
Rowan University Rowan University

Rowan Digital Works Rowan Digital Works

Theses and Dissertations

1-24-2022

An Empirical Study on the Efficacy of Evolutionary Algorithms for An Empirical Study on the Efficacy of Evolutionary Algorithms for

Automated Neural Architecture Search Automated Neural Architecture Search

Andrew D. Cuccinello
Rowan University

Follow this and additional works at: https://rdw.rowan.edu/etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Cuccinello, Andrew D., "An Empirical Study on the Efficacy of Evolutionary Algorithms for Automated
Neural Architecture Search" (2022). Theses and Dissertations. 2964.
https://rdw.rowan.edu/etd/2964

This Thesis is brought to you for free and open access by Rowan Digital Works. It has been accepted for inclusion
in Theses and Dissertations by an authorized administrator of Rowan Digital Works. For more information, please
contact graduateresearch@rowan.edu.

https://rdw.rowan.edu/
https://rdw.rowan.edu/etd
https://rdw.rowan.edu/etd?utm_source=rdw.rowan.edu%2Fetd%2F2964&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=rdw.rowan.edu%2Fetd%2F2964&utm_medium=PDF&utm_campaign=PDFCoverPages
https://rdw.rowan.edu/etd/2964?utm_source=rdw.rowan.edu%2Fetd%2F2964&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:graduateresearch@rowan.edu

AN EMPIRICAL STUDY ON THE EFFICACY OF EVOLUTIONARY
ALGORITHMS FOR AUTOMATED NEURAL ARCHITECTURE SEARCH

by
Andrew D. Cuccinello

A Thesis

Submitted to the
Department of Computer Science

College of Science and Mathematics
In partial fulfillment of the requirement

For the degree of
Master of Science in Computer Science

at
Rowan University

December 16, 2021

Thesis Chair: Shen-Shyang Ho, Ph.D.

Committee Members:
Bo Sun, Ph.D.

Ning Wang, Ph.D.

© 2021 Andrew D. Cuccinello

Acknowledgements

We thank the Rowan University Department of Computer Science for their support and

the GAANN fellowship funded by DOE award-P200A190033 which also includes funding

for computing resources to perform the computational experiments completed in the thesis.

iii

Abstract

Andrew D. Cuccinello
AN EMPIRICAL STUDY ON THE EFFICACY OF EVOLUTIONARY ALGORITHMS

FOR AUTOMATED NEURAL ARCHITECTURE SEARCH
2020-2021

Shen-Shyang Ho, Ph.D.
Master of Science in Computer Science

The configuration and architecture design of neural networks is a time consuming pro-

cess that has been shown to provide significant training speed and prediction improve-

ments. Traditionally, this process is done manually, but this requires a large amount of

expert knowledge and significant investment of labor. As a result it is beneficial to have

automated ways to optimize model architectures. In this thesis, we study the use of evolu-

tionary algorithm for neural architecture search (NAS). Moreover, we investigate the effect

of integrating evolutionary NAS into deep reinforcement learning to learn control policy

for ATARI game playing. Empirical classification results on the NASBench image dataset

using different population selection and drop methods for the evolutionary NAS are pre-

sented to validate the usefulness of simple evolutionary algorithms in optimizing neural

architectures, showing that even basic evolutionary algorithms are a well performing and

easy to use approach. We also show the feasibility of using evolutionary NAS to extract

good features that can improve the pong game playing score when the computational re-

source is limited.

iv

Table of Contents

Abstract . iv

List of Figures . viii

List of Tables . ix

Chapter 1: Introduction . 1

Chapter 2: Literature Review . 3

2.1 Search Space . 3

2.2 Search Strategy . 4

2.3 Performance Estimation . 4

2.4 Types of Search Spaces . 4

2.4.1 Sequential Layer-Wise Operations . 5

2.4.2 Cell-Based Representation . 5

2.4.3 Hierarchical Structures . 5

2.4.4 Memory-Bank Representation . 5

2.5 Types of Search Strategies . 6

2.5.1 Random Search . 6

2.5.2 Reinforcement Learning . 6

2.5.3 Evolutionary Algorithms . 6

2.5.4 Progressive Decision Processes . 6

2.5.5 Gradient Descent . 7

2.6 Types of Evaluation Strategies . 7

2.6.1 Training from Scratch . 7

2.6.2 Proxy Tasks . 7

2.6.3 Parameter Sharing . 8

2.6.4 Predictive . 8

2.6.5 One-Shot . 9

v

Table of Contents (Continued)

2.7 Representative Architecture Search Approaches . 9

2.7.1 NeuroEvolution of Augmenting Topologies (NEAT) 9

2.7.2 Neural Architecture Search (NAS) . 10

2.7.3 One-Shot Architecture Search . 11

2.7.4 Differentiable Architecture Search (DARTS) 11

2.7.5 Progressive Neural Architecture Search (PNAS) 12

Chapter 3: Methodology . 13

3.1 Background: Evolutionary Algorithms . 13

3.2 Evolutionary Neural Architecture Search . 15

3.3 Evolutionary Neural Architecture Search for Feature Extraction 17

Chapter 4: Application Scenarios and Experimental Setups 19

4.1 Image Classification . 19

4.1.1 NASBench Image Dataset . 19

4.1.2 Experimental Design and Setup . 21

4.2 Learning Control Policy for ATARI Game Playing 22

4.2.1 CNN-Driven Feature Extraction for Reinforcement Learning 22

4.2.2 Experimental Design and Setup for the Game of Pong 23

4.3 Compared Population Selection Methods . 24

4.4 Compared Drop Methods . 25

Chapter 5: Experimental Results and Discussions . 26

5.1 Comparison Results of Selection and Drop Methods 26

5.1.1 Greedy Selection . 27

5.1.2 Oldest Dropping . 28

5.1.3 Random Dropping . 29

5.1.4 Tournament Selection . 30

vi

Table of Contents (Continued)

5.2 Pong - Game Playing Performance Evaluation . 31

Chapter 6: Conclusions and Future Work . 36

References . 38

vii

List of Figures

Figure Page

Figure 1. Pseudocode for the Basic Structure of an Evolutionary Algorithm . . . 14

Figure 2. A Conventional EA Based Neural Architecture Search [18] 16

Figure 3. Overview of Reinforcement Learning for Atari Game Playing Using
EA Discovered Feature Extraction Models . 16

Figure 4. Pseudocode for the Atari Experiment . 17

Figure 5. Reinforcement Methodology for the Atari Experiment 18

Figure 6. Mean Accuracy Comparison of Different Selection/Drop Method for
Evolutionary Algorithm for the NAS After 120 Generations 27

Figure 7. Learning Curves for Using Select 5 Greedy + Drop 5 Greedy 28

Figure 8. Learning Curves for Using Select 5 Greedy + Drop 5 Random 29

Figure 9. Learning Curves for Using Select 5 Random + Drop 5 Greedy 29

Figure 10. Learning Curves for Using Select 5 Random + Drop 5 Oldest 30

Figure 11. Learning Curves for Using Select 5 Random + Drop 5 Random 31

Figure 12. Tournament Selection Performance vs Random Selection + Greedy
Drop . 32

Figure 13. Pong - Cumulative Size vs. Mean Game Score 32

viii

List of Tables

Table Page

Table 1. NASBench 101 Dataset Statistics - Full Training 21

ix

Chapter 1

Introduction

Neural networks must be carefully configured to maximize performance, but this

is often a difficult and time consuming task. Not only does it rely on an abundance of

knowledge of the domain in question, but there are often no good ways of predicting the

performance of an architecture without training the model, a process that can take signifi-

cant computational power, which equates to significant financial cost.

