
Rowan University Rowan University 

Rowan Digital Works Rowan Digital Works 

Theses and Dissertations 

5-16-2022 

INVESTIGATION INTO THE GENETIC BASIS OF CAPSAICIN INVESTIGATION INTO THE GENETIC BASIS OF CAPSAICIN 

PRODUCTION IN PEPPERS USING NEXT GENERATION RNA PRODUCTION IN PEPPERS USING NEXT GENERATION RNA 

SEQUENCING AND SYNTHETIC BIOLOGY APPROACHES SEQUENCING AND SYNTHETIC BIOLOGY APPROACHES 

Ryan Patrick Calhoun 
Rowan University 

Follow this and additional works at: https://rdw.rowan.edu/etd 

 Part of the Bioinformatics Commons, and the Genetics and Genomics Commons 

Recommended Citation Recommended Citation 
Calhoun, Ryan Patrick, "INVESTIGATION INTO THE GENETIC BASIS OF CAPSAICIN PRODUCTION IN 
PEPPERS USING NEXT GENERATION RNA SEQUENCING AND SYNTHETIC BIOLOGY APPROACHES" 
(2022). Theses and Dissertations. 3008. 
https://rdw.rowan.edu/etd/3008 

This Thesis is brought to you for free and open access by Rowan Digital Works. It has been accepted for inclusion 
in Theses and Dissertations by an authorized administrator of Rowan Digital Works. For more information, please 
contact graduateresearch@rowan.edu. 

https://rdw.rowan.edu/
https://rdw.rowan.edu/etd
https://rdw.rowan.edu/etd?utm_source=rdw.rowan.edu%2Fetd%2F3008&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/110?utm_source=rdw.rowan.edu%2Fetd%2F3008&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/27?utm_source=rdw.rowan.edu%2Fetd%2F3008&utm_medium=PDF&utm_campaign=PDFCoverPages
https://rdw.rowan.edu/etd/3008?utm_source=rdw.rowan.edu%2Fetd%2F3008&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:graduateresearch@rowan.edu


INVESTIGATION IN TO THE GENETIC BASIS OF CAPSAICIN
PRODUCTION IN PEPPERS USING NEXT GENERATION RNA SEQUENCING

AND SYNTHETIC BIOLOGY APPROACHES

by

Ryan Patrick Calhoun

A Thesis

Submitted to the
Department of Molecular and Cellular Biosciences

College of Science and Mathematics
In partial fulfillment of the requirement

For the degree of
Master of Science in Bioinformatics

at
Rowan University
August 13, 2021

Thesis Chair: Benjamin R. Carone, Ph.D., Professor of Molecular and Cellular
Biosciences

Committee Members:
Yong Chen, Ph.D., Professor of Bioinformatics & Mathematics

Thomas Keck, Ph.D., Professor of Chemistry & Biochemistry/Molecular & Cellular
Biosciences



© 2021 Ryan Patrick Calhoun



Dedication

I would like to dedicate this thesis to my mentor Dr. Benjamin Carone for his support,

guidance, and creativity in this project and pushing me to become a better scientist. He

has truly shaped my academic career in both undergraduate and graduate, guiding me

every step of the way and I would not be the person I am without him. I am ever so

grateful for him taking me into his laboratory and teaching me everything I have come to

know and love about science. He has truly influenced me to become a better student,

worker, scientist and has helped pave the road to my future. I would not be where I am

today if it were not for Dr. Carone.



Acknowledgements

I would like to thank my thesis chair and mentor Dr. Benjamin R Carone who

taught me all of my wet lab experience and helped guide me through my masters program

and thesis. I would also like to thank my committee member Dr. Yong Chen for teaching

me in-depth bioinformatic techniques and analysis which were instrumental in my thesis

work. I would also like to thank Dr. Thomas Keck for his guidance and feedback for my

thesis and everyone's contribution in making my final project.

I would like to acknowledge members of the Carone laboratory for their

contributions to the projects and specifically, Nicholas Paterna for his help and assistance

in teaching me the R language for statistical computing and graphics. Members of the

Carone laboratory always promoted a joyful and friendly working environment which

helped encourage me and support me through my work. There was never a dull moment

in the laboratory and it was always a pleasure to be surrounded by such kind friends and

mentors who made my science career fun and memorable.

I would also like to thank my family members, specifically my mother and father

who have made my education career possible and always supported me and my decisions.

They have made me the best version of myself and I cannot thank them enough for

everything they have done for me and allowing me to further pursue my educational

career. I would also like to thank my girlfriend, Nicole Varrella for her unmatched

support and motivation that got me through my thesis program.

iv



Abstract

Ryan Patrick Calhoun
INVESTIGATION IN TO THE GENETIC BASIS OF CAPSAICIN PRODUCTION IN

PEPPERS USING NEXT GENERATION RNA SEQUENCING AND SYNTHETIC
BIOLOGY APPROACHES

2020-2021
Benjamin R Carone, Ph.D.,

Master of Science in Bioinformatics

Capsaicin, a molecule synthesized by plants in the Capsicum genus, is popular for

its ability to produce a sensation of burning in any tissue it encounters. The synthesis of

capsaicin molecules is achieved through the capsaicin biosynthesis pathway. In this dual

study, our goal was to insert two crucial genes, pun1 and pAMT, into a strain of

Saccharomyces cerevisiae to allow capsaicin synthesis and perform Illumina RNA

sequencing on seven pepper species of increasing pungency to identify other key or novel

genes needed or related to capsaicin synthesis. We implemented a golden gate cloning

strategy to insert our genes of interest into bacteria to then be cloned into yeast. We

believe that successful insertion into our yeast strain was achieved for one of the genes,

pAMT, but the other, pun1, appears to not be inserted. We hypothesize that correct

insertion and expression of pun1 would achieve capsaicin synthesis alongside expression

of pAMT, as these two genes would complete the missing parts of the capsaicin pathway.

We identified five possible new gene candidates with unknown functions grouped

together with similar expression to known genes present in the capsaicin pathway. These

novel genes were identified as follows: CA01g11020, CA12g21630, CA09g00520,

CA03g28900, CA09g15570. We also identified five regions of interest that showed

similar trends in expression patterns that could contain new promising genes that are not

known to participate in the capsaicin biosynthesis pathway.
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Chapter 1

Introduction

Capsaicin Overview

Capsaicin, 8-methyl-N-vanillyl-6-nonenamide, is a pungent molecule that is

synthesized from the capsaicin biosynthesis pathway, a pathway that is unique to

Capsicum plants. Capsaicin is a unique molecule for its ability to elicit a burning

sensation in the mucous membranes of mammals (Fitzgerald, 1983). Capsaicin will bind

to nociceptors, a group of sensory neurons which respond to specific sensory stimuli,

which transmits information regarding tissue damage to pain-processing centers in the

spinal cord and brain (Fitzgerald, 1983) (Frias & Merighi, 2016). Specifically, the

transient receptor potential vanilloid type 1 (TRPV1) receptor is the receptor in which

capsaicin will bind to. These ligand-gated non-selective cation channels are activated by

a range of noxious stimuli such as extremes in thermal, poisonous, chemical, or

mechanical stimuli (Ross, 2003) (Winter & Campbell, 1995). When the neurons are

exposed to such stimuli, the pain response that is stimulated helps the individual

recognize the danger and lead them away from this stimulus (Winter & Campbell, 1995).

The most common sensation when consuming capscium plants is the spicy tingling burn

and this burning sensation is dependent on the type of Capsicum plant that is ingested and

your own sensitivity of your TRPV1 receptors. Different Capsicum plants can produce

different amounts of capsaicin and an individual’s pain receptors can dictate their

response to the pepper stimuli (Caterina et. al., 1997). These differences in pungency,

which are a result from the different amounts of capsaicin production, can be measured

using the scoville scale which is recorded in scoville heat units (Sanatombi & Sharma,
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2008). The scale is based on the concentration of capsaicinoids and was named after

Wilbur Scoville in 1912 who originally used an organoleptic test where the exact weight

of a dried pepper is dissolved in alcohol to extract capsaicinoids. They were then diluted

in a solution of sugar water and given to a panel of five trained tasters until they could no

longer taste the heat in the diluted sugar water solution. The heat level is then based on

the dilution and rated in multiples of 100 SHU (Bosland et. al., 2008). There are

problems with this type of testing such as imprecision based on human subjectivity which

arises with each person having a different number of TRPV1 receptors so they will

experience different associated ranges of heat. Another weakness is the desensitization

that arises when these receptors are stimulated which will be expanded on in the next

section. Nowadays, the pungency units for peppers are quantitatively assessed using

high-performance liquid chromatography (HPLC) as this form of analysis is highly

accurate, reliable, and reproducible for samples (Sanatombi & Sharma, 2008). When a

pepper is consumed, the capsaicin that was synthesized and stored within the pepper is

released, and the capsaicin will find and bind to TRPV1 receptors located on the tongue,

esophagus, and stomach as it is ingested (Fitzgerald, 1983). The binding causes

upregulation of the neurons resulting in reduced stimulation thresholds and an increase in

pain perception (Ross, 2003). Although our body recognizes capsaicin as an irritant and

noxious chemical, there are still many benefits to our health and medicinal uses for

capsaicin along with a wide range of commercial and economic impacts it can affect.

The ability for capsaicin to interact with pain receptors has made it an interesting

subject for treatment for neurological and pain conditions in patients. As capsaicin

molecules interact with their respective nocireceptors, this can lead to a desensitization of
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the receptor. Receptor desensitization results in a decreased responsiveness due to

repeated exposure to agonists (Szolcsanyi, 1997). This decrease in responsiveness results

in less ion gated channels being opened, generating less electrical responses to the brain,

which results in a lower pain response (Bosland et. al., 2012) (O’Neill et. al., 2012).

Scientists can take advantage of this interaction to help treat different pain conditions.

Studies by Nolano et. al., 1999 and Mason et. al., 2004, demonstrate that a single

application of a low-dose capsaicin cream can result in an inactivation of peripheral

afferent fibers and primary and secondary hyperalgesia. However, repeated application of

a topical capsaicin cream over a few weeks dampens responses to both mechanical

stimuli and heat (Nolano et. al., 1999) (Mason et. al., 2004). Capsaicin has been used in

numerous pain studies from somatic to visceral models and can assess both primary and

secondary hyperalgesia (O’Neill et. al., 2012). Capsaicin has also seen potential in dietary

strategies such as managing gastrointestinal distress, effects on weight loss and weight

maintenance (Singletary, 2011). Two studies conducted by Yoshioka et. al., demonstrated

an increase in energy release when capsaicin is mixed with a high fat diet (Yoshioka et.

al., 1995) (Yoshioka et. al., 1998). This production of heat after eating contributes to the

body’s resting metabolic rate and the addition of capsaicin in the diet increases the resting

metabolic rate (Sharma et. al., 2013).

It also has positive effects on insulin resistance as a study done in which obese

mice were fed on a high fat diet with a capsaicin supplement led to a decrease in fasting

glucose and plasma triglycerice levels (Szolcsanyi, 1997) (Yoshioka et. al., 1998). New

studies are even demonstrating links between capsaicin containing anti-cancer properties.

A study conducted studied the effects of capsaicin on human cancer cell lines by
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monitoring how these cancerous cells had their cell cycle affected by capsaicin. They

reported that the cell line had reduced proliferation and viability of cells, early apoptosis

cell signaling, and even arrest points in the cell cycle preventing cancerous cell

replication (Lin et. al., 2013). There are many other beneficial applications of capsaicin

for medicine and health purposes which make it a unique and interesting molecule to

pursue. The economic impacts of the Capsicum genus is a huge market itself. Peppers are

a common culinary ingredient due to their rich diversity as a crop. According to the Food

and Agriculture Organization of the United Nations, FAOSTAT, world pepper production

was estimated to be 1,103,024 metric tons in 2019. In addition, the world area for land

utilized for pepper production was 749,088 hectares of land. These trends can be seen in

figure 1 below demonstrating pepper production and land utilization from 1994-2019 for

world pepper production.  For economic impact, pepper production totaled an estimated

3.8 billion U.S. dollars in 2018 in export prices (FAOSTAT, 2017). The wide range of

capsaicin levels and flavors they come in make them highly desired. They are utilized in

flavoring in food, manufacturing, coloring in cosmetics, and transmitting heat to

medicines (Frias & Merighi, 2016). 

4



Figure 1

World Production and World Area Harvested for Peppers According to the Food and

Agriculture Organization of the United Nations

Note. World production of pepper is recorded in tonnes and is represented as the red
dotted line. World area harvested is recorded in hectares and is represented as the blue
dotted line.

The Capsicum genus belongs in the Solanaceae family which consists of several

important crops and model plants such as the potato, tomato, eggplant, and pepper

species (Mueller et. al., 2005). The main domesticated Capsicum species are C. annuum,

C. baccatum, C. chinense, C. frutescens, and C. pubescens (Wang & Bosland, 2006)

(Heiser & Pickersgill, 1969). All plants of the Capsicum genus produce capsaicinoids

with the exception of the bell pepper, Capsicum annuum. The major capsaicinoids

produced from this genus are capsaicin and dihydrocapsaicin with other analogs such as

nordihydrocapsaicin, homocapsaicin and more produced in lower amounts (Davis et. al.,

2007). Capsaicinoids can be found to be most concentrated in the placenta of the pepper

as this is the major site for capsaicinoid biosynthesis (Wang & Bosland, 2006) (Frias &
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Merighi, 2016). Capsaicin is the main active component in chili peppers and the

fundamental structure of it as its analogs are a branched-chain fatty acid amide of

vanillylamine. The synthesis of capsaicin evolved as a defensive mechanism for the

Capsicum genus to prevent insects or mammals from eating the plant since they eat the

plant and destroy the seeds in the process or prevent the seeds from being able to be

dispersed. Thereby when insects and mammals ingest Capsicum species, capsaicin will

bind to their TRPV1 receptors eliciting a burning sensation to deter these pests  (Jordt &

Julius, 2002). The active component of plants belonging in the Capsicum genus that give

them their spiciness is their capsaicinoid production. The actual synthesis of

capsaicinoids is done through two molecular pathways, the phenylpropanoid and the

branched chain fatty acid pathways (Davis et. al., 2007) (Zhang et al., 2016) There are

many important enzymes that are involved in the synthesis of these pathways but

characterization and regulation of the pathways are still being researched. 

Capsaicin Biosynthesis Pathways

The phenylpropanoid pathway starts with the precursor molecule phenylalanine,

which is converted to cinnamate through phenylalanine ammonia lyase (PAL). Cinnamate

is then turned into coumarate via cinnamate 4-hydroxylase (C4H) and coumarate is

turned into 4-coumaroyl-CoA through 4-coumaroyl-CoA ligase (4CL). 4-couramoyl-CoA

can be converted to Caffeoyl-CoA through hydroxycinnamoyl transferase (HCT) or

4-couramoyl-CoA can also be converted to 4-coumaroyle Shikimate/Quinate via

hydroxycinnamoyl transferase (HCT). Then 4-coumaroyle Shikimate/Quinate can interact

with the enzyme coumarate shikimate/quinate 3 hydroxylase (C3H) into caffeoyl
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shikimate/quinate which can be converted to caffeoyl-CoA through hydroxycinnamoyl

transferase again (HCT). Caffeoyl-CoA interacts with the cafferic

acid-3-O-methyltransferase (COMT) enzyme to yield ferulic acid. Ferulic acid is

converted to vanillin through the 3-hydroxyisobutyrl-CoA hydrolase (ECH). Finally,

vanillin is converted to vanillylamine through an aminotransferase (pAMT) to complete

the phenylpropanoid pathway (Wang & Bosland, 2016) (Zhang et. al., 2016) (Bennett &

Kirby, 1968) (Sukrasno & Yeoman, 1993). An overview of the phenylpropanoid pathway

can be seen better in figure 2 below showing the flow of molecules, structures of those

molecules, and important enzymes that participate in the reaction.

Figure 2

Phenylpropanoid Pathway

Note. Molecules of each reaction are indicated as bold text, structures of each molecule
are listed besides, enzymes that catalyze each step are listed inside the boxes beside each
arrow.
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The branched fatty acid pathway starts with pyruvate molecules being converted

to (S)-2-acetolactate by an acetolactate synthase regulatory subunit (ALS), then

(S)-2-acetolactate is converted to 2,3-dihydroxy-3-methylbutanoate by the ketol-acid

reductoisomerase (AHRI). 2,3-dihydroxy-3-methylbutanoate is converted into

α-ketoisovalerate by dihydroxy-acid dehydratase (DHAD), α-ketoisovalerate is converted

to L-valine through 2-oxoisovalerate dehydrogenase subunit alpha (BCKDH), and then

L-valine is converted back to α-ketoisovalerate through branched chain amino acid

transferase (BCAT). The α-ketoisovalerate molecule will turn into isobutyrl-CoA through

the 2-oxoisovalerate dehydrogenase subunit alpha (BCKHD). Isobutyrl-CoA, along with

malonyl CoA, will go into the fatty acid synthase for 3 rounds of elongation utilizing the

3-oxoacyl-ACP synthase (KAS), acyl carrier protein (ACL), and putative ketoacyle-ACP

reductase (CaKR1) enzymes. After 3 rounds, the product interacts with the enzyme acyl

carrier protein hydrolase (FatA) to make 8-methyl-6-nonenoic acid. 8-methyl-6-nonenoic

acid is converted 8-methylnonanoic acid via an acyl carrier protein desaturase and

8-methylnonanoic acid will be converted to 8-methyl-6-nonenoyl-CoA through a putative

aminotransferase (ACS) enzyme (Wang & Bosland, 2016) (Zhang et. al., 2016) (Bennett

& Kirby, 1968) (Suzuki et. al., 1981). An overview of the branched fatty acid pathway

can be seen better in figure 3 below showing the flow of molecules, structures of those

molecules, and important enzymes that participate in the reaction.
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Figure 3

Branched-Chain Fatty Acid Pathway

Note. Molecules of each reaction are indicated as bold text, structures of each molecule
are listed besides, enzymes that catalyze each step are listed inside the boxes beside each
arrow.
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The combination of these two pathways together through a coenzyme

A-dependent acyltransferase allows for the synthesis of capsaicin. The coenzyme

A-dependent acyltransferase was identified by Stewart et. al. which is encoded by the

AT3 gene, namely pungent gene 1 (pun1) as capsaicin synthase (CS) (Stewart et. al.,

2005). The entire phenylpropanoid pathway and branched-chain fatty acid pathway can

be seen below in figure 4.

Figure 4

Capsaicin Biosynthesis Pathway

Note. Bolded text indicates molecules that are synthesized or required for synthesis of
capsaicin. Molecular structures of molecules can be illustrated adjacently to the named
molecule. Enzymes that catalyze each step are listed inside the boxes.
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There are many important genes involved in capsaicin synthesis, however some

studies showed that specifically the pun1 gene is of high importance when it comes to

capsaicin accumulation. A study done by Ogawa et. al. , demonstrated that the pun1 gene

and its gene product is essential for capsaicin synthesis (Ogawa et. al., 2015). This study

looked at the expression levels of pAMT and pun1 in various pepper cultivars and found

that high expression of both pAMT and pun1 lead to high levels of capsaicin production.

Peppers that are pungent have high expression of both genes while non-pungent peppers

have low expression of both genes. However, on comparison of the accumulated levels of

vanillylamine (a precursor to capsaicin) and capsaicin itself, it was found that pungent

peppers have a low level of vanillylamine present while non-pungent peppers have a high

accumulation of vanillylamine. It appears that in non-pungent cultivars that have low

expression of pAMT and pun1 compared to pungent cultivars that have high expression of

both pAMT and pun1, the vanillylamine levels were five times higher in the non-pungent

cultivar than the pungent cultivar (Ogawa et. al., 2015). This correlation suggests that

although pun1 and pAMT both are important and expression of both are needed for

production of capsaicin, it is apparent that pun1 plays a more critical role in capsaicin

production as a high or low expression of pAMT will yield vanillylamine but high or low

expression of pun1 determines overall capsaicin production.

Capsaicin and Saccharomyces cerevisiae

This was an important discovery as it demonstrated the importance of the pun1

gene in capsaicin production and demonstrated more closely the role pAMT plays in the

pathway. As time has gone on, the capsaicin biosynthesis pathway has been refined and
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amended to include the most important genes interacting in the pathway and there is a

better understanding of the overall pathway given now than in previous years. Since

capsaicin is synthesized through a biochemical pathway, one way to increase capsaicin

production in a fast and affordable way would be to incorporate this pathway into an

organism that would have a faster growth rate and require less maintenance and cost to

grow it. With the high demand for peppers for their use in culinary and medicinal

applications, alternative methods for capsaicin production should be evaluated to reduce

costs and time. There are many expenses that go into large scale-pepper growing such as

land usage, volume of water used for irrigation, and the time it takes for peppers to grow.

There are a variety of additional considerations such as the specific seasonal conditions

that must be met or created for the peppers, nutrients, chemicals to ensure the peppers

safety or longevity, and the many hours needed for harvesting and processing the peppers

all equate to a large time and financial commitment. Therefore, to meet this demand,

alternative methods for capsaicin production should be evaluated that would save money

and time. Saccharomyces cerevisiae is a model organism as it has been widely studied, is

easily maintained, grows rapidly in a large quantity, has a sequenced genome and genetic

manipulation of this organism has been well established (Karathia et. al., 2011).

Incorporating the genes from the capsaicin biosynthesis pathway into yeast would allow

for capsaicin production if the precursor molecules in the pathway are readily available.

When looking over the phenylpropanoid and branched-chain fatty acid pathways,

it appeared that for yeast to synthesize capsaicin, we may only need to incorporate a few

genes if the correct precursor molecules are present. The reason for this is that some of

the genes in the branched-chain fatty acid pathway perform similar roles in converting
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pyruvate molecules to isobutyryl-CoA which then are used in the fatty acid synthase

cycle to create elongated branched-chained fatty acids (Dittrich et. al., 1998). Fatty acid

synthesis is the creation of fatty acids, which play an important role in the cell to create

phospholipids which surround organelles (Dittrich et. al., 1998) (Tehlivets et. al., 2007).

