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Trips and falls are one of the most common causes for injuries among elderly. 

The existing trip-and-falls studies primarily focus on the proactive fall prevention 

approaches, while active prevention strategies remain largely unexplored. This thesis 

aims to provide first steps towards active trip-and-fall prevention by developing various 

algorithms capable of detecting trip in human walking faster than the human voluntary 

reactions (~200 ms). The measurements of human kinematics are used as the inputs in 

the algorithms. The proposed algorithms include three threshold-based detection 

methods, an optimized elastic time-series alignment tool called dynamic time warping 

(DTW) that overcomes problems of time dependency and signal phasing, and an 

optimized signal-frequency decomposition method known as continuous wavelet 

transform (CWT) that allows signal analysis in time-frequency domain. In addition, a 

planar covariation law (PCL), which is an intersegmental co-ordination kinematic law 

that relates lower limb angles during walking, is explored for trip gaits for the first time. 

A quantification of trip perturbation as a function of perturbation duration was 

developed to provide an insight about trip evolution and severity. The developed rapid 

trip detection algorithms integrated and combined with assistive technologies have the 

potential to serve as an enabling tools of future trip-and-fall prevention strategies.
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Chapter 1 

Introduction 

1.1. Introduction to Human Gait Perturbations 

1.1.1. Background Information 

Unforeseen gait perturbations (i.e., trips and slips) during locomotion are the main 

culprits of falls in elderly population. Trips and slips lead to a loss of balance and effect 

the stability of gait and they are associated with up to 53% of falls in such communities 

[1-3]. However, researchers have shown that individuals begin to have an increased 

relative risk of falls long before retirement age due to the start of slower reflexes and the 

non-ability to react effectively compared to their young counterpart [4-5].  

The consequences of falls, combined with improper recovery techniques often 

lead to variety of injuries and are associated with approximately 11% of serious injuries 

in elderly population and have a direct impact on the expansion of the healthcare services 

costs [6-8]. Studies of patients attending emergency departments have shown that gait 

perturbation accidents caused 55.4% of the total fractures occurred for men and 75.9% of 

total fractures for the women [9]. A random survey of patients that suffered bone 

fractures and required surgical operation showed that 50% of those patients had some 

kind of disability one year after an injury [9]. Moreover, the gait perturbation 

phenomena’s result in tens of thousands of “minor” injuries such as sprains, strains, 

contusions and lacerations each year [10]. Thus, in order minimize fall-related economic 

costs it is important to advance the understanding about trip occurrences and fall 
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prevention strategies. Many biomechanical studies have investigated the trip and fall 

phenomena examining the influencing factors causing trip and post-trip human balance 

recovery strategies [11]. In general, multiple factors contribute to the selection of 

recovery strategies. In the literature, the convention about the recovery strategies selected 

by the person is often associated with the timing of the trip onset during walking gait 

(i.e., the swing phase), despite the fact that the swing percentage is not a physical 

quantity that can be directly measured and an existing large variability in employed 

recovery strategies by subjects during mid-swing (40-70%) gait [12].  

Three most commonly observed trip-induced recovery strategies include (i) the 

lowering strategy when trip happens during the late swing phase, (ii) the elevating 

strategy for trip onset in early swing perturbation, and (iii) the reaching strategy if trip 

occurs in the late swing gate phase [13-16]. Recently, model-based prediction of 

employed strategies was developed, however, for the purpose of this study and specific 

focus on trip detection, a convention based on swing percentage was used. Studies that 

investigated the effect of walking speed on the trip onset and recovery outcome reported 

opposite effects. In [17], slow walking speed was shown to be associated with a higher 

risk for trips, especially in the elderly population. However, a study in [18], suggested 

that fast walking speed helped subjects to successfully recover from the trip as opposite 

to what would be expected. Furthermore, later study [19] showed that the human 

response (reaction) time is more important for successful trip recovery strategy compared 

to the walking speed and that the duration of body forward rotation after a trip can affect 

the recovery capabilities. 
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 Other studies on trip induced falls confirmed that there exists a critical point of 

body orientation with respect to the center of body mass during the trip, beyond which it 

is hard to initiate a successful recovery [20].Moreover, studies investigating the direction 

of a fall and the likely impact location of the human body for different types of trip-

induced falls at various gait speeds (i.e., 1.99m/s, 1.43m/s and 0.66m/s) revealed that 

trips always resulted in a forward fall with frontal impacts into abdominal pelvis location 

regardless of the gait speed or when the trip was induced [21]. 

Current methodologies for trip-and-fall prevention rely on preventative 

approaches by improving subjects’ trip balance recovery reactions through exposing 

subjects to repetitive trip exposure training [12]. Such training helps improve the trip 

balance recovery of the subjects by an increased margin of stability and step length 

during recovery steps [12]. For the purpose of active trip prevention using robotic 

interventions, a rapid trip detection is required as a first step. Many previous studies 

focused on trip-and-fall detection devices and algorithms [22-25].  

Unfortunately, all these systems and algorithms are not efficient enough to be 

used for rapid trip-and-fall detection due to their slow algorithm processing time to detect 

the perturbation and their high false alarm rates. Based on the authors’ best knowledge 

there does not exist any active system that can directly detect trips and assist with balance 

recovery to prevent trip-and-fall in real-time applications. Due to the rapid nature of trip 

perturbation, such a system would require fast trip detection (<100 ms) and an external 

assistance by the assistive device. This is required to allow sufficient time for the device 



4 

 

to provide active assistance by exerting an assistive torque to perform corrective balance 

recovery. 

1.1.2. Trip and Fall Definitions 

Trip is typically defined as the sudden stop of the swing foot movement while the 

individual’s momentum makes the body center of mass shift forward leading to a balance 

loss that can result in a fall [20].  

 

Figure 1 

Comparison Between Trip and Normal Walking Gait 

 

  

 

 

 

Note. Trip event versus normal walking is presented using stick figure presentation. 

White circles present hip, knee, and ankle joints, respectively. Blue segment presents 

thigh, magenta presents shank and red presents the foot of the participant. A, walking 

with trip event induced. a, Stance phase. b, Trip onset. c, Recovery phase. B, Normal 

walking without trip. d, Stance and swing phase. e, Heel to heel strike. 
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Trips typically happen due to the unevenness of a surface or an obstructed view. 

Figure 1 shows a stick figure comparison of a swing foot trajectory for trip and normal 

walking gait. 

A fall is defined as the body's fast downward movement without any control of 

the rate neither the angle of that movement, from a higher to a lower level [26]. Falls due 

to trips are characterized by a shift of the body center of mass forward and an increase in 

the body angular acceleration to an irreversible point at which upright balance is lost. 

1.2. Gait Perturbation Detection Systems 

1.2.1. Individual Wearable Systems 

Gait perturbations like slips and trip may result in the variation of key 

biomechanical parameters of the human body, which provide important indicators to 

detect those phenomena. For such purpose, individual wearable systems that allow to 

measure those quantities can be used to detect gait perturbations. Previous studies on fall 

and gait perturbation detections often used accelerometers, gyroscopes, and 

electrocardiography (ECG) as primary systems in their data collection [27-29], while 

others used glucometers, pressure sensors, electroencephalography (EEG) or 

electromyography (EMG) [30-31]. 

The choice of which system can be used depend on the overall purpose, 

performance requirements, desired results, and practicality of using the system in specific 

environments. Overall, the small, wearable systems provide an advantage compared to a 

larger stationary system to be used for such purposes due to their light weight, and the 
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ability to be used in an everyday environment during activities of daily living as 

compared to other laboratory-based systems. 

1.2.2. Visual Wearable Systems 

Vision-based fall detection systems has gained popularity in recent years, due to 

not requiring subjects to wear any sensors or devices. Extensive research in this direction 

has been demonstrated, and some of which [32-33] show promising performance and 

results. Although most of the visual systems are mainly in forms of cameras and are not 

light weight, cheap, and portable as wearable devices, they offer advantages which make 

them a good candidate depending upon the environment that they going to be used at and 

required system performance.  

Most fixed RGB cameras are not intrusive and can operate wirelessly which 

eliminate the constraints of battery life encountered in the wearable devices’ categories. 

Studies that used vision-based approach systems have used infrared cameras [34], RGB 

cameras [35], and RGB-D depth cameras [36]. However, their use is limited to indoor 

spaces and prone to occlusions, therefore limiting their applicability for everyday use and 

outdoor environment. 

1.2.3. Ambient Systems 

Ambient sensor-based detection systems have been developed in recent years that 

use variables from the ambient sensor as inputs. Studies conducted on fall and gait 

perturbation detection that used ambient sensors as their primary data collection and 

detection systems used active infrared, magnetic switches, and ultrasonic system [37-38], 
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while others used microphones and vibration sensors [39-40]. The selection of the 

appropriate tool to be used for the detection purposes depends on many factors such as 

cost and environmental conditions.  

The ambient-based systems are an alternative option, since they are non-intrusive 

systems which provide more flexibility and comfort compared to other detection systems 

which can be more heavy or complex to operate. However, these systems introduce 

complexity in measurements and suffer from sensitivity issues, as they cannot operate in 

diverse environmental conditions such as high humidity or temperature. 

1.3. Detection Time and Sensors Quantifications for Different Trip Detection 

Systems 

1.3.1. Pre-Impact Leading Detection Time 

Pre-impact leading detection time is defined as the elapsed time from fall 

detection to body-ground impact and it provides information about how fast and efficient 

the fall detection system is. Many studies reported the pre-impact leading detection time 

using different algorithms and systems with the longest reported time being 750 ms, the 

shortest being 150 ms, and an average of 450 ms [41-42].   

For the purpose of trip detection, the desired pre-impact detection time should be 

as long as possible, as this means that the algorithm can detect trip sooner, ideally 

immediately after its onset. Moreover, this also allows more time to assist human perform 

any recovery strategy to prevent a fall. 
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1.3.2. Trip Detection Time 

The trip detection time is different than the more commonly reported pre-impact 

leading detection time in the fall detection literature. The trip detection time is defined as 

time elapsed from trip onset to trip detection and it provides information about how 

efficient and fast the detection system is. Short detection time can significantly impact the 

real-time implementation by allowing additional time to provide external assistance by 

robotic devices. Many studies reported a wide range of trip detection times [43-45], with 

the fastest reported detection time being 359 ms [46]. 

1.3.3. Sensors Number 

Number of sensors used in trip detection systems plays a significant role affecting 

accuracy and complexity of the system. An increased number of sensors allows to 

measure and record additional kinematic data resulting in a higher accuracy of the 

algorithm, however, it results in higher cost and complexity of the system. Most studies 

on fall and gait perturbation detection used one or two individual wearables inertial 

sensors attached to a different location on the human body [47-50], while some studies 

investigated use of up to four sensors depending on the experimental setup and desired 

result [51-52]. 

1.3.4. Sensors Locations 

The inertial sensor locations are chosen based on the desired kinematic 

parameters to be recorded and analyzed. Most studies focusing on trip and fall detection 

used lower back and chest as primary location for their inertial sensors, since the motion 
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of the trunk was shown to be a good indicator of a fall event [53-55]. Studies 

investigating more diverse location for the sensor’s placement included upper back, hips, 

and head locations, to provide indication about trip onset based on the measurements of 

the angular momentum observed during fall events [56-59]. 

1.4. Gait Perturbation Detection Systems in Biomedical Applications 

Gait perturbation detection algorithms have been extensively researched due to its 

importance and utility and had a wide range of application in biomedical field. Some 

algorithms use static thresholds approach based on some kinematic parameters in order to 

detect falls [60-61], while others use an adaptive dynamic one for better efficiency [62-

63]. Other studies used different approach and used machine learning and virtual reality 

in order to detect fall [64-65].  