As such, it is desirable to have an automatable way of finding an architecture for a

neural network, and ideally an optimal or near optimal one at that. This is the underlying

motivation behind the area of research known as neural architecture search. By defin-

ing methodology to efficiently search through architectures, we can discover architectures

that can potentially surpass human tuned models. Current research has already demon-

strated models using architectures discovered by these techniques can surpass manually

engineered architectures on a number of tasks such as semantic segmentation, object de-

tection, and most commonly image classification [1, 2].

This thesis therefore seeks to survey and taxonomize existing research in the area

using already established terminology, as well as demonstrate the potential for these tech-

niques by illustrating that even simple methodologies can discover architectures that can

perform at or above baseline levels through way of example. In this thesis, we study the use

of evolutionary algorithm for neural architecture search (NAS). Moreover, we investigate

the effect of integrating evolutionary NAS into deep reinforcement learning to learn control

policy for ATARI game playing. Empirical classification results on the NASBench image

dataset using different population selection and drop methods for the evolutionary NAS are

presented to validate the usefulness of simple evolutionary algorithms in optimizing neu-

ral architectures, showing that even basic evolutionary algorithms are a well performing

1

and easy to use approach. We also show the feasibility of using evolutionary NAS to ex-

tract good features that can improve the pong game playing score when the computational

resource is limited.

This work has six chapters, including this introduction. In the proceeding chap-

ter 2, we review different types of methodologies and approaches to build a taxonomy of

this problem. In chapter 3 we provide background on evolutionary algorithms which are

used in this work and describe how they are integrated into the deep reinforcement learning

problem of ATARI Pong. In chapter 4 we describe the tasks of the two related experiments

performed — (i) using NAS to develop an image classification architecture and (ii) discov-

ering a feature extraction architecture for improving performance of an agent on ATARI

Pong. In chapter 5 we analyze the results of the preceding chapter and compare the re-

sults of various trial runs. Finally in chapter 6 we conclude the work and describe one

interpretation for the future of NAS as a field.

2

Chapter 2

Literature Review

The area of research dedicated to automated engineering of neural network archi-

tectures is generally referred to as either neural architecture search, or more generally as

architecture engineering. The latter often carries a connotation of handmade architectures,

so in this work we use the term neural architecture search.

The main area of research in this field is the reduction of computational cost for the

problem. With endless resources, the problem of finding an optimal architecture is trivially

solvable by brute force. However, the difficulty comes from the fact that not even a large

corporation has truly infinite resources, and we would like to use the model sometime

before the sun swallows the earth. The trick then, is to reduce the time and cost enough

such that the problem becomes solvable and cost efficient.

While neural architecture search is an area of current research, existing method-

ology can have one-to-three components which each target the problem of computational

time in a different way. We use the terminology coined by Elsken et. al. [3] in this thesis.

In particular, they categorize neural architecture search methods into three groups, namely:

search space, search strategy, and performance estimation.

2.1 Search Space

Methods that target the search space as a way to reduce cost use carefully formu-

lated sets of possible parameters to limit the size of the search space. These tend to incorpo-

rate some knowledge of architecture that leads to positive correlation with performance. In

theory, if this is done carefully enough and with enough sophistication, a search space can

be created that only contains models with a high probability of competitive performance.

The largest issue with this approach is that it introduces a human bias, which may

3

prevent the discovery of truly novel architectures [3].

2.2 Search Strategy

When a method attempts to optimize the strategy in which the search space is ex-

plored, it falls into this category. This can be as simple as altering the exploration/exploitation

tradeoff. In practice however, many search spaces are unbounded and require more sophis-

ticated methods of exploration.

The experiment we performed in chapter 4 and chapter 5, an evolutionary algorithm

approach, targets this as a primary method of optimization [3].

2.3 Performance Estimation

Since training a model is almost always the primary source of computation cost,

rather than searching the architecture space itself, this category offers the most promise for

efficiency improvements by estimating the performance of a model without fully training

it.

The largest issue with this approach is that it is not generally understood why some

architectures work better than others, so estimations of performance have the potential to

be wildly inaccurate. The common “black box” terminology remains true here [3].

2.4 Types of Search Spaces

In the case of neural architectures, the search space is to the possible operations and

how they may be interconnected. Searching different spaces can have different benefits and

drawbacks, and a carefully designed search space can reduce training time by ensuring that

only highly performing models may be visited.

4

2.4.1 Sequential Layer-Wise Operations

There are a number of ways to design the search space for neural network architec-

tures, but the most readily apparent is with a list of sequential operations. Zoph et. al. [4]

and Baker et. al. [5] are some of the earliest to make use of this type of space. These spaces

often require some additional validation rules to make sure generated architecture is valid.

2.4.2 Cell-Based Representation

This search space is made to emulate architectures like ResNet [3], which perform

well on vision tasks. The goal of this space is then to design a cell that can be repeated a

number of times, with more or less repetitions depending on the desired model size [2].

2.4.3 Hierarchical Structures

Some algorithms take advantage of a hierarchical structure to optimize the size of

the search space. These algorithms construct small graphs out of basic operations then

reuse the graphs recursively to form larger graphs. Such hierarchical structures allow the

algorithms to avoid the cost of exploring minute changes to large models consisting of

dozens if not hundreds of basic operations [3].

2.4.4 Memory-Bank Representation

Algorithms such as SMASH create a slightly different representation of a neural

network. They reformulate the structure of a neural network as a set of blocks of memory

that can support read or write operations. The layers then read, compute, and write from

subsets of these blocks. In a sequential model one block would get read from and written

to over and over. More complex formulations are possible [3].

SMASH performs this reformulation for the purpose of easy encoding for the con-

ditioning vector of a HyperNet, which is then used to predict model weights as a proxy for

actual training [6].

5

2.5 Types of Search Strategies

2.5.1 Random Search

These algorithms use random sampling to find the best architectures. An offshoot

of this category is methods like grid search. These algorithms are very naive but have been

shown to perform well in hyperparameter optimization, which is a closely related field [7].

2.5.2 Reinforcement Learning

An agent is trained as a controller that proposes models which are then evaluated.

This boils down to a standard reinforcement learning task, where the action space is the

choices for parts of the architecture, the reward is the accuracy of the generated model, and

any loss is calculated as normal [4].

2.5.3 Evolutionary Algorithms

An initial population of individuals is created, usually randomly. Each individual

represents a single architecture. After evaluating this population’s performance, individuals

can generate children through mutation and mating, much like animals in nature. Gener-

ally only the strongest performers are allowed to reproduce, but some researchers found

other methods beneficial such as eliminating older individuals from the population [1]. As

the population reproduces and mutates, survival of the fittest ensures an increasing perfor-

mance.

2.5.4 Progressive Decision Processes

These types of algorithms start by generating very simple architectures and pro-

gressively increasing complexity. Some algorithms also learn a surrogate model to predict

the performance of a model without the need to train it. This surrogate model allows a

sort of pathfinding through the search space, much in the same way that one may find a

6

path through a directed graph using an algorithm like A* (or other heuristic based pathfind-

ing) [8, 9].

2.5.5 Gradient Descent

Methods using gradient descent usually combine the learning of weights and archi-

tecture into a single problem; this is often referred to as “one-shot” learning. Generally

speaking, these models share weights by treating children architectures of a parent archi-

tecture as subgraphs of a supergraph [6, 10, 9]. We note these methods typically offer

exceptional performance at the cost of substantially increased setup effort.