Yeast can utilize fatty acids for essential processes or as an energy source by first

converting fatty acids into a usable intermediate such as acyl-CoAs. This is achieved

through thioesterification of fatty acids with coenzyme A. Yeast can also utilize

exogenous fatty acids and these exogenous fatty acids are activated by one of five

acyl-CoA synthetases such as Faa1p, Faa2p, Faa3p, Faa4p, or Fat1p (Athenstaedt et. al.,

1999) (Johnson et. al., 1994). The elongation pathway in yeast utilizes enzymes that

would have similar function in the fatty acid synthesis section in the branched-chain fatty

acid pathway. These similarities in yeast to synthesize long chain fatty acids make yeast

an interesting organism to evaluate for capsaicin synthesis as it may already have some of

the machinery present for capsaicin synthesis. Although, this is only one of the two

pathways needed for capsaicin synthesis and the major gene that combines the two

pathways together would still be absent. However, because yeast can be easily genetically

modified, missing genes can always be incorporated and the more similarities that the

yeast have in common with the capsaicin pathway, the less genes would have to be

introduced.

In order to design yeast that can synthesize capsaicin, we first had to gain a better

understanding of what genes Saccharomyces cerevisiae may share with the capsaicin

biosynthesis pathway. To do this, we searched the literature and assembled the major

genes and products of the capsaicin biosynthesis pathway until we were able to piece
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together the most complete picture of the pathway. We then utilized the U.S. National

Library of Medicine’s Blast tools to compare similarities in the genes of the capsaicin

pathway against the Saccharomyces cerevisiae genome to evaluate if they share genes

that have similar functions (Johnson et. al., 2008). Since shape dictates function, the more

similar the sequence of the genes are to each other the more likely they may play similar

roles in their respective organisms. It appears that there may be more in common in

Saccharomyces cerevisiae with the branched-chain fatty acid pathway than the

phenylpropanoid pathway. In table 1 below, there is a list of genes from the capsaicin

biosynthesis pathway blasted against Saccharomyces cerevisiae along with some

statistical output generated from blast such as E value, total score, query coverage, and

identity scores of each of the genes. It can be seen that most of the genes listed in the

branched-chain fatty acid pathway have a similar identity to genes found in

Saccharomyces cerevisiae based on their small E values which is the number of expected

occurrences by random chance. This value measures similarity beyond randomness for a

sequence so the lower the score the more significant it is while the percent identity will

simply show the percent of exact characters matching.
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Table 1

Compiled Blast Results of Known Genes Involved in the Capsaicin Biosynthesis Pathway

Phenylpropanoid Pathway
Gene Organism E value Total Score Query Coverage Identity
PAL Capsicum annuum No significant similarity found
C4H Capsicum annuum 2e-08 59.3 29 % 29.41 %
4CL Capsicum annuum 5e-39 152 86 % 26.77 %
HCT Capsicum annuum 1e-05 50.1 65 % 23.18 %
C3H Capsicum annuum No significant similarity found

COMT Capsicum annuum No significant similarity found
ECH Capsicum annuum No significant similarity found
pAMT Capsicum annuum 2e-48 174 91 % 31.63 %
Pun1 Capsicum annuum No significant similarity found

Branched-Chain Fatty Acid Pathway
Gene Organism E value Total Score Query Coverage Identity
ALS Capsicum annuum 3e-20 180 72 % 27.42 %

AHRI Capsicum annuum 4e-38 212 63 % 32.17 %
DHAD Capsicum annuum 0 677 90 % 58.41 %
BCAT Capsicum annuum 5e-47 168 76 % 32.25 %

BCKDH Capsicum annuum 9e-66 214 89 % 37.76 %
KAS Capsicum annuum 5e-65 218 87 % 32.06 %
ACL Capsicum annuum 1e-33 226 71 % 39.09 %

CaKR1 Capsicum chinense 6e-19 135 88 % 31.84 %
FAT Capsicum annuum 1e-93 333 30 % 32.10 %
ACS Capsicum annuum 1e-13 75.5 55 % 22.22 %
Pun1 Capsicum annuum No significant similarity found

Note. Protein sequences of the genes were obtained from uniprot which listed which
specific species the sequence was related to. The blastp program was used to blast the
protein sequence against Saccharomyces cerevisiae using the non-redundant protein
sequence database. The E value, total score, query coverage, and identity were all
recorded for the best resulting search for each blast sequence.

Incorporating Capsaicin Biosynthesis in Saccharomyces cerevisiae

The first major experiment we will be conducting will be to genetically modify a

strain of yeast to incorporate genes from the capsaicin pathway to hopefully achieve

capsaicin synthesis. We decided that there are two important genes we should try to
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incorporate first into our yeast stain which are the pAMT and pun1 genes. These two

genes are essential for capsaicin synthesis and would allow us to skip several steps in the

phenylpropanoid pathway. If we add the precursor molecule vanillin, the pAMT gene will

be able to convert vanillin to vanillylamine and then the pun1 gene would have the

vanillylamine molecule ready to synthesize capsaicin. The other precursor molecule

needed from the branched-chain fatty acid pathway would be 8-methyl-6-nonenoyl-CoA

and this molecule may be already present in yeast as it is a product from the fatty acid

synthase cycle which is found in yeast. After the addition of these two genes and testing

for capsaicin production, additional genes can be added from either pathway until

capsaicin synthesis can be achieved. To achieve spicy yeast, we first will start by

incorporating these two genes, pAMT and pun1 through a golden gate cloning assembly

and then utilizing the correct plasmid that contains our promoter, coding region, and

terminator sequence to then transform into a strain of Saccharomyces cerevisiae. If there

is no capsaicin production after successful incorporation and expression of our genes of

interest, then we will re-evaluate the pathway and decide on other potential genes of

interest to incorporate into Saccharomyces cerevisiae that may be required for capsaicin

synthesis.

Identifying New Capsaicin Genes

As previously mentioned, there are many important enzymes that are involved in

the synthesis of these pathways but characterization and regulation of the pathways are

still being researched. In order to successfully synthesize the end molecule from a

pathway, a robust understanding of what genes are involved and what processes they
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influence are essential for successful synthesis. There are many ways for researchers to

identify the influence genes have and how they relate to pathways and many of these

tools are bioinformatics in nature. Gene ontology (GO) is a common form of functional

analysis which provides structured, controlled vocabularies which allow it to be used

across several domains to annotate gene, gene products, and sequences (Gene Ontology

Consortium, 2004). The GO database is useful in determining how differentially

expressed genes in a study may be related to each other, what pathways they are part of,

what products the genes produce, and much more information. The DAVID database,

which stands for Database for Annotation, Visualization, and Integration Discovery and

is useful in interpreting a large list of genes (Huang et. al., 2007). The amount of data and

information to interpret after being generated from high-throughput sequencing

experiments is a daunting task. The many tools that the DAVID database comes equipped

with allow for much better discovery and analysis of such large datasets through

functional classification, biochemical pathway maps, conserved protein domain

architectures, while all being linked to sources of biological annotation (Dennis et. al.,

2003). Once a list of genes are generated from the data of high-throughput sequencing, a

variety of data can be extracted from said list where different connections and

conclusions can be drawn by analyzing the data in many different ways. Since the

capsaicin biosynthesis pathway was a pathway that is still being researched and amended

with new findings, we wanted to add to this research effort by contributing our own data

analysis to hopefully draw some new conclusions.

We decided that paired-end RNA sequencing of a variety of peppers that ranged

in scoville intensity would be a good place to start. There have been numerous advances
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in sequencing techniques since the very first sequencing of the human genome project

that has made it much more affordable and possible to perform sequencing in much

greater quantities and depths (Chan, 2005).  RNA sequencing is a method that examines

the quantity and sequences of RNA in a sample allowing us to analyse the transcriptome

of said sample. The transcriptome is the total cellular contents of RNAs such as the

tRNA, rRNA, mRNA, and others (Ozsolak & Milos, 2011). This is of high importance as

it allows researchers to make connections between genes and their protein products. RNA

sequencing can tell which genes are being upregulated, downregulated, when they are

being expressed, their level of expression, and much more. It gives a more detailed and

quantitative view of alternative splicing, allele-specific expression, and gene expression

in general (Kukurba & Montgomery, 2015). Being able to connect the pieces between the

genome and the functional proteins that are produced allow scientists to more deeply

understand the biology of the cell and assess these changes (Ozsolak & Milos, 2011). The

development of high throughput next generation sequencing (NGS) revolutionized

transcriptomics by enabling RNA analysis through the sequencing of complementary

DNA (cDNA) (Kukurba & Montgomery, 2015). A typical RNA-Seq experiment consists

of isolating RNA, converting it to complementary DNA (cDNA), preparing the

sequencing library, and sequencing it on an NGS platform (Ozsolak & Milos, 2011). A

more detailed approach for RNA sequencing is as follows. RNA must first be extracted

and isolated from a sample, sufficient quantity and more importantly quality is needed

form the extraction as this will provide the basis for the sequencing. The RNA molecules

are then reverse-transcribed to cDNA which is a much more stable product than the RNA

molecule. This cDNA sample is then fragmented randomly to obtain random sized
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sequences that can be pieced back together in the end to form a more complete picture

(Kukurba & Montgomery, 2015). These cDNA fragments are able to be utilized in the

NGS workflow where adapters are added to the end of the fragments which allow the

sample to attach to the flow cell for Illumina sequencing where sequencing will be

performed. The adapters contain the elements which all for the start of sequencing, these

elements are the amplification element and primary sequencing site. Then during the

sequencing step, clusters of cDNA fragments are amplified through polymerase chain

reaction in a process called cluster generation, resulting in millions of copies of cDNA

(Ozsolak & Milos, 2011). The next step is to determine what these sequences are and to

do this primers are attached, reversible terminators, DNA polymerase, and TCEP used to

determine the base sequence through fluorescence for all of the sequences generated. The

last step is the software will identify the nucleotides through fluorescence and the

accuracy in identification of said nucleotides. Through generating millions of sequences

and those sequences being fragmented randomly, the entire transcriptome of a single

sample can be pieced together through computer programs to match different fragmented

overlapping portions together to get an idea of the entire sequence (Kukurba &

Montgomery, 2015). RNA sequencing is a powerful tool and utilizing the RNA

sequences that are generated, we can perform the bioinformatics analyses on the

sequences and go further to identify possible candidate genes that may participate in the

capsaicin biosynthesis pathway which may be important to include when attempting to

create genetically modified Saccharomyces cerevisiae that can synthesize capsaicin.
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Discovery of Additional Genes in the Capsaicin Biosynthesis Pathway

The second major experiment we decided to perform was to send out pepper

samples for Illumina paired-end RNA sequencing to determine gene expression levels of

pungent cultivars and non-pungent cultivars to determine if there are any important genes

that should be incorporated into the pathway that are highly expressed in pungent

peppers. There was a study done by Zhang Z. X. et. al., published in 2016 in the journal

of Nature titled “Discovery of putative capsaicin biosynthetic genes by RNA-Seq and

digital gene expression analysis of pepper.” In their study, they used an Indian pepper

called ‘Guijiangwang’ which is one of the world's hottest chili peppers. They harvested

portions of the placenta region of this pepper at five different developmental stages and

performed RNA-seq to identify assumed genes involved in capsaicin synthesis. They

identified 135 genes of known function that were identified as most likely to be involved

in regulating capsaicin synthesis with 20 new candidate genes that may play a role too.

This was a great study done to identify new genes that may play a role in capsaicin

production but we felt that we could expand on this study in various ways. One factor is

that they collected one pepper and analyzed capsaicin production in different

developmental stages as this pepper, ‘Guijiangwang’, as it has visual differences in its

developmental stages. For their study, they only had one pepper collected for RNA

expression comparison to compare their gene expression against. Pepper pungency does

change as the pepper ages where capsaicin production increases in pepper growth, but

they did not include other peppers in their sequencing to compare too and we believe that

the study can be expanded on by doing this. In order to expand on the results from this

study, we first obtained seven different peppers ranging on the Scoville scale from low
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Scoville heat units (100-500 SHU) to a high level of Scoville heat units

(800,000-1,000,000 SHU). These seven peppers in order from increasing pungency are as

follows: cherry peppers, jalapeno peppers, hungarian wax peppers, serrano peppers,

cayenne peppers, habanero peppers, and ghost peppers. Five of the seven peppers belong

to the Capsicum annuum genus which are cherry peppers, jalapeno peppers, hungarian

wax peppers, serrano peppers, and cayenne peppers while the habanero peppers and ghost

peppers belong to the Capsicum chinense genus. Table 2 below lists the different pepper

samples that we sent out for sequencing along with their scoville range and family they

belong to. These peppers had their skin and placenta regions harvested and then RNA

extractions of these samples were performed and sent out for Illumina-RNA sequencing

through Genewiz. The RNA sequencing results that will be obtained will be processed

through FastQC, bowtie, and cufflinks to evaluate gene expression between the peppers.

Through analyzing different species of peppers and the varied pungency between the

peppers, we hope to identify other genes that are important in capsaicin production and

compare the known genes associated with capsaicin synthesis from Zhang Z. X. et. al., to

our own RNA sequencing results. Using this information, we may also reevaluate and

identify other important genes that we may want to incorporate into our genetically

modified yeast for capsaicin production if newly identified genes appear to be present

and influential in the pathway.
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Table 2

List of the Seven Pepper Samples sent for Illumina RNA Sequencing

Pepper Sample Species Scoville Range Pungency SHU
Cherry Pepper Capsicum annuum 100-500 SHU Non 0-700

Jalapeno Pepper Capsicum annuum 3,500-8,000 SHU Mildly 700-3,000
Hungarian Wax Pepper Capsicum annuum 5,000-15,000 SHU Moderately 3,000-25,000

Serrano Pepper Capsicum annuum 10,000-23,000 SHU Highly 25,000-70,000
Cayenne Pepper Capsicum annuum 30,000-50,000 SHU Very Highly <80,000
Habanero Pepper Capsicum chinense 100,000-350,000 SHU

Ghost Pepper Capsicum chinense 800,000-1,000,000 SHU
Pure capsaicin 15,000,000 SHU

Note. Peppers are sorted from top to bottom by scoville intensity along with pure
capsaicin as a reference. Along with the peppers sent out for sequencing is a pungency
table included which ranks the pungency of the peppers based on their scoville heat units.
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Chapter 2

Methods

Part 1: Genetically Modifying Saccharomyces cerevisiae with the Capsaicin
Biosynthesis Pathway

Golden Gate Cloning

The yeast golden gate DNA assembly method was designed by Agmon et. al as an

easy way to incorporate genes of interest, promoters, and terminators in an efficient

assembly system into Saccharomyces cerevisiae (Agmon et. al., 2015). Golden gate

cloning utilizes type II restriction enzymes which will cleave outside of their target

sequence leaving nucleotide overhangs. BsaI-HFV2 is the specific type II restriction

enzyme that is utilized which cleaves the specific six nucleotide target sequence, 5’

GGTCTC | N1N2N3N4 3’, located on the designed plasmids which then results in a small

four base nucleotide overhang. The plasmids were created with the BsaI-HFV2 sites

already located on either side of a red fluorescent protein region. We can create our

transcriptional units by adding on the specific six base pair sequence that BsaI-HFV2

recognizes  with a four base overhang that will remain after the sequence is cut. This

allows us to design the correct flow of promoter, coding sequence, and terminator by

pairing the overhanging fragments with its complementary DNA sequence of the next

transcription unit to ensure the correct order of inserts. For example, we would take the

sequence for the pun1 gene which was one of the coding sequences we were interested in

inserting. We would then add the BsaI-HFV2 sequence to the ends of the coding

sequence and add a four base overhang sequence next to the restriction sites. This would
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result in when the transcriptional units are cut with the BsaI-HFV2 enzyme, a remaining

four base overhang of our implementation would reside and we can strategically match

these overhangs for each transcriptional unit to create the correct order of inserts into the

plasmid itself.

To distinguish modified clones from unmodified clones, the red fluorescent

protein region of the designed plasmids is the area in which the new transcriptional

assembly will be inserted. For each plasmid, the BsaI-HFV2 restriction sites surround a

red fluorescent protein so after the golden gate assembly process, colonies that grow

white are ones that have been cut with the restriction enzyme and could contain the

transcriptional units while red colonies are unmodified colonies. Using this technology,

we were able to customize our plasmids to whatever promoter, gene, and terminator we

were interested in inserting into bacteria. We chose two plasmids for our two genes, the

pAV113 and pAV115 plasmids provided from Agmon et. al., 2015. The pAV113 plasmid

would have the promoter PGK1, gene pAMT, and terminator CYC1 inserted into it. The

pAV115 would have the promoter TEF1, gene pun1, and terminator ADH1. Both

plasmids have a bacterial resistance of ampicillin and each plasmid contains a different

gene for amino acid expression which will be used later for auxotrophic selection.

Plasmids were combined with their respective promoters, terminators, and coding

sequences in equimolar ratios, DNA ligase buffer, DNA ligase, water, and BsaI-HFV2

were all added and placed into a PCR machine to allow for amplification. The PCR

products were then used in a bacterial transformation using chemically competent E. coli

cells and then plated onto LB plates with ampicillin antibiotic resistance to grow

overnight.
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Figure 5

One-Pot Yeast Golden Gate Assembly

Note. PRO (Promoter), CDS (coding sequence), and TER (terminator) parts flanked by
the appropriate prefix and suffix sequences are cloned into ampicillin resistant vectors.
Cloned parts were mixed in equimolar ratio and the parental acceptor vector encodes a
red fluorescent protein (RFP) gene with E. coli promoter and terminator sequences.
Following E. coli transformation, white/red screening can be used to distinguish clones
encoding putative transcriptional unit assemblies as compared to unmodified parental
vectors. Figure obtained from Agmon et. al, 2015.
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Bacterial Screening

After Golden Gate cloning, E. coli bacteria cells were screened utilizing

restriction enzyme digestion, polymerase chain reaction, and sanger sequencing. White

colonies were modified and could contain promoter, coding sequence, and terminator as

these have been successfully cut with the BsaI-HFV2 restriction enzyme. Red colonies

are colonies that have been unmodified and would not contain the correct transcriptional

units which allow for a quick and easy visual screening. Using the red and white

colonies, they can be digested with another restriction enzyme such as PVUII-HFV2,

which recognizes two specific sites on a white colony and recognizes four specific sites

on an unmodified red colony. Using the base pair sizes of the plasmid, promoter

sequence, coding sequence, terminator sequence, and a deduction of the red fluorescent

protein size, we are able to estimate the expected band sizes of colonies that would

contain all the units of interest. By digesting our colonies with restriction enzymes, we

can verify if our plasmid contained specific inserts based on the sizes of the remaining

DNA bands after digestion. These DNA bands were evaluated on a 1% agarose gel

utilizing gel electrophoresis. In addition to restriction enzyme digests, polymerase chain

reaction was performed utilizing pBluescriptSK forward and pBluescriptKS reverse

primers which recognize specific sequences that reside outside of the BsaI-HFV2 sites

and amplify toward each other encompassing the red fluorescent protein region.

Polymerase chain reaction can be utilized as a screening technique as the plasmid has

specific sites located on it where a forward and reverse primer would amplify the DNA

between these two sites creating a band size based on the distance. This distance can be

determined and can span the region in which your transcriptional units may reside so it is
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possible to verify if the transcriptional units are inserted. Through PCR amplification

utilizing the pBluescriptSK and pBluescriptKS primers, we can visualize the region

where our transcriptional inserts will reside. To do this we will use gel electrophoresis

and visualize this on a 1% agarose gel to see if the expected band sizes correlate to the

base pair sizes of the sum of transcriptional inserts. The last step performed for successful

screening of colonies was to send the isolated DNA samples of the bacterial plasmids out

for sanger sequencing. Sanger sequencing is a method in determining the nucleotide

sequence of DNA which utilizes fluorescently labeled dideoxynucleotides in a chain

termination method which results in nucleotides being added to the DNA sequence which

prevents other nucleotides from being added on. This chain termination method

essentially allows for millions to billions copies of the DNA sequence of interest to be

terminated at random lengths. The DNA sequence can be determined by sorting these

fragments by size and using fluorescence to determine which base, A, T, C, or G has

attached itself which when read out, creates the DNA sequence (Sanger et. al., 1977). The

results obtained could then be used to verify if  our inserts are present by comparing the

sanger sequence results to our insert’s sequences.

Auxotrophic Selection

Once we had confirmed the colonies had the proper pieces, we performed a yeast

transformation with those samples. The vectors that we chose from the beginning,

pAV113 and pAV115 have specific yeast markers they lack such as pAV113 lacks

Histidine-3 and pAV115 lacks Leucine-2. This type of auxotrophic selection allows us to

grow these samples on a plate that would lack one of these necessary organic compounds
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needed for growth, and the colony will only grow if the yeast did incorporate the plasmid

that carries the gene needed for expression of the amino acid. The yeast strain we were

transforming them into is a strain called By4741 which needs the following

macromolecules to grow which are His3, Leu2, Met2, and Ura3. Using this knowledge,

we made three different types of synthetic dextrose plates that lacked all amino acids and

nucleobases except for ones we added. For the first set, we added His3, Met2, and Ura3.

This plate lacks Leu2 and therefore only yeast that have the pAV115 plasmid

incorporated in it will grow. The second set of plates had Leu2, Met2, and Ura3 so only

pAV115 should grow on it since it lacks His3. The last set of plates only had Met2 and

Ura3 meaning that if the yeast incorporated both plasmids then colonies should form. We

performed the yeast transformation utilizing the correctly screened bacterial plasmid

DNA to obtain yeast with our desired genes of interest.

Testing Gene Expression in Genetically Modified Yeast

Once the genes of interest were inserted into the yeast, we then wanted to evaluate

gene expression levels of our pAMT and pun1 genes to make sure they are being

expressed. To do this, we used quantitative Reverse-Transcription Polymerase Chain

Reaction or qRT-PCR for short. We extracted the RNA of our four different strains of

yeast which were By4741,  By4741 with pAMT, By4741 with pun1, and By4741 with

pAMT and pun1. The extracted RNA from the yeast samples was used to synthesize

cDNA and both were used for the polymerase chain reaction. The RNA samples were

used as a control to determine if there was DNA contamination and if a DNase step was

needed prior to creating the cDNA. The reason is contamination of DNA in the RNA
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sample would lead to inaccurate cDNA sequences. We utilized DNA primers for our

pun1 and pAMT genes which would recognize a specific DNA sequence from their

coding region that would result in amplification of the sequence if present. We used water

as a control for each of the primer sets. We also used the Alg9 gene, which is a

housekeeping gene in Saccharomyces cerevisiae which is responsible for the synthesis of

oligosaccharide precursors for N-linked protein glycosylation (Frank & Aebi, 2005).

