The individual

clustering results are tracked and accumulated over time to assess the health status of the

landfill.
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Chapter 3

Satellite Data Acquisition and Processing

3.1 Data Acquisition

The U.S. Geological Survey (USGS) Earth Explorer tool provides the ability to

query, search, and order satellite images, aerial photographs, and cartographic products

from several sources. However, none of these representations contain information related

to temperature. To determine land surface temperature (LST) distributions, Level 1 satellite

images of the exact location of the landfills (GeoTIFF format) were downloaded from the

USGS online archive (https://earthexplorer.usgs.gov) and were then processed as described

below. Observations from Landsat satellites were used to detect the thermal state and to

identify thermal anomalies at its surface for the following landfills:

• Bridgeton Sanitary Landfill in Bridgeton, MO, USA between 2000-2016.

• Nine landfills in South New Jersey from 2000-2019 as shown in Table 1.

All relevant Landsat data for the dates shown above were downloaded and images

with only slight (10%) overall cloud contamination were retained. All retained images

were then subjected to an image acceptance test, i.e., an algorithm designed to use the

Quality Assessment band (now available with downloaded data for Landsat 5, 7 and 8) to

accept only images (in this study, the landfill scene) that have no clouds, snow, water, or

other land cover that may lead to misleading results. In addition, the images were visu-

ally checked to ensure that the landfill area was not obscured by clouds. No reliable data

were available between December 2011 and March 2013 as the Landsat 5 archive ends in

November 2011, Landsat 8 was launched in April 2013, and the Landsat 7 data for 2012

were found to be unusable for this analysis because of sensor problems. The missing 2012

data is unfortunate, but hotspots can still be tracked for over 93% of the period of interest.
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Table 1

The Location and Profile of the Selected Landfills

Landfill County Latitude Longitude Status No. Images

Carney’s Point Township Salem 39.7030 -75.4868 closed 112

Commercial Township Salem 39.2981 -75.0422 closed 112

Egg Harbor Township Atlantic 39.427 -74.5376 active 112

Millville City Cumberland 39.3832 -75.0563 active 112

Vineland City Cumberland 39.7030 -75.4868 closed 113

Woodbine Borough Cape May 39.2377 -74.7858 active 112

South Harrison Township Gloucester 39.71 -75.285 closed 112

Deerfield Township Cumberland 39.452 -75.100 active 113

Mannington Township Salem 39.589 -75.372 active 112

Images from 2000–2011 were obtained using the Landsat 5 TM. Starting from

2013, we acquired data from the Landsat 8 Operational Land Imager (OLI) and Thermal

Infrared Sensor (TIRS) instruments. The number and positions of the spectral bands in the

Landsat sensors differed, but we used all sensors that provided observations in the visible,

near-infrared (near-IR), and thermal infrared (TIR) bands. The spatial resolution of all the

sensors in the visible and near-IR bands was 30 m, and that of the TIR band was 120 m

on the TM sensor and 100 m on the TIRS sensor. However, the USGS provides observa-

tions in these bands resampled to 30-m resolution, which is the same as that of the visible

and near-IR bands. All scenes were acquired at Level 1B with observations in all bands

provided as 8 bits for the TM and 16 bits for the OLI and TIRS.
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Figure 22

Accumulated Heat Index for South Harrison Landfill by the End of Study Period on 25-11-
2019

(a) Index = 1 (51.46%) (b) Index=2 (30%)

(c) Index = 3 (16.5%) (d) Index = 4 (2.0%)

mean) that starts to increase from 2013, other pixels have already increasing temperature

behavior and should be monitored. Indices 1, 2 and 3 are the same indices in Figure 9e

represented by the colors blue, green and orange, respectively. It should be noted that

Deerfield landfill has no index = 4, which means that it is still maintaining a healthy state

and no fires have been reported as far as we know. The same analysis is applied to South

Harrison Landfill in Figure 22 (d-e), where a few pixels denoted by index = 4 (2%) of the

total pixels of the landfill show increasing temperatures since the beginning of the study.

Even though this landfill is closed since 2012, this area of the landfill still maintains high

temperature, which may continue for the following years. The general assessment for this

landfill reports a healthy state during its operation period. 51.5% maintaining -no risk-

denoted by index = 1. 30% of the landfill has -lower risk- and only 16.5% of the landfill
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show -moderate risk- but still below any warning levels. There is only (2%) of the landfill

classified as higher risk that need to be monitored.