2.6 Types of Evaluation Strategies

Evaluation of performance is almost always the vast majority of computational cost.

Dozens of hours of GPU time may be taken training a single model, and to find a truly

novel architecture thousands of architectures must be evaluated. As such, optimization of

this task offers the largest potential performance improvement.

2.6.1 Training from Scratch

This is the most readily available and apparent methodology, but also the least effi-

cient. As stated, training a single model can take dozens of GPU hours, so training a model

from nothing to convergence, while it does provide the truest estimation of performance,

poses significant computational barriers. A few strategies are available to reduce this cost,

most notably partial training.

2.6.2 Proxy Tasks

Rather than training on a full and complete problem, such as a complete data set, we

can train a model on a proxy to our desired task that is smaller in scope. The easiest example

is using image datasets of two different sizes, the target dataset and the proxy dataset can

7

differ in size by orders of magnitude but still provide a representative approximation of the

task in question. Training time on the proxy task is therefore reduced accordingly. This

is the methodology used by Zoph et al. [2] to transfer learned architecture from a small

dataset to a large dataset.

There are a number of other more sophisticated methods that fall into the proxy task

category. A proxy task can also be defined as a similar but more efficient task performed to

evaluate architecture performance. Baker et al. [11] predict the learning curve of training

to enable earlier stopping, resulting in a up to 6x speed up.

2.6.3 Parameter Sharing

One of the most complex but interesting approaches is to create a dependency be-

tween models and then discover ways to reuse weights between dependent models. Some

algorithms such as Efficient Architecture Search (EAS) by Cai et al. [12] take the approach

of incrementally growing the network so as to reuse the previous model’s weights. Future

models then only need a small amount of training.

Similarly, Efficient NAS (ENAS) treats the problem as a large computational graph

search, and reframes the solution as finding the optimal subgraph of this supergraph. This

allows ENAS to almost ubiquitously share weights and results in a speedup of 1000x over

NAS [10].

2.6.4 Predictive

This method of evaluation shows potential as a significant source of performance

improvement. The goal is to predict the final weights of the architecture based on it’s con-

figuration, without the computational cost of from-scratch training. This is often done with

a HyperNet [13], and the generated weights are then directly validated. Algorithms such

as SMASH have shown promising results by learning a mapping from a binary encoded

representation of the network to the weight space [6]. The disadvantage of this method is

8

its inability to generate novel architectures; rather, it operates by exploring a pre-designed

space.

2.6.5 One-Shot

A one-shot approach takes weight sharing and combines architecture generation.

These algorithms effectively train the model during its generation. Then by zeroing out cer-

tain connections of the model, we can treat child models as subgraphs of a supergraph [9].

2.7 Representative Architecture Search Approaches

To demonstrate the wide variety of approaches for automated engineering of neural

network architectures, we highlight some representative architecture search algorithms.

2.7.1 NeuroEvolution of Augmenting Topologies (NEAT)

One of the earliest algorithms for generating architectures is NeuroEvolution of

Augmenting Topologies (NEAT) [14]. NEAT was introduced in 2002 and is impressively

ahead of its time. Existing algorithms far surpass it in performance, both in terms of speed

and accuracy of final generated models. However, as a forerunner in the area it deserves

discussion.

NEAT is novel in its inclusion in this thesis as it is the only algorithm we discuss

that directly evolves the weights of the network in addition to the network topology. While

this does create less of a need to combine multiple works, a task that can add difficulty

to experimental setup, it also means it is hard to use in combination with other algorithms

which improve upon its performance, as you must make modifications to the algorithm.

There are several key features of NEAT that lead to its massive success with thou-

sands of citations. It is often cited as one of the first successful algorithms in the field

of NAS, although its use is now limited as there are more efficient ways to evolve model

weights, and it requires a very specific data structure to use.

9

We summarized three key implementation features [14]:

1. Speciation: NEAT subdivides a population into different species, which allows in-

dividuals to compete within their own niches rather than with the entire population.

This is done to protect innovation, and allow individuals time to optimize their struc-

ture, which is important as NEAT also learns weights in addition to architecture.

NEAT places individuals into groups based on how similar their genes are. As two

genomes grow more and more disjoint, it indicates less and less shared evolutionary

history.

2. Minimal Initial Populations: NEAT starts the initial population with the smallest

possible architectures, in order to force any pieces of architecture created to justify

their existence. The designers note that with an initial population, it is quite easy to

have nonsensical or unconnected architecture, and forcing additional elements to be

added during the run prevents that in a clear and non pernicious way.

3. Historical Markers To enable crossover between architectures, NEAT tracks where

a gene (e.g. a specific connection) comes from by assigning the gene a unique identi-

fier. Subsequent architectures then inherit identification, and architectures that share

identifying genes are able to perform crossover safely. Any genes that are not shared

are taken from the most fit parent.

2.7.2 Neural Architecture Search (NAS)

The algorithm arguably responsible for the explosion of popularity of the Neural

Architecture Search field is the titular Neural Architecture Search (NAS). The algorithm is

fairly straightforward, it uses reinforcement learning to train a controller agent that predicts

the architecture of a network. Then, the predicted architecture is trained and the resulting

accuracy is used as a reward for the controller network. Over time, this causes updates to

the controller to improve the quality of the predicted model parameters [4].

10

2.7.3 One-Shot Architecture Search

The goal of One-Shot Architecture Search is to allow the evaluation of more models

by avoiding repeated training. The algorithm accomplishes this by training one very large

model that contains every possible operation that can be performed within the network. At

evaluation time, some of these operations are then zeroed out, and the resulting model is

used to evaluate the equivalent model without any additional training requirements.

Bender et al. [15] observed that the accuracies of models evaluated using this tech-

nique decreased by 5-10% for the best performing models, but as much as 60% for worse

performance models. They hypothesized that the one shot architecture is in reality learning

which operations are the most important to model accuracy, rather than individual weights.

2.7.4 Differentiable Architecture Search (DARTS)

A promising approach to solve the search problem is D
¯

ifferentiable AR
¯

chiT
¯
ecture

Search (DARTS), which changes the formulation of the problem to make the architecture

space to be differentiable, which in turn allows the use of gradient descent when performing

the search.

DARTS searches for a computation cell, following the examples of Zoph et al [2],

Real et al. [1], and Liu et al.[8], who have all shown it has very competitive performance

on CIFAR-10. In order to allow the problem to be differentiable, the search space must be

made continuous. First a zero operation is added, so nodes may be unconnected. DARTS

then relaxes the categorical choice of a particular operation to a softmax over all possible

operations. This turns the problem then into a probabilistic one, in which the choice of

operation can be made by selecting the most likely operation at each connection.

The performance of DARTS is quite impressive, reducing the benchmark from

thousands of GPU hours like that of AmoebaNet-A [1] to just a few GPU days.

11

2.7.5 Progressive Neural Architecture Search (PNAS)

Progressive Neural Architecture Search (PNAS) [8] reduces the computational com-

plexity of searching for an architecture by performing the process as a series of progressive

decisions. The algorithm starts by searching smaller models first, progressively making de-

cisions as to how to evolve and expand the model. During this process it learns a heuristic

to guide the search.

Each decision then limits the search space in a way that reduces the number of

models that must be explored in the future.