Housekeeping genes are constituently expressed which allows it to serve as a positive

control to compare our gene expression values against. Using SYBR green dye, we could

visualize DNA synthesis occurring in the samples as DNA synthesis causes SYBR green

dye to fluoresce brightly as it binds to the minor groove of DNA so the more DNA that is

synthesized the brighter the fluorescence becomes (Noble & Fuhrman, 1998). Cycle

threshold (CT) is a value is a measure of the number of cycles required for the fluorescent

signal to cross a threshold or background level. The lower the CT value means that the

threshold was crossed early relating to a strong positive fluorescence signal occurring.

The SYBR Green dye was analyzed using the FAM fluorophore which has an excitation

of 490 nm and emission of 520 nm. The polymerase chain reactions had a denaturation

temperature of 95oC, annealing temperature of 55oC, and an elongation temperature of

72oC, which repeated for 40 cycles.
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Part 2: Performing Illumina RNA Sequencing Analysis on Placenta and Skin Tissue
Samples from Seven Different Peppers of Varying Scoville Intensity to Identify
Novel Genes for Capsaicin Synthesis

Collection of Peppers for RNA Sequencing

A variety of peppers species were collected from the surrounding area and

dissected for RNA processing. We collected the following pepper samples bell pepper,

jalapeno pepper, cayenne pepper, hungarian wax pepper, serrano pepper, cherry pepper,

habanero pepper, carolina reaper pepper, and ghost pepper. We attempted to obtain the

highest RNA quality of pepper samples by immediately processing them after they were

harvested to prevent RNA degradation. When pepper samples were picked from the

plant, they were immediately placed in an ice cooler where they were brought back to

Rowan University. Sterile dissecting tools such as exacto knives, razor blades, and

tweezers were used to dissect the pepper and harvest three distinct portions, the placental

region, the skin, and the seeds which can be seen in figure 6 below. Each of these pieces

were placed into a 1.5mL tube and stored in the -80oC freezer until RNA extraction of

placenta and skin regions were performed. The peppers were collected from a variety of

places and consistency in this extraction process was done to maintain evenness among

samples. Carolina reaper peppers as well as habanero peppers were collected and

harvested from Rowan University in Glassboro, New Jersey. Ghost peppers, jalapeno

peppers, and cayenne peppers were cultivated and grown by Ryan Calhoun in

Turnersville, New Jersey. Hungarian wax peppers, serrano peppers, cherry peppers, and

bell peppers were acquired by Dr. Benjamin Carone from Visalli’s Farm Market located

in Mullica Hill, New Jersey. Multiples of the same pepper were collected from each site

allowing us to collect multiple pepper extractions for a broader range of results. This
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allowed us to obtain multiple skin and placenta sections from each pepper so we could

perform multiple experiments in the future if needed.

Figure 6

Six of the Nine Pepper Samples Dissected for RNA Extraction

Note. The peppers are listed starting from left to right as the following: bell pepper,
serrano pepper, hungarian wax pepper, cherry pepper, serrano pepper, hungarian wax
pepper, habanero pepper, and ghost pepper. Not pictured are the jalapeno, carolina reaper,
and cayenne peppers. The top picture illustrates the peppers prior to dissection. The
bottom picture illustrates the peppers after extraction top to bottom where the top petri
dish houses the skin extracts, the middle petri dish houses the seeds and remaining
pepper, while the bottom petri dish houses the placenta regions. These regions of the
dissected peppers were labeled and placed into 1.5mL tubes and stored in the -80oC until
ready for RNA extraction.
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Extraction of RNA from Peppers

RNA samples were processed by first taking 1 cm by 1 cm incisions of either the

placenta or skin regions and mixing them with ribozol. Early samples were processed

utilizing a bead beater where the sample would undergo 10 minutes of bead beating

followed by the Ribozol RNA Extraction Reagent protocol for extracting RNA from

plant tissue provided by VWR Life Science. Although bead beating was effective, a

VWR micro homogenizer was purchased to provide better cell disruption as the plant cell

wall proved to be a difficult material to homogenize. The VWR standard

Micro-Homogenizer allowed for processing of small sample sizes in small

microcentrifuge tubes. After homogenization, these samples were also followed by the

same RNA extraction protocol as stated above. To assess RNA integrity, the samples

were quantitatively analyzed using a Quibit Fluorometric Quantitation and were analyzed

using gel electrophoresis on a 1.5% agarose gel to visualize integrity of the bands. As

previously stated, we obtained multiple samples of skin and placenta regions for each

pepper so we could perform multiple RNA extractions on the samples if needed. In total,

we performed a total of 48 RNA extractions on different skin and placenta regions of the

peppers and assessed their RNA quality and concentrations.

FastQC

Using the results from the RNA extraction process, we selected the best pepper

samples that had high RNA integrity and were highly concentrated to send out for

sequencing. We also attempted to include samples that would result in a wide range of the

Scoville scale meaning we did not want to send out multiple non-pungent peppers or
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pungent peppers, we wanted a wide distribution from non-pungent to highly pungent. We

decided to send out the following peppers for paired-end Illumina RNA Sequencing:

cherry peppers, jalapeno peppers, hungarian wax peppers, serrano peppers, cayenne

peppers, habanero peppers, and ghost peppers. Pepper samples were placed in a

container, covered in dry ice, then sealed in a styrofoam box which was then sent out to

GENEWIZ to perform standard paired-end RNA-Seq analysis. Genewiz processed the

samples and evaluated many factors of the samples such as RNA integrity, average

nucleotide size, region molarity, RNA concentration, and more before performing

sequencing on the Illumina platform. After sequencing, the bioinformatics pipeline will

be utilized to analyze the sequencing results to generate gene expression values. To do

this, we are first given the FASTQ files and we utilize FASTQC to determine the quality

of our data. Using the fastq files, we received a variety of information on our data such as

the per base sequence quality, base N content (could not identify nucleotides), if there are

any overrepresented sequences, adapter content, and much more. This step is necessary

as it allows the user to determine the quality of their data and if the raw files need to be

processed prior to continuing through the pipeline (Andrews, 2017). Alterations to the

fastq files can be done at this step such as trimming the overall reads if there is a drop in

quality, checking for adapter contamination, if there are overrepresented sequences, and

many other variations to the raw files to generate the best sequence reads for further

analysis.
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Bowtie

After utilizing FASTQC, we used Bowtie to align our fastq files to a reference

sequence. Bowtie is an ultrafast short read aligner which is aimed to quickly align large

sets of short DNA sequences to a genome. This produces a SAM output file which shows

the overall alignment score obtained between the sample sequence and the reference

sequence. It also shows how many reads in total there are in the sample sequence, how

many of those are aligned 0 times, aligned 1 time, and aligned more than 1 time

(Langmead & Salzburg). For our experiment, the reference genome that we will be using

will be the Capsicum annuum reference genome. The reference genome was obtained

from Sol Genomics Network and it is Capsicum annuum cv CM334 Genome CDS

(release 1.55) (Qin et. al., 2014).

Cufflinks

After the bowtie alignment, we then can take the Sam file and convert it to a Bam

file utilizing samtools. The Bam file was also sorted in order of chromosomes to match

how the reference genome is set up. After sorting, cufflinks can be used to evaluate gene

expression on our pepper samples. Cufflinks is a program that assembles transcripts,

estimates their abundances, and can test for differential expression and regulation in

RNA-seq samples (Ghosh & Chan, 2016). It produces several output files that contain

test results for changes in expression at the level of transcripts, primary transcripts, and

genes. It also tracks changes in the relative abundance of transcripts sharing a common

transcription start site, and in the relative abundances of the primary transcripts of each
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gene. Tracking the former allows one to see changes in splicing, and the latter lets one

see changes in relative promoter use within a gene (Trapnell et. al., 2012).

Analyzing Cufflinks Output

After running cufflinks, we analyzed the results utilizing the FPKM output.

FPKM stands for fragments per kilobase of transcript per million mapped reads. The

relative expression of a transcript is proportional to the number of cDNA fragments that

originate from it. Utilizing these FPKM output values and the free software environment

R, we processed the data creating various graphical plots and images to interrogate the

data (Team, 2013). The most important visual was the generation of a heatmap to

visualize the differences between gene expression values for the pepper samples to make

connections and comparisons between expression levels and genes.
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Chapter 3

Results

Part 1: Genetically Modifying Saccharomyces cerevisiae with the Capsaicin
Biosynthesis Pathway

Golden Gate Cloning

Utilizing the yeast Golden Gate DNA assembly method as described previously,

we incorporated the PGK1 promoter, pAMT gene, and CYC1 terminator into the pAV113

plasmid and incorporated the TEF1 promoter, pun1 gene, and ADH1 terminator into the

pAV115 plasmid provided from Agmon et. al., 2015. This concoction, after PCR

amplification, was used in a bacterial transformation into chemically competent E. coli

cells which were grown overnight at 37oC. The resulting colonies that were grown were a

mixture of single red bacteria colonies and single white bacteria colonies which can be

seen in figure 7 below. Red colonies are bacteria cells that still have the original red

fluorescent protein portion remaining in their plasmid. White colonies are bacteria cells

that have had their red fluorescent protein portions successfully cut out by the type II

restriction enzyme digest and could contain the correct transcriptional inserts from the

golden gate cloning. The red colonies however will not have the correct transcriptional

inserts as these plasmids are unmodified since they were not cut by the BsaI-HFV2

restriction enzyme. Using both the red and white colonies, we can perform plasmid DNA

extractions and perform various screening assays to verify if they do or do not contain

our transcriptional units of interest. As seen in figure 7, we were able to grow both red

and white colonies. It appears that there were more white colonies that grew in the
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pAV113 plasmid compared to the pAV115 plasmid which grew more red colonies. There

also appears to be more colonies overall in general on the pAV113 plate. Being able to

grow both red and white colonies is beneficial since we can test in the screening process

an unmodified vector against a modified vector to see more substantial differences.

Figure 7

E. coli Colonies after Bacterial Transformation with Golden Gate Assembly

Note. The red colonies are unmodified parental vectors whose red fluorescent protein
coding sequence region remained unchanged in the vector. The white colonies are
bacterial colonies that have been modified in the golden gate transformation process and
may contain the inserted CDS region.

Bacterial Screening

After Golden Gate cloning, E. coli bacteria cells were screened utilizing

restriction enzyme digestion, polymerase chain reaction, and sanger sequencing. Included

below in figure 8 are the linear plasmid maps of pAV113 and pAV115. Both of these

maps include the important features such as restriction enzyme site information, red

fluorescent protein regions, or primer site information that we exploited in the screening
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process. One form of screening we utilized was taking our purified plasmid DNA from

red and white colonies performing a restriction enzyme digest with the PVUII-HFV2

enzyme. This specific restriction enzyme is useful as it recognizes a different number of

sites on a plasmid cut with BsaI-HFV2, two, compared to an unmodified sample, four, as

seen in figure 8’s plasmid maps. Using this information we would ideally be looking for a

different number of bands to show up on the agarose gel for a white colony compared to a

red colony. In addition, since we are replacing the red fluorescent region with our

transcriptional units of interest, and we know the base pair lengths of these promoters,

coding sequences, and terminators, we can estimate the band size lengths that are

expected to show up if the plasmid does successfully contain each of these units. To

calculate the estimated band size, we would take the total size of our plasmid and first

subtract the region we cut out with the BsaI-HFV2 enzyme as this region is no longer

present in the plasmid. Since there are two PVUII-HFV2 sites left in the plasmid, one

band size will be large consisting of the distance from one site to the other and a simple

calculation of this distance only needs to be determined. To determine the other band

size, a little more math will be required. This second band size will be the remaining

region between the PVUII-HFV2 sites and BsaI-HFV2 sites with the addition of the total

size of our transcriptional units we are inserting. After performing this calculation, we

determined that the pAV115 plasmid would have two expected band sizes of 2732 bp and

5965 bp while the pAV113 plasmid would have 3228 and 4462 expected band sizes.

Based on these expected band lengths, we ran multiple restriction enzyme digests with

the PVUII-HFV2 enzyme and visualized the results on agarose gels at a 1%

concentration. After multiple gel electrophoresis experiments, we did obtain samples that
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had demonstrated two unique bands that did resemble the expected band sizes of interest

for both the pAV113 and pAV115 plasmid. Typically for the samples that did show

distinct banding, the top which consisted of the larger of the two DNA segments was a

thicker and fuller band while the lower band representing the smaller fragment was

fainter and less concentrated. It did appear that the samples we had matched our expected

results but to be sure, we also conducted polymerase chain reactions on our samples and

performed sanger sequencing as another form of validation.

Figure 8

Linear Plasmid Maps for Plasmids pAV113 and pAV115

Note. These plasmid maps highlight the key features that were manipulated during the
screening process such as the polymerase chain reaction sites and the restriction enzyme
digest sites as well as the red fluorescent protein region of interest.

Polymerase chain reaction (PCR) was performed utilizing pBluescriptSK and

pBluescriptKS forward and reverse primers which are specific sequences that reside
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outside of the BsaI-HFV2 sites. These primers amplify toward each other encompassing

the red fluorescent protein region. Through PCR amplification utilizing these SK and KS

primers, we will have an expected band length size estimation of our transcriptional unit

inserts. These polymerase chain reaction and restriction enzyme digest results were

visualized on a 1% agarose gel to see if the expected band sizes correlate to the base pair

sizes of the sum of transcriptional inserts. The results from the SK and KS polymerase

chain reaction band sizes can be seen in figure 9 below. Each plasmid had an expected

band size based on the size of DNA that the PCR would amplify if the transcriptional

units were present. To calculate this expected band length, the region size that will be

amplified between the primers is first determined which we will call the primer region.

Then, the region between the two BsaI-HFV2 sites is determined which will be the

restriction enzyme digest region. This is the region that has been cut out and replaced

with our transcriptional units. We then will determine the length of our transcription units

which is the sequence lengths of the promoter, terminator, and coding sequence which

will be our transcriptional unit region. This allows us to determine the final band size we

expect to see as it will be the size of our transcriptional insert added on to the remaining

bp size of the primer region after subtracting the primer region by the restriction enzyme

digest region. It was expected that the pAV115 plasmid would have a band size around

2500 and the pAV113 plasmid would have a band size around 2100. The PCR band sizes

that we visualized on the agarose gel vary widely from sample to sample. We had our

expected band sizes for each plasmid but it appeared that the most prominent band sizes

for our samples typically did not line up with our expected band size reference on the

DNA ladder. Only the samples pAV115 pun1-E and pAV113 pAMT-L appeared to reside
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around the expected band length sizes of our modified plasmids. Many samples were

located a bit too far out of this expected region and these two samples appear to be the

closest to the 2500 band size for pAV115 and 2100 bp size for pAV113. There were other

samples that potentially were located near the expected band lengths, but none were

located as close to the expected size as samples pAV115 pun1-E and pAV113 pAMT-L.

Figure 9

Gel Electrophoresis Results for Bacterial Samples that Underwent Polymerase Chain

Reaction with SK and KS Primers

Expected band length size = Transcriptional unit region + (Primer Region - Restriction Enzyme Digest
Region)

expected band size for pAV113 = PGK1+CYC1+pAMT + (primer region - RED region )
expected band size for pAV113 = 983 + 190 + 1380 + (1035 - 964) = 2553

expected band size for pAV115 = ADH1+TEF1+pun1 + (primer region - RED region )
expected band size for pAV115 = 292 + 422 + 1323 + (1035 - 964) = 2108

Note. Agarose gel was a 1% gel, 4 uL of 2 Log Ladder was loaded, 5 uL of sample added
with 3 uL of Ficoll orange loading dye. Gel electrophoresis was performed at 90 volts for
45 minutes. Expected band size for the pAV113 vector with correct transcriptional inserts
is 2553 bp and 2108 bp for the pAV115 vector. The expected band length calculations can
be seen below the figure.
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The final screening experiment we performed was to send out our purified

plasmid DNA sequences out for sanger sequencing analysis to confirm that our

transcriptional units were present in the plasmid. The DNA sequencing results for sanger

sequencing can be useful as we can determine if the sequences of our transcriptional units

match those found in the sequencing of our samples. We sent out a total of five samples

for sanger sequencing, one sample was a possible pun1 candidate, and the other four were

possible pAMT candidates. We were fairly confident through previous experimental tests

that we did indeed have a positive match for our pun1-pAV115 plasmid and therefore

only sent that specific one out for sequencing. Compared to the pun1-pAV115 plasmid,

we were unsure of our pAMT-pAV113 samples and sent out multiple to be sequenced as a

precautionary measure. Using the blast program, we were able to blast our sanger

sequence results against the Capsicum annuum genome to determine if our pun1 and

pAMT genes of interest were present based on the similarity result. We also directly

compared the sequences of our sanger sequence results to the known promoter sequences,

coding sequences, and terminator sequences we were using to determine if they were

present or not. We were able to identify that four of the five sequences had promising

sanger sequencing results which demonstrated to include part of our coding sequence and

terminator sequence of interest. We were not able to determine if the promoter region was

present in the samples because it was outside the range of sanger sequencing capabilities

as sanger sequencing is able to sequence about 800 base pairs from its start site.

Alternative primers would have to be designed to further explore if the entire coding

region was present and promoter region.
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Auxotrophic Selection

After we identified which plasmid sequences contained the proper transcriptional

units, we would then be able to perform a yeast transformation to insert our plasmid DNA

into a strain of Saccharomyces cerevisiae. The strain of yeast we will be using is By4741

which is a yeast strain with the following genotype: MATa his3Δ1 leu2Δ0 met15Δ0

ura3Δ0. This yeast strain requires the following nutrients for growth which are histidine,

leucine, methionine, and uracil. The plasmids that we are inserting into this yeast strain

both code for a specific amino acid where pAV113 has a histidine promoter region and

pAV115 has a leucine promoter region. Using this information, we can specifically select

which yeast are able to grow on specialized plates that lack the required nutrients. These

plates are made to contain yeast nitrogen without amino acids, water, and sugar. Then the

specific amino acids and nucleobases were added to create a variety of unique plates. The

first one contained just methionine and uracil, the second contained histidine, methionine,

and uracil, the third with leucine, methionine and uracil, and the fourth contained no

added amino acids or uracil. These series of plates will allow yeast to grow if they have

both pAV113 and pAV115 plasmids for the first plate, only pAV115 to grow on the

second plate, only pAV113 to grow on the third plate, and nothing to grow on the fourth

plate. Once the plates were created, we performed a yeast transformation using the

plasmid DNA that we believed to contain the correct transcriptional inserts and plated

them onto our SD plates which can be seen in figure 10 below. The plates were grown for

one day in a 32oC incubator. The plate located on the far left consists of SD media,

methionine and uracil. The plate located in the middle consists of SD media, histidine,

methionine, and uracil. The plate on the far right consists of SD media, leucine,
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methionine, and uracil. Not pictured is the plate containing just SD media and no other

added nutrients. We have growth on all three of the plates with added nutrients suggesting

that each of the yeast cells grown on the plate contains the correct plasmid or plasmids.

There was no growth on the plate lacking any type of added chemicals. There appears to

be many colonies that grew on both the SD+Met+Ura and SD+Leu+Met+Ura plates.

Although the SD+His+Met+Ura plate grew far fewer colonies, it still grew colonies

nonetheless. The colonies also on the combination plasmid plate appear to have grown

smaller in size compared to the other two plates. All together, the colonies growing on

these plates are expected to have the correct plasmids inserted into the yeast which is the

reason they were able to grow.

Figure 10

Saccharomyces cerevisiae Strain By4741 Colonies Grown on Synthetic Dextrose

Note. The leftmost plate contains methionine and uracil. The middle plate contains
histidine, methionine, and uracil. The right most plate contains leucine, methionine, and
uracil. Yeast colonies were grown for 24 hours in a 32oC incubator. Plasmids pAV113 and
pAV115 were used in the yeast transformation.
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Testing Gene Expression in Genetically Modified Yeast

Following auxotrophic selection, we then performed a follow up analysis

experiment to determine if our genetically modified yeast was expressing their newly

added genes. If these genes were not being expressed then capsaicin would not be

synthesized according to our hypothesis. The samples that underwent qRT-PCR were the

genetically modified yeast samples and their RNA was extracted, isolated, and used to

create their cDNA strands. The genes we were analyzing were pun1, pAMT, and the Alg9

housekeeping gene as a control. Each of the yeast were combined with their respective

primers to visualize if fluorescence occurred after 40 cycles of polymerase chain reaction.

Using the fluorescence readings from the polymerase chain reaction machine, we can see

how many cycles it took for the sample to start fluorescing if there was any fluorescence

at all. The CT results for our different cDNA and RNA yeast samples can be seen below

in table 3. The results demonstrate that the yeast samples that contained the pAMT gene

had low CT values (CT score < 20) for both the RNA and cDNA sets when tested with

the pAMT primer. On average, the CT scores of the pAMT samples when treated with the

pAMT primer were in the 16-18 CT range. Samples that did not contain the pAMT gene,

but were treated with the pAMT primer had a CT score in the 32-33 CT range with the

highest at 38 which was water. Yeast samples that contained the pun1 gene and the pun1

primer however did not result in low CT values. These samples had a CT score typically

in the range of 36-37. The water standard had a CT score of 38 and there were two

samples resulting in 0 CT scores which means that no fluorescence was ever recorded for

them so they are essentially beyond the 40 cycle mark. Lastly, the Alg9 samples when
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combined with the Alg9 primer, all resulted in significant CT values in the range of 17-19

CT for both the RNA and cDNA samples besides the water sample with a CT score of 34.