Pre-impact fall wearable detection systems have been proposed to be an effective 

fall prevention strategy and many of those systems have been commercialized in the 

market (i.e., MedicalGardien, MobileHelp).  is still not fully explored and the algorithms 

of trip detection are still in their preliminary phase. Providing a rapid trip detection 

algorithm can be a valuable resource as part of the implementing an active trip-and-fall 

prevention strategy using robotic assistive device, since it is a required part that has to be 

integrated in the device design and embedded in the control algorithm of device. 

Rapid trip detection is required to provide sufficient time for the device to provide 

active external assistance during the trip recovery to prevent falls and injuries. The main 

focus of this study is to provide a variety of algorithm in both time domain and frequency 
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domain based on fixed threshold methods in order to detect trip effectively and in a time 

shorter that the human reflexes, which is approximately 200 ms.  

The first chapter of this work aims to provide an adequate literature review about 

the gait perturbation detection and the previous findings related to this topic in addition to 

different experimental tools used to provide an algorithm capable of trip detection. The 

second chapter aims to provide different technical aspects of the experimental setup used 

in this work, including platforms instrumentations and research protocol. In Chapter 3, 

two-time domain trip detection algorithms approaches using fixed threshold and elastic 

signal alignment method based on the lower back angular acceleration are discussed and 

the different results obtained by such algorithm are shown.  

In Chapter 4, a frequency domain detection algorithm based on a continuous 

wavelet transform technique was used in the first part in order to provide a new manner 

to detect signals anomalies in frequency domain. In the second part, a qualitative 

approach was used based on a planar correlation law (PCL) that connects different lower 

joint kinematics through a planar relationship in order to provide a descriptive approach 

for trip detection and gait perturbation in general. Finally, a conclusion that provides a 

comparative approach was introduced in order to provide an overall picture of different 

algorithms used in this work in addition to the efficiency of each one of them as with 

respect to the other. Such work aims to expose new methods and techniques that can be 

used not only to detect trip in the biomechanical filed but also in related fields were 

signal anomalies need to be detected and quantified respectively. 
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Chapter 2 

Trip Platform Design, Experimental Protocol and Data Acquisition System 

In this chapter, the design process and requirements of the mechanical platform used to 

induce trips are presented. The experimental protocol for human subject testing, the data 

acquisition systems for data collection, and the pre- and post-processing signal analysis 

and procedures are discussed. The overall goal of this chapter is to present the 

experimental setup and protocols used to perform human subject experiments and 

measure human kinematics during human regular walking with trip perturbation on a flat 

surface. The data post-processing procedures described in this chapter are used to 

investigate the human reactions to trips and analyze the kinematics data of subjects’ body 

motion responses to the trip onset. Careful design of experiments and high-quality data 

collection are important to guarantee the integrity and the homogeneity of the results, due 

to difficulty of repeating trip experiments when targeting unexpected trips. 

2.1. Trip-Inducing Mechanisms 

Study about trip-and-fall prevention and intervention devices require the collection and 

recording of true trip-induced events and thus a tripping mechanism system is needed. 

The existing studies investigating trip-and-falls used various mechanisms to induce trips. 

Some studies used a retractable cord attached to the ankle of the participant that can be 

stopped using a solenoid-driven or other brake system which when activated, clamp the 

cord between two grooved surfaces to stop trailing foot/leg and therefore induce trip [66].  
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Other studies equipped each foot with independently controlled device, where the main 

reason was to maintain symmetry and contribute to the unexpected nature of the gait 

perturbations, due to subjects not being aware on which foot the trip will be triggered 

[67-68]. Alternative trip triggering mechanism reported in the existing literature include 

use of a hidden tripping board in a form of a flapping mechanism that uses springs as 

storing energy system to spring up suddenly from the walkway and trip the subject when 

triggered [12]. 

Similarly, a strategy of using a hinged metal plate positioned flat on the ground 

and controlled using electromagnets and memory springs was used to trigger trip in [69]. 

The device was triggered by cutting electricity on the magnets, which made the plate 

spring upright in to the vertical position by the help of memory springs on both sides of 

the plate. Furthermore, other studies used treadmill in order to induce trip, participants 

were instructed to walk with a self-selected pace and the treadmill belt suddenly 

accelerated in the direction backward when inducing trip is desired [70].  

Recently, an apparatus for delivering a trip-causing obstacle directly on a 

treadmill with precisely-controlled release timing was developed. Other studies used a 

spring-loaded tripping board that get flipped when an optical foot detector hidden on the 

side of the walkway is activated in order to induce trip [71]. 

2.2. Trip Platform Design Requirements and Process 

For the purpose of this study to conduct trip experiments, a trip triggering 

platform was designed to allow testing. The first requirements for the platform design 

were related to the strength, portability, and compact design. The platform needed to be 
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long enough that allows subjects to walk multiple steps to achieve normal walking gait 

have the ability to be portable and stored in a small area after the end of experiments for 

the purpose of practicality. The second design requirement was the rapid actuation.  

The system needed to be faster than the human reflexes in order to trigger trip. In 

addition, the system need be concealed so that the participant will not be aware of when 

and where the event will happen in order to obtain their natural walking gait and 

experience an unexpected trip. The final requirement is that the technology used in the 

platform triggering mechanism needs to operate efficiently with minimal complexity in 

order to prevent excessive maintenance or resources and has to be safe, due to working in 

close proximity to human subjects.  

Based on the above requirement, the size of the walkway platform designed for 

this research was 7 m × 1 m × 0.15 m (length × width × height) to provide the needed 

space for the participants to walk on a moderately low platform that will allow the 

implementation of triggering trip system underneath the walkway.  

The width of the trip triggering device was only half of the width of the platform, 

due to the requirement of triggering only swing/trailing leg during the swing portion of 

the gait. Due to the vertical retraction mechanism of the plate, the trips can be induced on 

either leg when subject is walking in one or the other direction on the platform. The 

regular construction wood was chosen as the base material, due to its sufficient strength, 

low-cost, and ease of fabrication.  
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For the storage purposes, the walkway of the platform was divided into three 

panels that can be assembled together using a fixation U-bolts on both sides of each panel 

plates with different dimension that were already existing in the Biomechanics lab at 

Rowan University (see Figure 2). 

 

Figure 2 

Top View Structure of the Experimental Platform 

 

 

 

 

 

 

Note. The structure of the platform is constituted by three panels (i.e., I, II, and III) 

attached by U-bolts from sides. The length of the individual panel was 2.3 m. Three 

different force plates and their locations are demonstrated in the drawing. 

 

Trip was induced by an obstacle device consisting of a wooden plate of 0.09 m 

high, 0.5 m wide, and 0.04 m thick. It was equipped with a two-compression loaded 

spring and guided by two slippery low friction rods from both sides to ensure both 
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symmetry and guidance of the plate in order to prevent any jamming or disorientation 

when launched up or when the participant collided with it (see Figure 3). 

 

Figure 3 

Cross Section of the Tripping Mechanism and the Latching System 

 

 

 

 

 

 

Note. The structure of the tripping mechanism consists of a wood plate driven by two 

compression loaded springs positioned in the bottom and guided by two slippery low 

friction rods for symmetry and guidance. 

 

The plate was locked in a vertical position with the help of a latching mechanism 

consisting of a spring-loaded side bolt latch. During normal walking tests, the top of the 

plate was hidden and aligned evenly with the rest of the platform in order to make it 

difficult to localize its location by the subjects, enabling to make the perturbation events 

as sudden and natural as possible. During a perturbation event, the latch is released using 
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a rope passing under the platform and controlled by a human observer. At that moment, 

the plate is raised due to the stored energy in the springs and trip is induced by 

obstructing the trailing/swing foot of the participant. 

The design was first sketched and modeled using a computer-aided design 

software (CATIA V5 R21). Each panel of the platform was designed separately to allow 

flexibility of modifications and the precision of the interactions between different 

components. All the parts were then assembled into one product using the assembly 

design capability of CATIA V5R21. In addition, a kinematic simulation of the system 

during the triggering phase was accomplished using the DMU Kinematics library in the 

CAD software to ensure that all parts of the system are working properly. 

 Unfortunately, the above-mentioned design was not used as the main platform for 

trip experiments, due to pandemic and an alternative, simpler solution was sought to 

perform the experiments. Therefore, the experiments were performed using a rope 

attached to the heel of the participants to trigger trips by pulling it at specific times. A 

small load cell was mounted on the foot and attached in series between the foot and the 

rope to measure the exerted perturbation forces and serve as a validation for the trip onset 

and duration. Additional reasons and advantages for adopting the latter approach rather 

than using the platform is that restricting the participant leg using pulling rope techniques 

is much easier to implement and provides more flexibility for testing setup since no 

structure needs to be build and fixed in specific place in order to make the experiments. 

 Using a rope setup is a simpler and more cost-effective solution with additional 

capabilities to measure the forces exerted on the targeted leg by the intermediate load cell 
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that was not considered in the first approach. The limitation of using rope to trigger trips 

is that in this approach the subjects need to drag the rope during the experiments that can 

potentially influence gait in particularly when the rope is very long. To minimize this 

effect, we chose a light weight, non-stretchable rope and an observer would carefully 

feed the rope during the experiments. 

2.3. Experimental Protocol, Data Acquisition and Data Post-Processing 

2.3.1. Inertial Sensors Specifications and Configuration 

For the purpose of collecting kinematics data during the experiments, the inertial 

measurement unit (IMU) system was attached on human body parts.  The IMU systems 

are commonly used in biomechanical studies to measure the human kinematic data, due 

to their small size, light weight, and being easy to wear.  

 

Figure 4 

SparkFun MPU 6050 IMU Sensor 

 

 

 

 

Note. The MPU 6050 sensor electronic board with its different pins and components used 

in the experimental setup. 
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The IMU system used in this study consisted of seven 9-degree-of-freedom 

Sparkfun MPU6050 IMU sensors with 50 Hz sampling frequency mounted on different 

body segments were used (see Figure 4). 

The IMU units are synchronized with each other and data from all of them was 

collected simultaneously using a Raspberry Pi electronic board featuring quad core 64-bit 

processor, 4GB RAM with wireless networking connection. 

 Each Sparkfun IMU electronic board is composed of 3-axis accelerometer 

capable of providing measurements up to ±12 g, which provides different limb linear 

accelerations, a 3-axis gyroscope capable of providing measurements up to ±2000 deg/s 

that provides the angular velocities of the participants’ limbs, and a 3-axis magnetometer. 

2.3.2. Load Cell Specifications and Configuration 

The determination of the exact trip onset moment plays an important role in the 

analysis of the data, since it allows to know at which swing phase portion the trip 

occurred.  

Knowledge about the instance of the gait perturbation onset has an implication for 

predicting the potential recovery strategy used by the participant as well as allowing to 

compute of the rapidity of the detection algorithm by taking it as a reference point.  
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A 

 

B 

 

Figure 5 

S-Load Cell with Housing Attachments and the Tension Cable 

 

 

 

 

 

 

Note. A, The S-load cell inside a custom designed housing attached to the participant’s 

foot using a shoe strap. B, the S-load cell used to determine the trip onset. C, Shoe strap 

used to mount the housing of the load cell on to the foot. 

 

To establish the detection of the trip onset, a portable S-type beam high-precision 

load cell (Walfront PSD-S1) with a scale reading up to 981 N was mounted on the 

participants’ ankle using shoe straps and a custom designed housing for that specific 

purpose (see Figure 5). 