12

Chapter 3

Methodology

In this chapter, we first provide background on evolutionary algorithm. Then, we

describe how the evolutionary algorithm is used for neural architecture search. Finally,

we describe in detail how the evolutionary algorithm is integrated into deep reinforcement

learning for ATARI game playing.

3.1 Background: Evolutionary Algorithms

Evolutionary algorithms are a class of performance optimizing algorithms which

mimic the way natural selection improves the ability of a population to survive in an en-

vironment, allowing only the most fit individuals to reproduce. Instead of survival in the

jungle however, evolutionary algorithms target a problem and we say they select for fitness

in solving the problem. If natural selection itself were an evolutionary algorithm, we would

say the fitness that was being optimized for was survival. In other cases, it’s the ability to

solve a particular problem, like playing Pong or classifying images.

First, we define some key technical concepts for evolutionary algorithms used through-

out the thesis [16, 17].

• Fitness: A score of how well a task was performed. Selection of the fitness function

is one of the key ways in which a population’s evolution may be guided towards

desired results.

• Individual: A single entity which may complete a task or be used to complete a task.

• Population: A group of X unique individuals.

• Generation: A set of individuals which exist at the same time between iterations of

13

reproductions or mutations.

• Mutation (M): The morphing of an individuals genome to produce a different indi-

vidual with an altered genome.

• Crossover (C): The mixing of two individuals genomes to produce a third unique

individual.

• Genome: The set of parameters which can be combined to produce a unique indi-

vidual. For a CNN, this may be the size of the hidden layers, their stride, what type

of activation function(s), etc.

The basic structure for an evolutionary algorithm (see Figure 1) follows the same

skeletal structure with maximum number of generations, G, with variations coming from

how fitness is evaluated or how individuals are selected to be mutated or removed from the

population.

Figure 1

Pseudocode for the Basic Structure of an Evolutionary Algorithm

population = []

Initialize population with X randomly generated architectures

Evaluate architectures in initial population to obtain fitness

for generation 1 ... G

drop D individuals in population using some criteria

while population not full

mutate the individual with a probability of M

crossover the individual with a probability of C

add new individuals to the population

evaluate individuals in the population

One notes that for the pseudocode in Figure 1, there are a number of points where

one line changes can have severe behavioral effects, i.e., change in the algorithm’s learning

14

behavior [16]. In particular, we highlight two significant algorithm characteristics: fitness

function and candidate selection.

• Fitness function: By changing how we evaluate fitness, we can have the evolu-

tionary algorithm evolve different properties. By returning higher fitness values for

quicker completing models for example, we can evolve models which compute faster

rather than more accurately. The number of possible fitness score calculations is re-

ally only limited to values which can be computed, which provides incredible versa-

tility for potentially minimal effort.

Additionally, it should be noted that dual-optimization is a rather trivial task with

evolutionary algorithms by using weighted fitness scores. By calculating a fitness

score using both accuracy and inverse calculation time, we can evolve models which

have better accuracy but also compute faster.

• Candidate Selection: We may choose how we select individual candidates to be

mutated or interbred. The methodology we do so with changes how much exploration

and exploitation we do. We can also change how we remove individuals from future

consideration, which further targets the exploration and exploitation trade-off. The

number of individuals and the size of the population can also have effects on the

evolution and its performance.

3.2 Evolutionary Neural Architecture Search

Figure 2 shows the general structure of an evolutionary neural search algorithm [18].

We note that this diagram is nearly identical to the pseudocode presented in Figure 1.

As mentioned, all evolutionary algorithms share the same bones and this remains true in

the evolutionary neural architecture search case, where only method of fitness evaluation

changes.

15

Figure 2

A Conventional EA Based Neural Architecture Search [18]

Figure 3

Overview of Reinforcement Learning for Atari Game Playing Using EA Discovered Feature
Extraction Models

16

3.3 Evolutionary Neural Architecture Search for Feature Extraction

Figure 3 shows an overview of the pipeline used to perform the Atari experiment.

The goal is to discovered a model to perform feature extraction — that is, turning the raw

pixel data from the game into an input vector of weights for the game playing agent — for

the game Pong. This model is discovered using an evolutionary algorithm which shares

pseudocode with the above Figure 1. For posterity, we reproduce the pseudocode below

in Figure 4 with modifications for clarity.

Figure 4

Pseudocode for the Atari Experiment

Population = []

Initialize population with X randomly generated architectures

For each model in the population

Train feature extractor and game agent concurrently for

up to 3 hours, or until they reach a score of -15

While total time spent < 30 days

Drop the 5 worst performing individuals from the population

While population not full

Select an individual using tournament selection with 20%

tournament size

Mutate the individual

Add the new individual to the population

Evaluate the new individual individual

In training the feature extraction and game playing agent, we use a reinforcement

learning algorithm called Proximal Policy Optimization (PPO). For a complete mathemat-

ical description of the algorithm see [19]. A description of how it is used in the Atari

pipeline is shown in Figure 5. We note that it is not used for anything except the evalu-

ation of the fitness of a model. The evolutionary algorithm and PPO never interact; the

evolutionary algorithm proposes models to be trained, which are then trained using PPO.

This simplistic approach proves sufficient, as shown later in this work. We do note

17

however, that many improvements could be made to make the process more efficient. We

note some of these improvements in chapter 6.

Figure 5

Reinforcement Methodology for the Atari Experiment

evaluate(candidate):

If candidate already evaluated, return prior result

Initialize game playing agent with candidate as the feature

extractor

While score < -15 and time spent < 3 hours

extract features from game pixel data using candidate

predict next action using extract features in game agent

update game agent and feature extractor using PPO

Perform 10 trials of the final model

Store results of trials as mean score and standard deviation

Return mean score of 10 trials

18

Chapter 4

Application Scenarios and Experimental Setups

In this chapter, we describe the tasks of (i) using NAS to improve the performance

of image classification and (ii) improving control policy learned by reinforcement learn-

ing of ATARI game playing via NAS-improved feature extraction from raw image inputs.

We describe the data used for the two tasks and our experimental designs and setups to

investigate the two tasks.

4.1 Image Classification

Image classification is a common and important task in many modern automated

applications such as medical diagnosis and autonomous driving. It is critical to have high

accuracy for such applications, especially in the provided two examples where patient treat-

ment protocols may be influenced based on a false diagnosis, or a falsely identified obstacle

may cause a car to crash injuring or killing passengers. Many approaches have been pro-

posed to tackle these example problems, let alone the many other applications of image

classification. See the references herein for a few examples of medical diagnosis [20] and

autonomous driving [21]. We note autonomous driving is a far more sophisticated prob-

lem than simple image classification — involving many types of problems such as decision

making and risk assessment — but necessitates image classification use in its solution.

4.1.1 NASBench Image Dataset

NASBench dataset [22] contains 423k precomputed models on the CIFAR-10 im-

age dataset [23], making the architectural search space of the dataset finite but large. It is

limited to small feedforward architectures referred to as cells, as discussed earlier in chap-

ter 2. Final models then have a complete architecture as described below:

19

(input) 3x3 convolution, 128 output channels

[3x cell from search space]

Width/height are halved w/ max-pooling, channel count doubles

[3x cell from search space]

Width/height are halved w/ max-pooling, channel count doubles

[3x cell from search space]

Width/height are halved w/ max-pooling, channel count doubles

Global average pooling

(output) Dense softmax

We again note only the cell architecture is searched for. This stacked cell architec-

ture is a common pattern in NAS spaces and hand-made classifiers [3, 9, 24]. The entire

space consists of cell architectures which are directed acyclic graphs of V nodes, where

each node has one of L operations. The possible set of operations is 3x3 conv, 1x1 conv,

3x3 max-pool and V is limited to <= 7. There can be no more than 9 edges. As long as

these constraints are maintained, every possible combination of cell architectures is present

in the dataset, which allows us to fully experiment without the need to train the models, as

they are precomputed for us.