In Figure 21 we showed Deerfield landfill state on November 11, 2019 the last ob-

servation, which is row 1 in Table 4 that concludes all the previous observations since

the year 2000. Figure 23 shows the Deerfield landfill health state in the past 20 years

(2000-2020). This shows the changes in percentages of landfill area of different risk levels.

Through the changes in the indices that indicate the risk levels, we can predict the thermal

behavior of this landfill as well as estimate its thermal behavioral patterns in past years even

if there’s no data available to study. Deerfield landfill has maintained a relatively healthy

state throughout the years of the study keeping its risk level from no risk to moderate risk.

However, there were times when the landfill showed higher temperatures with Index = 4

corresponding to a higher risk level in a couple of years. Through appropriate maintenance

of the field and environmental changes the temperatures were brought down to lower risk

levels.

Figure 23

Deerfield Landfill Thermal State Patterns From Year 2000-2019

2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2020

Years

0

10

20

30

40

50

60

70

(%
) 

L
a
n

fi
ll
 a

re
a
 p

e
r 

In
d

e
x

I = 1 No Risk

I = 2 Low Risk

I = 3  Moderate Risk

I = 4 High Risk

69



8.1 The Interpretation of Heat Indices and Quantification of Landfill Healthiness

Heat indices, as explained above, are a quantification of the behavior of each pixel

in the landfill. They are determined by tracing the temperature profile for any given pixel

during the 20 years of study and plotting each index and its corresponding pixels as shown

in Algorithms 1, 2, Figure 21 and Figure 22. Consequently, it is a measure of the health of

the landfill at any given time. To finalize this analysis, we show the summary of each index

percentage in Table 4 for the landfills listed in Table 1. Table 4 evaluates the health of the

landfills in South New Jersey, USA, by the end of study period (25/11/2019).

Generally, I=3 and 4 tend to have an increasing behavior during the whole study

period as shown in Figures 12 and 13. The more the percentage of I = 3 and I = 4 the

less healthy is the landfill. Increasing (%) of I=3 could be an indication that a smoldering

event is about to occur in that area of the landfill, especially if these indices turn to I = 4

with continuous increase of temperature. Areas with persistent I = 4 is an indication of

ongoing SEE. The more percentage of I=1, the healthier the landfill and it is not a matter of

concern as they are always below or around the mean. The color codes in Table 4 are the

same colors used in K-means and Heat Index. The same analysis is applied to Bridgeton

Sanitary Landfill, MO, USA where the indices for the Bridgeton, MO landfill were found

to be, I = 4 (25%), I = 3 (10%), and the rest of the indices I = 1 and I = 2 are 65%.

The subsurface fire was first identified in 2010 where the SSE reported can be inferred

from all the indices reaching their maximum levels and continues to burn until today. This

landfill was under scrutiny for a long time due to the continuous fires, smoke and odors

that erupted from it. Also in [14], we could identify hotspots reported in 2014 and SSE

reported in 2012, which explains the continuous heat elevation over the entire landfill.

This technique can effectively detect most hotspots and the results have been verified by a

consultant report [61, 62].
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Table 4

Summary of Percentage per Pixel per Index for Landfills Listed in Table 1 by the End of
Study Period (25/11/2019) Using the Method Described by Algorithm 2 and 3

Landfill Name I=1 I=2 I=3 I=4

No Risk Lower Risk Moderate Risk Higher Risk

Deerfield Township 43.93% 35.63% 20.45% 0%

South Harrison Township 51.46% 30.05% 16.49% 2.00%

Mannington Township 59.74% 16.58% 23.68% 0%

Egg Harbor Township 37.50% 47.64% 13.21% 1.65%

Woodbine Borough 56.27% 23.57% 19.01% 1.14%

Carney’s Point Township 46.05% 34.87% 17.11% 1.97%

Vineland City 54.98% 26.54% 11.85% 6.64%

Millville City 34.09% 51.14% 10.23% 4.55%

Commercial Township 47.04% 33.99% 15.81% 3.16%
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Chapter 9

Discussion and Conclusions

This study proposed a deep learning technique derived from satellite observations

to detect anomalies in surface temperature in active as well as closed landfills that may lead

to landfill fires. It can be used to address the problem of locating hotspots by monitoring

the thermal signature of these waste sites. In this work, a noninvasive and cost-effective

method is proposed for monitoring temperature changes through the collection and analy-

sis of satellite imagery. This overcomes the lack of any ground truth data from individual

landfills, and no expenditure of any devices nor manpower, and without relying on any

method that is otherwise costly or time consuming to enable the timely detection of sub-

surface smoldering events. To reach this goal, temperature data contained in the Landsat

satellite images were converted into a more workable format and then analyzed.