 A non-elastic rope was attached to one side of the load cell that allowed to apply 

tension force when pulling the rope to induce trip perturbations. During normal walking, 

the attached rope was free to move and no significant tension force was applied to the 

load cell. In the case of trip onset, the rope attached to the load cell was suddenly stopped 

and the tension force was applied on the load cell for the entire duration of the 

C 
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obstruction of leg movement, which allows the determination of the trip onset time and 

duration of trip perturbation. 

2.3.3. Raw Data Post-Processing 

The recorded data from the IMU sensors measuring the subjects’ kinematic data 

during the experimental trials contained the raw output of the accelerometer and 

gyroscope signals in their local coordinate frames. These measurements were post-

processed and analyzed. Compared to the gyroscope sensor, which provides direct 

measurements of the angular velocities with their corresponding orthogonal axis, the 

accelerometer readings measure accelerations that include contributions due to dynamic 

motion and gravity.  

Therefore, the readings from gyroscopes are suitable to be applied in diverse 

dynamic conditions were rotational velocities are introduced, however, its reading tends 

to drift with time. This drawback affects not only the output signal but also the 

subsequent computations based on this quantity and thus filtering operations are needed 

to compensate the low frequency signal drifts.  

On the other hand, the accelerometer, which measures linear accelerations in its 

local coordinate frame, works well in static conditions as opposed to the gyroscope, 

however, its reading has noise and is affected by vibrations and other external forces. 

Hence, its output signal cannot be used directly for joint angle computations, therefore, 

filtering action is required as well in order to remove the dynamic noise accumulated 

during the trials.  
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For the filter choice and based on the literature regarding filtering human motion 

kinematic data, a lowpass 2nd order Butterworth filter with a 6 Hz cutoff frequency was 

chosen in order to attenuate the noise while preserve the information contained in the 

sensors output [72-73]. 

2.4. Subjects Selection Criteria 

The human subject testing was performed to collect and analyze the experimental 

data. Two young male adults volunteered to participate in this study. The selection 

criteria considered volunteers’ health conditions. Requirements including no preexisting 

record of illness such balance disorder, neuromuscular diseases, or falls neither any 

history of fall arrest training in order to preserve the natural behavior of human subjects 

during perturbation onsets. The participants had an average age of 25 ± 3.55 years and 

average high of 1.76 ± 0.058 m, and an average weight of 79.33± 10.33 kg. 

2.5. Experimental Protocol 

Both volunteers wore tight sportswear for easy sensor attachment during the 

testing trials. Before starting the experiments, the subjects were asked to try regain their 

balance in case of trip occurrence. For security reasons, a safety harness was attached to 

the shoulders of the participants with addition to wearing the knee pads and ankle joint 

elastic brace.  

Seven IMU sensors with a 50 Hz sampling frequency were fixed on the 

participants’ lower back, left and right thigh, shank and heel. The subjects were instructed 
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to walk along a 7 m walkway at a self-selected speed. An inelastic rope attached to a S-

load cell was used to trigger and determine trip onset. 

 Trip was induced using a combination of pulling motion and a solenoid-cam cleat 

rope restriction system to stop the trailing foot at different portions of the swing phase of 

a gait in order to trigger various recovery responses to trip perturbations, (see Figure 6). 

 

Figure 6 

Experimental Setup Used in Trip Experiments 

 

 

 

 

 

 

Note. A schematic figure explaining the experimental setup used in the trip trials. 1, 

General setup configuration. a, IMU sensor. b, S-load cell attachment. c, Cam-Cleat rope 

restriction device. d, Inelastic rope. 2, Cam-Cleat used as the rope restriction device. 3, 

Lower back IMU unit used in the experiments to measure trunk angle. 
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A total of 40 trials were conducted. Among those, 30 of them included trip 

perturbations induced at different swing phase portions, while the other 10 were normal 

walking trials that served as a reference in comparison of the kinematic variables. The 

collected data were verified to ensure the absence of any missing or distorted sensor data 

and post-processed for later analysis. 

2.6. Trip Classifications 

Significant amount of research has been carried out about the recovery strategies 

that individuals employ to avoid fall after a trip and their relationships with the timing of 

trip onset. [71] Studies concluded that there is a correlation between the trip onset time 

and the recovery strategy used resulting in three main strategies. The lowering strategy is 

when the tripped foot is immediately lowered on the ground and acts as a support leg 

during the recovery phase. 

 Such strategy was observed only during late swing phase trip perturbation. 

Elevating strategy is when the tripped foot is immediately raised above the obstacle and 

the limb accomplishes the recovery. Such strategy was observed only in the early swing 

phase trip perturbation.  

The reaching strategy is very similar to the elevating strategies with a small 

difference related to the limb flexion, since this strategy it primarily executed at the hip 

level. Such strategy was observed in mid-late swing phase [74-75].  
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In this study, trips were classified according to the above-mentioned classification 

reported in the existing literature. All three main trip categories were considered to 

perform a comprehensive analysis of trips occurring throughout the whole swing phase.  

Early trip is classified if the trip perturbation is induced during the 60% to 70% of 

the gait (i.e., ~10-40% of swing phase), mid-trip induced during 70% to 85% (i.e., ~40-

70% of swing phase), and late trip if trip occurs after 85% of the gait (see Figure 7). 

 

Figure 7 

Foot Trajectory During Human Gait with Noted Three Swing Phases 

 

 

 

 

 

Note. A schematic figure of different gait features and phases of human gait with marked 

three portions of swing gait corresponding to three trip recovery strategies employed by 

the subjects experiencing trip. A, Early trip (lowering recovery strategy). B, Mid trip 

(elevating recovery strategy). C, Late trip (reaching recovery strategy). [76] 
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2.7. Kinematic Variable Selection 

In order to better understand how a trip can be detected, it is imperative to have a 

comprehensive understanding on the type of data and inclusion of biomechanical 

parameters, including selection of anatomical joints and their kinematics that need to be 

considered. The analyses of joint angles as a function of time or gait phase can allow 

identification of the required joint positions at different gait stages during locomotion to 

maintain gait stability and normal gait progression.  

However, such quantities cannot directly provide any measures of the joints’ 

performance neither the control of movement. Compared to the joint angles, the joint 

angular velocity measurements provide additional information about how the subject 

performed joint motions and the corresponding walking gait. However, such data cannot 

explicitly indicate the smoothness of the movement and it does not yield important 

information necessary for detection of sudden joint movements.  

Joint angular accelerations represent the rate of change of the joint angular 

velocities and are related to the muscle efforts overcoming inertial forces to either stop or 

start a movement. Investigating the joint angular acceleration profiles can provide 

information about the expected trajectory profiles at different gait phases and contain an 

information about the characteristics of the walking gait. 

 Deviations from those profiles can indicate a presence of sudden movement 

abnormalities during walking that can be used for trip detection purposes as considered in 

this thesis.  
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During basic walking the hip joints will experience an abduction and adduction 

movement in addition to flexion and extension, while the knee and the ankle joints will 

primarily experience a flexion and extension movements.  

When abnormal obstruction of walking movement occurs at the foot level as in 

the case of a trip, the perturbation transferred proximal to the center of mass and a sudden 

angular acceleration at the hip joint level is observed that is caused by the sudden shifting 

of the body’s center of mass and a forward rotation of the trunk. Therefore, monitoring 

and analyzing the angular acceleration profiles of the lower back can provide information 

about trip perturbations and falls  



27 

 

Chapter 3 

Threshold-Based Trip Detection Methods 

In this chapter, three threshold-based trip detection methods are described that 

were developed to detect trip during walking in the shortest possible time after the trip 

onset. The approach relies on using a wearable IMU system to allow trip detection in the 

everyday environment. Trip events introduce perturbations in the human body kinematics 

compared to normal walking, which lead to deviations in many human kinematic 

variables, including the motion of the trunk.  

Therefore, the proposed trip detection methods described in this thesis rely on 

detecting changes in human trunk kinematics and quantify them in a fast and efficient 

manner. The first method is based on the angular jerk (J) of the lower back in the sagittal 

plane serving as the main trip indicator. The angular jerk (J) is obtained by direct double 

integration of the angular velocity measurements from a single IMU mounted at the 

lower back. The second method is based on the computed quadratic mean (i.e., root mean 

square (RMS)) of the angular acceleration signal of the lower back (θ ̈). The third method 

uses a statistical measure of the magnitude of the lower back angular acceleration also 

known as signal magnitude area (SMA). 

The trip detection algorithm was designed based on the fixed threshold of all three 

individual parameters taken as the maximum value of the two-standard deviation (2σ) 

envelope obtained from normal walking trials across both subjects. Trip was detected 

when the real time measured signal surpassed the threshold value related to the jerk 

method, RMS method, and SMA method, respectively. For all three methods, the desired 
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trip detection time was under 100 ms, which is faster than the human voluntary reactions 

(~200 ms) [77]. The algorithms capabilities of such rapid trip detection would be useful 

for the real-time implementation of active trip-and-fall prevention devices and systems. 

3.1. Angular Jerk Method 

In order to detect trip, it is essential to select a kinematic parameter that can be 

used to detect the abnormal changes in the body movements caused by tripping. The 

lower back angular jerk can potentially provide the needed sensitivity to detect such 

abnormalities, due to previous studies showing that the changes of the back angle in the 

sagittal plane are correlated with the trip onset. 

Angular jerk (J) is defined as the rate at which the angular acceleration (θ ̈) 

changes with respect to time. Measuring angular jerk of anatomical joint can provide a 

vital information about how smooth the human movement is, as it is very sensitive to the 

sudden changes in the resultant forces affecting the motion and the resulting changes in 

the accelerations [78]. Analyzing angular jerk (J) signals of the lower back can be utilized 

to detect sudden abnormalities in subjects’ trunk movement when compared to a normal 

walking signal. From a mathematical perspective, the angular jerk (J) is defined as  

where θ represents the angular displacement of the lower back. Figure 8 shows the trip 

detection decision tree algorithm using the angular jerk as the main indicator. The 

algorithm flow is as follows. 

 

𝐽 =
𝑑3θ

dt3
 (1) 



29 

 

The first step consists of initializing the size of the sliding window that defines the 

vector length of the analyzed signal used in post-processing or in real-time applications. 

The second step consist of filtering the raw data coming from different IMU sensors and 

load cell to remove noise from the signal that can affect the calculation and the system 

detection algorithm. 

A threshold value ( Jtr) is introduced in the next step of the algorithm to make a 

decision about the instance of trip occurrence by comparing and identifying when the 

measured signal exceed the threshold. 

 The threshold value ( Jtr) was taken as the maximum value of the two-standard 

deviation (2σ) envelope obtained from several normal walking trials as shown in Figure 

9. Trip was detected when the measured signal surpassed the threshold values of  Jtr= 

1600 m/s3.  

To test the efficiency of the proposed algorithm, a total of 30 trip trials from two 

participants with trips triggered at different swing phases (i.e., early 60-70%, mid 70-

85%, or late trip 85-100% of gait), were collected and analyzed to evaluate how fast and 

accurately the algorithm detects trip events across all collected trip trials.  

Figure 10 present trip trial for the early, mid, and late trip occurrences with 

respect to normal walking behavior. Marked are key instances, including the heel strike, 

the toe-off, trip onset instance, trip detection time, and the two-standard deviation (2σ) 

threshold discussed above.  
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The results show that during normal walking the angular jerk values observed are 

below the two-standard deviation threshold. 