Table 3

qRT-PCR Count Threshold Results from By4741 Yeast Samples

Primers: FAM
CT:

Samples:

pun1
primer

CT
Score

By4741
cDNA

38.05

By4741
pun1

cDNA

37.91

By4741
pAMT
cDNA

37.51

By4741
pun1+
pAMT
cDNA

36.36

By4741
RNA

0

By4741
pun1
RNA

0

By4741
pAMT
RNA

37.44

By4741
pun1+
pAMT
RNA

36.48

H20

38.26

pAMT
primer

CT
Score

By4741
cDNA

33.95

By4741
pun1

cDNA

32.73

By4741
pAMT
cDNA

16.04

By4741
pun1+
pAMT
cDNA

16.13

By4741
RNA

32.65

By4741
pun1
RNA

33.95

By4741
pAMT
RNA

17.34

By4741
pun1+
pAMT
RNA

18.83

H20

38.39

Alg9
primer

CT
Score

By4741
cDNA

19.17

By4741
pun1

cDNA

19.32

By4741
pAMT
cDNA

19.03

By4741
pun1+
pAMT
cDNA

19.22

By4741
RNA

18.00

By4741
pun1
RNA

18.14

By4741
pAMT
RNA

17.83

By4741
pun1+
pAMT
RNA

18.68

H20

34.23

Note. There are four different types of samples which are By4741, By4741+pun1,
By4741+pAMT, and By4741+pun1+pAMT. Each of these four samples had their cDNA
and RNA variations tested against three different sets of primers which were pun1,
pAMT, and Alg9. Count threshold values were recorded and samples with a strong
positive fluorescence were highlighted in green (CT <=20).
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Part 2: Performing Illumina RNA Sequencing Analysis on Placenta and Skin Tissue
Samples from Seven Different Peppers of Varying Scoville Intensity to Identify
Novel Genes for Capsaicin Synthesis

Collection of Peppers for RNA Sequencing

After collecting a large variety of pepper, we had many samples we could send

out for RNA sequencing. We selected the pepper samples that appeared to have the

highest RNA integrity from our agarose gel electrophoresis experiments, samples that

had high RNA concentrations, and samples that would result in a generous range and

reflection of the Scoville scale. As previously mentioned, the following pepper samples

were sent out for paired-end Illumina RNA sequencing: cherry peppers, jalapeno peppers,

hungarian wax peppers, serrano peppers, cayenne peppers, habanero peppers, and ghost

peppers. GENEWIZ performed standard RNA-Seq analysis and processed each of the

pepper samples, evaluating RNA integrity, average nucleotide size, region molarity, RNA

concentration, and then performed sequencing utilizing the Illumina platform. RINe is an

abbreviation for RNA integrity number equivalent which is an algorithm that is

calculated to assign an integrity score to an RNA sample. The score is calculated on a

scale from 1-10 with 10 being the least degraded or having the highest integrity. The

RNA Agilent TapeStation system produces the electropherogram which is used to

calculate the RINe score for each sample and agarose gel electrophoresis images were

also created from Genewiz which can be seen in figure 11 below. In addition to the RINe

scores, Genewiz generated a table of information regarding our pepper samples

consisting of concentration, average size, region molarity, and more which can be seen in

table 4 below. RINe scores that are lower than 6 are highlighted as cautionary samples

according to a threshold determined by GeneWiz. Most of the pepper samples appear to
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have RINe scores below 6.0, but many of them are close to the threshold of 6 besides a

select few that fall below 5.0 such as CayS1, CayS3, SerS1, and SerP1. The average RINe

score was 5.73 with a maximum score of 7.8 from sample Jalapeno Placenta 1 and a

minimum score of 3.8 from sample Serrano Placenta 1. When visualizing the RNA bands

for the pepper samples, for most of the samples we see two distinct bands at the 28S and

18S locations on the gel with a few samples having either faint or blurry bands. DV 200

is a measurement that represents the percentage of RNA fragments that are larger than

200 nucleotides in size. GeneWiz marks samples with a DV 200 percentage that falls

below 70 for the samples and of the 24 samples, four samples had a DV 200 score that

fell below this threshold, which was CayP2, WaxP1, WaxP2, and SerS2. Detailed values

for these scores such as the RINe and DV 200 can be found in table 4 below along with

other outputs such as RNA concentration values and average size of nucleotides. Most

samples obtained yielded nucleotide sizes in the ranges of 4000-5000 nucleotides long

and had an overall average nucleotide size of 5025. The sample with the longest

nucleotide length was Cherry Placenta 2 with 5625 nt and the sample with the shortest

nucleotide length was Hungarian Wax Skin 2 with 3913. When analyzing the nucleic acid

concentrations for the samples, the average concentration for the pepper samples was

80.82 ng/uL. A few samples had a relatively low RNA concentration which were

Habanero Skin 2 at 22.4 ng/uL, Cayenne Skin 3 at 18.96 ng/uL, Hungarian Wax Placenta

1 at 23.2, Ghost Skin 1 at 34 ng/uL, and Cayenne Placenta 3 at 27.6 ng/uL. The DV 200

score has an average value of 75.67 with a maximum of 90.32 for sample Habanero

Placenta 2 and a minimum value of 61.92 for sample Hungarian Wax Placenta 1.
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Figure 11

Gel Electrophoresis Results for Sequenced Peppers Provided from GeneWiz Agilent

TapeStation Analysis Technologies

Note. Twenty-four of our pepper samples were analyzed and had their RINe scores
calculated along with a visual representation of the RNA bands. Samples colored yellow
are samples with a RINe score above 6.5 while samples colored orange are those with
RINe scores below 6.5.
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Table 4

Summary of TapeStation Results

Sample Sample
ID

Nucleic Acid
Conc. (ng/uL)

RINe

Score
DV
200

Average
size (nt)

Cayenne Skin 1 CayS1 51.20 4.9 73.17 4883

Cayenne Placenta 2 CayP2 47.60 5.0 69.82 5591

Cayenne Skin 3 CayS3 18.96 3.9 70.92 5237

Cayenne Placenta 3 CayP3 27.60 5.4 74.55 5557

Cherry Skin 1 CheS1 62.00 5.6 82.20 5023

Cherry Placenta 1 CheP1 55.60 7.3 70.84 5094

Cherry Skin 2 CheS2 58.80 5.6 84.75 4622

Cherry Placenta 2 CheP2 107.60 6.7 78.79 5625

Hungarian Wax Skin 1 WaxS1 172.40 6.3 83.12 4965

Hungarian Wax Placenta 1 WaxP1 23.20 5.6 61.92 4323

Hungarian Wax Skin 2 WaxS2 180.40 5.8 76.51 3913

Hungarian Wax Placenta 2 WaxP2 48.00 6.5 66.79 5084

Jalapeno Skin 1 JalS1 96.40 5.9 74.42 5091

Jalapeno Placenta 1 JalP1 87.60 7.8 80.62 5002

Serrano Skin 1 SerS1 78.00 4.8 72.37 5244

Serrano Placenta 1 SerP1 139.60 3.8 70.66 4701

Serrano Skin 2 SerS2 111.20 5.0 69.28 5486

Serrano Placenta 2 SerP2 200.00 5.5 74.54 5235

Habanero Skin 1 HabS1 66.40 7.1 81.39 5300

Habanero Placenta 1 HabP1 108.00 6.9 83.47 5335

Habanero Skin 2 HabS2 22.40 5.7 70.68 5449

Habanero Placenta 2 HabP2 82.80 5.2 90.32 4477

Ghost Skin 1 GhoS1 34.00 5.7 74.03 4343

Ghost Placenta 1 GhoP1 60.00 5.4 81.01 5042
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Note. Twenty-four pepper samples were processed and given unique RINe scores,
calculated RNA concentrations, average sizes, and calculated DV 200 scores. Boxes that
were highlighted yellow indicate warnings for samples as they either demonstrated a
cautionary RINe score or DV 200 value according to GENEWIZ criteria.

FastQC

The first step when analyzing RNA sequencing data is to perform a quick

qualitative control test on the raw sequence data. FastQC outputs a list of quality control

checks and gives the user a quick impression of the overall status of the sample. We had a

total of 24 samples we sent out for RNA sequencing and because we did paired-end

sequencing, which is sequencing from both ends of a DNA fragment, we ended up with

two output files from one sample. This means we had a total of 48 sample files output

from RNA sequencing. When running FastQC, there are eleven outputs that will return as

a green check mark, yellow exclamation point, or a red x mark, each indicating the

quality of that check going from good to bad respectively. These eleven outputs are as

follows: basic statistics, per base sequence quality, per tile sequence quality, per sequence

quality scores, per base sequence content, per sequence GC content, per base N content

(could not identify nucleotide), sequence length distribution, sequence duplication levels,

overrepresented sequences, and adapter content. Using this information, we quickly

gained an overview of our data quality and table 5 below lists each sample and their

results for each test. After running the FastQC program on our samples, we can see a lot

of information quickly on our data such as many of the data had good scores for their

base sequence quality, tile sequence quality, sequence quality score, base N content, and

base sequence length distribution. All the samples returned a green check mark for those

specific parameters. In addition to good quality data, we can see where the data is fairly
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poor such as in the base sequence content and sequence duplication columns where all

the samples were flagged with a red x mark. The last couple columns such as sequence

GC content, overrepresented sequences, and adapter content all have a mix of green, red

and mainly yellow suggesting these samples are of lower quality. A majority of these

outputs suggest that before proceeding onto the next steps in the bioinformatics pipeline,

we should consider addressing these problems that the raw data is showing. To do this,

there will be two things performed to manipulate the raw data. The first will be trimming

the raw data sequence because the per base sequence quality becomes worse as the

position in the reads gets larger. Through trimming the per base sequence length from

151 bp, our reads will be shorter but will be more accurate. When reviewing the per base

sequence quality scores of all the data, although they all came back with a good value,

their phred scores for some appeared to start to fall below the 28 mark and a few below

the 20 mark for some of the reads around the 135-150 region. Therefore, by trimming the

data by 30 base pairs from the 5’ end, we will end up with a higher quality and more

accurate read for each of our samples. The second thing to implement is to trim the

adapter sequences which appear to be leading to poor adapter content and affecting the

overrepresented sequences scores too. When illumina performs RNA sequencing, they

utilize adapters for the cDNA from the RNA to bind to the flow cell which has

complementary sequences present on it. Amplification will occur off of the cDNA and

the adapters that are present can become part of the newly sequenced strand which will

lead to a high adapter content value and will influence the overrepresented sequence. To

account for this, we can use a program called trimmomatic which allows us to specify the

illumina adapters used for sequencing and trim out those adapter sequences if they find
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them in the raw sequence therefore eliminating the adapter sequence. In figure 12 below,

there are images of the raw data FastQC status checks before and after being processed

by trimmomatic and shortening the per base sequence length. This generated three sets of

fastq files where the first is the unaltered raw data which will be referred to as raw fastq

files, the second being the raw data will have its total sequence length trimmed which we

will refer to as the trimmed fastq files, and the third will be the fastq file that we cut the

adapters using trimmomatic and trimmed the total sequence length which will be referred

to as the cut adapters fastq files. After both of these processing steps were performed to

the raw data, it can be seen that the columns for adapter content, overrepresented

sequences, per base sequence content, and per sequence GC content all show an

improvement in the green status check marks from their previous statuses. However, it is

also important to note that the per tile sequence quality and sequence length distribution

both go from the green status to the cautionary status as a result of these manipulations to

the data
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Table 5

FastQC Output for all 24 Pepper Samples

Pepper
Sample

Total
Sequences

Sequence
Length Statistics

Base
Seq

Quality
Tile Seq
Quality

Sequence
Quality
Score

Base
Seq

Content
Sequence

GC Content
Base N
content

Seq
Length
Distr

Seq
Duplication

Overrepresente
d Seq

Adapter
Content

Che P1 Run1 27194587 151 Good Good Good Good Bad Okay Good Good Bad Good Okay

Che P1 Run2 27194587 151 Good Good Good Good Bad Okay Good Good Bad Good Okay

Che P2 Run1 24310395 151 Good Good Good Good Bad Okay Good Good Bad Okay Okay

Che P2 Run2 24310395 151 Good Good Good Good Bad Okay Good Good Bad Okay Okay

Che S1 Run1 24469899 151 Good Good Good Good Bad Good Good Good Bad Okay Okay

Che S1 Run2 24469899 151 Good Good Good Good Bad Okay Good Good Bad Okay Okay

Che S2 Run1 29804880 151 Good Good Good Good Bad Okay Good Good Bad Good Okay

Che S2 Run2 29804880 151 Good Good Good Good Bad Okay Good Good Bad Okay Okay

Gho P1 Run1 26863525 151 Good Good Good Good Bad Good Good Good Bad Okay Okay

Gho P1 Run2 26863525 151 Good Good Good Good Bad Okay Good Good Bad Okay Okay

Gho S1 Run1 26850176 151 Good Good Good Good Bad Okay Good Good Bad Good Okay

Gho S1 Run2 26850176 151 Good Good Good Good Bad Okay Good Good Bad Good Okay

Hab P1 Run1 24222612 150 Good Good Good Good Okay Okay Good Good Bad Bad Bad

Hab P1 Run2 24222612 150 Good Good Good Good Bad Bad Good Good Bad Okay Bad

Hab P2 Run1 32608724 151 Good Good Good Good Bad Okay Good Good Bad Good Okay

Hab P2 Run2 32608724 151 Good Good Good Good Bad Okay Good Good Bad Okay Okay

Hab S1 Run1 47424533 151 Good Good Good Good Bad Okay Good Good Bad Okay Good

Hab S1 Run2 47424533 151 Good Good Good Good Bad Okay Good Good Bad Okay Good

Hab S2 Run1 28928231 151 Good Good Good Good Bad Okay Good Good Bad Okay Okay

Hab S2 Run2 28928231 151 Good Good Good Good Okay Okay Good Good Bad Okay Okay

Jal P1 Run1 17295942 150 Good Good Good Good Bad Okay Good Good Okay Bad Bad

Jal P1 Run2 17295942 150 Good Good Good Good Bad Bad Good Good Okay Okay Bad

Jal S1 Run1 33886935 151 Good Good Good Good Bad Good Good Good Bad Okay Okay

Jal S1 Run2 33886935 151 Good Good Good Good Bad Okay Good Good Bad Okay Okay

Cay P2 Run1 42014619 151 Good Good Good Good Bad Okay Good Good Bad Okay Okay

Cay P2 Run2 42014619 151 Good Good Good Good Bad Okay Good Good Bad Okay Okay

Cay P3 Run1 27563358 151 Good Good Good Good Bad Okay Good Good Bad Good Okay

Cay P3 Run2 27563358 151 Good Good Good Good Bad Okay Good Good Bad Okay Okay

Cay S1 Run1 43595331 151 Good Good Good Good Bad Okay Good Good Bad Okay Okay

Cay S1 Run2 43595331 151 Good Good Good Good Bad Okay Good Good Bad Okay Okay

Cay S3 Run1 31214834 151 Good Good Good Good Bad Okay Good Good Bad Good Okay

Cay S3 Run2 31214834 151 Good Good Good Good Bad Okay Good Good Bad Okay Okay
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Pepper
Sample

Total
Sequences

Sequence
Length Statistics

Base
Seq

Quality
Tile Seq
Quality

Sequence
Quality
Score

Base
Seq

Content
Sequence

GC Content
Base N
content

Seq
Length
Distr

Seq
Duplication

Overrepresente
d Seq

Adapter
Content

Ser P1 Run1 19020160 150 Good Good Good Good Okay Okay Good Good Bad Bad Bad

Ser P1 Run2 19020160 150 Good Good Good Good Bad Bad Good Good Okay Okay Bad

Ser P2 Run1 28339488 151 Good Good Good Good Bad Good Good Good Bad Good Okay

Ser P2 Run2 28339488 151 Good Good Good Good Bad Okay Good Good Bad Okay Okay

Ser S1 Run1 26052653 151 Good Good Good Good Bad Okay Good Good Bad Okay Okay

Ser S1 Run2 26052653 151 Good Good Good Good Bad Okay Good Good Bad Okay Okay

Ser S2 Run1 25816590 151 Good Good Good Good Bad Good Good Good Bad Good Okay

Ser S2 Run2 25816590 151 Good Good Good Good Bad Okay Good Good Bad Okay Okay

Wax P1
Run1 20019634 150 Good Good Good Good Bad Bad Good Good Okay Bad Bad

Wax P1
Run2 20019634 150 Good Good Good Good Bad Bad Good Good Okay Okay Bad

Wax P2
Run1 42021312 151 Good Good Good Good Bad Okay Good Good Bad Okay Okay

Wax P2
Run2 42021312 151 Good Good Good Good Bad Okay Good Good Bad Okay Okay

Wax S1
Run1 39400448 151 Good Good Good Good Bad Okay Good Good Bad Okay Okay

Wax S1
Run2 39400448 151 Good Good Good Good Bad Okay Good Good Bad Okay Okay

Wax S2
Run1 27711941 151 Good Good Good Good Bad Good Good Good Bad Good Okay

Wax S2
Run2 27711941 151 Good Good Good Good Bad Okay Good Good Bad Okay Okay

Note. Pepper samples are abbreviated and are as follows: Che = Cherry pepper, Gho =
Ghost pepper, Hab = Habanero pepper, Jal = Jalapeno Pepper, Cay = Cayenne pepper, Ser
= Serrano pepper, Wax = Hungarian wax pepper. Pepper samples are differentiated with
either a S or P indicating if they are a skin or placenta sample respectively. Run1 and
Run2 differentiate between the paired end run results. Green highlighted boxes with the
“good” text indicate good quality data, yellow highlighted boxes with the “okay” text
indicate cautionary data, and red highlighted boxes with the “bad” text indicate poor
quality data.
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Figure 12

FastQC Results Before and After Data Processing

Note. The top figure represents the raw data files obtained from FastQC. The bottom
figure represents the altered data after processing with trimmomatic and cutting down on
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the per base sequence length by 30 base pairs. On the y-axis are the listed pepper samples
and the text on the x-axis lists each of the eleven FastQC outputs. Data are highlighted as
green, yellow, or red to indicate good quality, cautionary quality, or poor quality data
respectively.

Bowtie

After utilizing FASTQC, the Bowtie software program was used to align the fastq

files to our reference sequence.  There were three iterations of fastq files that were

generated from the previous steps which were the raw fastq files, cut adapters fastq files,

and the trimmed fastq files. Each of these file types were mapped to our reference

genome and their respective overall alignment scores were generated and compared to

one another to see how the differences after each data manipulation step affected the

overall bowtie scores. For our experiment, the reference genome that we will be using

will be the Capsicum annuum reference genome. The reference genome was obtained

from Sol Genomics Network and it is Capsicum annuum cv CM334 Genome CDS

(release 1.55). The first bowtie alignment we ran on the raw fastq file resulted in an

average alignment score of 0 times at 35.7%, an average alignment score of 1 time at

41.54%, an average alignment score of more than 1 times at 22.76% with an overall

alignment score of 64.30%. The second bowtie alignment we ran on the trimmed fastq

file, which only had its per base sequence length shortened, this resulted in an average

alignment score of 0 times at 29.32%, an average alignment score of 1 time at 45.77%, an

average alignment score of more than 1 times at 24.92% with an overall alignment score

of 70.69%.  The third bowtie alignment we ran on the cut adapters fastq file, which had

its per base sequence length shortened and the adapters cut out, this resulted in an average

alignment score of 0 times at 23.26%, an average alignment score of 1 time at 48.67%, an
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average alignment score of more than 1 times at 28.07% with an overall alignment score

of 76.74%. Table 6 below demonstrates the results for each of the bowtie alignments that

we generated using each of the pepper sample fastq files. The most noticeable difference

we can see after processing the data is in the “Overall Score Improvement (Cut

Adapters-Raw)” column which is the difference between the cut adapters bowtie scores

and the raw alignment scores for each of the pepper samples. In this section, values that

are highlighted green are samples that had the highest score improvement while samples

that are highlighted in red are ones that had the lowest score improvement after being

processed. The main column to look at is the overall cut adapters alignment column. This

column lists the overall bowtie score for the pepper samples after having their sequences

trimmed and adapters cut. This column contains the highest bowtie alignment scores for

the pepper samples when we compare the same pepper samples against their raw

alignment scores and trimmed alignment scores. This score and output will be used for

the cufflinks assessment as these pepper samples demonstrated the best alignment to their

reference genome.
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Table 6

Bowtie Alignment Output for all 24 Pepper Samples

Scoville
Heat Units Genus Reads Pepper

Overall
Raw

Alignment

Overall
Trimmed

Alignment

Overall Cut
Adapters

Alignment

Overall Score
Improvement
(Cut Adapters

- Raw)
Cherry

Peppers:
100-
500
SHU

Capsicum annuum 29804880 CheS2-R2 66.29% 71.84% 76.65% 10.36%

Capsicum annuum 29804880 CheS2-R1 67.61% 73.29% 76.76% 9.15%

Capsicum annuum 24469899 CheS1-R2 61.24% 67.13% 72.54% 11.30%

Capsicum annuum 24469899 CheS1-R1 62.72% 68.77% 72.69% 9.97%

Capsicum annuum 24310395 CheP2-R2 62.30% 68.18% 73.42% 11.12%

Capsicum annuum 24310395 CheP2-R1 63.77% 69.81% 73.57% 9.80%

Capsicum annuum 27194587 CheP1-R2 66.72% 72.59% 76.85% 10.13%

Capsicum annuum 27194587 CheP1-R1 67.86% 73.81% 76.99% 9.13%
Jalapeno:

3,500-
8,000
SHU

Capsicum annuum 33886935 JalS1-R2 61.78% 67.56% 72.72% 10.94%

Capsicum annuum 33886935 JalS1-R1 63.11% 69.05% 72.88% 9.77%

Capsicum annuum 17295942 JalP1-R2 50.63% 61.72% 73.93% 23.30%

Capsicum annuum 17295942 JalP1-R1 51.27% 62.33% 73.89% 22.62%

Hungarian
Wax:
5,000-
15,000
SHU

Capsicum annuum 27711941 WaxS2 -R2 61.92% 67.60% 73.01% 11.09%

Capsicum annuum 27711941 WaxS2 -R1 63.54% 69.41% 73.22% 9.68%

Capsicum annuum 39400448 WaxS1 -R2 71.09% 75.96% 80.50% 9.41%

Capsicum annuum 39400448 WaxS1 -R2 72.27% 77.21% 80.61% 8.34%

Capsicum annuum 42021312 WaxP2-R2 70.04% 74.97% 79.81% 9.77%

Capsicum annuum 42021312 WaxP2-R1 71.61% 76.65% 79.98% 8.37%

Capsicum annuum 20019634 WaxP1-R2 62.73% 72.23% 92.01% 29.28%

Capsicum annuum 20019634 WaxP1-R1 63.86% 73.25% 92.35% 28.49%

Serrano:
10,000-
23,000
SHU

Capsicum annuum 25816590 SerS2-R2 61.13% 67.09% 72.32% 11.19%

Capsicum annuum 25816590 SerS2-R1 62.62% 68.77% 72.56% 9.94%

Capsicum annuum 26052653 SerS1-R2 62.60% 68.43% 73.77% 11.17%

Capsicum annuum 26052653 SerS1-R1 64.15% 70.17% 73.96% 9.81%

Capsicum annuum 28339488 SerP2-R2 62.45% 68.39% 73.36% 10.91%

Capsicum annuum 28339488 SerP2-R1 64.00% 70.14% 73.56% 9.56%

Capsicum annuum 19020160 SerP1-R2 49.25% 61.02% 78.00% 28.75%

Capsicum annuum 19020160 SerP1-R1 50.09% 61.82% 78.12% 28.03%

Cayenne:
30,000-
50,000
SHU

Capsicum annuum 31214834 CayS3-R2 64.70% 70.14% 75.69% 10.99%

Capsicum annuum 31214834 CayS3-R1 66.40% 72.01% 75.94% 9.54%

Capsicum annuum 43595331 CayS1-R2 75.27% 79.49% 83.48% 8.21%

Capsicum annuum 43595331 CayS1-R1 76.33% 80.61% 83.57% 7.24%

Capsicum annuum 27563358 CayP3-R2 63.51% 68.98% 74.19% 10.68%

Capsicum annuum 27563358 CayP3-R1 65.02% 70.66% 74.37% 9.35%

Capsicum annuum 42014619 CayP2-R2 74.36% 79.01% 83.55% 9.19%

Capsicum annuum 42014619 CayP2-R1 75.71% 80.44% 83.67% 7.96%
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Scoville
Heat Units Genus Reads Pepper

Overall
Raw

Alignment

Overall
Trimmed

Alignment

Overall Cut
Adapters

Alignment

Overall Score
Improvement
(Cut Adapters

- Raw)
Habanero:
100,000-
350,000

SHU

Capsicum chinense 28928231 HabS1-R2 63.94% 69.53% 74.64% 10.70%

Capsicum chinense 28928231 HabS1-R1 65.60% 71.35% 74.85% 9.25%

Capsicum chinense 47424533 HabS1-R2 75.86% 79.65% 82.55% 6.69%

Capsicum chinense 47424533 HabS1-R1 76.39% 80.22% 82.64% 6.25%

Capsicum chinense 32608724 HabP2-R2 64.36% 69.94% 74.87% 10.51%

Capsicum chinense 32608724 HabP2-R1 65.80% 71.51% 75.02% 9.22%

Capsicum chinense 24222612 HabP1-R2 47.80% 58.97% 73.50% 25.70%

Capsicum chinense 24222612 HabP1-R1 48.53% 59.68% 73.57% 25.04%
Ghost:

800,000-
1,000,000

SHU

Capsicum chinense 26850176 GhoS1-R2 66.18% 71.54% 75.71% 9.53%

Capsicum chinense 26850176 GhoS1-R1 67.20% 72.63% 75.78% 8.58%

Capsicum chinense 26863525 GhoP1-R2 61.82% 68.01% 72.98% 11.16%

Capsicum chinense 26863525 GhoP1-R1 63.00% 69.32% 73.12% 10.12%

Color Legend:
Pepper Species - Capsicum annuum
Pepper Species - Capsicum chinense

Pepper Tissue - Placenta
Pepper Tissue - Skin

Bowtie Alignment Score/Improvement/Number of Reads  - High Alignment
Bowtie Alignment Score/Improvement/Number of Reads  - Moderate Alignment

Bowtie Alignment Score/Improvement/Number of Reads - Low Alignment

Note. Pepper samples are abbreviated and are as follows : Che = Cherry pepper, Gho =
Ghost pepper, Hab = Habanero pepper, Jal = Jalapeno Pepper, Cay = Cayenne pepper, Ser
= Serrano pepper, Wax = Hungarian wax pepper. Pepper samples are differentiated with
either a S or P indicating if they are a skin or placenta sample respectively and are
highlighted either blue or purple accordingly. The number following S or P will either be
a 1, 2, or a 3 which denotes which pepper the tissue sample originated from. R1 and R2
explain if the pepper sample is Run 1 or Run 2 to differentiate between the paired end
results. Pepper samples are listed based on scoville heat units from lowly pungent to
highly pungent. Pepper species are color coated to differentiate between Capsicum
annuum and Capsicum chinense. Green highlighted boxes indicate high bowtie alignment
scores, high score improvement, or high number of reads depending on the column.
Yellow highlighted boxes indicate moderate bowtie alignment scores, moderate score
improvement, or moderate number of reads depending on the column. Red highlighted
boxes indicate low bowtie alignment scores, low score improvement, or low number of
reads depending on the column.
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Cufflinks

After the bowtie alignment, we then took our mapped reads and ran them through

a program called cufflinks. First, bowtie outputs the files in a SAM format which must be

converted to a BAM format. SAM files are files that the computer creates which stores

the sequence data from the bowtie assessment in a series of tab delimited ASCII columns.

These files are generated as they are “human readable” compared to its sister file which is

the BAM (Binary Alignment Map) file that will store the same data in a compressed,

indexed, binary format (Trapnell et. al., 2012). We first convert the SAM file to a BAM

so the computer can then use the store sequence data to perform the analysis. After

conversion of the SAM file to its BAM counterpart, we sort the file by chromosomes

which is how the reference genome is set up. The reference genome that we will be

utilizing will be the same file from the bowtie alignment which is the Capsicum annuum

cv CM334 Genome CDS (release 1.55). After sorting, cufflinks can be used to evaluate

gene expression on our pepper samples. Cufflinks is a program that assembles transcripts,

estimates their abundances, and can test for differential expression and regulation in

RNA-seq samples. It produces several output files that contain test results for changes in

expression at the level of transcripts, primary transcripts, and genes (Trapnell et. al.,

2012) (Ghosh & Chan, 2016). For our cufflinks output, we specifically obtained a file

containing a list of 30,242 genes along with their relative expression levels (FPKM) for

each of our 48 samples. The FPKM output stands for Fragments per kilobase of transcript

per million mapped reads. The relative expression of a transcript is proportional to the

number of cDNA fragments that originate from it. The FPKM output file can be
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combined with the reference genome file to obtain a compiled list of the genes, along

with their location on the chromosome, and their predicted protein function if available.

Data Visualization in R

Since we have the forward and reverse runs for each of our samples due to

pair-end sequencing, we can evaluate the forward against the reverse runs to identify any

strong differences in FPKM values. Ideally, the forward and reverse runs should

demonstrate similar FPKM results for the same genes as they would be expected to have

similar gene expression levels as they are duplicate runs essentially. To validate this, we

created scatter plot matrices of the different forward and reverse runs for our pepper

samples and their FPKM outputs. The more linear the distribution, the more similar the

samples are to one another meaning there is a stronger correlation between the FPKM

values of the forward run with the reverse run. The more randomly distributed or

non-linear in general, the weaker the correlation is between the forward and the reverse

runs meaning that the sample output is less reliable and that sample set should be

regarded with caution. We used the splom function in R which can be downloaded from

the lattice package (Sarkar, 2008). Splom, is shortened for scatterplot matrix and it is a

tool that uses multiple scatterplots to determine the correlation between a series of

variables where the scatterplots are organized into a matrix to allow for easy visualization

for any set of variables. Using the splom function, we created a series of scatterplots

interrogating the relationship between skin and placenta FPKM values among the same

pepper types. In total, we generated seven scatter plots, one for each of the pepper

samples where we plotted their skin and placenta FPKM output for their forward and
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reverse runs. This allowed us to gather quick and efficient data on the correlations

between the forward and reverse runs of multiple skin or placenta samples and identify

specific cautionary samples that did not meet an expected R2 value. In figure 13 below,

there are two scatter plots, one demonstrating normal data and the other containing an

example of samples that did not meet our expectations. The first figure, the Habanero

Pepper FPKM values, did have normal data distribution and we can see strong correlation

lines for our forward and reverse runs in the lower panels (R1 and R2) when they are

plotted against each other and their respective R2 values plotted on the upper panels. The

placenta samples will have a strong linear relationship and the skin samples have a strong

linear relationship and the forward and reverse runs of that sample will have the strongest

correlation in the graph. There is not as strong of a correlation between the placenta and

skin samples when plotted against one another but still resulted in a linear relationship.

Now when we look at the bottom figure, the Hungarian Wax Pepper FPKM values, this

scatterplot contains values that did not meet our expectations, we see a much different

relationship between the forward and reverse runs for the same sample. The strength of

the correlation is weaker when looking at some of the placenta forward and reverse runs

when those ideally should be the strongest relationships. Out of a total of forty-eight

samples, we only had two samples that demonstrated a noticeable weak linear

relationship between its forward and reverse run for that same sample and across the

same tissue type for that sample. The two samples were the Hungarian Wax pepper

samples of WaxP1_R1 and WaxP1_R2 which had a low R2 value at 0.85 when compared

to each other and an even weaker R2 value when compared to the other wax placenta

samples of WaxP2_R1 and WaxP2_R2 of 0.631 and 0.634. This was the lowest R2 value
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recorded by far out of all samples. Out of all of the other samples when comparing their

forward and reverse runs against each other, none of them had a R2 value below 0.96

while hungarian wax had a value of 0.85.  In addition, out of all the samples when

comparing the same pepper’s tissue types, none of the samples had a lower R2 value

below 0.87 while the hungarian wax peppers had the lowest score across their placenta

samples at a R2 value of 0.63. These two placenta samples for the hungarian wax data

appear to be outliers in the data set as their FPKM output varies greatly compared to each

other and compared to the other hungarian wax placenta samples.
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Figure 13

Scatterplot Matrix of FPKM Values Between Peppers

Note. Scatterplot matrix describing the correlation among the Log2 FPKM values for the
pepper samples of the same pepper type. The first graph demonstrates good data and all
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the possibilities of the habanero pepper FPKM values and their correlation strength
against each other. The second graph demonstrates bad data and all the possibilities of the
hungarian wax pepper FPKM values and their correlation strength against each other. The
sample ID for each pepper can be found in the diagonal panels in the scatterplot matrix.
The scatterplot of the FPKM values is listed on the lower panels and their respective R2

values are listed on the upper panels.

This first step in creating these series of scatter plots matrices allows us to easily

visualize if certain samples may have poor or inaccurate data from the FPKM output

provided from cufflinks. Performing this step allowed us to acknowledge those samples

and treat them with caution before generating heat maps or other more involved data

analysis steps. Besides evaluating the data with the scatter plot matrices alone, we also

generated a bar graph visualizing the mapped library sizes for each of our pepper samples

as well as a box plot of the FPKM output for each pepper sample. The tidyverse package

was installed to format the data correctly for further analysis (Wickham et al., 2019). The

library sizes were generated from bowtie and it is a count of the total number of mapped

reads to the reference genome. This value was calculated using the processed bowtie

output where the base sequence length was shortened and the adapters were also cut out

for each of the pepper samples. Ultimately, this pre-processing resulted in shorter mapped

reads as we had shortened the overall length of the reads from these steps. Using this

processed data for the bowtie alignment, we collected the alignment scores and bowtie

gave the value of how many reads were mapped back to the reference genome for each

pepper sample. Using this information, we created a bar graph to visualize the differences

in the sizes of the mapped library reads for the different pepper species which can be seen

in figure 14 below. There are a total of 24 pepper samples plotted on the bar graph below

66



and they represent the forward and reverse runs for each pepper as the forward and

reverse library sizes were identical. The pepper species are grouped together based on

pepper name through color coding and the pepper sample IDs are located on the x-axis

with their abbreviations and tissue identifiers. The average mapped reads for the library

sizes was 25,297,134 bp and a majority of the mapped reads of the pepper samples fell in

this range. The largest mapped library size was 43,670,172 which was the HabS1 samples

and the smallest mapped library size was 10,726,756 which was the SerP1 sample with

the WaxP1 and JalP1 samples not far behind. Some of the pepper samples had rather

large library sizes such as CayP2, CayS1, HabS1, WaxP1, and WaxS1 and some of the

pepper samples had rather small library sizes such as HabP1, JalP1, SerP1, and WaxP1

samples. The majority of the other samples had their average library sizes around

20,000,000 - 25,000,000 base reads. A boxplot was also created utilizing the log2 FPKM

values generated from cufflinks and we plotted the different pepper samples to visualize

the differences in distribution of their FPKM values across pepper samples which can be

seen in figure 15 below. The boxplot is useful to visualize where the average is among

samples and outliers are easily identifiable as they will reside outside the Q1 and Q3

whisker portion of the boxplot. When comparing the averages among samples and their

IQR ranges, it appears that many of the samples are similar in terms of their IQR sizes.

As for the averages, many of the samples have a similar distribution ranging from 0 to 1,

skewing in the negative direction except for the WaxP1 forward and reverse run samples

which are strongly skewed toward the positive direction. In addition, the whisker length

distributions are very similar among many of the pepper samples besides the WaxP1

forward and reverse samples which have a very positively skewed distribution. There are
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a very large number of outliers that reside with a FPKM value of 10 or higher for all the

pepper samples which are seen as plotted points. The plotted points can also be seen as

identical in the forward and reverse runs for the same pepper sample which is supportive

that the FPKM output is consistent.

Figure 14

Total Number of Mapped Reads per Sample

Note. The data has been processed by having its adapter sequences cut and per base
sequence length shortened. Data is represented as the total number of mapped reads and
the samples are color coated by groupings based on the scientific names of the peppers.
There are a total of 24 individual pepper samples plotted and their three-letter
abbreviation as the sample ID on the x-axis are as follows: Cay = Cayenne pepper, Che =
Cherry pepper, Gho = Ghost pepper, Hab = Habanero pepper, Jal = Jalapeno Pepper, Ser
= Serrano pepper, Wax = Hungarian wax pepper. Pepper samples are differentiated with
either a S or P after their three-letter abbreviation indicating if they are a skin or placenta
sample. The number following S or P will either be a 1,2, or a 3 which denotes which
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pepper the tissue sample originated from. Forward and reverse runs for each pepper were
not specified and instead replaced with a single sample ID as the forward and reverse
runs had identical total number of mapped reads.

Figure 15

FPKM Values per Pepper Sample after Log2 Transformation

Note. A total of 30,242 FPKM values were generated for each pepper sample and 24 of
the peppers were plotted with their forward and reverse runs for a total of 48 pepper
samples. The horizontal darkened line in the box represents the mean for that pepper
sample and the shaded box region itself represents the IQR. The whiskers represent the
minimum and maximum values while any plotted points fall outside the whisker range
and are considered outliers. A total of 48 individual pepper samples are plotted and their
three-letter abbreviation as the sample ID on the x-axis and are as follows: Cay =
Cayenne pepper, Che = Cherry pepper, Gho = Ghost pepper, Hab = Habanero pepper, Jal
= Jalapeno Pepper, Ser = Serrano pepper, Wax = Hungarian wax pepper. Pepper samples
are differentiated with either a S or P after their three-letter abbreviation indicating if they
are a skin or placenta sample. The number following S or P will either be a 1,2, or a 3
which denotes which pepper the tissue sample originated from. Forward runs are
identified with the suffix R1 and reverse runs are identified with the suffix as R2 for each
of the pepper samples.
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After generating the boxplot, bar graph, and scatterplot, we decided that a

principal component analysis and a correlation matrix would be beneficial visuals to

evaluate the relationship amongst our samples. The glimma package and limma packages

were both installed to utilize the glMDSPlot and plotMDS functions provided to generate

the pieces of the principal components of analysis (Su et. al., 2017) (Smyth, 2005). The

two pieces of the principal components of analysis we generated are the scree plot which

determines the number of statistically significant factors and the principal component

analysis graph itself plotting our first and second components against each other. The

scree plot is a line plot of the eigenvalues of factors or principal components in an

analysis. The value of a scree plot is that it tells you the number of factors that are present

in your data and what principal components you should evaluate. Typically, scree plots

demonstrate a sharp reduction in size of their eigenvalues and when this occurs, any

factors that fall below this sharp reduction will add relatively little to no information to

the graph as they contribute significantly less to any variation observed in the data.

Therefore, any values that fall before this reduction in eigenvalues is important to

evaluate as these components account for the majority of variation in the data. According

to the scree plot, there are two strong principal components which are components 1 and

2 which can be seen in figure 16 below. Principal component 1 makes up for over 40%

proportion of the variation in the data while principal component 2 only accounts for a

little over 15%. Principal components 3, 4, and 5 are relatively low in the 6% - 8%

proportion range and the rest of the components after 5, all fall below 5% proportion.

Using this information from the scree plot, we then made one principal component of

analysis graph plotting component 1 on the x-axis and component 2 on the y-axis as seen
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in figure 17 below. The principal component analysis figure demonstrates some

relationships in the data. For the samples, their forward and reverse runs are all plotted

right over each other for each sample and generally, most of the samples are grouped in

the same relative area according to their pepper name. There appears to be three different

clusterings of the data, one group in the top right corner, one in the middle bottom, and

the last in the top left. These groups contain the following pepper samples; in the top

right corner the cherry and serrano peppers, in the middle bottom the habanero and ghost

peppers reside, and in the top left the cayenne, hungarian wax, and jalapeno peppers

reside. Most of the clustering of the placenta and skin samples are near each other with a

stronger clustering occurring between placenta samples with placenta samples and the

skin samples with the skin samples of the same pepper type. Again, compared to most

other samples, the WaxP1 samples are located a further distance away from the WaxP2

sample set and even further from the WasS1 and WaxS2 samples. Most samples may be

located some distance away between the skin and placenta samples of the same pepper

type but rarely are the samples located far away of the same tissue type and same pepper

type.
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Figure 16

Scree Plot Demonstrating the Variation Between Principal Components

Note. Scree plot demonstrating the eigenvalues of the principal components identified
across the pepper samples utilizing their Log2 FPKM values. Eigenvalues are displayed
on the y-axis which explains the degree of variation in each sample. Each principal
component is displayed on the x-axis. The bar graphs are ordered from largest to the
smallest according to their eigenvalues.
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Figure 17

Principal Component Analysis for the Log2 FPKM Values of the Pepper Samples

Note. Principal components 1 and 2 were plotted with their proportion of variation
contributing to the data displayed as a percentage. Pepper samples are color coded
according to the pepper name. A total of 48 individual pepper samples are plotted and
their three-letter abbreviation are as follows: Cay = Cayenne pepper, Che = Cherry
pepper, Gho = Ghost pepper, Hab = Habanero pepper, Jal = Jalapeno Pepper, Ser =
Serrano pepper, Wax = Hungarian wax pepper. Pepper samples are differentiated with
either a S or P after their three-letter abbreviation indicating if they are a skin or placenta
sample. The number following S or P will either be a 1,2, or a 3 which denotes which
pepper the tissue sample originated from. Forward runs are identified with the suffix R1
and reverse runs are identified with the suffix R2 for each of the pepper samples.
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Another visual representation of the data that we created was a correlation matrix

that was plotted using hierarchical clustering. The correlation matrix plot was created in

R using the corrplot package (Wei, 2021). Correlation matrix is a visual table that

displays the correlation among the data and by plotting it in a hierarchical fashion, the

graph will place samples that have a stronger correlation to each other, next to each other.

There were two correlation matrices we made, the first one had the WaxP1 samples in the

matrix and the second graph we removed them to see how it affected the relationships in

the graph. Figure 18 below shows the correlation matrix we created, plotting the

relationships of all pepper samples against each other with no exclusions. The strongest

correlation a sample could have is a value of 1, which is colored coded on the y-axis as

dark turquoise shaded squares, and this suggests that this sample demonstrates a perfectly

positive linear relationship between two variables. As we can see in the figure, all the

forward and reverse runs of the same pepper have a perfect linear relationship with each

other except for the WaxP1_R1 and WaxP1_R2 samples. They have a strong linear

relationship when WaxP1_R1 is plotted against WaxP1_R1, but that is to be expected as

they are the same sample. In addition, when any sample is plotted against the WaxP1

sample set, even the same WaxP2 samples, the correlation is very low at about 50 - 60 %.

When the forward run is plotted against the reverse run, they are only about 80 - 90%

correlated. They are also not clustered next to the other hungarian wax pepper samples,

and the jalapeno peppers appear to be more similar to the hungarian wax samples than the

hungarian wax placenta samples are to the hungarian wax samples. All of the other

pepper samples are clustered next to their unique pepper types and even further all of

those unique pepper types have their skin samples next to their skin samples and their
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placenta samples next to their placenta samples. Clearly, the hungarian wax placenta 1

forward and reverse run remains an outlier in the data so we removed this sample set and

remade the matrix which can be seen in figure 19 below. After removing the wax

placenta 1 sample set, we see an overall better correlation matrix with a majority of the

samples having a stronger correlation with each other. Each of the forward and reverse

runs for each pepper type again has a strong correlation with each other indicated by the

dark turquoise shaded squares. The cherry pepper placenta samples are all strongly

correlated with each other even with the placenta samples being taken from two different

cherry peppers. None of the other samples demonstrate a linear relationship of 90 - 100 %

when comparing the placenta samples or skin samples of the same pepper but different

extractions. When selecting the option for the program to identify samples with strong

clustering properties, it identified samples by drawing a blue square around them. We can

see that the program distinctly identifies the same pepper types such as saying all the

jalapeno samples are closely related and all the wax samples are closely related. It

identified a total of 8 clusters with only the unusual one being two separate clusters for

the cayenne samples separating the tissue types between placenta and skin. There also

appears to be a stronger correlation in the cayenne placenta samples with each other

compared to any other skin or placenta samples of the same pepper type. The cayenne

placenta samples are all shaded a dark turquoise demonstrating their strong correlation of

90 - 100 % with each other. None of the other samples have all their placenta samples and

skin samples of the same pepper type shaded with the dark turquoise together, only the

forward and reverse samples have this in the other pepper samples. After interrogating

the data with these graphics for outliers or abnormalities in the data, we decided to
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remove the hungarian wax placenta 1 samples from future analyses as this was a poor

data set and an outlier. Using this information, we would then create a heatmap to

visualize the differences in gene expression among the pungent and non-pungent peppers

to identify any other genes that may play a role in pepper pungency.