To address the problem of the absence of onsite observations, one of the main goals

of this study was to demonstrate applicability and advantages of remote sensing data cou-

pled with machine learning techniques necessary to identify landfill thermal states that can

lead to fire events. On one hand, remote sensing can be used to locate hotspots by mon-

itoring the thermal signature of these landfills. On the other hand, the machine learning

algorithms will address the problem of the missing ground truth data (labeled data) by ap-

plying unsupervised machine learning methods to detect the thermal states of the landfills

and to detect anomalies. As we have described above, the unsupervised machine learn-

ing algorithms are able to detect the hidden patterns and cluster them without the need for

human intervention [1]. Unsupervised learning pass large volumes of unstructured data to

algorithms or neural networks, enabling them to learn, infer and find relations in the given

data.
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As presented in the results section, the location of hotspots at nine landfills in

South New Jersey, were successfully detected and monitored using different clustering

algorithms; Heat Index (HI) based on the standard deviation from the mean, classical un-

supervised K-means and VAE K-means using unsupervised deep learning model. We used

the internal clustering validation tools such as Silhouette and Elbow to quantitatively show

the accuracy of our clustering results which proved VAE K-means clustering method to be

superior to the classical unsupervised K-means clustering method. The Silhouette coeffi-

cient of VAE K-means of K=2 and K=4 had improved 7-11% and 10-11% respectively as

compared to the classical K-means. While the Elbow method showed the WCSS range to

be 500-2000 for the classical K-means and 50-200 for the VAE K-means, indicating that

VAE K-means clusters are more coherent to their centroid. All these algorithms were able

to cluster the landfill into four different areas denoted as no risk, lower risk, moderate risk

and higher risk for each individual LST observation. Regardless of the method, We devel-

oped a simple framework to quantify the health state of the landfill as shown in Figure 22

and Table 4. The quantification of the health state of the landfill not only allows to evaluate

the current state of the landfill but also to shed light on past events and to predict where the

next heat elevation or possible fire will occur.

The use of satellite remote sensing techniques for the detection of possible fires

in landfills has practical significance when there is no on-site landfill data available or in

the detection of illegal waste dumps. The 30-m spatial resolution of the thermal band can

detect most of the substantial hotspots as these usually last for months and their generated

heat propagates both vertically and horizontally for distances that are detectable by satellite

infrared sensors. However, we enhanced the resolution of generated LST observations to

approximately 2-m using appropriate 2D interpolation.
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Hotspots take weeks, months or even years to develop. For this reason, the length

of time between revisits of the satellite (every 16 days) and missing observations due to

cloud coverage are not an issue. However, to minimize the limitations of satellite availabil-

ity, unmanned aerial vehicles (UAV’s) such as drones can effectively be deployed, and the

same algorithms developed herein can still be utilized.

Future work will use the results generated by this study to provide data input for a

monitoring system that can be used to issue warnings regarding potential landfill fires and

to identify anomalous thermal patterns and changes of any landfill. The results also provide

new datasets that can be used for further investigation using deep learning approaches. Our

future work will incorporate more advanced deep learning techniques to detect anomalies

directly from thermal bands such as B10 and B11 in Landsat 8. This will save ample time

in calculating LST and the thermal bands can be directly fed to VAE to detect anomalies.

These results can be used in recurrent neural network (RNN) and Long short-term memory

(LSTM) networks to predict the thermal state of the landfill.

Thermal remote sensing is an effective tool for monitoring the internal activities

of landfills and provides a reliable method for predicting fire outbreaks and preventing

possible environmental disasters. Given the availability of public data from the USGS

Explorer satellite images database, the proposed method can be applied to any landfill in

USA territory to predict subsurface thermal events.
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Appendix A

Video Links for South New Jersey Landfills Results

The following are the video links for the thermal state images, K-means clustering

and Heat index for each landfill in a separate table.