 

Figure 8 

Trip Detection Decision Tree Algorithm Based on Lower Back Angular Jerk 

Measurements  

 

 

 

 

 

 

 

 

 

 

 

Note. The algorithm indicates trip was detected if the angular jerk signal exceeds the two-

standard deviation threshold and continues to increase. 
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During the stance portion of the second step before the perturbation was induced, 

the rate of change of the angular jerk follows the expected trend, similar to that during 

normal walking, which indicates that the trunk movement is controlled and no sudden 

perturbation or force is being applied on the human body.  

Soon after the toe-off instance, when the trip perturbation is induced, the angular 

jerk sharply increases and exceeds the threshold, hence the trip is detected. 

 

Figure 9 

Mean and Two-Standard Deviation (2σ) Envelope of the Lower Back Angular Jerk  

Signal During Normal Walking 

 

 

 

 

 

 

 

Note. The mean (blue) lower back angular jerk signal of ten trials during normal walking 

with a two standard deviation envelope (red) and marked toe-off instance (magenta). 
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Figure 10 

Lower Back Angular Jerk During Normal Walking and Early, Mid and Late Trip 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note. Presented are two full steps, first one being normal walking and second includes 

trip event for the case of A, an early trip, B, mid-trip, and C, late trips with trip detection 

times of 30 ms, 55 ms, and 50 ms, respectively. 

A 

B 

C 
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During the stance portion of the second step before the perturbation was induced, 

the rate of change of the angular jerk follows the expected trend, similar to that during 

normal walking, which indicates that the trunk movement is controlled and no sudden 

perturbation or force is being applied on the human body. Soon after the toe-off instance, 

when the trip perturbation is induced, the angular jerk sharply increases and exceeds the 

threshold, hence the trip is detected. 

 

Figure 11 

Comparison of the Trip Detection Times (Mean and Standard Deviation) Across Both 

Subjects for the Angular Jerk-Based Algorithm 

 

 

 

 

 

 

 

Note. Results of the average detection times across both subjects for the early, mid, and 

late trips with the largest mean trip detection time of 46.6 ms during mid trip and the 

shortest detection time of 37.4 ms during an early trip. 
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Figure 11 shows results of the average detection times across both subjects for the 

early, mid, and late trips. The results show that the proposed algorithm can detect trip 

events efficiently with the overall mean time of 43 ms and a detection rate of 100% 

across all trials including different trip onset timings. The detection time is much shorter 

compared to the human voluntary reaction time to trip perturbations [78]. Therefore, the 

developed system can be possibly integrated in an assistive device for trip balance 

recovery, where it is necessary to detect trip immediately after trip onset allowing any 

actuated mechanical systems to provide assistance in adequate timing to prevent a fall. 

3.2. Signal Magnitude Area Method 

The second proposed trip detection method relies on using a signal magnitude 

area (SMA) of the trunk angular acceleration as the main trip indicator. This method has 

been previously used to detect daily physical activities from accelerometer signals based 

on human posture in healthy and amputated individuals, although has never been used in 

order to detect trip perturbation as proposed in this thesis [79-80]. SMA is a statistical 

method that measures the magnitude of variation of a continuous-time waveform quantity 

using normalized integration of the original values. SMA is mathematically defined as 

where N is the length of frames (N=5) in the sliding window that is equivalent to (N =100 

ms) considering our sampling frequency of 50 Hz (dt=20 ms). For the purpose of trip 

detection using the SMA as a main indicator, the detection algorithm flow is as follow. 

 𝑆𝑀𝐴 =
1

𝑁
| ∫ 𝜃̈(𝑡) 𝑑𝑡|

𝑁

0

  (2) 
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The first step consists of initializing the sliding window by providing the width of 

the window and specifying its type (i.e., overlap or translating). The selection depends on 

the frequency components of the measured signal in order to provide a good resolution of 

the SMA as input into the algorithm.  

 

Figure 12 

Mean and Two-Standard Deviation (2σ) Envelope of the Lower Back Signal Magnitude 

Area During Normal Walking 

 

 

 

 

 

 

 

Note. The mean (blue) lower back signal area magnitude of 30 trials during normal 

walking with a two standard deviation envelope (red) and marked toe-off instance 

(magenta). 
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Figure 13 

Trip Detection Decision Tree Algorithm Based on Signal Magnitude Area 

 

 

 

 

 

 

 

 

 

 

 

Note. The algorithm determines the trip onset and duration when the SMA of the lower 

back angular acceleration signal exceeds the two-standard deviation threshold (SMAtr) 

and continues to increase. 
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Figure 14 

Lower Back Signal Magnitude Area During Normal Walking and Tripping for the Case 

of Early and Mid Trip 

 

 

 

 

 

 

 

 

 

 

 

 

Note. Results for two complete consecutive steps are shown in both plots with the first 

one being normal walking and the second one including trip perturbation. Normal 

walking and tripping for the case of A, early trip with trip detection time of 65 ms and B, 

mid-trip with trip detection time of 60 ms. 

 

A 

B 
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SMA is computed for the previous N frames of the measured trunk angular 

acceleration signal during prost-processing or last N frames in real-time implementation. 

In the next step, raw data from the IMU sensors are filtered to remove noise that can 

affect the reliability of the system detection. A 4th-order Butterworth filer with a 3 Hz 

cutoff frequency was used to filter the data. A threshold value (SMAtr) is introduced in 

the algorithm in order to determine the trip onset. 

 

Figure 15 

Lower Back Signal Magnitude Area During Normal Walking and Tripping for the Case 

of Late Trip 

 

 

 

 

 

 

Note. Results for two complete steps are presented with the first one being normal 

walking indicated between the two dashed blue lines, while the second portion of plot 

include a trip event. For this late trip trial, trip was detected in 48 ms. 
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Trip onset was detected when the SMA of the measured signal exceeds the 

threshold values (SMAtr).  

The threshold value SMAtr=3 deg/s2 was taken as the maximum value of the two-

standard deviation (2σ) envelope obtained from ten normal walking trials of the subjects 

as shown in Figure 12.  

 

Figure 16 

Comparison of the Trip Detection Times (Mean and Standard Deviation) Across Both 

Subjects for the Signal Magnitude Area Algorithm 

 

 

 

 

 

 

 

Note. Mean trip detection time across both subjects for the early, mid and late trip had the 

largest observed mean value of 74.4 ms for mid trip and the shortest for late trip with58 

ms. 
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Figure 13 visualizes the decision tree of the developed detection algorithm using 

the SMA as a main indicator. Figures 14 and 15 show trip detection results using the 

SMA-based algorithm for three typical trip perturbation trials (i.e., early, mid, and late 

trips). Included are key gait features  

The actual trip onset and detection instance, as well as the force reading from the 

S-load cell that serves as a validation of true exerted trip perturbation. The results of the 

SMA-based trip detection algorithm show that during normal walking behavior the mean 

SMA of the angular acceleration is under the threshold limit with a periodic trend, which 

both indicate the absence any abnormal joint kinematics due to perturbation. As soon as 

the perturbation occurs, the SMA values increase dramatically and exceed the threshold 

value, hence trip is detected.  

Figure 16 shows the summary of trip detection times using the SMA-based 

algorithm for all recoded trip trials. The mean value of trip detection across early, mid, 

and late trips with various perturbation lengths was 66.4 ms with 100% detection rate, 

which shows the effectiveness and efficiency of the algorithm. The average detection 

time is approximately one quarter of the human voluntary reaction time to gait 

perturbations [78]. Therefore, the algorithm has the potential to be implement in future 

human balance recovery systems that help prevent falls.  

3.3. Quadratic Mean Method 

The quadratic means of a function, also known as a root mean square (RMS), is a 

mathematical tool that is used to compute the average power of the measured angular 

acceleration signal. RMS has been used in wide range of application including gait 
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analysis and biomedical research [82]. The quadratic means of the lower back angular 

acceleration θ ̈ defined in the sliding window interval T1≤ t ≤ T2 can be expressed as 

The simple computation process of the RMS represents an attractive approach to obtain 

the characteristics of the signal pattern, due to the fact that it does not require any signal 

preconditioning or analysis (e.g., an accurate signal peak detection). 

 The physical meaning of the quadratic mean values presents the average of the 

magnitude of the lower back angular acceleration as a function of a sliding window and 

thus can be used effectively for the purpose of trip perturbation detection.  

It is interesting to notice that for periodic functions like the case of the lower back 

angular acceleration, the RMS value over all the time of the trial during normal walking 

is equal to the RMS of one gait cycle [83].  

The trip detection algorithm using RMS is similar to those described in previous 

sections by starting with determining the width and type of a sliding window and then 

reading and filtering the raw IMU data. A fixed threshold is introduced to provide a 

reference for trip detection. 

 

 

 

 𝜃̈RMS = √
1

(T2 − T1)
∫ |θ̈

2
|dt

T2

T1

  (3) 
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Figure 17 

Mean and Two-Standard Deviation (2σ) Envelope of the Lower Back Angular 

Acceleration Quadratic Mean During Normal Walking 

 

 

 

 

 

 

 

Note. The mean (blue) lower back angular acceleration signal using quadratic mean of ten 

trials during normal walking with a two standard deviation envelope (red) and marked 

toe-off instance (magenta). 

 

Trip was detected when the real time measured signal surpassed the threshold 

value of  RMStr=1500 deg/s2. Figure 18 shows the visualization of the decision tree of 

the developed detection algorithm using RMS as a main indicator. 

 Figures 19 and 20 show results of the lower back angular acceleration quadratic 

mean (RMS) during normal walking and trip gaits.  
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Three representative profiles of RMS and the performance of trip detection 

algorithm for the early, mid, and late trip are presented.  

 

Figure 18 

Trip Detection Decision Tree Algorithm Based on The Quadratic Mean 

 

 

 

 

 

 

 

 

 

 

 

Note. The trip event is detected if the quadratic mean of the lower back angular 

acceleration signal exceeds the (2σ) threshold and keep increasing in the next instance. 
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Figure 19 

Lower Back Angular Acceleration Quadratic Mean During Normal Walking and 

Tripping for the Case of Early and Mid- Trip 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note. Results of  θ̈(t) RMS values for two total steps in both plots with the first one being 

normal walking and the second one including trip disturbance. Normal walking and 

tripping for the case of A, early trip with trip detection time 58 ms and B, mid-trip with 

trip detection time of 70 ms. 

B 

A 
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Figure 20 

Lower Back Angular Acceleration Quadratic Mean Signal During Normal Walking and 

Tripping for the Case of Late Trip 

 

 

 

 

 

 

 

Note. Results for two complete steps are presented in the plot with one the first one being 

normal walking indicated between the two dashed blue lines, while the second portion 

other of plot include a trip event. For this specific late trip trial, trip was detected in 68ms. 

 

The threshold was determined as the maximum value of the two-standard 

deviation (2σ) envelope obtained from normal walking trials of both subjects as shown in 

Figure 17. The results of the computed RMS values during the normal walking (i.e., 

portion before labeled toe-off event) exhibit a repetitive pattern which indicates that the 

movement is harmonic. 
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 The values of the RMS oscillatory profile are below the two-standard 

deviation(2σ) threshold value. An increase in the RMS values is observed immediately 

after the trip onset surpassing the threshold value.  

The computed RMS values further increase until force form the load cell is 

reduced to almost zero. Hence trip is detected and the duration of the trip can be 

estimated until the RMS reaches its first peak value indicating termination of trunk 

flexion.  

 

Figure 21 

Comparison of the Trip Detection Times (Mean and Standard Deviation) Across Both 

Subjects for the Quadratic Mean Algorithm 

 

 

 

 

 

 

 

Note. Between both subjects and for the early, mid and late trip the biggest observed 

mean value was 55.8 ms while the smallest was 48.2 ms. 
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Figure 21 shows the summary of trip detection times quadratic mean algorithm 

for early, mid, and late trips. The mean value of trip detection times across all recorded 

trip data with various perturbation lengths was 51.0 ms with 100% detection rate, which 

shows the effectiveness and efficiency of the algorithm. 