This dataset allows us to experiment and compare various techniques, specifically

with evolutionary algorithms, without having to train 423,624 models, which would cost

an amount of money which is infeasible to us.

20

Table 1

NASBench 101 Dataset Statistics - Full Training

Minimum Maximum Median Mean Std. Dev.

Trainable Parameters 227,274 49,979,274 5,356,682 8,459,762 8,558,503

Training Time 284.22 5,535.54 1,560.50 1,932.40 918.82

Train Accuracy 10.02% 100.00% 100.00% 99.19% 7.38%

Validation Accuracy 9.47% 95.11% 91.25% 90.25% 6.99%

Test Accuracy 9.98% 94.55% 90.65% 89.69% 6.91%

Note. Table obtained through statistical analysis of NASBench dataset.

We first note some statistics about the dataset in Table 1. The best possible validation

accuracy in this dataset is around 95%, so that is our target when performing this experiment.

4.1.2 Experimental Design and Setup

In generating architectures, we note we do not use crossover during evolution. Crossover

is notoriously difficult to implement on architectural problems such as this, due to the concerns of

generalization of genes and their compatibility. We note that Stanley and Miikkulainen [14] call

these excess or disjoint genes. NEAT solves this problem through historical marking, described

in the survey section; however, fundamentally the problem is that it is hard to correctly choose

which genes should be mixed with which when there are excess or missing genes in a genome [14].

Since only performing crossover between identical architecture models will allow only very rare

occurrences of crossover and may introduce unknown bias, we elect not to include crossover at all.

Additionally, we use half training during our experiment execution, but in reporting final

results compare the completed training measures. This ideally helps us mimic the real world perfor-

mance, where we would not expect to fully train models during evolution due to its computational

infeasibility.

21

4.2 Learning Control Policy for ATARI Game Playing

Mnih et al. [25] first used a convolutional neural network to extract important features from

image pixels obtained during playing of ATARI games. These extracted features are used as input to

a variant of Q-learning [26] to estimate future reward during the learning process of control policy

used for playing ATARI games. Schulman et al. [19] replaces Q-learning with proximal policy

optimization (PPO) with a better sample complexity compared to trust region policy optimization

(TRPO) [27, 19], while maintaining properties of TRPO.

4.2.1 CNN-Driven Feature Extraction for Reinforcement Learning

Mnih et. al. [25, 28] proposed a CNN architecture which takes in state representation as

input to the neural network and output a vector with elements corresponding to the Q-values of the

possible actions for the input state. This input states is represented by the features extracted from the

convolutional layers. Hence, the architecture provides value function estimation of future rewards

given the input states. The CNN computes the Q-values with only a single forward pass through the

network.

The architecture proposed by Mnih et. al. [25, 28] is significant in that it is the first architec-

ture to our knowledge proposed that is generally applicable to many vision-based feature extraction

tasks on Atari 2600 games, and is often a standard configuration used during first-pass research or

included as a default configuration in libraries. This first deep learning architecture are often cited

as initiating the boom of interest in deep reinforcement learning.

We select this problem because of its personal interest to us, but also because it is a compar-

atively simple space without many complexities upon which the problem of NAS can be explored.

We choose a single game, Pong, to run our experiments on, again acknowledging the incredible

computational cost of model training as part of our performance evaluation. More complex games,

let alone multiple games, are simply beyond our computational resources.

The goal of this experiment is very modest, simply to investigate whether evolutionary

NAS can be used efficiently and effectively to find an architecture that outperforms the architecture

proposed by Mnih et. al [28] at Pong.

22

4.2.2 Experimental Design and Setup for the Game of Pong

As discussed, the biggest problem with NAS is the incredible computational complexity of

searching models. In this problem we spent a total of 775 GPU hours (approximately 1 month) and

had mild success. In this time, we trained a total of 369 models for an average of approximately

2 hours each. Exact training time for an individual model varied, with a standard deviation of

approximately 45 minutes, but no model was allowed to train for more than 3 hours. Additionally,

training was stopped when a score threshold of -10 was reached, which is approximately 25% of

the way through training. The maximum score threshold would be +21, which would be considered

a perfect game.

We count training speed as approximately 30% of total fitness, while score is counted as

the other 70%. Training time is scored using an inverse logarithmic function; e.g. as training

time increases the portion of score training time is responsible for decreases logarithmically. This

encourages very quickly training models with high performance to bubble to the top, while not as

heavily penalizing longer training models, as the logarithmic nature of scoring tends to flatten the

weighting of this time factor after a certain point. The exact breakdown of these two portions of

fitness could be trivially adjusted to favor smaller models or ignore model size altogether.

Due to computational cost we were unable to evaluate metrics of selection and fitness in

this experiment. The evaluation is only performed on the NASBench dataset described in subsec-

tion 4.1.1.

Our primary means of reducing this complexity is to reduce the size of the search space.

Due to limited resources we constrain this significantly. We limited our architecture to exactly 3

convolutional layers. Layer size is limited to a power of 2 from 21 to 27. Kernel size is limited to a

power of 2, up to a maximum of half the layer size. Activation functions were chosen from RELU,

GELU, and CELU with an alpha of 1. The final model output size is 512.

23

We select models from the population using tournament selection (see section 4.3). Pseudo-

code for tournament selection is as follows:

SelectTournament(pop, k, n):

randomly choose k candidates from the population

return the top n candidates from the random selection

We randomly choose 20% of the total population and return the top 5 candidates amongst

the randomly selected candidates.

Due to the computational complexity required to run reinforcement learning algorithms to

convergence, we cannot realistically use the Pong experiment to compare and analyze various evo-

lutionary algorithm approaches as we would rapidly exceed budget. As such, we use the NASBench

dataset (see subsection 4.1.1) to perform these experiments, and rely on the assumption that the re-

sults provide insights to the usage of evolutionary NAS to pong and other control policy learning

tasks using reinforcement learning.

4.3 Compared Population Selection Methods

We will compare empirically a variety of population selection methods. Each of these

methods is used to select candidates for the next generation, which are then mutated.

1. Random Selection: There is no special consideration for candidate selection. This, in theory,

gives a high degree of exploration but discourages any exploitation. In a way it is very similar

to random search, since candidates are picked randomly, except we explore local areas around

the candidates via mutation.

2. Greedy Selection: The best candidates are selected in order. This approach entirely favors

exploitation over exploration. We will, while using this approach, find a good performing

architecture quickly. However it becomes easy to get trapped in local maxima while using

this method, and there is little to no way to escape.

3. Tournament Selection: We use random selection to select groups of potential candidates,

then select the best candidates from these groups. This encourages an exploration/exploitation

24

trade-off that is easily alterable by how many random candidates we select. The higher the

percentage of the total population that is selected, the closer to greedy selection we get when

we finally select the best candidates from the pool.

4.4 Compared Drop Methods

We maintain a consistent population size of 100 individuals. In order to perform mutation,

we replace some existing models with mutations of other models. Which models get dropped from

consideration depend on our choice of drop method.