Table A1

Deerfield landfill-Cumberland county results

Video file name Link in YouTube

Deerfield TWP Cumberland index https://youtu.be/4lj22hqtrYM

Deerfield TWP Cumberland kmeans https://youtu.be/n 1OjCvHSp4

Deerfield TWP Cumberland LST https://youtu.be/LaNHwVRVy34

Table A2

South Harrison Township landfill-Cumberland county

Video file name Link in YouTube

South Harrison TWP Gloucester in-
dex

https://youtu.be/15AYH LY2dc

South Harrison TWP Gloucester
kmeans

https://youtu.be/IUH-SaqHfck

South Harrison TWP Glouch-
ester LST

https://youtu.be/ttWF4nzAaUI

82



Table A3

Carney’s Point Township landfill-Salem

Video file name Link in YouTube

Carney’s Point Township index https://youtu.be/x7U0VL7wEDg

Carney’s Point Township kmeans https://youtu.be/z5Vc44 MkG0

Carney’s Point Township LST https://youtu.be/U9BuO7SZfBo

Table A4

Commercial Township Landfill –Salem County

Video file name Link in YouTube

Commercial Township index https://youtu.be/tMWBV0hEzMc

Commercial Township kmeans https://youtu.be/m1229kDjOLw

Commercial Township LST https://youtu.be/caKHOW9Lw4k

Table A5

Egg Harbor landfill – Atlantic county

Video file name Link in YouTube

Egg Harbor Township Atlantic index https://youtu.be/FordFCn6gjk

Egg Harbor Township Atlantic
kmeans

https://youtu.be/QZ3KwF6KWIE

Egg Harbor Township Atlantic LST https://youtu.be/WZFBFBmyhkE
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Table A6

Mannington Landfill-Salem County

Video file name Link in YouTube

Mannington TWP Cumberland index https://youtu.be/F0BUVnstvzA

Mannington TWP Cumberland
kmeans

https://youtu.be/WSFH0BXI8xw

Mannington TWP Cumberland LST https://youtu.be/OSgMVNLsquQ

Table A7

Millville City Landfil–Cumberland County

Video file name Link in YouTube

Millville City Cumberland index https://youtu.be/wzyU68mtnoc

Millville City Cumberland kmeans https://youtu.be/abKIw6u3j94

Millville City Cumberland LST https://youtu.be/Yla80EdyC3U

Table A8

Vineland City Landfill –Cumberland County

Video file name Link in YouTube

Vineland City NW Cumberland index https://youtu.be/KCHFFP 2dlU

Vineland City NW Cumberland
kmeans

https://youtu.be/RuMzHHvvX5M

Vineland City NW Cumberland LST https://youtu.be/Hds32d-ArJc
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Table A9

Woodbine Landfill - Cape May County

Video file name Link in YouTube

Woodbine Borough Cape May index https://youtu.be/RpV-OcFzpBs

Woodbine Borough Cape May
Kmeans

https://youtu.be/QHdbYk6OC7M

Woodbine Borough Cape May LST https://youtu.be/mRN3T0 kjRk
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Table A10

Other Landfills

Video file name Link in YouTube

Vineland City NE Cumberland index https://youtu.be/DJidIN1Qm8Q

Vineland City NE Cumberland
kmeans

https://youtu.be/W2nuzQzF7ug

Vineland City NE Cumberland LST https://youtu.be/T9KWzQJ49Pc

Vineland City S Cumberland index https://youtu.be/BkrxLu4aeSI

Vineland City S Cumberland kmeans https://youtu.be/xj3vNb1J6Y4

Vineland City S Cumberland LST https://youtu.be/H1kdxer9g8g

Vineland City SE Cumberland index https://youtu.be/3nYLCrqsGhE

Vineland City SE Cumberland
kmeans

https://youtu.be/bx-zEPQkm4s

Vineland City SE Cumberland LST https://youtu.be/626X87mM0xI

Vineland City SW Cumberland index https://youtu.be/ZbrP9OBgWCQ

Vineland City SW Cumberland
kmeans

https://youtu.be/e8-46vfHWis

Vineland City SW Cumberland LST https://youtu.be/p6XjEEcOXm4
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Appendix B

Dimensionality Reduction in Temporal Domain Used in chapter 4

B.1 Direct Cosine Transformation (DCT)

Each frame is converted to its Direct Cosine Transformation (DCT), from which a

vector of DC coefficients corresponding to the original frame is formed as shown in Fig-

ure 1, where Xk is the vector form of the DC-coef. image.