3.4. Elastic Time-Series Alignment Trip Detection Method 

All three methods mentioned in the previous sections showed high effectiveness 

in detecting trip during normal walking. Their advantages are simple integration and fast 

computational speed making them attractive methods to use. However, their limitation 

are exposed when dealing with a constantly changing environment where the IMUs 

cannot provide contextual information. For example, a sudden change in the walking 

speed (i.e., from normal to slower or faster pace) or bending to pick up an object.  

Such changes will provide a wide variation in the signals coming from the IMU 

sensors compared to the normal walking and the fixed threshold-based methods cannot be 

used to distinguish between the entire spectrum of human motions and trip-and-falls. 

Thus, there is a need to use an alternative approach that can provide same effectiveness as 

previous methods, while overcome their limitation, which can be potentially 

accomplished using the elastic time series alignment domain. 

3.4.1. Dynamic Time Warping 

Dynamic time warping (DTW) is a time series analysis tool commonly used in 

voice recognition and machine learning domain. [84] DTW allows to measure the 

similarities between two sequences of signal and provides an optimal alignment between 
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both of them even if the signals vary in speed and/or length. Dynamic time warping 

concept is based on the minimization of the effects of shifting and/or distortion in time 

through the optimization of a cost function. DTW provides an elastic transformation of 

time series that allows signal comparison and allows detection of similar signal shapes 

with different phases. To demonstrate the principle of DTW for trip detection for a 

chosen measurable variable (i.e., lower back angular acceleration), we consider a lower 

back normal walking signal  𝜃̈𝑁: = (𝑥1, 𝑥2, … , 𝑥𝑁) of length N ∈ ℕ and a tripping signal 

𝜃̈𝑇: = (𝑦1, 𝑦2, … , 𝑦𝑀) of length M ∈ ℕ. If both signals take values from the same feature 

space ϕ than in order to compare both signals 𝜃̈𝑁 , 𝜃̈𝑇 ∈ 𝜙, it is necessary to compute a 

local Euclidian distance measurement dE between individual elements of both signals, 

which can be defines as 

The distance dE has small values if both signals are similar and large values if 

they are different. The local distance in dynamic programming is called cost function [85] 

and in order to best align the normal walking and trip signal all the points included in 

both signals need to be arranged in order to minimize the cost function.  

Let C ∈ ℝNXM represent the local cost function for all pairwise distances between 

the individual elements of the 𝜃̈𝑁  and 𝜃̈𝑇  vector signals, then the local cost matrix for the 

alignment purpose of both the normal walking and the trip signal can be mathematically 

presented as 

 𝑑𝐸: 𝜙x𝜙         ℝ ≥ 0. (4) 
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where c(i, j) represents an individual element in a C matrix. Once the local cost matrix 

between all different point of the two signals is built, the alignment path between θ̈N and 

θ̈T can be calculated and considered as a sequence of points 𝑝: = (𝑝1, 𝑝2 … 𝑝𝑘) with   

pl = (pi, pj) ∈ [1: N] x [1:M]  for  l ∈ [1: K] which must satisfy a few conditions.  

The first one is the boundary conditions with  𝑝1 = (1,1) and 𝑝𝑘 = (N, M), which 

implicates that the start and the end points of the two signals need to be aligned together.  

The second condition is the monotonicity condition, where 𝑛1 ≤ 𝑛2 ≤ ⋯ ≤ 𝑛𝑘 and   

𝑚1 ≤ 𝑚2 ≤ ⋯ ≤ 𝑚𝑘, which implies the ordering of the points from both signals must be 

preserved with respect to time placement. The last condition that needs to be satisfied is 

called step size condition were ( 𝑝𝑙+1 – 𝑝𝑙 ) ∈ {(1,1), (1,0), (0,1)} which limits the 

warping path from large shifts in time during the optimization process. The cost function 

associated with the optimal warping path computed with respect to the local cost matrix 

can be expressed as 

where c (𝑥𝑛𝑙,𝑦𝑚𝑙)  presents the local cost element of the optimal path correlating the 

element 𝑥𝑛𝑙  of  𝜃̈𝑁 and 𝑦𝑚𝑙 of  𝜃̈𝑇  and the dynamic time warping distance function can 

then be computed as 

 𝑐(𝑖, 𝑗) = √(𝑥𝑖 − 𝑦𝑗)
2

 , 𝑖 ∈  [1: 𝑁], 𝑗 ∈  [1: 𝑀], (5) 

 𝑐𝑝(𝜃̈𝑁 , 𝜃̈𝑇) =  ∑ 𝑐

𝑗

𝑘=1

(𝑥𝑛𝑙 , 𝑦𝑚𝑙) (6) 
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where 𝑃𝑁𝑋𝑀  presents the set of all possible warping paths and 𝑝∗ presents an optimal 

warping path between 𝜃̈𝑁 and  𝜃̈𝑇  that have minimal total cost among all possible 

warping paths. The built accumulated cost matrix D is defined as 

Using the DTW, it is possible to gauge the similarity between the normal walking 

signal and the trip signal in order to identify when the changes due to the trip occur even 

when the signals do not share same alignment in terms of frame length. For example, if 

we consider same sampling frequency of data but different walking speed of a subject, 

then the length of data collected during respective gait cycles will be different. In the 

following subsection we provide an alternative method to overcome this limitation. 

3.4.2. Dynamic Time Warping Optimization for Trip Detection 

The standard version of the dynamic time warping provides a good solution for 

analyzing our trip detection problem when post-processing the data. However, the 

method cannot be directly applied for real-time implementation due to the boundary 

conditions of both signal in the algorithm (i.e., both beginning and end points of both 

signals) need to match, which is rarely the case in real-time applications. During real-time 

 𝐷𝑇𝑊 (𝜃̈𝑁 , 𝜃̈𝑇)  = 𝑐𝑝∗(𝜃̈𝑁, 𝜃̈𝑇)  =  min { 𝑐𝑝(𝜃̈𝑁 , 𝜃̈𝑇), 𝑝 ∈  𝑃𝑁𝑋𝑀  }, (7) 

 First Row: 𝐷 (1, 𝑗) =  ∑ 𝑐

𝑗

𝑘=1

(𝑥1, 𝑦𝑘), 𝑗 ∈  [1: 𝑀] (8) 

 First column: 𝐷(𝑖, 1)  =  ∑ 𝑐

𝑖

𝑘=1

(𝑥𝑘 , 𝑦1), 𝑖 ∈  [1: 𝑁] (9) 

 All other elements: D (i, j) = 𝑐(𝑥𝑖,𝑦𝑗) +min {D (i-1, j-1), D (i-1, j), D (i, j-1)} (10) 
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data streaming, the signal of interest starting from the heel strike event is updated as a 

function of time with new points being added continuously.   Therefore, an optimization 

is needed for the algorithm to make it adaptable for our trip detection purposes and 

provide the capability to align and match any portion of a tripping signal when compared 

to the full normal walking gait cycle. 

Similarly, as defined in Section 3.4.1., a full normal walking gait cycle signal is 

defined as 𝜃̈𝑁: = (𝑥1, 𝑥2, … , 𝑥𝑁)  of length  N ∈ ℕ and a part of a tripping signal is                  

𝜃̈𝑇: = (𝑦1, 𝑦2, … , 𝑦𝑀)  of length M ∈ ℕ. Different than before, the length of signals is 

N≫M. Let’s fix a local cost function c with the goal to find a subsequence                                  

𝜃̈𝑇  (𝑎∗: 𝑏∗): = (𝑦𝑎∗, 𝑦𝑎∗+1,…, 𝑦𝑏∗) with 1≤ 𝑎∗ ≤ 𝑏∗ ≤ 𝑀 that minimizes the DTW 

Euclidian distance to 𝜃̈𝑁 over all subsequence 𝜃̈𝑇  (𝑎∗,𝑏∗). Mathematically we express it 

 (𝑎∗,𝑏∗) = argmin {DTW (𝜃̈𝑁, 𝜃̈𝑇[a:b])} (11) 

The indices 𝑎∗ and  𝑏∗ as well as an optimal alignment between 𝜃̈𝑁 and the 

subsequence 𝜃̈𝑇  (a*: b*) can be computed by a modification in the initialization of the 

DTW algorithm as described in Section 3.4.1.  

The basic idea is not to penalize the omissions in the alignment between X and Y 

that appear at the beginning and at the end of 𝜃̈𝑁 . More precisely, we modify the 

definition of the accumulated cost matrix D as 

 First Row: 𝐷 (1, 𝑗)  =  ∑ 𝑐

𝑗

𝑘=1

(𝑥1, 𝑦𝑗) , 𝑗 ∈  [1: 𝑀] (12) 

(a,b): 1≤ 𝑎 ≤ 𝑏 ≤ 𝑀 
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In order to detect trip with elastic time series dynamic alignment properties, the 

DTW algorithm was integrated into the trip detection algorithm and the flow process of 

its operation is described as follow.  

 

Figure 22 

Mean and Two-Standard Deviation (2σ) Envelope of the Difference Between Two Full 

Gait Cycle Lower Back Angular Acceleration Signals During Normal Walking 

 

 

 

 

 

 

 

 

Note. The mean (blue) lower back angular acceleration warped signal difference using 

DTW of ten trials during normal walking with a two standard deviation envelope (red) 

and marked toe-off instance (magenta). 

 

 

 First column: 𝐷(𝑖, 1)  =  ∑ 𝑐

𝑖

𝑘=1

(𝑥𝑖, 𝑦1) , 𝑖 ∈  [1: 𝑁] (13) 
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Figure 23 

Decision Tree of the Trip Detection Algorithm Using the DTW 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note. Trip is detected if the difference between the warped reference signal and the 

testing signal exceeds the (2σ) threshold and keeps increasing in the next instance. 

 

The first step consists of the initialization process by defining the width and type 

of the sliding window of the input data as well as introducing a data of full normal 

walking gait cycle (i.e., length of data between two consecutive heel strikes) used as the 

main reference for signal comparison. In the next step, the raw data from the IMU 
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sensors are filtered to eliminate any instrumentation noise in the measurements that can 

affect the calculated cost function. Next, the local distances c between the two signals are 

calculated, the confusion matrix is constructed, and the optimal path is determined using 

the DTW to provide the best alignment between both signals.  

Lastly, a fixed threshold (𝐸𝑡𝑟) is introduced to provide a reference value as a 

criterion to determine trip onset. The criteria that is used to differentiate between the trip 

and non-trip situation was determined based on computing the difference between two 

full normal walking signals after being warped in time using the proposed algorithm.  

The normal walking signals were extracted from ten total trials obtained 

experimentally from two participants and both the mean and standard deviation of the 

difference between the different warped signals were computed, as shown in Figure 22. 

 The threshold value was determined as the maximum difference value E between 

the mean and the bounds of the two-standard deviation (2σ) envelope of the normal 

walking signals after being warped using DTW. Trip was detected in trials when the 

computed difference E between the measured signals after being warped and aligned 

surpassed the threshold value of   𝐸𝑡𝑟 =60 deg/s2.  

To provide a better understanding of the algorithm, Figure 23 shows a 

visualization of the decision tree of the detection algorithm using DTW. In order to 

provide an insight about the warping effect of DTW on two signals being compared to 

each other, Figure 24 shows comparison plots of signal with and without applied DTW.  
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Figure 24 

Normal and Early Trip Trial Comparison with and without the Use of DTW 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note. Normal walking and tripping signal A, without and B, with the application of 

DTW. 