1. Greedy Dropping: We drop the worst performing models. This is analogous to advancing

the best performing models, but allows us to easily mix and match methodology. When

mixed with selecting the best candidates, we refer to this as “pure greedy”.

2. Tournament Dropping: We use random selection to select groups of potential candidates to

drop, then drop the worst performing candidates from these groups. This is exactly the same

as tournament selection for mutation candidates, except for the purposes of dropping models.

3. Random Dropping: We perform no special consideration for which models to drop, instead

dropping a number of models at random. This has a heavy lean towards exploration, but

harms exploitation by potentially dropping highly performing models. However, combina-

tion with a highly exploitative selection method such as greedy selection was an intriguing

enough notion that we included it for purposes of gathering empirical data.

4. Drop Oldest: We keep track of the order in which model specifications are encountered,

and drop the oldest specifications. This technique is inspired by the same in AmoebaNet [1],

however here we vary the number of dropped individuals. This provides some trade-off

between exploration and exploitation, because the natural intuition is that models improve

over time.

25

Chapter 5

Experimental Results and Discussions

In this chapter, we first present empirical results on the NASBench Dataset using different

population selection and drop methods for the evolutionary NAS. We compare the effect of the

variations on the image classification accuracies. Finally, we present the Pong game playing mean

scores and discuss the results.

5.1 Comparison Results of Selection and Drop Methods

Figure 6 shows the comparison results of the mean accuracies for different selection/drop

methods for evolutionary NAS after 120 generations. In particular, we present results for the fol-

lowing variations (i) Select 5 Greedy + Drop 5 Greedy, (ii) Select 5 Greedy + Drop 5 Random, (iii)

Select 5 Greedy + Drop 5 Oldest, (iv) Select 5 Random + Drop 5 Greedy, (v) Select 5 Random +

Drop 5 Random, and (vi) Select 5 Random + Drop 5 Oldest.

From Figure 6, we observe that there are two comparable methods — (i) Select 5 Greedy

+ Drop 5 Greedy and (iv) Select 5 Random + Drop 5 Greedy — while the other four methods

lag behind by a fairly significant margin. The key insight here is that a methodology of candidate

removal which considers the fitness of each model is critical. We discuss each method in more detail

in the next subsection.

Next, we present the learning curves for using different variations of select/drop methods for

evolutionary NAS from Figure 7 to Figure 11 and discuss the learning behavior for each variation.

Each figure shows median accuracy of a generation over time for one month of computational time.

Each trial represents a separate random seed, shared across all experiments with the same trial

number.

26

Figure 6

Mean Accuracy Comparison of Different Selection/Drop Method for Evolutionary Algo-
rithm for the NAS After 120 Generations

5.1.1 Greedy Selection

We note that pure greedy evolution performs acceptably, as shown in Figure 7. However,

there is significant falloff in the improvement rate after generation ∼ 20 as the poor performance

models are weeded out, and the greedy selection has little way to escape the local maximum. How-

ever, as noted before, due to the simplicity of this search space, purely greedy selection performs

with high efficiency. There is a small but present amount of performance that could be gained, but

there are a large number of high performance models, as noted by the median test accuracy of the

entire dataset being 90.65%. We expect purely greedy selection to perform acceptably on more

significant datasets, but the problem of it becoming trapped in local maximums will be increased.

As shown in Figure 8 and Figure 9, the training curve of greedy selection with random

dropping is slightly sharper than greedy dropping with random selection, however the greedy se-

lection and random dropping trials have significantly higher variance. This follows logically from

the premise. With random dropping, there is the possibility of dropping highly performing models,

so we occasionally lose these models from consideration and as a result have very unstable per-

27

formance improvement. With random selection and greedy dropping, the possibility of dropping a

highly performing model is eliminated, and we only drop the least performant models. As such we

create an implicit lower bound for the performance of the evaluation that improves over time.

This approach may be sufficient if any well performing architecture is needed, e.g. we

do not require the best performing architecture, any will do, as it demonstrates fairly remarkable

growth in the earliest portion of training. In these cases, pure greedy selection could be used for a

shorter amount of time to find an acceptably performing model.

Figure 7

Learning Curves for Using Select 5 Greedy + Drop 5 Greedy

5.1.2 Oldest Dropping

Performance using the methodology of dropping the oldest architectures is abysmal, to say

the least. There is simply too much variance between individual models to create a situation where

older models perform worse than newer models, since there is no guarantee at all that a mutation

will lead to better or equal performance. As such it is incredibly easy to throw away our highest

performing model, as displayed in Figure 10.

28

Figure 8

Learning Curves for Using Select 5 Greedy + Drop 5 Random

Figure 9

Learning Curves for Using Select 5 Random + Drop 5 Greedy

5.1.3 Random Dropping

Purely random dropping does not deserve much consideration, as it is purely random, as

expected. It provides no real performance gains over time, but may accidentally stumble across a

29

viable model. This performance is shown in Figure 11.

Figure 10

Learning Curves for Using Select 5 Random + Drop 5 Oldest

5.1.4 Tournament Selection

We next try three variations of tournament selection. We vary the size of the tournament,

and scale the number of selected models with said size. For each trial, we again use a population

size of 100 individuals. Figure 12 shows a graph of the hyperparameter space for tournament se-

lection while still dropping the worst performing models. We note tournament selection’s primary

attractiveness is in its ability to mix exploration and exploitation naturally by configuring the size

of the tournament. The larger the tournament, the closer to a fully greedy solution it is. However,

there is a sweet spot where it mixes exploration and exploitation very effectively and manages to

more reliably find higher performance models. The overall slope of the plane indicates that there is

a slight inclination in performance as the size of the tournament grows and the number of candidates

selected from the tournament decreases. However, the slope also indicates that smaller selections

have a greater impact on performance than larger tournaments.

This is a somewhat unexpected, but welcome, performance increase over our baseline ran-

30

dom selection with greedy dropping. An interesting observation is even with the gain in perfor-

mance being clearly visible, it is incredibly small, which is a testament to the kind of performance

the baseline is capable of. There is little reason to use any other metric, especially given the simplic-

ity of the baseline. While there might be a slight performance improvement here, variance created

by a real world problem with different properties may cause the exact parameters required to achieve

greater performance to vary slightly, and as a result finding these parameters may actually increase

the overall time spent.

Figure 11

Learning Curves for Using Select 5 Random + Drop 5 Random

5.2 Pong - Game Playing Performance Evaluation

Early stopping was a crucial part of computational cost savings, even with this simple archi-

tecture space. Without early stopping, we estimate at least a 4x cost increase based upon the rough

point at which we stop training. We do however note that training generally slows down towards

the end of the period as convergence is approached, and the actual cost increase is likely to be even

larger, as stopping 1/4th of the way through the raw reward threshold is not necessarily linearly

correlated to training time, which may actually be much longer.

31

Figure 12

Tournament Selection Performance vs Random Selection + Greedy Drop

Note. Transparent plane shows is a R2 best fit plane to demonstrate slant of parameter space.

Figure 13

Pong - Cumulative Size vs. Mean Game Score

32

Figure 13 shows the mean model performance over the cumulative size (summing the num-

ber of neurons across all hidden layers) for playing the pong game using the learned control policy.

We find there is a slight negative correlation with cumulative hidden layer size and mean reward

during evaluation, and note this is somewhat expected due to the simplicity of the game Pong. The

vast majority of models performed poorly.

We note a few things about this figure. Firstly, there are a few models that performed

exceptionally poorly. These models all have a mean performance of -21 after evaluation, which

means they did not score a single point during the evaluation period. There are nine of these such

models, we have listed two of them below as representative examples.