DCT −→ DC-Coeff−→ Xk, Xk ∈ R(N×1).

where N is the dimension of the of Xk and k is the scene time index

B.2 Subspace Determination

The first M frames in the beginning of each video scene or after a change is detected,

are used for subspace determination and consequently, to estimate the mean θ0 and the

covariance Σ, before the change.

{Xk}M
k=1⇒ P ∈ R(N×M), M� N.

where P is the data matrix combing the fisrt (M) DC vectors of Xk in lexicographic

order, N is the Xk vector dimension and M is the number of frames to estimate the mean

before the change µ = θ0.

B.3 More Dimensionality Reduction Using PCA

The PCA finds eigenvalues and eigenvectors of the correlation matrix C of size

(N×N),

C = PPT
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Alternatively, we use the implicit matrix (C̃) of size (M×M) , which is very much smaller

in dimension compared to C [63, 64, 34],

C̃ = PT P

The PCA for (C̃) is computed and the result is the M largest eigenvalues λ̃i (M×

1), the diagonal elements of eigenvalues matrix and the eigenvectors ẽi (M×M). The M

largest eigenvalues λi equivalent to the original correlation matrix C and the corresponding

eigenvectors can be found using Equation 27:

λi = λ̃i

ei = λ
(− 1

2 )
i Pẽi

(27)

where λ̃i and ẽi in Equation 27 are the corresponding eigenvalues and eigenvectors of the

implicit matrix C̃.

The eigenmatrix, Φ = {ei}M
i=1 of size (N ×M). Each new Xk is mapped to the

subspace of eigenvectors corresponding to highest eigenvalues using Equation 28:

Yk = Φ
T Xk (28)

Yk is of size (M×1) , k is the scene time index index.

B.4 Estimation of the Mean and the Covariance Before the Change

The first {Xk}M
k=1 vectors are mapped to the subspace of eigenvectors and yield the

reduced dimensionality feature vectors {Y1, . . . ,YM}, which will be used to estimate the

mean θ0 = µ0 and the covariance Σ before the change. Thus, each new DC vector Xk will

be reduced to a feature vector Yk obtained by projecting Xk onto a subspace of eigenvectors

corresponding to highest eigenvalues. That is, every new frame is represented by this fea-

ture vector. The change detection algorithm will sequentially input feature vectors until a
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change is detected.

In this application we found that only one or two largest eigenvalues account for

more than 96% of the total eigenvalues of the correlation matrix which will reduce the Yk

to a single scalar value or a vector of size (2×1) respectively.

B.5 Example for Estimating the Mean and Variance before the Change

In this work, each frame from the video file represents the original LST image, is

reduced to a vector Xk of size (6864×1) as shown in Figure A1. Considering M = 8 in this

example as the number of first frames needed to determine the eigenvectors subspace, the

mean and variance before the change.

Figure A1

Dimensionality reduction using Discrete Cosine Transform followed by principle compo-
nent analysis (PCA).

Formation of subspace:

The first {Xk}M
k=1, M = 8 and Xk ∈ R(6864×1), are used to form the data matrix P of

size (6864×8).

P = [X1,X2, . . . ,X8]

Then the correlation matrix C will be as follows:

C = PPT ,

(6864×6864) = (6864×8)(8×6864)

and the implicit matrix C̃
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C̃ = PT P

(8×8) = (8×6864)(6864×8)

⇓ PCA (C̃)

λi and ei using Equation 27

⇓ Equation 28

[Y1,Y2, . . . ,Y8]

(8×8)

⇓ Estimate θ0,Σ before the change

θ0(1×8),

Σ(8×8)

Triggering the Detection Algorithm:

Each new XM+1

Xk
GGGGGGGGGA

(6864×1)
mapped to the subspace of eigenvectors

Yk
GGGGGA

(8×1)

For the spatial detection, we divide each image into macroblocks of size M×M,

where M denotes the number of macroblocks in the spatial case and denotes the number of

frames in the temporal case. Then the same steps C1-C4 were carried out for dimensionality

reduction and estimating the mean and variance before the change.
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