 

B 

A 
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Figure 25 

Lower Back Angular Acceleration Normal Walking with Respect to Tripping for the Case 

of Early and Mid-Trip Using DTW 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note. Two full steps are provided in both plots with one being normal walking and one 

including trip disturbance. A, Early trip case with trip detection time 26ms. B, Mid-trip 

case with trip detection time of 39ms. 

A 

B 
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Figure 26 

Lower Back Angular Acceleration Normal Walking with Respect to Tripping for the Case 

of Late Trip Using DTW 

 

 

 

 

 

 

 

 

Note. Two full steps are provided in the plot with one being normal walking and the other 

being a late trip with trip detection time 42 ms. 

 

Specifically, the angular acceleration profiles of normal walking and trip’s 

warped (Fig. 24 (A)) and non-warped (Fig. 24 (B) signals of different lengths compared 

to the normal walking are shown to demonstrate the difference after signal warping. 

Comparison results of non-warped and warped signals show that during the stance 

phase both signals are similar but no perfect alignment exist due to walking gait 

variations, differences in walking speed, and possible measurement or instrument errors.  

 

 



58 

 

Figure 27 

Cost Matrix with Minimum Cost Warp Path Used for Alignment for the Case of Early 

and Mid-Trip 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note. The confusion matrix with optimal warping path used to align trip and normal 

walking signals for A, early and B, mid-trip trial. The encircled regions show the effect of 

trip perturbation 

A 

B 



59 

 

Thus, its direct calculation of the difference between the reference normal 

walking and trip signal will not provide accurate results, since the Euclidian distance 

calculation will not reflect their actual similarity.  

Applying the DTW can significantly minimize or eliminate these differences. To 

demonstrate the effectiveness of the proposed DTW-based trip detection algorithm in 

terms trip detection time and detection rate, we analyzed all 30 trip trials. Figure 25 and 

26 shows results of the representative trials of early, mid, and late trips being warped in 

time with respect to a reference signal of normal walking.  

The results show that the resultant difference between both signals after being 

warped using DTW during the normal walking phase (i.e., portion before labeled toe-off 

event) lays under the two-standard deviation threshold with its values being close to zero. 

This result indicate that both the reference and tripping signal follow the same harmonic 

trend. When the trip occurs, the value of the resultant difference increases dramatically 

and surpasses the threshold, hence trip is detected.  

For the purpose of clarification of the way the optimal path is selected by the 

algorithm during alignment of both the normal walking and trip signal, Figures 27 and 

Figure 28 show plots of the cost matrix values with the selected minimum cost warping 

path for the early, mid, and late trips.  

Each pixel in the confusion matrix presents a cost value with a range between 0 

(blue) and 1 (red). Higher values (brighter colors) present cells with high cost which 

implicate larger difference between both signals’ points, while lower values (dark colors) 

implicate low cost values, which means a high similarity between both points. Figure 29 
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shows a histogram of the average and standard deviation values of trip detection times for 

early, mid and late trip across the entire data set of 30 trials for both participants. 

 

Figure 28 

Cost Matrix with Minimum Cost Warp Path Used for Alignment for the Case of Late Trip 

 

 

 

 

 

 

 

 

Note. The confusion matrix with optimal warping path used to align trip and normal 

walking signals for late trip trial. The encircled regions show the effect of trip 

perturbation. 

 

The results show that the DTW algorithm can rapidly detect different types of trips 

effectively with an overall mean detection time of 70 ms and a detection rate of 100% 

across the early, mid and late trips with different perturbation duration lengths (50-200 

ms).  
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The DTW capabilities of comparing signals that have different lengths or phase with 

respect to time and allowing real-time signal comparison makes this method an attractive 

approach to rapidly detect trips. 

 

Figure 29 

Comparison of the Trip Detection Times (Mean and Standard Deviation) Across Both 

Subjects for the DTW Algorithm 

 

 

 

 

 

 

 

 

 

Note. Between both subjects and for the early, mid and late trip the biggest observed 

mean value was 74 ms while the smallest was 67.2 ms. 

 

In conclusion, this chapter presents different time domain-based methods for 

rapid trip detections using signals from body-worn inertial sensors. The average detection 

times from all methods are several times shorter compared to the human voluntary 

reactions.  
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In the first portion of this chapter, three algorithms using fixed thresholds were 

developed based on the lower trunk angular jerk, signal magnitude area of the lower back 

angular acceleration, and the RMS of the lower back angular acceleration. 

The second part of this chapter presents trip detection method using the 

integration of an elastic time domain used for signal alignments. Overall, both the jerk 

and the quadratic mean methods showed the best results in detecting trip with the fattest 

mean detection times across all the trials of 43ms and 51ms, respectively.  

These rapid detection times are primarily possible due to the fact that RMS 

amplifies the abrupt changes in the mean values of the acceleration within the sliding 

window, while the jerk shows the rate of the lower back acceleration that is sensitive to a 

sudden trunk movement during trip perturbation. 

The simple but effective RMS and jerk algorithms are suitable for real time 

implementation specially as they require only simple calculations and do not require high 

computational power to work efficiently. However, both methods in addition to the 

SMA-based trip detection method suffer from the problematics related to the static 

threshold implementation as the main source of decision.  

The fixed threshold-based methods are not flexible in regards to the variations in 

walking speed or cadency of the gait that also motivated this work to provide more 

flexible detections algorithms such as DTW. The performance of the DTW-based trip 

detection algorithm was slightly inferior compared to the developed jerk- or RMS-based 

algorithms with a mean detection time of 70 ms.  
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However, it provides more flexibility in trip detection as it can accommodate the 

changes in walking speed, variation of gait cadency, and can handle difference in phase 

shift of signals with great efficiently. Indeed, the DTW algorithm is more complex and 

requires larger computational power compared to other methods. 
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Chapter 4 

Frequency-Based Trip Detection Method 

In this chapter, a frequency decomposition-based trip detection algorithm using a 

lower back angular acceleration signal (θ̈) in the sagittal plane is described. The 

developed algorithm is based on the continuous wavelet transform (CWT) using a 

custom-designed reference signal called mother wavelet. The lower back angular 

acceleration (θ̈) in the sagittal plane was obtained by direct integration of the angular 

velocity measured by the IMU system. The proposed approach allows to break up the 

recoded trip signal into shifted and scaled version of the predefined mother wavelet 

sample that is constructed based on the mean signal of multiple trip events. The 

continuous signal of (θ̈) is then compared to the generated mother wavelet to identify the 

trip perturbation onset. Trip was detected when the correlation coefficient of the 

measured signal surpassed the fixed threshold value CWTtr.Threshold was defined as the 

maximum value of the two-standard deviation (2σ) envelope obtained from the 

correlation coefficient of normal walking trials of subjects after being treated by the 

CWT. 

4.1. Continuous Wavelet Transform  

Methods discussed in Chapter 3 all use the temporal domain-based techniques to 

detect trip event and were shown to be efficient. However, signal analysis in time domain 

does not always reveal complete information included in a signal and therefore, a 

frequency analysis of a trip signal can provide additional and critical information about 
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trip occurrence that is not observable using only time domain methods. The most well-

known frequency analysis tool, which is the Fourier analysis, has been used for years 

effectively in order to provide comprehensive signal analysis in frequency domain. 

Unfortunately, the Fourier analysis is not suitable to be directly used for our trip detection 

purpose, since during the signal transformation in to the frequency domain, the time 

information is lost. 

In other words, when a Fourier transform analysis of a trip signal is performed, it 

is impossible to identify when a particular perturbation event occurred. Therefore, there is 

a need to use an alternative frequency analysis method such as the continuous wavelet 

transform (CWT) that can correlate the time domain information with the frequency 

domain. 

A continuous wavelet transform is a mathematical frequency decomposition tool 

that converts a signal into a different form by allowing scaling and translation of a base or 

mother wavelets to vary continuously. A mother wavelet is a reference signal wave 

defined on a short interval and constrained by specific conditions. The signal has to have 

an oscillating wavelike behavior with its energy concentrated in time domain. This 

wavelet reference is needed in order to accomplish the scaling and the translations 

required to perform the continuous wavelet transformation. Signal comparison of θ ̈ to the 

mother wavelet through CWT allows to reveal features and characteristics included in the 

original signal before decomposition.  

Let 𝜃̈𝑇 and 𝜓 of respective lengths N and M be the input signal of lower back 

angular acceleration and the mother wavelet reference tripping signal, respectively. Using 
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our trip-based mother wavelet, the similarity between both signals can be described by 

computing the sliding cross-correlation coefficient defined as 

Where 𝜓̅𝑎,𝜏 . present the complex conjugate of 𝜓𝑎,𝜏. The above equation can provide an 

insight about how a function 𝜃̈𝑇(t) is decomposed into a set of different mother wavelet 

versions 𝜓𝑎,𝜏 .The variables a and 𝜏 presents the new dimensions of the transformation 

with (a) being the scale and 𝜏  being the translation, after the wavelet transform. For 

completeness of the process from a mathematical point of view, the inverse wavelet 

transform can be obtained using the following expression 

 𝜃̈𝑇(𝑡) =∬ 𝛾(a,𝜏) 𝜓𝑎,𝜏(𝑡)𝑑𝜏𝑑𝑎  (15) 

All sub-wavelets also called as daughter wavelets are generated based on the scaling and 

translation of mother wavelet 𝜓𝑎,𝜏. The mother wavelet is defined as 

The purpose of term (
1

√𝑎
)  in the mother-wavelet is to provide energy normalization 

across different scales and to ensure that || 𝜓𝑎,𝜏(𝑡)|| is independent of variables a and τ. It 

is important to notice that in the equations (16) above, no specific definition for the 

wavelet type was made, which is the main difference between the wavelet transform and 

the Fourier or other similar transforms.  

 𝛾(a, 𝜏) =  ∫ 𝜃̈𝑇(𝑡)𝜓̅𝑎,𝜏 (𝑡)𝑑𝑡,  (14) 

  𝜓𝑎,𝜏(𝑡) = 
1

√𝑎
 𝜓 (

(𝑡−𝜏)

𝑎
) (16) 
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It is also worth noticing that the wavelet transforms theories deal with general 

properties of wavelet without any specificity as long as the wavelet respects the main 

wavelet property conditions, which is the admissibility condition. The admissibility 

condition of a mother wavelet can be expressed mathematically as 

where Ψ(ω) presents the Fourier transform of 𝜓(t). The implication of this condition is 

that the integrable squared function 𝜓(t).  

that satisfies the described mathematical relationship can be used to analyze and 

reconstruct the signal without any loss of information during the process. In addition, the 

condition implies that the Fourier transform of the mother wavelet function 𝜓(t) is zero at 

a zero frequency, which is expressed as |𝛹(𝜔)|2=0 at ω=0. 

Another implication from the previous relationship is that at frequency ω=0, the 

average value of the wavelet in the time domain is equal to zero that is expressed in a 

mathematical presentation as ∫ 𝜓(𝑡)𝑑𝑡=0. If the average value of the wavelet is zero in 

the time domain that implicates that the signal 𝜓(t) needs to be oscillatory or in other 

words, the function 𝜓(t) must be a wave. In addition, we can conclude that the wavelet 

transforms of one-dimensional function is two-dimensional since both scaling and 

translation are added. 

 

 

 ∫
|𝛹(𝜔)|2

|𝜔|
 𝑑𝜔 < +∞, (17) 
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4.1.1. Scale Tuning and Selection 

As described in previous section, continuous wavelet transforms use two main 

properties to make the needed frequency decomposition, which are scaling and shifting of 

the mother wavelet signal. Scaling presents how much the wavelet is compressed or 

stretched in time domain. 