Figure 18

Correlation Matrix Ordered by Hierarchical Clustering Prior to Outlier Removal

Note. The 48 pepper samples are listed on the x and y axis and are organized by their
similarity through hierarchical clustering. The blue squares highlight groups in the data
that are highly similar and there are a total of 8. The matrix is color coded according to
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correlation strength where strongly correlated samples are color coded by dark turquoise
with a correlation value of 1 while weaker correlated samples are colored as dark red
with a value of 0.5. The matrix is also oriented by square size to demonstrate correlation
strength where large squares indicate a strong correlation and small colored squares a
weak correlation.

Figure 19

Correlation Matrix Ordered by Hierarchical Clustering Post Outlier Removal

Log2 FPKM values for the 46 pepper samples after removing the WaxP1 sample set. The
46 pepper samples are listed on the x and y axis and are organized by their similarity
through hierarchical clustering. The blue squares highlight groups in the data that are
highly similar and there are a total of 8. The matrix is color coded according to
correlation strength where strongly correlated samples are color coded by dark turquoise
with a correlation value of 1 while weaker correlated samples are colored as dark red
with a value of 0.5. The matrix is also oriented by square size to demonstrate correlation
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strength where large squares indicate a strong correlation and small colored squares a
weak correlation.

Heatmap

In order to create the visual heat map, we utilized Gene Cluster 3.0, a program

that has been improved by M.J.K. de Hoon, S. Imoto, J. Nolan, and S. Miyano which is

an updated version of Michael Eisen’s Cluster program of Berkeley Lab (De Hoon et. al.,

2004). The Cluster 3.0 program can be used for gene expression clustering which is

useful in finding patterns in the data and identifying outliers, incorrectly annotated

samples and more. Our goal for gene expression clustering is to look at our pungent

pepper samples and evaluate genes that are highly expressed in the pungent peppers

compared to the less-pungent peppers and see if they are associated with capsaicin

production. We can evaluate trends in the data set or even search for specific genes that

are related to capsaicin production and look at other genes that cluster around them. The

other genes that cluster around these searched genes are ones that the cluster program

determined to be highly similar to each other so it is possible they could play a part in the

capsaicin biosynthesis pathway. When using the Gene Cluster 3.0 program, we first

applied some filters to the data. Besides removing the wax placenta 1 sample set, we log2

transformed the data set to bring everything into a more manageable scale. The data was

filtered to remove lowly expressed genes, reducing the noise these genes would produce.

To remove lowly expressed genes, we removed any that did not have a sufficient read

depth by setting the number of observations to one with an absolute value being greater

than five. The second filtering action we performed was to set the maximum value

subtracted from the minimum value to be greater or equal to 1 which removes samples
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that do not have much variation in them. These filtering actions resulted in a total of

11,052 genes passing out of a total of 30,242 total genes. In the appendix section, figure

A6 demonstrates the heatmap output when no filtering actions are performed. That

heatmap contains all 30,242 genes and has many spots that are gray or black in the

heatmap. These areas are ones that had low gene expression and the information in these

sections was not of much interest to us. Then, using these 11,052 genes that passed the

filtering criteria, we then centered the genes which is done because each gene represents

a vector of values and by subtracting the average values of the gene from each

experiment we get a better idea of the relative expression of each gene compared to each

other. Lastly, we performed hierarchical clustering for just the genes of the samples and

not the arrays while performing an average linkage as the clustering method. We did not

cluster the arrays because we had previously sorted the array from least pungent to most

pungent to easily visualize genes across samples based on pungency so only the genes

need to be clustered. To visualize the microarray that was generated from the cluster

program, we utilized the Java Treeview program created by Alok J. Saldanha (Saldanha,

2004). Java Treeview generates several interactive views of the gene expression data

which allows the user to easily navigate through the image and examine samples. The

samples will be colored based on their gene expression level, highly expressed genes will

be red in our case and lowly expressed genes will be green. This allows easy visualization

of trends in the data. The columns will be representative of the samples while the rows

are representative of the genes. An example of what the output image looks like can be

seen in figure 20 below. This image is an overview of the entire 11,052 genes that were

sorted by hierarchical clustering for the pepper samples. In the file that we used for the
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cluster program, pepper samples were organized left to right from least pungent to most

pungent and ordered with skin samples coming first and placenta samples coming second

for each pepper. The most interesting sections for us will be any that have a large number

of samples with high expression in the highly pungent peppers and low expression in the

lowly pungent peppers. These sections will be useful as genes that may play a role in

capsaicin production could possibly reside here. Another useful tool to utilize would be

the search gene function. Using this tool to search out genes that are known to be highly

expressed in pungent peppers and non-pungent peppers is useful too, as other genes that

have similar expression patterns will be clustered together with the known gene.
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Figure 20

Gene Expression Data Generated by Cluster 3.0 and Visualized on Java Treeview

Note. There are a total of 11,052 genes plotted for the 46 pepper samples and they are
color coded based on gene expression level where red is high expression or upregulation
of a gene, green is low expression or downregulation of a gene, and black is no change in
gene regulation. The first window shows all genes and all samples and are listed left to
right from low pugency to high pungency. The second window is a blown up view of
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selected samples with the pepper samples representative as the columns and gene IDs are
representative of the rows.

To begin the analysis of the heatmap, we will begin by searching known genes

that are present in the capsaicin pathway and then analyze genes that are located near

these known genes. The reason for this is because the clustering program organized the

genes based on hierarchical ordering where similar things are located near each other. For

this reason, we would predict other genes that share a similar expression to known genes

in the capsaicin pathway may also play an important role in capsaicin synthesis. Using

the paper “Discovery of putative capsaicin biosynthetic genes by RNA-Seq and digital

gene expression of analysis of pepper” by Zhang et. al., they have listed known genes that

are associated with the capsaicin biosynthesis pathway and novel candidate genes that

may be associated with capsaicin production (Zhang et. al., 2016). Using the identified

genes from their paper, we searched every gene they listed, a total of one hundred and

thirty five, and compared them to our Java Treeview output file. We then identified if we

saw any expression or not which can be seen in table A1 in the appendix section as some

genes were removed after filtering our data. The genes may not be present in the output

because if it was lowly expressed or had little variation, it would have been filtered out

and removed. If the gene was present in our gene expression output, we would then

visualize its expression across our generated heatmap and we recorded any genes if they

had high expression for the pungent peppers and low expression for non-pungent peppers

which can be seen in table 7. There were a total of twenty-six genes that had an

expression profile similar to the one we are interested in which was high expression in

pungent peppers and low expression in less-pungent peppers. Although not all of these
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genes in our heatmap exhibited this trend perfectly, we included a majority of them as

they had high expression for pungent peppers as these areas were vibrant red. A few of

the genes that did fit the expression trend very well were BCKDH E1a, KASI, FatA,

pAMT, and AT. These samples typically had red expression levels for the cayenne,

habanero, and ghost pepper samples which are all in the upper regions of our scoville list.

Conversely, these samples also had either a green or black coloring in the less pungent

peppers such as cherry, jalapeno, hungarian wax, and serrano pepper samples. Some of

the genes from the twenty-six we identified exhibited more variation in their expression

levels which resulted in not only the pungent peppers being highly expressed, some of the

non-pungent peppers had high expression too. These genes were included in the list

however because typically only a few non-pungent pepper samples were expressed and

these samples still had very vibrant red, high expression in the pungent samples. Some of

these genes were CCoAOMT, NADH-GOGAT, C4H, CCR, and HCT where they all have

a little more variation in their expression but still fit the relative trend we were expecting.

These trends can all be seen as the small section of the heatmap listed in table 7 which

demonstrates the expression across all forty-six of our pepper samples. Using these

samples, we will then broaden our search to identify other genes that may participate in

the capsaicin biosynthesis pathway.

83



Table 7

Comparing Known Capsaicin Genes to our Heatmap and Identifying Genes that

Demonstrated Upregulation in Pungent Peppers Compared to Non-Pungent Peppers

Protein Gene ID JavaTree Gene Expression Output

C4H - Cinnamate
4-hydroxylase

CA06g25930

PAL - Phe
ammonia-lyase

CA05g20790

C4H - Cinnamate
4-hydroxylase

CA06g25940

NADH-GOGAT -
NADH-dependen
t Glu synthase

CA03g19580

AT -
Acyltransferase 2

CA01g32880

BCKDH E2 -
Dihydrolipoamid
e transacylase

CA01g18360

CCoAOMT -
Caffeoyl-CoA
3-O-methyltransf
erase

CA02g14470

KasI -
Ketoacyl-ACP
synthase I

CA07g11150

CM1 -
Chorismate
mutase

CA02g27850
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Protein Gene ID JavaTree Gene Expression Output

AT -
acyltransferase 2

CA01g32920

FatA - Acyl-ACP
thioesterase

CA06g26640

ENRa -
Enoyl-ACP
reductase

CA10g20920

DH -
hydroxyacyl-AC
P dehydratase

CA08g15600

KASIII -
Ketoacyl-ACP
synthase III

CA01g28560

KASI -
Ketoacyl-ACP
synthase I

CA01g00840

BCCP - Biotin
carboxyl carrier
protein

CA06g18470

PDH E1a -
Pyruvate
dehydrogenase
E1a

CA07g07490

BCKDH E1a -
a-Ketoacid
decarboxylase
E1a

CA06g10910

pAMT - putative
aminotransferase

CA03g08530
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Protein Gene ID JavaTree Gene Expression Output

CAD - Cinnamyl
alcohol
dehydrogenase

CA06g10220

CCR -
Cinnamoyl-CoA
reductase

CA08g13650

SAMSyn -
S-Adenosylmethi
onine synthetase

CA10g15500

HCT -
Hydroxycinnamo
yl transferase

CA03g30250

BCCP - Biotin
carboxyl carrier
protein

CA06g18470

CAD - Cinnamyl
alcohol
dehydrogenase

CA02g00320

BC - Biotin
carboxylase

CA11g09810

Note. The one hundred and thirty five genes identified by Zhang et. al. were searched in
our heatmap and genes that demonstrated the trend of high expression in pungent peppers
and low expression in less pungent peppers were recorded. A total of twenty-six were
identified to exhibit this trend and those samples were recorded in the table. The
respective gene IDs were recorded as well as the protein they produce in the annotation
column. A visual representation of the expression profile for the sample was also
included. Red sections represent upregulated genes, green sections represent genes that
are downregulated, and black sections represent no changes in gene regulation.

The next steps will be to evaluate the twenty-six samples and identify other

samples that were clustered next to or near them because these samples will share a

strong similarity to these known genes that are present and participate in the capsaicin
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biosynthesis pathway. Using the genes from the list, we looked up each gene and

identified where they fell on the heatmap and recorded the sections where a majority of

the genes were located. These sections would be interesting places to dig through and

pick out other possible genes of interest. There were roughly six different sections in

which the twenty-six genes were falling in which can be seen as the white boxes in figure

21 below. A majority of the genes appeared to fall into sections 2, 5, and 6 as these

sections were similar to the trend we were looking for. Sections 1, 3, and 4 did have spots

that were similar to the trend we were looking for but more of the genes appeared to fall

in those first three sections described. Using mainly the sections of 2, 5, and 6 since many

of the genes were present in these sections, we generated some additional heatmap

figures which can be seen in the appendix sections in figures A8 through A10. These

heatmaps demonstrate high expression in the pungent peppers and low expression in the

non-pungent peppers for many genes that were not identified as part of the capsaicin

biosynthesis pathway. Each of these heatmaps also have a table corresponding to them

listing the gene ID and the predicted protein function if available which can also be found

in the appendix section in tables A2 through A5. We included them in the appendix

section as these heatmaps represent genes that fit the trend in the data and could contain

important information. These tables and figures contained a large list of genes, 273 in

total, to analyze that we wanted to focus on one specific heatmap that looks the most

promising for this report.
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Figure 21

Sectioning of Heatmap for areas which Contained Higher Gene Expression in Pungent

Peppers vs Non-Pungent Peppers

Note. The heatmap is broken down into six different sections which are the major regions
where the twenty-six identified genes that had high expression for pungent peppers and
low expression for less pungent peppers were found. Red sections represent upregulated
genes, green sections represent genes that are downregulated, and black sections
represent no changes in gene regulation.
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The section of the heatmap that is of high interest to us and the section we wanted

to focus on is the section below in figure 22. This section is a piece from the heatmap that

contains seven of the twenty-six genes that are known to participate in the capsaicin

biosynthesis pathway all clustered near each other. The genes that are present from the

capsaicin pathway are as follows: CA01g32880, CA01g32920, CA01g28560,

CA03g08530, CA01g00840, CA06g10910, and CA06g26640. The proteins that these

genes encode are listed in the same order as their gene IDs which are as follows: AT, AT,

KasII, pAMT, KasI, BCKDH E1a, and FatA. In figure 22, we can see the gene expression

levels of the different peppers listed from low pungency on the left to high pungency on

the right. Then, to the right of the expression level visual, listed are the gene IDs and their

respective protein function listed next to them. Out of the 11,052 genes present in the

heatmap, this small grouping has seven of the genes that are known to participate in the

capsaicin biosynthesis pathway. There are a total of forty-two genes shown in figure 22

but these seven all fall within a thirty-one gene span of each other. With these many

genes part of the capsaicin biosynthesis pathway being clustered together in such a small

section, there could be other genes that may not have yet been identified in the pathway

that could reside in this location too.
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Figure 22

Heatmap Containing Seven of the Twenty-Six Genes Known to Participate in Capsaicin

Biosynthesis

Note. Visual heatmap containing seven of the twenty-six genes known to participate in
the capsaicin biosynthesis pathway with similar expression to our trend. The columns are
representative of the 46 pepper samples while the rows are representative of the gene ID
and protein functions associated with each ID. Pepper samples are ordered from left to
right in increasing pungency. Red sections represent upregulated genes, green sections
represent genes that are downregulated, and black sections represent no changes in gene
regulation. The seven gene IDs that were present out of the twenty-six are identified with
a red arrow pointing from the gene ID to the protein function.

Identifying Protein Functions from Heatmap

After identifying this specific section of the heatmap which contained a high

clustering of known genes part of the capsaicin biosynthesis pathway grouped with other

genes that have unknown functions or are not associated with capsaicin biosynthesis, we

wanted to identify if these genes have any associations with capsaicin biosynthesis and

possibly identify any functions of the unknown genes too. To start, we researched the

literature of these gene IDs to evaluate if there is any known protein functionality for
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these genes that may have not been associated with the database. After assigning some

functionality for a few of these genes based on the literature, we wanted to get a better

understanding of these genes by evaluating their sequences and comparing them to other

sequences. To resolve this, we looked up the gene IDs in the Sol Genomics Network

which provided the annotation file which we used for mapping. Matching the gene IDs

from our heatmap to the ones from their database, we were able to obtain the protein

sequences for said genes. Using the protein sequences, we performed manual blast

protein searches to identify the top hits each protein sequence had and then analyzed

those top hits to determine what function our genes may relate to. Using these top hits,

we researched them to identify what functions they may be related to and then used these

results to determine what most likely our genes would be related to in function. Using the

idea of shape dictates function and the shape of the protein is influenced from its

sequence of amino acids, by matching our proteins against others with very similar

sequences, we can gain a good understanding of what processes our proteins may play a

part in. We compiled a table of these genes, their protein functions, and the proposed

functions they are related to. We grouped the genes based on factors that are interesting to

our project by color coding them six different ways. They are grouped according to their

relation to the fatty acid biosynthesis pathway, the phenylpropanoid pathway, both

pathways, transcriptional regulation, unknown relationship, and unknown functions.
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Table 8

List of Genes from Figure 22 Heatmap with their Protein and Proposed Functions

Gene ID Protein Function Proposed Function
CA01g00840 3-oxoacyl-[acyl-carrier-protein] synthase capsiconiate biosynthesis

CA09g04070 Acyl CoA reductase long chain fatty acid synthesis

CA08g17800
Peroxisomal 3-hydroxyisobutyryl-coenzyme A

hydrolase
fatty acid &beta;-oxidation II (peroxisome) - enoyl-CoA

hydratase

CA01g27070 Predicted: protein ECERIFERUM 1-like cuticular wax biosynthesis - fatty aldehyde decarbonylase

CA01g28560
Putative 3-oxoacyl-(Acyl-carrier-protein) synthase

III fatty acid biosynthesis initiation I - beta;-ketoacyl-ACP synthase

CA02g02270 3-ketoacyl-CoA synthase very long chain fatty acid biosynthesis I

CA02g12940 TGL1 - GDSL esterase/lipase At1g29670-like triacylglycerol degradation

CA02g12960 TGL1 - GDSL esterase/lipase At1g29670-like triacylglycerol degradation

CA04g06400
Predicted: probable non-specific lipid-transfer

protein AKCS9-like Fatty acid synthesis pathway

CA06g05320 Omega-3 fatty acid desaturase alpha;-linolenate biosynthesis I - linolenoyl-lipid 15-desaturase

CA06g10710 Acyl-[acyl-carrier-protein] desaturase
oleate biosynthesis I - stearoyl-[acyl-carrier-protein]

9-desaturase

CA06g10910
Putative branched-chain alpha-keto acid

dehydrogenase E1 alpha subunit
2-oxoisovalerate decarboxylation to isobutanoyl-CoA -

3-methyl-2-oxobutanoate dehydrogenase

CA06g22640 Acyl-Acp thioesterase thioesterase

CA03g08530 Putative aminotransferase
4-aminobutanoate degradation I - 4-aminobutyrate

aminotransferase

CA07g03330
Predicted: geraniol 8-hydroxylase-like [Solanum

tuberosum] omega;- hydroxylation of laurate

CA09g15280 Sesquiterpene synthase germacrene biosynthesis - germacrene D synthase

CA09g15290 Sesquiterpene synthase germacrene biosynthesis - (+)-germacrene D synthase

CA07g03340 Cytochrome P450 Oxidation of steroids, fatty acids, and xenobiotics

CA01g32880 Acyltransferase 2 (fragment)
volatile benzenoid biosynthesis I (ester formation) -

benzoyl-CoA:benzyl alcohol benzoyltransferase

CA01g32920 Acyltransferase 2 (fragment)
volatile benzenoid biosynthesis I (ester formation) -

benzoyl-CoA:benzyl alcohol benzoyltransferase

CA02g19250 Acyltransferase Phenylpropanoid pathway
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Gene ID Protein Function Proposed Function

CA03g22580 CASP 1F1 Casparian strip membrane proteins - transmembrane

CA01g03050 Thaumatin-like protein Natural Sweetener found in Katefe

CA01g07310
Predicted: tetraketide alpha-pyrone reductase 1-like

isoform X1 Linked to Sporopollenin formation

CA03g00660 Selenium-binding protein Binding to Selenium and detoxification under stress conditions

CA04g07090 Allyl alcohol dehydrogenase conversion of ethanol to acetaldehyde

CA04g15780 Ripening regulated protein DDTRF18
Transmembrane Protein involved in clearing toxic compounds

from cells - Protein detoxification 27

CA05g00190 EARLY RESPONIVE TO DEHYDRATION 15-like Dihydroneopterin aldolase 1 - Biosynthesis of pteridine

CA08g13430 RAan3A-1
Ras GTP binding protein - cell signaling protein involved many

cellular processes

CA06g18480 ATP-binding cassette sub-family D member 4 protein transporters

CA10g08860 Harpin-induced 1 membrane protein

CA12g18980 ChaC-like family protein-like
gamma;-glutamyl cycle - Glutathione levels strongly elevated in

pungent peppers

CA09g02070 membrane family protein [Populus trichocarpa] membrane protein

CA09g00520 Unknown protein No matches

CA09g15570 Detected protein of confused function No matches

CA12g21630 Detected protein of unknown function No matches

CA01g11020 Detected protein of unknown function No matches

CA01g29320
Retrotransposon protein%2C putative%2C

unclassified Maybe Rnase H protein from repeat

CA03g28900 Detected protein of unknown function No matches

Color Code:

Branched Chain Fatty Acid Pathway

Phenylpropanoid Biosynthesis Pathway

Both Pathways

Transcriptional Regulation

Unknown Relationship

Unknown Function

Known Genes Part of Capsaicin Pathway

Note. These genes from the heatmap section had a strong clustering with the known
genes part of the capsaicin biosynthesis pathway. The genes in this list have their
respective protein functions and proposed functions listed. Genes known to be present in
the capsaicin biosynthesis pathway are highlighted yellow and grouped into different
categories based on their protein functions.
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Chapter 4

Discussion

Part 1: Genetically Modifying Saccharomyces cerevisiae with the Capsaicin
Biosynthesis Pathway

Golden Gate Cloning/Screening Process

After Golden Gate cloning, E. coli bacteria cells were screened utilizing

restriction enzyme digest, PCR, and sanger sequencing to verify if the correct

transcriptional units were present. As mentioned previously, the white bacteria colonies

that were grown had the potential to contain the correct transcriptional units that we were

trying to incorporate since these colonies have been modified. They have been modified

in the terms that since they did not grow red, they no longer contained the red fluorescent

protein region in the original plasmid meaning they were successfully cut with the

BsaI-HFV2 restriction enzyme. One form of screening we utilized was taking our

purified plasmid DNA from red and white colonies of the pAV113 and pAV115 plasmids

and performing a restriction enzyme digest with the PVUII-HFV2 enzyme. This specific

restriction enzyme is useful as it recognizes two specific sites on a white colony and

recognizes four specific sites on an unmodified red colony. The reason for this is that the

sequence that it recognizes is found two times in the red fluorescent region of the

plasmids and two times outside the red fluorescent region so a red colony which still has

its red region would be cut four times in total while a white colony would only be cut

twice. In addition, since we are replacing the red fluorescent region with our

transcriptional units of interest, and we know the base pair lengths of these promoters,
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coding sequences, and terminators, we can estimate the band size lengths that are

expected to show up if the plasmid does successfully contain each of these units. It was

determined that we did indeed have two possible samples that yielded the expected band

length sizes that were expected. The band size expectations we were expecting was 5965

and 2732 bp for the pAV115 plasmid and 4462 and 3228 bp size for the pAV113 plasmid.