2d Convolution, output size 32, kernel size 4, stride 1, padding 0,

ReLU activation

2d Convolution, output size 128, kernel size 32, stride 1, padding 0,

ReLU activation

2d Convolution, output size 4, kernel size 2, stride 1, padding 0,

CELU(alpha=1) activation

Flatten to the size of the observation space

Linear layer of size 512, ReLU activation

2d Convolution, output size 64, kernel size 2, stride 1, padding 0,

CELU(alpha=1) activation

2d Convolution, output size 128, kernel size 32, stride 1, padding 0,

GELU activation

2d Convolution, output size 32, kernel size 4, stride 1, padding 0,

ReLU activation

Flatten to the size of the observation space

Linear layer of size 512, ReLU activation

Both of these models are on the larger side of the cumulative total hidden size, with 164

and 224 hidden nodes respectively. We do note that they do not conform to a traditional architecture

33

of increasing reduction seen in many convolutional neural network architectures, where we would

expect to see each subsequent layer at least an equal in size or smaller than the previous. This is a

generally accepted way to start designing sequential architectures, where we expect the increasing

abstraction to pull the correct data out and eventually arrive at a decision of which action to take.

We also note that there is a range of models that performed exceptionally poorly, even

some of lower sizes, so the issue cannot be explained away by appealing to the reasoning of over-

complication of some architectures, but there is an underlying logic that is poorly understood. We

offer this as the start of an explanation as to why these models did not perform to expectations, but

can offer little proof as to this, again due to the black box nature of these networks.

Interestingly, even with this very limited experiment an architecture was found that outper-

formed the one described by Mnih et. al. [28] on the specific task of Pong. We describe our higher

performing architecture below:

2d Convolution, output size 128, kernel size 2, stride 1, padding 0,

GELU activation

2d Convolution, output size 16, kernel size 2, stride 1, padding 0,

ReLU activation

2d Convolution, output size 32, kernel size 8, stride 1, padding 0,

CELU(alpha=1) activation

Flatten to the size of the observation space

Linear layer of size 512, ReLU activation

For comparison, we also describe the model presented by Mnih et. al. [28] here:

2d Convolution, output size 32, kernel size 8, stride 4, padding 0,

ReLU activation

2d Convolution, output size 64, kernel size 4, stride 2, padding 0,

ReLU activation

2d Convolution, output size 64, kernel size 3, stride 1, padding 0,

ReLU activation

34

Flatten to the size of the observation space

Linear layer of size 512, ReLU activation

We note that Mnih et. al. [28] designed their architecture to extract features from many

different Atari games, and provide experimental results for 49 different games. We focus on a single

game, again due to budget constraints. As a result, this performance improvement is interesting but

niche. It does demonstrate empirically that a better architecture can be found, even with a very

simple search space with many limitations. We do not expect that there would be any issues with

generalizing this approach to the other 48 games in question. However, it does not disprove that the

model of Mnih et. al. [28] is the best for their stated purpose - performing well at feature extraction

on all 49 games.

35

Chapter 6

Conclusions and Future Work

In this thesis, we study the use of evolutionary algorithm for neural architecture search

(NAS). Moreover, we investigate the effect of integrating evolutionary NAS into deep reinforcement

learning to learn control policy for ATARI game playing. Empirical classification results on the

NASBench image dataset using different population selection and drop methods for the evolutionary

NAS are presented to validate the usefulness of simple evolutionary algorithms in optimizing neural

architectures, showing that even basic evolutionary algorithms are a well performing and easy to

use approach. We also show the feasibility of using evolutionary NAS to extract good features that

can improve the pong game playing score when the computational resource is limited.

There are many directions that future work can go, however there are a few key issues that

are still plaguing further progress. First and foremost, existing research is unable to provide real

insight as to why some architectures work well and why others do not. The only generally accepted

knowledge is that more complex tasks require larger architectures, but even this sometimes does not

hold true [3].

The largest and most critical area of research in our opinion is therefore on development

of understanding of the internal architectures that lead to positive performance. This knowledge

would be instrumental to the future research on NAS subjects, and would likely drastically reduce

the computational and human cost of architecture design. In essence, the field of NAS exists because

of this particular problem. It is, however, a large way off from solving.

There is some work being done in this area though, we point attention to studies such as

the ones by Geiping et al. [29] on inverse problems and the stability of DARTS, which has promise

to begin to elucidate the inner workings — in the non-mathematical sense — of these algorithms

and what sorts of problems they work well on and what sorts of problems they fail to produce

satisfactory results on. More research on this is needed, but once the shortcomings of existing top

performance methods are fully understood, they may be iterated on or new methods can be produced

which do not produce these shortcomings.

36

As for evolutionary architecture search methodology, it has been shown to be successful:

see herein [18]. Most of these methods however use fairly complex methodology in comparison

to what was shown in this work, and some well known methods such as AmoebaNet-A use far

greater processing power than is commonly available (450 CPUs for 2-5 days). It’s performance

was certainly better than that which was presented in this work, leading our simplistic methodology

by 4%, it is arguable if this performance is worth the cost. AmoebaNet-A demonstrated (at the

time) state of the art performance, recent focus in neural architecture search has moved away from

evolutionary algorithms and into gradient based approaches due to their exceptional performance

and comparatively reduced expert knowledge requirements due to gradient learning, rather than

manually created fitness metrics. As such, the future of evolutionary algorithms in this space is

unknown, but this work demonstrates that they can be a quick and easy methodology which provides

solid performance.

37

References

[1] E. Real, A. Aggarwal, Y. Huang, and Q. V. Le, Regularized evolution for image
classifier architecture search, 2019. arXiv: 1802.01548 [cs.NE].

[2] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, “Learning transferable architectures
for scalable image recognition,” in 2018 IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 2018, pp. 8697–8710. DOI: 10.1109/CVPR.2018.00907.

[3] T. Elsken, J. H. Metzen, and F. Hutter, Neural architecture search: A survey, 2019.
arXiv: 1808.05377 [stat.ML].

[4] B. Zoph and Q. V. Le, Neural architecture search with reinforcement learning, 2017.
arXiv: 1611.01578 [cs.LG].

[5] B. Baker, O. Gupta, N. Naik, and R. Raskar, Designing neural network architectures
using reinforcement learning, 2017. arXiv: 1611.02167 [cs.LG].

[6] A. Brock, T. Lim, J. M. Ritchie, and N. Weston, Smash: One-shot model architecture
search through hypernetworks, 2017. arXiv: 1708.05344 [cs.LG].

[7] J. Bergstra and Y. Bengio, “Random search for hyper-parameter optimization,” vol. 13,
pp. 281–305, Feb. 2012, ISSN: 1532-4435.

[8] C. Liu et al., Progressive neural architecture search, 2018. arXiv: 1712 . 00559
[cs.CV].

[9] L. Weng, “Neural architecture search,” lilianweng.github.io/lil-log, 2020. [Online].
Available: https : / / lilianweng.github. io / lil - log/2020/08/06/neural - architecture-
search.html.

[10] H. Pham, M. Y. Guan, B. Zoph, Q. V. Le, and J. Dean, Efficient neural architecture
search via parameter sharing, 2018. arXiv: 1802.03268 [cs.LG].

[11] B. Baker, O. Gupta, R. Raskar, and N. Naik, Accelerating neural architecture search
using performance prediction, 2017. arXiv: 1705.10823 [cs.LG].