 The smaller the scale factor, the more wavelet is compressed and the higher the 

frequency of a targeted mother signal, which implies the rapidly changing signal that can 

include features of rapid anomalies in a signal (e.g., trip) that can be detected with higher 

resolution. 

 On the other hand, the bigger the scale factor, the lower is the frequency and the 

more stretched is the wavelet. Such mother wavelet configuration allows for comparison 

and effective detection of slowly changing features in a signal.  A relationship that 

correlates the scale factor (a) is defined as 

where Fa is the frequency corresponding to the scale, Fs is the sampling frequency, and 

Fc is the central frequency of the mother wavelet being used. Thus, it is important to 

carefully select the scale factor for optimal detection of trip perturbation.  

In order to select the appropriate scale for the trip signal analysis, a short Fourier 

transform was applied on all recorded trials obtained during the experiments to examine 

the most common range of frequencies during normal walking and trips triggered at 

 𝑎 =
𝐹𝑐

𝐹𝑎 𝐹𝑠
, (18) 
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different instances. Figure 30 shows the Fourier analysis results of the lower back angular 

acceleration 𝜃̈ signal of the representative early, mid, late trip trials. The most common 

frequencies observed during normal walking and trip gaits across various walking speeds 

were in a range between 1-4 Hz, with the majority of the frequency changes located at the 

2 Hz range. 

 

Figure 30 

Frequency Analysis of Normal Walking, Early, Mid and Late Trips Using Fast Fourier 

Transform 

 

 

 

 

 

 

 

Note. Results of the frequency analysis of the lower back angular acceleration θ ̈ signal 

across the entire duration of three representative trials indicate the most common 

frequency range being 1-4 Hz. Each trial contains several normal walking steps and trip 

perturbed gait with (A) early, (B) mid, and (C) late trip onset. 
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This observation is in accordance with the biomechanics literature, where the 

frequency of human motion during walking is reported to be ~2 Hz [86]. Therefore, in 

our analysis we considered the corresponding frequency equivalent scale of a= 50. 

4.1.2. Mother Wavelet Design and Integration Based on Trip Data 

Human trip perturbation results in a loss of balance event due to the shifting of the 

center of gravity around the foot contact point, which causes the trunk to rotate forward 

and pivot around that point. Therefore, the lower back angular acceleration signal θ ̈ 

during trip phase increases compared to the signal observed during walking.  

In Chapter 2, such signal behavior was exploited in order to detect gait 

perturbation, which is different compared to the main approach in this chapter, where the 

lower back angular acceleration signal 𝜃̈ is used to design a mother wavelet signal based 

on trip perturbation patterns. 

 The wavelet is designed by averaging 30 trip trials with trip onsets at different 

swing phase portions and with different durations that were collected during our 

experimental trials. Figure 31 shows the mean profile of the trials. The degree of 

similarity between the continuously measured signal 𝜃̈ is compared to the mother-wavelet 

through wavelet analysis to detect trip events. 

 The process of designing the mother wavelet starts by using a 2 second window 

of the average signal of the trip perturbation portion with the trip onset being at its center. 

The treatment of centering trip onset timing is intentional to allow a recognition of the 

trip signal characteristic features as soon as the perturbation starts.  
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The obtained average trip signal was transformed into an adapted mother wavelet 

using a least-squares polynomial approximation and defined on the interval [0,1], with 

the admissibility condition related to the wavelet definition being satisfied. Figure 32 

shows obtained result of the mother wavelet trip signal. 

 

Figure 31 

Averaged Lower Back Angular Acceleration Signal 𝜃̈ During Trip Perturbation with Its 

Two-Standard Deviation (σ) Envelope 

 

 

 

 

 

 

 

Note. The obtained mean trip pattern curve has a 1 second window width and was 

obtained using 30 different trip perturbation patterns. 
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After the adapted mother wavelet is constructed, the next step is to integrate it in 

the trip detection algorithm and inspect the performance of the algorithm on different trip 

perturbation signals.  

The first step of the algorithm starts with the initialization process of selecting the 

width and the type of the sliding window used to feed the measurements into the 

algorithm. In the next step, the raw measurement data coming from the IMU sensors are 

filtered using 2th order Butterworth filter with a 6 Hz cutoff frequency. 

 

Figure 32 

Normalized and Transformed Averaged Trip Signal with Its Adapted Mother Wavelet 

 

 

 

 

 

 

 

Note. The obtained adapted mother wavelet curve (dashed red) is normalized in the [0 1] 

interval generated from 2 second actual trip pattern. 
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The pre-defined, normalized, adopted mother wavelet is then used in the CWT 

algorithm to perform the scaling and shifting operations using the mother wavelet as a 

main reference that allows to compare signal similarities and detect various trip types.  

 

Figure 33 

Mean Lower Back Angular Acceleration Correlation Coefficient During Normal Walking 

After the Use of CWT with Two-Standard Deviation (2σ) Envelope 

 

 

 

 

 

 

 

Note. The mean of lower back angular acceleration correlation coefficient signals of ten 

trials during normal walking after applying the CWT is presented in blue color with its 

two standard deviation envelope and toe-off instance in dashed red and magenta colors, 

respectively. 
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Figure 34 

Trip Detection Decision Tree Algorithm Based on the Continuous Wavelet Transform 

 

 

 

 

 

 

 

 

 

 

 

 

Note. The trip event is detected if CWT correlation coefficient exceeds the two-standard 

deviation threshold and keep getting bigger in the next instance. 
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The continuous wavelet transform correlation coefficient are calculated and 

compared to a fixed threshold values to indicate trip onset when the coefficient values 

exceed the threshold value. 

 

Figure 35 

CWT Correlation Coefficient Between the Lower Back Angular Acceleration During 

Normal Walking and Tripping and the Mother-Wavelet for the Case of Early Trip 

 

 

 

 

 

 

 

Note. Plots show results of two full steps. The first step represents normal walking and 

the second one includes trip event. A, Profile of lower back angular acceleration during 

normal walking and early tripping event. B, Results of trip detection using equivalent 

frequency scale of 2 Hz (a = 50) for trip detection. C, CWT correlation coefficient 

between mother wavelet and the trip signal 𝜃̈ for the case of early trip with trip detection 

time of 62 ms. 
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The threshold was taken as the maximum value of the two-standard deviation (2σ) 

envelope obtained from the CWT correlation coefficient between the mother wavelet and 

ten normal walking trials from two subjects as shown in Figure 33. The trip detection 

decision tree of the proposed CWT-based algorithm is presented in Figure 34. Figures 35, 

36, and 37 present three representative trip trials that include one normal walking gait 

followed by trip occurrence during an early, mid and late swing portion gait cycle. The 

frequency equivalent scale with its resemblance coefficient is demonstrated for each trial 

in addition to the correlation coefficient between the mother wavelet and the tested trial.  

From the continuous wavelet analysis of the trial that includes both normal 

walking and early trip, we can observe that during normal walking (< 1.8 sec), the values 

of the correlation coefficient are low (<500), which indicate low signal similarity. As 

soon as trip is induced, the value of the similarity coefficient increases (manifested by 

brighter color in Figure 35 (B)) and the spike in the correlation coefficient indicates the 

presence of a trip perturbation based on the comparison to the mother wavelet. 

 Figure 35 (A) also shows measurements from the load cell of induced force to the 

foot and its duration that trigger trip that are used for comparison and validation of the 

purposed trip detection algorithm. Figures 36 and 37 shows results of trip detection 

algorithm from a representative subject for trips triggered during mid and late swing 

phase, respectively. The detection times of mid and late trip were 81 ms and 80 ms, 

respectively, indicating consistent performance of the CWT-based trip detection 

algorithm. It is important to realize that for different scales, the detection time can 

increase or decrease depending on the frequency used.  
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Figure 36 

CWT Correlation Coefficient Between the Lower Back Angular Acceleration During 

Normal Walking and Tripping and the Mother-Wavelet for the Case of Mid-Trip 

 

 

 

 

 

 

 

Note. Plots show two full steps. The first step represents normal walking and the second 

one includes trip event. A, Profile of lower back angular acceleration during normal 

walking and early tripping event. B, Results of trip detection using equivalent frequency 

scale of 2 Hz (a = 50) for trip detection. C, CWT correlation coefficient between mother 

wavelet and the trip signal θ ̈ for the case of early trip with trip detection time of 81 ms. 

 

As a general guide, the smaller the scale, the higher detection resolution is with 

respect to small abrupt changes in the signal (zoom in in terms of frequency analysis) and 

slow changes in signal are detected more poorly due to the small shifting of the mother 

wavelet. 
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Figure 37 

CWT Correlation Coefficient Between the Lower Back Angular Acceleration During 

Normal Walking and Tripping and the Mother-Wavelet for the Case of Late Trip 

 

 

 

 

 

 

 

Note. Plots show results of two full steps. The first step represents normal walking and 

the second one includes trip event. A, Profile of lower back angular acceleration during 

normal walking and early tripping event. B, Results of trip detection using equivalent 

frequency scale of 2 Hz (a = 50) for trip detection. C, CWT correlation coefficient 

between mother wavelet and the trip signal θ ̈ for the case of early trip with trip detection 

time of 80 ms 

 

Therefore, the selection of the scale needs to be carefully considered since the 

selection changes based on the needed objective. It is worth to mention that the plot 

presenting the trip detection at the scaling frequency provides the information at a 
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frequency levels, while for the plot presenting correlation coefficient it presents the result 

of the correlation operation between the mother wavelet and the tripping signal. 

 

Figure 38 

Comparison of the Trip Detection Times (Mean and Standard Deviation) Across Both 

Subjects for the CWT Algorithm 

 

 

 

 

 

 

Note. Between both subjects and for the early, mid and late trip the biggest observed 

mean value was 81.4 ms while the smallest was 64.6 ms. 

 

Figure 38 shows results of trip detection time using CWT-based methods. The 

method successfully detected all early, mid, and late trips from both subjects with various 

trip perturbation duration (50 – 150 ms).   
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The results show that the CWT algorithm can distinguish between trips and non-

trips case effectively with an overall mean trip detection time across all the trials of 71 ms 

and a detection rate of 100% for all different trip types of trips. 

4.2. Planar Covariation Law 

Methods discussed in this chapter so far allowed the detection of trip perturbation 

in a very short time, however, no quantification of the trip events with respect to the 

duration of the perturbation neither the influence of such factor on the severity of the trip 

was discussed. Therefore, there is a need for a method that can provide such information 

regardless of external factor such as walking speed and gait frequency cycle. Planar 

covariation law (PCL) is an intersegmental co-ordination kinematic law in the 

biomechanics field. [87] PCL relates the elevation angles of the lower limb segments 

(i.e., thigh, shank, and foot) of the human body with respect to each other in a consistent 

manner that preserve posture control and locomotion by assuring maintenance of the 

dynamic equilibrium of the body during different tasks [87]. The elevation angles are 

defined as the absolute angles of the body segment link from the vertical axis.  

Based on PCL law, different elevation angles of lower limbs during locomotion 

and its orientation should covary systematically with respect to each other to describe a 

closed loop on a plain in the 3D elevation angle space of an individual leg, which indicate 

a harmony between all three lower limbs joints and maintained status of dynamic 

equilibrium regardless of the walking speed and the gait cycle [88].  
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Therefore, the PCL law can be used to not only identify trip events, but also to 

correlate the duration of the perturbation with the severity of the trip by exploiting such 

kinematic rule. 