After performing a series of three restriction enzyme digests with PVUII-HFV2 on a total

of 30 bacterial samples, there were a total of 10 samples that appeared to have a similar

banding pattern that was expected for the plasmid. Of the 10 bacterial samples, 6 of them

were for the pAV113 plasmid and 4 of them were for the pAV115 plasmid. We continued

to interrogate these colonies and other bacterial colonies utilizing polymerase chain

reaction and sanger sequencing.

Polymerase chain reaction was then performed utilizing pBluescriptSK and

pBluescriptKS forward and reverse primers which are specific sequences that reside

outside of the BsaI-HFV2 sites and amplify toward each other encompassing the red

fluorescent protein region. Since these primers reside outside of the red fluorescent

region and amplify towards each other, we can utilize them for both white and red

colonies to gain information from the plasmid. Red colonies still contain their red

fluorescent protein regions and by looking at the plasmid map, we know the distance

between these two primer regions and what size DNA fragment we should expect in an

unmodified plasmid. On the other hand, in a modified plasmid, the red fluorescent protein

region should be absent since it was cut with BsaI-HFV2 and replaced with our

transcriptional units. We would expect our DNA fragment size to be the size of our

transcriptional units plus the difference between the primer sites and the BsaI-HFV2
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restriction enzyme sites. The reason for this is that BsaI-HFV2 recognized and cut a

specific region of the plasmid so that portion is no longer there. However, the region

between the primer site and BsaI-HFV2 sites are still present and will be present in PCR

amplification. Therefore, we add the sizes of these remaining regions with the overall

size of our transcriptional insert we implemented to calculate our new overall fragment

size. It was expected that the pAV115 plasmid would have a band size around 2500 and

the pAV113 plasmid would have a band size around 2100. Of the multiple polymerase

chain reactions we performed and gel electrophoresis experiments to visualize the results,

we determined that two possible samples appeared highly likely to contain the correct

band sizes. These samples were pAV115 pun1-E and pAV113 pAMT-L. Although there

were other samples that could have possibly been in the range of our expected band sizes,

these two specific samples did appear most likely to contain the correct transcriptional

units.

The final screening experiment we performed was to send out our purified

plasmid DNA sequences for sanger sequencing analysis to confirm that our

transcriptional units were present in the plasmid. The DNA sequencing results for sanger

sequencing are very useful as we can determine if the sequences of our transcriptional

units match those found in the sequencing of our samples. One unfortunate downside to

sanger sequencing is that it is only effective for sequencing of about 800 or so base pairs

as the sequence quality deteriorates beyond that. The base pairs and the length of our

transcriptional units of promoter, coding sequence, and terminator all together are about

2322 base pairs for pAV113 plasmid and 1422 for the pAV115 plasmid. Therefore, when

we sent out our samples for sequencing, we primarily were interested in the coding
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sequence to observe if it was present or not and therefore used specific plasmid primers

that amplify the region right outside of the BsaI-HFV2 cut sites allowing for inclusion of

a promoter or terminator and our coding sequence. We sent out a total of five samples for

sanger sequencing, one sample was a possible pun1 candidate, and the other four were

possible pAMT candidates. Using the blast program, we were able to blast our sanger

sequence results against the Capsicum genome to determine if our genes of interest were

present based on the similarity result. We also directly compared the sequences of our

sanger results to the known promoter sequences, coding sequences, and terminator

sequences we were using to determine if they were present or not. We were able to

identify that four of the five sequences had promising sanger sequencing results where

they contained part of our coding sequence and terminator sequence of interest. We were

unable to determine if the promoter region was present in the samples because it was

outside the range of sanger sequencing capabilities as sanger sequencing is able to

sequence about 800 base pairs from its start site. Alternative primers would have to be

designed to further explore if the entire coding region was present and promoter region.

Auxotrophic Selection

Using the results from our screening processes, we were able to identify two

samples, pun1-E pAV115 and pAMT-D pAV113 which should contain our genes of

interest. We would use these two bacterial samples to perform a yeast transformation to

insert our plasmid DNA into a strain of Saccharomyces cerevisiae. When selecting the

yeast strain to utilize, we wanted to pick a strain that would allow for auxotrophic

selection. Each plasmid encodes a specific amino acid, pAV113 encodes a histidine
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promoter region and pAV115 encodes a leucine promoter region. Therefore, the yeast

strain we would like to transform these plasmids into should require histidine and leucine

for growth. The yeast strain B4741 was determined to be the appropriate choice as it has

the following genotype: MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0. This yeast strain

requires the following amino acids and ribonucleic acids for growth which are histidine,

leucine, methionine, and uracil. Using this information, we can specifically select which

transformed plasmid would be able to grow on what specialized plates if it lacked certain

amino acids or ribonucleic acids. The specialized plates would be composed of yeast

nitrogen without amino acids, water, sugar, and then added any specific amino acids or

ribonucleic acids to each plate.

We successfully grew colonies on each of our experimental plates which can be

seen in figure 10. The plate located on the far left consists of SD media, methionine, and

uracil and therefore only yeast that contain a combination of both plasmids, pAV113 and

pAV115 would be able to grow. The plate located in the middle consists of SD media,

histidine, methionine, and uracil and therefore only yeast containing the pAV115 plasmid

would be able to grow. The plate on the far right consists of SD media, leucine,

methionine, and uracil and therefore only yeast with the pAV113 plasmid would be able

to grow. Each of the colonies that grew on the plate suggest that those yeast colonies

contain the correct plasmids or plasmid of interest. There is a noticeable difference in

colony growth for the different plasmids as some grew better than others. For example,

there are few colonies that grew on the pun1-E pAV115 plate compared to the pAMT-D

pAV113 plate and the combination of the two plasmids plate. The colonies also on the

combination plasmid plate appear to have grown smaller in size compared to the other
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two plates. The growth of these colonies did meet our expectations as we predicted there

would be no growth on the SD plate that contained no additional macromolecules since

the specific strain we were utilizing required four essential macromolecules for growth,

and at most the yeast containing both plasmids could only synthesize two

macromolecules of the four. We did grow colonies on our expected plate and these

colonies should have the correct plasmid inserts. Using these yeast colonies, we can then

determine if the genes that we inserted into the plasmids are being expressed or not,

which is essential to produce the enzymes needed to complete the capsaicin biosynthesis

pathway.

Testing Gene Expression in Genetically Modified Yeast

Following auxotrophic selection, we then performed a follow up analysis

experiment to determine if our genetically modified yeast was expressing their newly

added genes. This needed to be done to validate that our genes were being expressed

because if the yeast are not expressing the genes we inserted, then the proteins these

genes encode will not be present and will not complete the capsaicin biosynthesis

pathway. To do this, we performed a quantitative reverse transcription polymerase chain

reaction experiment. We did this utilizing the RNA of our three different genetically

modified yeast which were By4741 with pAMT, By4741 with pun1, and By4741 with

pAMT and pun1. The extracted RNA from the yeast samples was used to synthesize

cDNA and both were used for the polymerase chain reaction. The RNA samples were

used as a control since the primers we were utilizing are DNA based primers and no

amplification of the RNA samples should occur. This is the same result we would expect
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for the water samples as they would lack any DNA for amplification to occur. Only the

cDNA samples should experience amplification as the primers would recognize the DNA

bases during the process. We utilize specific primers for coding sequences which are the

pun1 and pAMT genes. These primers are around 20 base pairs long which makes them

highly selective and they recognize a specific sequence located on the pun1 and pAMT

genes. We also used the Alg9 housekeeping gene since housekeeping genes are

constituently expressed as a positive control to compare our gene expression values

against.

The results suggest that the yeast samples that contained the pAMT gene had low

CT values when tested with the pAMT primer for both the RNA and cDNA samples.

These low CT values which are below 20 suggest that the pAMT is present in the sample

but we are unable to determine its expression levels. Since there is a low CT value for

both the RNA and cDNA sample, it means that there is DNA contamination in the RNA

strand as the primers we used are DNA sequence primers. There should be no

amplification of the RNA as the primers would not recognize a sequence present in that

sample. There must be some sort of DNA contamination occurring in the sample which is

resulting in primer amplification for the RNA samples. We are able to verify that the

pAMT gene is present in the sample though because we had amplification of the cDNA

samples meaning the gene is present. We ideally would have liked to have seen there to

be CT values of 0 or a very high CT value indicating no significance in the RNA and

water samples since the primers would not recognize any DNA in these samples.

The results for the pun1 gene tell us that it does not appear to be present in the

genetically modified yeast strain. The yeast samples that contained the pun1 gene did not
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result in low CT values, they are relatively high with most of them resulting in a CT

reading above 36 for both the RNA and cDNA sample sets. This suggests that the pun1

gene is not present in the yeast as the primers were not able to identify the pun1 sequence

in the yeast. The important samples to look at are the cDNA samples where we combine

the gene with that gene's specific primer sequence. These samples we would expect to see

a low CT value because during polymerase chain reaction, we would expect high

amplification to occur as we are combining samples that should contain our gene of

interest and primers that recognize that gene. This would result in amplification or the

synthesis of more DNA which then should result in a higher fluorescence reading due to

SYBR dye binding to the DNA leading to a lower cycle threshold as a result. When we

look at the samples, we only see that the samples with the pAMT primer and the pAMT

gene resulted in low CT values or our control of the Alg9 primer in the yeast. The pun1

primer does not appear to amplify the pun1 gene in the pun1 samples and as a result does

not yield a low CT value. This can also be clearly seen in the combination plasmid

samples which contain both pun1 and pAMT genes. When these samples are treated with

both pun1 and pAMT primers, only the pAMT primer sample resulted in a significant

low CT value while the pun1 primer samples were not. We can also evaluate how our

samples compare to the housekeeping gene control samples. Each sample of the Alg9

when treated with the Alg9 primer had low CT values all around the 18-19 range. This

was expected as these genes are always being expressed and are necessary for cellular

functioning. When we compare the CT value of our pAMT gene to these housekeeping

genes, the pAMT samples obtained a similar but slightly lower CT score compared to the
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Alg9 samples. For the pun1 samples, they are nowhere close to our Alg9 or pAMT

samples CT count.

The outcome of this experiment informs us that we have successfully inserted the

pAMT plasmid into our genetically modified yeast but it appears that the pun1 plasmid is

not present at all. We will have to reinsert the pun1 plasmid into the strain of yeast and

perform the qRT-PCR experiment over again. We would also need to add a DNase step

into the experiment to remove any contaminating DNA prior to synthesizing the cDNA

from the extracted RNA. This step will help us create more accurate results and get a

better sense of how the expression levels compare between our inserted genes and

housekeeping genes. This DNase step will help remove any remaining DNA before the

RNA is converted to cDNA and we would need a follow up step to remove the DNase

before we start synthesizing cDNA as the DNase would also digest newly synthesized

cDNA (Añez-Lingerfelt et. al., 2009). The resulting CT values for both the pAMT and

Alg9 cDNA samples for this experiment are highly similar which may mean that they are

both being expressed to a similar degree. Even though their CT values are similar, we are

unable to comment on how the expression of our pAMT gene may compare to the Alg9

gene. The reason for this is the PCR reaction is unable to distinguish between cDNA that

was synthesized from reverse transcription and that of contaminating genomic DNA that

was not removed in the previous steps. Because of this, genomic DNA contamination in

the cDNA samples will result in an overestimation of the amount of RNA present if the

primers recognize this contaminating sequence. This amplification will lead to an

overestimation which will affect the CT results of this experiment and although they

appear to have similar CT values and would possibly possess similar expression levels,
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this may not be the truth based on the amount of contaminating genomic DNA from the

start (Lingerfelt et. al., 2009). What we can say for certain is that the pAMT gene appears

to be present in our genetically modified yeast and the pun1 gene does not appear to be

present.

Part 2: Performing Illumina RNA Sequencing Analysis on Placenta and Skin Tissue
Samples from Seven Different Peppers of Varying Scoville Intensity to Identify
Novel Genes for Capsaicin Synthesis

Collection of Peppers for RNA Sequencing

A large number of pepper species were dissected, extracting their placenta and

tissue regions, and the RNA from these regions was isolated. Pepper samples were sent

out for Illumina RNA sequencing if they had high RNA integrity, high RNA

concentrations, and a good balance of non-pungent to pungent peppers according to the

Scoville Scale. The following peppers were sent to GENEWIZ for Illumina RNA

sequencing: cherry peppers, jalapeno peppers, hungarian wax peppers, serrano peppers,

cayenne peppers, habanero peppers, and ghost peppers. GENEWIZ evaluates the RNA

samples prior to RNA sequencing analysis and yields a variety of information for the

customer about the RNA. RINe is an abbreviation for RNA integrity number equivalent

which is an algorithm that is calculated to assign an integrity score to an RNA sample.

The score is calculated on a scale from 1-10 with 10 being the least degraded or having

the highest integrity. Messenger RNA only comprises a small percent of total RNA so it

is not readily detectable and instead, ribosomal RNA is measured as it accounts for more

than 80% of the RNA with a majority of that comprised by the 28S and 18S rRNA

species in mammalian systems (Palmer & Prediger, 2004). Plant tissues are composed of

103



three types of ribosomal RNAs which are cytosolic, chloroplastic, and mitochondrial

which all vary in size from 5S to 25S. In addition, greener plant tissues can contain

additional ribosomal RNAs in contrast to non-green tissues (Babu & Gassmann., 2016).

To account for these differences in RINe results, a Bioanalyzer can be used for plants

which is able to differentiate these complex types of plant tissues. However, for our

samples Genewiz utilized a standard eukaryotic RNA analysis using a Agilent

TapeStation system. The RNA Agilent TapeStation system produces the

electropherogram which is used to calculate the RINe score for each sample and agarose

gel electrophoresis images were also created from Genewiz. Genewiz also generated a

table of information regarding our pepper samples consisting of concentration, average

size, region molarity, and more which can be seen in table 4 below. RINe scores that are

lower than 6 are highlighted as cautionary samples according to a threshold determined

by GeneWiz. These samples have higher RNA degradation than would be desired for

RNA sequencing and can result in poor sequencing results. As seen in the results, a

majority of the pepper samples appear to have RINe scores below 6.0 but many of them

fall close to this threshold of 6 with the average score being 5.73. RINe is an important

value when determining the reliability of the sample to send out for sequencing. Poor

quality RNA samples can lead to uneven gene coverage or a sample that is highly

degraded may not truly represent gene expression at that time. Therefore, high-quality

samples are needed for RNA sequencing as a degraded sample sent out for RNA

sequencing will yield inaccurate sequence results. Although our scores are lower than the

desired threshold for RNA sequencing, we are sequencing plant tissue, and as previously

mentioned, there are discrepancies in RINe score for plant tissue samples if a device like
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the bioanalyzer is not utilized. Since plant tissues are composed of three different types of

rRNAs, cytosolic, chloroplastic, and mitochondrial, they are a rather complex type of

tissue for the RINe values to be determined from. They are more variable in rRNA size

(5S, 8S, 16S, 18S, 23S, and 25S) which is important as the RINe algorithm calculates the

area under these peaks. With this addition of chloroplastic RNA into the mix, instead of

the typical two distinct bands, there are multiple RNA bands which will interfere with the

algorithm used to calculate the RINe score and ultimately, an inaccurate RINe score as a

result (Kim & Haj-Ahmod, 2016). Ultimately, although our scores are lower than the

desired threshold, we went ahead with the processing aspect of the data as we hope that

the RINe scores are not a true reflection of our sample integrity and that the RNA quality

is actually higher than what was recorded which will result in more accurate sequencing

results.

Another factor that is typically generated in RNA sequencing to evaluate sample

quality is the DV 200 score. DV 200 is a way for researchers to reliably classify degraded

RNA by size and remove suitable samples from unsuitable ones. Essentially, DV 200 will

evaluate the percentage of fragments that are larger than 200 nucleotides in length and

return a numerical percentage value (Matsubara et. al., 2020). GeneWiz marks samples

with a DV 200 percentage that falls below 70 for the samples and of the 24 samples, four

samples had a DV 200 score that fell below this threshold which was CayP2, WaxP1,

WaxP2, and SerS2. The DV 200 value is another way to assess RNA integrity compared

to the RINe score. According to a study done by Masubara et. al., 2019, they evaluated

the accuracy in the DV 200 index for assessing RNA integrity in next-generation

sequencing compared to the RINe score. Typically, the RNA integrity number equivalent
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RINe is the widely used method for analyzing RNA integrity and the DV 200 as a quality

assessment standard. Masaburas lab compared the RINe and DV 200 RNA quality

indexes to determine the most suitable RNA index for next generation sequencing. They

first assessed the RNA quality by using both previously stated methods, prepared two

kinds of sequencing libraries, and then calculated the correlation between each of the

RNA quality indexes and the amount of library product. It was determined that the DV

200 calculated value showed a stronger correlation with the amount of library product

produced and was a better marker for predicting library production (Matsubara et. al.,

2020). Our average DV 200 score for our pepper samples was calculated to be 75.67 on

average and only three of the twenty-four samples were flagged for being below the

threshold determined by GENEWIZ. Therefore, using this information and the outcome

of our DV 200 values, we believe that our library will not suffer from severe RNA

degradation and will be a reliable representation of the data. However, we still will keep

in mind the samples that had severely low RINe scores or low DV 200 scores when

processing the data as a few may yield accurate sequencing results, but overall the

majority of the samples appear to be fine to proceed with sequencing.

FastQC

The first step when analyzing RNA sequencing data is to perform a qualitative

control test on the raw sequence data. The qualitative control test will identify any

possible problems that may need addressing in the data as these problems will result in

poor results if not processed. When running FastQC, there are eleven outputs that will

return as a green check mark, yellow exclamation point, or a red x mark, each indicating
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the quality of that check going from good to bad respectively. These eleven outputs are as

follows: basic statistics, per base sequence quality, per tile sequence quality, per sequence

quality scores, per base sequence content, per sequence GC content, per base N content

(could not identify nucleotide), sequence length distribution, sequence duplication levels,

overrepresented sequences, and adapter content. Two of the more important statistical

outputs to evaluate from the FastQC data are the per base sequence quality and the

overrepresented sequences. The overrepresented sequences display the sequences (at least

20bp) that occur in more than 0.1% of the total number of sequences. This is important as

this output will inform you if there is any form of contamination in the data such as

remaining adapter sequences. The per base sequence quality provides the distribution of

quality scores across all bases at each position in the read. These quality scores are a

representation of the probability that each of the corresponding nucleotides are called

correctly. These quality scores are called Phred quality scores and exist in the range of

0-40. A Phred quality score of 10 means there is a 1 in 10 chance the base was called

incorrectly and a score of 20 means there was a 1 in 100 chance for an incorrect base call.

For Phred scores of 30 and 40, there is a 1 in 1000 and a 1 in 10000 chance a base call is

incorrect respectively. Using this information, we can determine the accuracy of our reads

and trim the data so that it will include only high Phred scores to yield highly accurate

data.

After running the FastQC program on our samples, we can see a lot of

information quickly such as many of the samples had good scores for their tile sequence

quality, sequence quality score, base N content, and base sequence length distribution. All

the samples returned a green check mark for those specific parameters. In addition to
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good quality data, we can see where the data is fairly poor such as in the base sequence

content and sequence duplication columns where all the samples were flagged with a red

x mark. The last couple columns such as sequence GC content, overrepresented

sequences, and adapter content all have a mix of green, red and mainly yellow suggesting

these samples are of lower quality. Due to the possible caution in the overrepresented

samples column and after evaluating each of the per base sequence quality Phred scores

of the samples, some processing of the raw data should be implemented to get better

results. Most of the per base sequence quality statistics came back as a green check mark

but it was evident that as the sequencing progressed, the Phred scores started to drop

more and more in quality. This is a typical problem when sequencing which is a drop in

quality as the sequencing length increases. Generally, all of the samples obtained a fairly

high Phred score in the range of 30 and above with only a few select samples having

Phred scores that dropped below the 30 threshold when reaching around the 130-150 base

pair position in the read. Therefore, we determined that trimming the tail end of the read

by 30 base pairs would be a sufficient amount of bases to remove for better quality

sequences. In addition to removing poor base pairs at the end of the sequencing position,

we determined that we had contamination in our samples based on the overrepresented

sequences output. For a majority of the samples, their overrepresented sequence output

according to FastQC was of cautionary status, 37 out of 48 samples were labeled either

yellow or red. According to the output, we had contamination with our illumina adapters

which must still have been present during the sequencing and leading to the

overrepresented sequence. When illumina performs RNA sequencing, the RNA strands

are randomly fragmented and cDNA is synthesized through reverse transcription of the
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randomly fragmented RNA strands. Then sequence adapters ligated to the cDNA strand

and amplification will occur off of the cDNA. The problem is that the adapters that are

present to allow for amplification are sometimes read back and incorporated in the RNA

sequencing read which will influence the overrepresented sequences as these are not truly

present. To account for this, we can use a program called trimmomatic which allows us to

specify the illumina adapters used for sequencing and trim out those adapter sequences if

they are found in the raw sequence and remove them. It was apparent that after

performing both forms of trimming for all of the samples, trimming the adapters and

trimming the base pairs, our overall FastQC output files for the overrepresented

sequences and per base sequence quality dramatically improved. In figure 12, there are

images of the raw data FastQC status check and then the results after manipulating the

raw data with the trimmomatic tool and shortening the per base sequence length. On

comparison of the raw data with the processed data, it can be seen that the processed data

had overall score improvements in the columns for adapter content, overrepresented

sequences, per base sequence content, and per sequence GC content. Specifically, these

changes we made to the data yielded better results and this can be seen true as we take the

data further and perform mapping utilizing bowtie and comparing how the overall

alignment scores are changed based on each of the processing techniques to the raw data.