[12] H. Cai, J. Yang, W. Zhang, S. Han, and Y. Yu, “Path-level network transformation
for efficient architecture search,” in International Conference on Machine Learning,
PMLR, 2018, pp. 678–687.

[13] D. Ha, A. Dai, and Q. V. Le, Hypernetworks, 2016. arXiv: 1609.09106 [cs.LG].

38

https://arxiv.org/abs/1802.01548
https://doi.org/10.1109/CVPR.2018.00907
https://arxiv.org/abs/1808.05377
https://arxiv.org/abs/1611.01578
https://arxiv.org/abs/1611.02167
https://arxiv.org/abs/1708.05344
https://arxiv.org/abs/1712.00559
https://arxiv.org/abs/1712.00559
https://lilianweng.github.io/lil-log/2020/08/06/neural-architecture-search.html
https://lilianweng.github.io/lil-log/2020/08/06/neural-architecture-search.html
https://arxiv.org/abs/1802.03268
https://arxiv.org/abs/1705.10823
https://arxiv.org/abs/1609.09106

[14] K. O. Stanley and R. Miikkulainen, “Evolving neural networks through augmenting
topologies,” Evolutionary Computation, vol. 10, no. 2, pp. 99–127, 2002. DOI: 10.
1162/106365602320169811.

[15] G. Bender, P.-J. Kindermans, B. Zoph, V. Vasudevan, and Q. Le, “Understanding
and simplifying one-shot architecture search,” in Proceedings of the 35th Interna-
tional Conference on Machine Learning, J. Dy and A. Krause, Eds., ser. Proceedings
of Machine Learning Research, vol. 80, PMLR, Oct. 2018, pp. 550–559. [Online].
Available: https://proceedings.mlr.press/v80/bender18a.html.

[16] D. H. Tizhoosh. “Machine intelligence - lecture 18 (evolutionary algorithms),” Kimia
Lab, University of Waterloo. (Apr. 2019), [Online]. Available: https://www.youtube.
com/watch?v=3-NiZPbkr7A.

[17] P. Vikhar, “Evolutionary algorithms: A critical review and its future prospects,” Dec.
2016, pp. 261–265. DOI: 10.1109/ICGTSPICC.2016.7955308.

[18] Y. Liu, Y. Sun, B. Xue, M. Zhang, G. G. Yen, and K. C. Tan, “A survey on evo-
lutionary neural architecture search,” IEEE Transactions on Neural Networks and
Learning Systems, 2021.

[19] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal policy
optimization algorithms,” arXiv preprint arXiv:1707.06347, 2017.

[20] E. S. Biratu, F. Schwenker, Y. M. Ayano, and T. G. Debelee, “A survey of brain
tumor segmentation and classification algorithms,” Journal of Imaging, vol. 7, no. 9,
2021, ISSN: 2313-433X. DOI: 10.3390/jimaging7090179. [Online]. Available: https:
//www.mdpi.com/2313-433X/7/9/179.

[21] E. Yurtsever, J. Lambert, A. Carballo, and K. Takeda, “A survey of autonomous driv-
ing: Common practices and emerging technologies,” IEEE Access, vol. 8, pp. 58 443–
58 469, 2020. DOI: 10.1109/ACCESS.2020.2983149.

[22] C. Ying, A. Klein, E. Christiansen, E. Real, K. Murphy, and F. Hutter, “NAS-bench-
101: Towards reproducible neural architecture search,” in Proceedings of the 36th
International Conference on Machine Learning, K. Chaudhuri and R. Salakhutdi-
nov, Eds., ser. Proceedings of Machine Learning Research, vol. 97, Long Beach,
California, USA: PMLR, Sep. 2019, pp. 7105–7114. [Online]. Available: http : / /
proceedings.mlr.press/v97/ying19a.html.

[23] A. Krizhevsky, G. Hinton, et al., “Learning multiple layers of features from tiny
images,” 2009.

[24] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, Learning transferable architectures
for scalable image recognition, 2018. arXiv: 1707.07012 [cs.CV].

39

https://doi.org/10.1162/106365602320169811
https://doi.org/10.1162/106365602320169811
https://proceedings.mlr.press/v80/bender18a.html
https://www.youtube.com/watch?v=3-NiZPbkr7A
https://www.youtube.com/watch?v=3-NiZPbkr7A
https://doi.org/10.1109/ICGTSPICC.2016.7955308
https://doi.org/10.3390/jimaging7090179
https://www.mdpi.com/2313-433X/7/9/179
https://www.mdpi.com/2313-433X/7/9/179
https://doi.org/10.1109/ACCESS.2020.2983149
http://proceedings.mlr.press/v97/ying19a.html
http://proceedings.mlr.press/v97/ying19a.html
https://arxiv.org/abs/1707.07012

[25] V. Mnih et al., “Playing atari with deep reinforcement learning,” arXiv preprint
arXiv:1312.5602, 2013.

[26] C. Watkins, “Learning from delayed rewards,” Jan. 1989.

[27] J. Schulman, S. Levine, P. Moritz, M. I. Jordan, and P. Abbeel, Trust region policy
optimization, 2017. arXiv: 1502.05477 [cs.LG].

[28] V. Mnih et al., Human-level control through deep reinforcement learning, 2015. Na-
ture: 10.1038 (cs.NE).

[29] J. Geiping, J. Lukasik, M. Keuper, and M. Moeller, “DARTS for inverse problems: A
study on stability,” in NeurIPS 2021 Workshop on Deep Learning and Inverse Prob-
lems, 2021. [Online]. Available: https://openreview.net/forum?id=ty5XCitJfLA.

40

https://arxiv.org/abs/1502.05477
10.1038
https://openreview.net/forum?id=ty5XCitJfLA

	An Empirical Study on the Efficacy of Evolutionary Algorithms for Automated Neural Architecture Search
	Recommended Citation

	Abstract
	List of Figures
	List of Tables
	Introduction
	Literature Review
	Search Space
	Search Strategy
	Performance Estimation
	Types of Search Spaces
	Sequential Layer-Wise Operations
	Cell-Based Representation
	Hierarchical Structures
	Memory-Bank Representation

	Types of Search Strategies
	Random Search
	Reinforcement Learning
	Evolutionary Algorithms
	Progressive Decision Processes
	Gradient Descent

	Types of Evaluation Strategies
	Training from Scratch
	Proxy Tasks
	Parameter Sharing
	Predictive
	One-Shot

	Representative Architecture Search Approaches
	NeuroEvolution of Augmenting Topologies (NEAT)
	Neural Architecture Search (NAS)
	One-Shot Architecture Search
	Differentiable Architecture Search (DARTS)
	Progressive Neural Architecture Search (PNAS)

	Methodology
	Background: Evolutionary Algorithms
	Evolutionary Neural Architecture Search
	Evolutionary Neural Architecture Search for Feature Extraction

	Application Scenarios and Experimental Setups
	Image Classification
	NASBench Image Dataset
	Experimental Design and Setup

	Learning Control Policy for ATARI Game Playing
	CNN-Driven Feature Extraction for Reinforcement Learning
	Experimental Design and Setup for the Game of Pong

	Compared Population Selection Methods
	Compared Drop Methods

	Experimental Results and Discussions
	Comparison Results of Selection and Drop Methods
	Greedy Selection
	Oldest Dropping
	Random Dropping
	Tournament Selection

	Pong - Game Playing Performance Evaluation

	Conclusions and Future Work
	 References