 

Figure 39 

Coplanar Variation Law of Elevating Angles of Thigh, Shank, and Thigh During Normal 

Walking and Different Trip Events 

 

 

 

 

 

 

 

 

Note. Normal walking curves (black) lay in a plan with respect to the PCL law, while for 

different trip cases (blue, magenta, red, and green) the law is violated and the resultant 

curves deviate at an angle with respect to the main plain. 
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In order to inspect the validity of the PCL law and investigate the intersegmental 

co-ordination law and relationships during trip gait, all thirty trip trials were analyzed and 

compared. Relationships of different lower limb elevations angles of each participants’ 

segments during the different trials were plotted with respect to each other to observe the 

difference during normal walking and trip gait. Figure 39 presents the planar covariation 

law of elevating angles of thigh, shank, and foot of a representative participant for three 

normal walking cycles and the early, mid, and late trip perturbations.  

Results show that during normal walking the PCL law is well preserved and all 

the three elevating angles of the lower limbs interconnect with each other to form a 

closed loop pattern laying on a plane in a 3D space. Conversely, the trajectories 

representing trip trials start to deviate from this plane soon after the onset of trip 

perturbation. All three trip curves diverge from the normal walking plane and violate the 

law. Results in Figure 39 show that during trip perturbations, the resultant curves from 

lower limb segments elevating angles do not lay in the main plain ruled by the correlation 

of the different lower limb segments joints during locomotion and they deviate from it at 

an angle.  

The angle is different for each shown trip trial and further analysis was performed 

to identify the relationship between the duration of the perturbation at which the 

movement of the perturbated leg is hindered and the angle of deviation of the trip trial 

plane ruled by the correlation of the different lower limb’s elevation angles during trip 

event with respect to the PCL plan.  
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Thus, to further investigate this relationship, three trials of each trip perturbation 

category including early, mid and late trips that share almost the same perturbation onset 

but with different perturbation duration are plotted with respect to different normal 

walking trials behavior following the PCL law and the obtained results for the case of 

various early trips with different perturbation durations can be seen in Figure 40. 

 

Figure 40 

Coplanar Variation Law of Elevating Angles of Thigh, Shank and Thigh During Normal 

Walking and Early Trip Events with Different Perturbation Lengths 

 

 

 

 

 

 

 

 

Note. Normal walking curves (blacks) lay in a plan with respect to the PCL law, while for 

different early trip cases (bleu, magenta and red) the law is violated and the resultant 

curves lay with an angle that increases with perturbation duration with respect to the main 

plan. 
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To further investigate this relationship, three trials of mid and late trips that share 

almost the same perturbation onset but with different perturbation duration are plotted for 

the case of mid-trips, the results for normal walking and different mid trips with different 

perturbation times with respect to the PCL normal walking plane in addition to moments 

of trip onset and trip perturbation end point are presented in Figure 41. 

 

Figure 41 

Coplanar Variation Law of Elevating Angles of Thigh, Shank and Thigh During Normal 

Walking and Mid-Trip Events with Different Perturbation Lengths 

 

 

 

 

 

 

 

 

Note. Normal walking curves (blacks) lay in a plan with respect to the PCL law, while for 

different mid trip cases (bleu, magenta and red) the law is violated and the resultant 

curves lay with an angle that increases with perturbation duration with respect to the main 

plan 
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it can be seen from the previous figure as discussed above that when the trip 

perturbation gets longer the angles of the results curve with respect to the PCL law gets 

bigger as well, and to see the response for late trip perturbation type, normal walking and 

different late trips with different perturbation times durations are presented in Figure 42. 

 

Figure 42 

Coplanar Variation Law of Elevating Angles of Thigh, Shank and Thigh During Normal 

Walking and Late Trip Events with Different Perturbation Lengths 

 

 

 

 

 

 

 

Note. Normal walking curves (blacks) lay in a plan with respect to the PCL law, while for 

different late trip cases (bleu, magenta and red) the law is violated and the resultant 

curves lay with an angle that increases with perturbation duration with respect to the main 

plan. 
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In order to find a relation between the angle formed by the loop pattern resulted 

from the correlation of different lower limbs segments elevation angles with respect to 

the normal walking PCL plane and trip perturbation duration, loop pattern angles are 

calculated for the entire pattern with respect to the normal walking PCL plan and the 

maximum deviation angle due to the trip perturbation formed by the trend and the normal 

walking plane were plotted for thirty trials with respect to perturbation duration and 

results are shown in Figure 43.   

 

Figure 43 

Angle Between Trip Perturbation Plane and Normal Walking PCL Plane as Function of 

Trip Perturbation Duration 

 

 

 

 

 

 

Note. The angle between the trip perturbation plan and the normal walking plane 

following PCL follow a quadratic pattern as function of trip perturbation duration with 

95% confidence bounds fitting curve (dashed blue line) 

 



87 

 

The equation of the fitting curve as function of the perturbation duration can be expressed 

as 

With α being the angle between the tripping perturbation plan and normal walking PCL 

plane and ζ being the trip perturbation duration.  

It can be seen that the angle formed between the plane containing the trip 

perturbation event and the normal walking plane falling under the PCL rule have a 

quadratic relationship with the perturbation duration , in a sense the long the perturbation 

duration is , the higher is the formed angle between both planes and the harder is to 

recover from the trip since such long perturbation will lead to high body center of mass 

shifting forward that will lead to fall eventually. 

 

 

 

 

 

 

 

 

 

 𝛼 = −0.0017𝜁2 + 0.7554 𝜁 − 18.95 (19) 
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Chapter 5 

Conclusions and Future Work 

In this thesis, time and frequency domain algorithms for rapid trip detection 

during normal walking are presented. All developed algorithms can detect trip in less 

than 100 ms, which is faster than the human voluntary reactions (~200 ms). The 

algorithms use measurements of human lower limb and trunk kinematics as inputs, which 

were acquired using seven 6 DOF wearable inertial measurement units (IMUs) during 

human subject experiments. The linear accelerations and angular velocities measurements 

provided by the IMUs were used to compute the angular displacements, velocities, 

accelerations and jerks used as the kinematic variables in the algorithms. The proposed 

algorithms include three static threshold-based detection methods that rely on detecting 

deviations in human kinematic variables, including the motion of the trunk and lower 

limb during trip events to detect trip perturbation. 

The first algorithm was developed based on the angular jerk (J) of the lower back 

in the sagittal plane as the main trip indicator. The angular jerk (J) is obtained by 

integrating numerically the angular velocity measurements from a single IMU mounted at 

the lower back and the algorithm was able to detect perturbation with mean trip detection 

time of 43 ms. The second algorithm was designed based on the computed quadratic 

mean (i.e., root mean square (RMS)) of the angular acceleration signal of the lower back 

using a sliding window technique with a width of 100 ms. The proposed algorithm 

showed a trip detection rate of 100% with a mean trip detection time of 51 ms. 
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The third algorithm uses a statistical measure of the magnitude of the lower back 

angular acceleration also known as signal magnitude area (SMA) in order to detect 

changes in the mean signal values when perturbation is induced. The algorithm had a true 

detection rate of 100% with a mean trip detection time of 66.4 ms. 

An optimized elastic time-series alignment tool called dynamic time warping 

(DTW) that allows the measurement of similarities between two temporal sequences and 

provides an optimal alignment between both of them was used in order to detect trip 

perturbation efficiently with a mean trip detection time of 70 ms. Finally, an optimized 

signal-frequency decomposition method known as continuous wavelet transform (CWT) 

was used for trip detection that allows signal comparison and analysis in the frequency-

time domain to increase robustness of trip perturbation onset detection. The CWT uses a 

predefined mother wavelet signal that was custom designed based on the average signal 

of multiple trip events trials. CWT showed a promising result with 100% trip detection 

rate and a mean trip detection time of 71 ms. 

In addition, to cover broader spectrum of trip perturbation analysis, a planar 

covariation law (PCL) based on intersegmental co-ordination kinematic law was 

introduces to investigate trip gaits. The PCL relates different elevation angles of lower 

limb segments during locomotion through a planar relationship in 3D angle space. The 

Analysis of PCL in trip gaits was demonstrated for the first time in order to provide better 

understanding about the joint angle kinematic relationships during trip perturbation in 

relations to the trip severity and its correlation with trip perturbation duration.  
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An empirical relation and law are proposed in order to relate maximum angle 

deviation of the trip trajectory from the PCL plane in the 3D elevation angle space of the 

perturbed lower limb with respect to the perturbation duration. This obtained 

relationships can potentially correlate the lower limb kinematic relationships during trip 

with the trip severity and can be potentially used in future design of trip recovery 

strategies or define limits beyond which the recovery is not possible.  

Based on the presented results it can be concluded that all algorithms provide a 

rapid trip detection with a mean trip detection time of only 61 ms across all methods and 

with 100% detection rate. Selection of a specific method needs careful considerations 

based on the advantages and disadvantages of the individual method. For the fixed 

threshold methods, the coding simplicity, fast information processing of the algorithms, 

and easy implementation makes them and attractive approach to be used for trip 

detection. However, the limitations of this algorithm start to manifest when locomotion 

speed or amplitude vary as function of time. 

The DTW-based trip detection method showed the advantages of allowing it to 

discard the effect of time and amplitude variations during the analysis making it a strong 

candidate when choosing trip detection methods. However, the complexity of the 

algorithm in addition to the need of a signal reference and the longer information 

processing time due to dense algorithm can make it challenging to be implemented for 

real-time applications compared to the fixed threshold methods. 
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 Finally, CWT-based trip detection methods provide a complete time-frequency 

analysis approach since it can detect anomalies included in trip signal that cannot be 

detected in the time domain only and is more robust to any signal variation that can 

hinder the rate of detection in time domain algorithms. Nevertheless, due to the 

complexity of the algorithm, the need to provide a mother wavelet as a based reference, 

and increased computational power to perform calculations makes it more computational 

demanding compared to other methods and would need to be further tested before can be 

applied for real-time applications. Overall, all developed trip detection algorithms 

demonstrated fast detection time being 2-3 times faster compared to the human voluntary 

responses to perturbations.  

The rapid trip detection system can be integrated and combined with an assistive 

device designed to assist with trip balance recovery as there is a sufficient time between 

trip detection timing and fall for the system to provide an assistance with the trip balance 

recovery. The developed trip detection system in this thesis in combination with the 

robotic assistive technologies have the potential to serve as an enabling tools of future 

trip-and-fall prevention strategies. 

5.1. Future Work 

There are several future directions of this work. First, the static threshold methods 

will be optimized and enhanced by creating more dynamic thresholds that can adapt and 

change with respect to actual locomotion signal variation and thus increase its flexibility 

and efficiency. For both DTW and CWT methods, a more advanced optimization process 

of the algorithms will be conducted in order to reduce the amount of dependability on the 
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fixed reference signals in their trip/no trip decision, which will make them more flexible, 

and the computational complexity of the algorithm has to be reduced to make it more 

suitable for real time application implementation. 

Another future research direction is the integration of the proposed PCL 

kinematic law with the presented algorithms in order to make the full system not only 

able to detect trip but predict its severity based on the measured duration of the 

perturbation. Such integration will allow assistive system to provide the needed amount 

of torque based on the information provided by the PCL quantification and the detection 

algorithm in order to provide an external assistance and prevent falls.  

All these algorithms have to be further tested on multi-subject experiments to 

further confirm its validity across all populations. A long-term goal is to validate the 

efficacy of this algorithm using assistive trip-and-fall prevention device in laboratory and 

real-world settings to potentially contribute to the design of advanced fall prevention 

systems by providing detection of trip perturbations and thus preventing falls. 
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