In addition, we performed pair-end RNA sequencing instead of single-end RNA

sequencing but we did not combine the forward and reverse runs of the paired-end reads

together. Typically these paired-end reads are combined together and are a way to create

more accurate reads during the mapping process at the extra cost of time and money. In

our experiment, we decided to not combine these two reads together but treat them as two
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distinct reads. Although combining them together will increase the accuracy of mapping,

allowing for better detection of splice junctions and such, we are not too interested in this

study detecting splice junctions, insertions, deletions, or mutations. By not combining the

paired-end reads, they will now serve as another set of essential replicates and the

sequencing of both ends of these fragments increases the coverage of our experiment.

The reason for this is that when the DNA is fragmented for sequencing, in single-end the

fragmented DNA is only sequenced from one side and only for a certain number of base

pairs depending on the sequencing depth. Therefore, the entire fragmented DNA piece is

not sequenced as a result and by performing paired-end, more information is gathered

from the fragments as it is sequenced from both sides instead of just one. By not

combining them and still mapping these paired-end reads separately, we can increase the

range and coverage to detect more gene expression information for our experiment.

Bowtie

After utilizing FASTQC, the Bowtie software program was used to align the fastq

files to our reference sequence. As previously mentioned, there were three different

output files we created after analyzing the data in FastQC. The first was the raw unaltered

data, the second was a fastq file which only had its per base sequence length shortened,

and the last had its adapters cut and per base sequence length shortened. Each of these

file types were mapped to our reference genome and their respective overall alignment

scores were generated. Using these three different sets of data, we were able to compare

how each processing step affected the overall mapping score compared to the raw data.

We saw that after each of the processing steps were performed, the overall bowtie
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alignment score was improved for all the samples. The raw fastq file resulted in an

average alignment score of 0 times at 35.7%, an average alignment score of 1 time at

41.54%, an average alignment score of more than 1 times at 22.76% with an overall

alignment score of 64.30%. When we compare this raw alignment score with the

alignment score of the trimmed fastq file, it has an average alignment score of 0 times at

29.32%, an average alignment score of 1 time at 45.77%, an average alignment score of

more than 1 times at 24.92% with an overall alignment score of 70.69%. We can see that

the average overall alignment score increases from 64% to 71% which is a fair increase

considering as an average for a total of 48 samples. We see that the average alignment

scores of 0 times decreases from the raw run to the trimmed run which is a good sign

because this value is a calculation of the total number of reads that were unable to map at

all to the reference sequence so a decrease in this value means more reads were able to

map after being processed. In addition, the average alignment score of 1 time and more

than one time also increases from the raw data to the processed data which is again a

positive sign as this is the number of times a read is mapped to the reference genome.

Now, when we compare the trimmed fastq file to the cut adapters file which had its per

base sequence length shortened and adapters cut out, this resulted in an average

alignment score of 0 times at 23.26%, an average alignment score of 1 time at 48.67%, an

average alignment score of more than 1 times at 28.07% with an overall alignment score

of 76.74%. These values resulted in an even better alignment score than the previous raw

data and trimmed processing data. Overall, it is evident that after processing the raw data,

the alignment scores increased significantly and the cut adapters fastq file showed the

most significant increase in alignment score as seen in table 6. The most noticeable
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difference we can see after processing the data is in the “Overall Score Improvement (Cut

Adapters-Raw)” column which is the difference between the cut adapters bowtie scores

and the raw alignment scores for each of the pepper samples. In this section, values that

are highlighted green are samples that had the highest score improvement while samples

that are highlighted in red are ones that had the lowest score improvement after being

processed. This column shows how important the processing of the raw data can be to the

RNA-sequencing data because most peppers had a 10% increase in alignment score and a

select few pepper samples had double that with a 20% increase in alignment score.

Although some cells in this column are colored red, that does not necessarily mean they

are bad samples. These red samples in this section mean that those samples were less

impacted by the before and after processing techniques as their alignment score is

relatively similar before and after. The column that contains the data that we will be using

for our next analysis will be the data in the overall cut adapters alignment column. This is

a significant column as we can see the overall alignment scores for each of our 48 pepper

samples and their respective bowtie scores and this column has the highest scores. The

samples in this column contain the darkest green - yellowish samples which was a color

scale applied to the following three columns (Overall Raw Alignment, Overall Trimmed

Alignment, Overall Cut Adapters Alignment). This color scale would highlight the

largest values green, the lowest values red, and values that reside in the middle yellow.

Using this gradient of high to low to color code this section, it can be visually seen that

this section contains the most green to greenish yellow colored cells. This column of data

has been processed by having their adapters cut and having their sequence lengths

trimmed and this group of data will be used for the next step since this column contains
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the samples with the highest bowtie alignment scores. This score and output will be used

for the cufflinks assessment as these pepper samples demonstrated the best alignment to

their reference genome.

Cufflinks

Cufflinks is a program that assembles transcripts, estimates their abundances, and

can test for differential expression and regulation in RNA-seq samples. For our cufflinks

output, we specifically obtained a file containing a list of 30,242 genes along with their

relative expression levels (FPKM) for each of our 48 samples (Trapnell et. al., 2012).

Since we had our reference genome which was labeled with their respective genes and

the gene’s predicted protein functions, we were able to combine this information to our

file to allow for quick identification of highly expressed genes and their functions they

may perform. Using this FPKM output file, we would then interrogate the data utilizing R

studio to create visualizations to identify important genes or examine the quality of the

data in general.

Data Visualization in R

One of the first graphs we decided to create was a scatter plot for our pepper

samples. Before we started to create more elaborate graphs identifying highly expressed

genes and relationships between our samples, we wanted to make sure that our FPKM

output from the cufflinks program seemed accurate. To do this, we decided that a scatter

plot matrix that would plot the log2 FPKM values of the forward and reverse runs for that

sample would be a valuable way to evaluate the data. We log2 transformed the data as
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this makes it easier to evaluate the FPKM output of samples on a simpler scale. The

reason being is since we performed pair-end sequencing, the forward and the reverse run

are essentially duplicates of each other. They were sequenced in the forward direction and

in the reverse direction and should have the same output in general and their FPKM

values for the forward and reverse direction should be the similar. Since we are using a

scatter plot matrix, we can also compare multiple samples against each other at the same

time and what we would expect is strong linear relationships between samples that are of

the same pepper and tissue type such as between peppers CheS2-R1 and CheS1-R1 and

an even stronger linear relationship between pepper samples CheS2-R1 and CheS2-R2 as

these are the same tissues of the same type of pepper. The more linear the distribution, the

more similar the samples are to one another meaning there is a stronger correlation

between the FPKM values of the forward run with the reverse run. The more randomly

distributed or non-linear in general, the weaker the correlation is between the forward and

the reverse runs meaning that the sample output is less reliable and that sample set should

be regarded with caution. We decided to create a total of 7 different scatter plots matrices,

one for each of the pepper samples where we plotted their skin and placenta log2 FPKM

output for their forward and reverse runs as seen in figure 15. We would then evaluate the

R2 values generated from the graphs and any samples that had a low R2 value when

graphed against their own tissue type, especially if it is the same exact pepper, would be

regarded with caution. As we can see from the results section, there were two samples

that appear to be outliers compared to the other data. These samples were the WaxP1_R1

and the WaxP1_R2 samples as they had a very low R2 value of 0.85 when plotted against

each other. They had an even lower R2 value when these samples were plotted against the

114



other wax placenta samples such as WaxP2_R1 and WaxP2_R2 with a score of 0.631 and

0.634 respectively. Out of all of the other samples when comparing their forward and

reverse runs against each other, none of them had a R2 value below 0.96 while hungarian

wax had a value of 0.85.  In addition, out of all the samples when comparing the same

pepper’s tissue types, none of the samples had a lower R2 value below 0.87 while the

hungarian wax peppers had the lowest score across their placenta samples at a R2 value of

0.63. The reason for such a low R2 value, which can also be visually seen in the

scatterplot matrix of these samples plotted against each other, would have to be due to the

fact that the WaxP1 data is poor quality data and is different compared to the other

hungarian wax samples. This could be an error that extended back to the beginning of the

experiments such as the RNA quality of the data set being poor in general. When looking

back, the WaxP1 sample set had a poor Rine score and a poor DV 200 value. If the RNA

sequencing was done with poor quality data, then the mapping of that sequence and

anysteps after would result in poor data. Although fastqc can be used to visualize the

results of the RNA sequencing data and fix some early warning signs in the data that can

be seen such as we did with trimming or removing adapters. However, it cannot always

change a bad sample to a good sample and you can only do so much to the sample to

pre-process it before continuing down the pipeline. We continued using the WaxP1 data

set for creation of other figures and graphs in the beginning to further interrogate the

sample set before fully removing it from further forms of data analysis.

Another way to interrogate the data besides the scatterplot matrix was creating a

visual bar graph demonstrating the mapped library sizes for each sample and also

generating a boxplot of the log2 FPKM values to visualize the distributions across the
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different samples. The box plot was a useful graphic as it is easy to visualize the averages

of FPKM across all samples which is denoted by the line dividing the box into two, the

type of skew in the data depending on how the box is divided, and outliers are easily seen

as they reside outside the whisker portion. This is a great way to compare differences in

the data sets and when we generated the boxplots for all of the pepper samples, we found

a similar outcome to the scatter plot graphic. It was seen that again the WaxP1 sample set

for the forward and reverse run behaved abnormally compared to the rest of the data sets.

For the most part, the average log2 FPKM value for the sample sets ranged anywhere

from a value of 0 - 1 while the WaxP1 dataset had a large average value around 4. Many

of the samples have the same inter quartile range which is denoted by the shaded box for

each sample set, and then their minimum and maximum values are identified by the

length of the whisker. Outliers are any plotted points that reside outside of the whisker

portion. The WaxP1 sample set has an abnormal whisker distribution as their whisker

length in the negative direction is very short while their whisker length going to the

positive direction is long and similar to the other sample sets. No other sample set has

such a short negative direction whisker and this is suggestive that the WaxP1 sample set

has a lot more highly expressed genes as their average FPKM value is a lot higher. They

also have such a small negative whisker indicative that their minimum values are not that

low so many of their FPKM values are larger compared to the other data sets. All of the

peppers have a large number of positive outliers, too many to count as the dotted points

are plotted right on top of each other. This is not unexpected as these FPKM values are

related to highly expressed genes in the pepper samples which is to be expected in any

sample set. There will be genes that are more highly expressed compared to other genes
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in the data set and our goal is to identify these highly expressed genes and see if there is a

correlation between these genes and producing highly pungent peppers.

The library sizes that we utilized to generate the bar graph was collected from the

bowtie output of our processed fastq files. The fastq files were processed so that their

adapters were trimmed and their per base sequence length was reduced by 30 base pairs

resulting in shorter sequence lengths, but higher quality data. Since the data was

processed, the overall number of mapped reads output from bowtie were shortened

compared to the raw data since we had to trim our samples before mapping them so base

pairs were lost in the processing section. The alignments scores were used for each

sample which was a number associated with the number of reads mapped back to the

reference genome for each pepper sample. The bowtie output for mappeds reads is very

important because essentially when we sequence a set of samples, we get a collection of

sequences that have no genomic context. They are a long list of nucleotides that at face

value do not mean much and we do not know what part of the genome these sequences

would belong to. Mapping the reads to a reference genome, the reads are assigned to a

specific location in the genome. It is important to note that a larger sequencing depth will

generate more reads and this will increase the power to detect differential expression

among genes. Using the bowtie output, we generated a bar graph showing the number of

mapped reads for each pepper sample set, their forward and reverse reads, because the

forward and reverse were identical for each sample. As you can see from figure 14, a

majority of the sample sets have a similar number of mapped reads with a few exceptions

in the data. The four following samples had a very small number of mapped reads

compared to the other samples which were HabP1, JalP1, SerP1, and WaxP1. Again, we
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can see the WaxP1 sample is falling under poor quality data with having such a small

number of mapped reads. The other samples in this small number of mapped reads

section are interesting too as when compared with their P2 sample sets, if they have one,

those sample sets fall more around the average number of mapped reads size. Again,

something like this could be connected back to the poor quality of RNA at the start before

performing RNA sequencing as these samples had a much smaller sequence length

compared to the others. Since they had such a small sequence length collected from

illumina sequencing, then their mapped sample reads were going to be small too, less

than 20,000,000 base pairs, since they had less overall reads to map since their RNA

sequencing lengths were already so short. The total sequence lengths collected from RNA

sequencing can be seen below in table 9 and these short reads are all highlighted red

supporting their small sequence depth from the illumina sequencing. On the other hand,

the opposite is true for the samples that had a large sequence depth from illumina

sequencing. The samples that have very large mapped library sizes were the CayP2,

CayS1, HabS1, WaxP2, and WaxS1 which were greater than 40,000,000 base pairs.

These sample sets also had some of the largest sequencing depths and are all highlighted

a dark green in table 9. The majority of the other samples are highlighted yellow

indicating that they fell between 20,000,000 and 40,000,000 base pairs long for their

sequencing lengths. The overall sequencing depth of the samples is good, even the

samples that have a low sequencing depth below 20,000,000 reads. We should still be

able to use the cufflinks output to evaluate the gene expression levels of the samples and

come to a conclusion as these are still substantial read lengths. They are just shorter

compared to the rest of the data and the statistical power generated from the cufflinks
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output will be less powerful, but still informative. The opposite goes for the larger

datasets where the information gathered from them will be more informative and we

would be more confident that the gene expression data is a truer representation of the

data. Since there are so many reads, the power to map back to the reference genome is

much greater and we should get a solid understanding of these sample sets and how they

compare against each other.
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Table 9

Illumina RNA-sequencing Read Depth of the 48 Pepper Samples

Pepper Sample Total Sequence Pepper Sample Total Sequence

Che P1 Run1 27194587 Cay P2 Run1 42014619

CheP1 Run2 27194587 Cay P2 Run2 42014619

Che P2 Run1 24310395 Cay P3 Run1 27563358

Che P2 Run2 24310395 Cay P3 Run2 27563358

Che S1 Run1 24469899 Cay S1 Run1 43595331

Che S1 Run2 24469899 Cay S1 Run2 43595331

Che S2 Run1 29804880 Cay S3 Run1 31214834

Che S2 Run2 29804880 Cay S3 Run2 31214834

Gho P1 Run1 26863525 Ser P1 Run1 19020160

Gho P1 Run2 26863525 Ser P1 Run2 19020160

Gho S1 Run1 26850176 Ser P2 Run1 28339488

Gho S1 Run2 26850176 Ser P2 Run2 28339488

Hab P1 Run1 24222612 Ser S1 Run1 26052653

Hab P1 Run2 24222612 Ser S1 Run2 26052653

Hab P2 Run1 32608724 Ser S2 Run1 25816590

Hab P2 Run2 32608724 Ser S2 Run2 25816590

Hab S1 Run1 47424533 Wax P1 Run1 20019634

Hab S1 Run2 47424533 Wax P1 Run2 20019634

Hab S2 Run1 28928231 Wax P2 Run1 42021312

Hab S2 Run2 28928231 Wax P2 Run2 42021312

Jal P1 Run1 17295942 Wax S1 Run1 39400448

Jal P1 Run2 17295942 Wax S1 Run2 39400448

Jal S1 Run1 33886935 Wax S2 Run1 27711941

Jal S1 Run2 33886935 Wax S2 Run2 27711941

Note. These are the sequence lengths for the pepper samples after being processed.
Samples are highlighted according to sequence length where large sequences are
highlighted green, small sequences are highlighted red, and yellow samples are in
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between. Under pepper sample, their three-letter abbreviation as the sample ID are as
follows: Cay = Cayenne pepper, Che = Cherry pepper, Gho = Ghost pepper, Hab =
Habanero pepper, Jal = Jalapeno Pepper, Ser = Serrano pepper, Wax = Hungarian wax
pepper. Pepper samples are differentiated with either a S or P after their three-letter
abbreviation indicating if they are a skin or placenta sample. The number following S or
P will either be a 1,2, or a 3 which denotes which pepper the tissue sample originated
from. Forward and reverse runs for each pepper are identified as Run1 and Run2
respectively.

After interrogating the data sets a bit, we decided a principal component analysis

and a correlation matrix ordered by hierarchical clustering would be beneficial to

visualize more trends in the data. For the principal component analysis, we first generated

a scree plot to decide how many statistically significant factors are present in the data.

The scree plot is a line plot of the eigenvalues of factors or principal components in an

analysis. The value of a scree plot is that it tells you the number of factors that are present

in your data and what principal components you should evaluate. Typically, Scree plots

demonstrate a sharp reduction in size of their eigenvalues and when this occurs, any

factors that fall below this sharp reduction will add relatively little to no information to

the graph as they contribute significantly less to any variation observed in the data.

Therefore, any values that reside before this reduction in eigenvalues is important to

evaluate as these components account for the majority of variation in the data. When we

generated our scree plot, there were two main components, three weaker components,

and forty-three very weak components. In figure 16 the two main components account for

42% and 16% of the main variation in the data set. The three weaker components account

for roughly 8%, 7%, and 6% of the variation in the data set. All in all, these first five

components account for a total of 79% of the variation in the samples while the first two

components account for 58% of the total variation. We focused on these first two
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components as they accounted for the majority of the variation in the data. When

analyzing the principal components of analysis graph, plotting component 1 against

component 2, we can see how the data is grouped of these two components to contribute

to over 58% of the variation. The sample points for the forward and reverse runs for that

sample are plotted directly on top of each other which was to be expected as these

samples are essentially duplicates so they should reside in the same area. Another thing to

notice is how the skin samples reside near the skin samples of the same pepper type and

placenta samples reside near placenta samples of the same pepper type. There appears to

be three different forms of clustering generally speaking. These groups contain the

following pepper samples; in the top right corner the cherry and serrano peppers reside,

in the middle bottom the habanero and ghost peppers reside, and in the top left the

cayenne, hungarian wax, and jalapeno peppers reside. The clustering of the samples

together essentially demonstrates how similar those samples are to each other. We see this

as the forward and reverse samples are plotted directly on top of each other. For most

samples, the placenta and skin samples are clustered relatively close to each other with

exception to the WaxP1 samples to the hungarian wax samples and the cayenne placenta

samples to the cayenne skin samples. Again the WaxP1 sample set is a bit abnormal as

they are located further away from the other hungarian wax placenta samples and even

further away from the hungarian wax skin samples. These two sample sets have the

greatest difference between all other peppers when comparing the same type of tissue of

the same pepper. Since these two samples are so distant from each other, and not

clustered with the other hungarian wax samples, the PCA is essentially saying that they

are not similar to the other hungarian wax samples and are identified as something
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different. Another set of samples that are located a decent distance away from each other

are the cayenne placenta samples compared to the cayenne skin samples. A majority of

the other samples are located fairly close to each other and to verify the clustering of the

samples, we generated a correlation matrix using hierarchical clustering method to see

how the samples would arrange and their correlation between each other. There were two

correlation matrices that we created, one utilizing all of the pepper samples and the other

utilizing all of the pepper samples besides the WaxP1 data set. When looking at figure 16

which consisted of all of the pepper samples, we can see that all the forward and reverse

samples have a very strong linear correlation except for the WaxP1 samples. This is seen

as each of the samples have a dark turquoise shaded color when plotting their forward

and reverse runs against each other. The only sample set that has a more unique

correlation pattern compared to the other samples is the cherry placenta data set. These

samples are the only ones that have a dark turquoise shading for all of their placenta

samples. All the other samples only have dark turquoise shading for their forward and

reverse runs of the same pepper set while these samples have it for their forward and

reverse runs for both their placenta sets meaning that the cherry placenta peppers are all

extremely similar to each other. We ideally would have liked to have seen this trend for

all of the skin and placenta samples of the same pepper type as this would reinforce the

strength of our analysis because it would suggest that the placenta extractions of the same

type of pepper but different extraction resulted in highly similar results. In our

experiment, the data does not suggest that but it does order the tissue samples right next

to each other and also pepper samples are grouped together so we are confident enough in

the groupings of our correlation matrix to go on and utilize this data.
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Heatmap

Using the data sets, we went ahead and created a visual heatmap of our log2

FPKM values for the 46 pepper samples (excluded the wax placenta 1 data set) to attempt

to determine if we could identify any genes that were related to the capsaicin pathway by

searching for ones that are highly expressed in the pungent peppers and lowly expressed

in the less pungent peppers. When creating our visual heatmap, we used a program called

Cluster 3.0 which allowed us to filter and sort and determine what form we wanted our

data to be used in the final heatmap creation (Hoon et. al., 2004). It was determined that

filtering the data would be ideal as lowly expressed reads would be filtered out as these

reads would not give us much information. They were removed by filtering by read depth

and then we filtered out samples that did not have much variation to them. The filtering

process reduced our total of 30,242 genes down to 11,052 genes that passed the criteria.

These genes were then cented to easily visualize the relative expression of each gene

compared to one another. As for the method we used to map the genes, we wanted them

ordered by hierarchical clustering and wanted them clustered by their average linkage.

The output file that was generated was visualized on the Java Treeview program

(Saldanha, 2004). The heatmap that was produced held a large amount of information that

could have been evaluated in a number of different ways.

We decided to first look for any obvious trends in the data and identify sections

that exhibited specific trends or patterns we were looking for. We ideally were interested

in genes that had high expression in our pungent peppers and low expression in our less

pungent peppers. Any genes that met this criteria were of interest to us and we located a

few sections that appeared to meet these trends. There was a large list of genes that could
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be found in these sections and listing them one by one would take a while and may or

may not be meaningful. Although we are searching for genes that are upregulated in

pungent peppers, most may not be associated at all with pungency for those peppers.

There were a total of 30,242 genes that were mapped from the annotation file and they all

serve a specific purpose for a pepper. Just because a gene is upregulated in a spicy pepper

vs a less spicy pepper, it does not mean that it will be related to capsaicin production.

There were plenty of genes that were upregulated in the less pungent peppers and

downregulated in the pungent peppers which is the exact opposite of the trend we are

looking for. Then there are many other sections with some more diversified trends such

as certain peppers upregulated when others are downregulated and some sections where

the trend we were looking for appeared in small pockets. As mentioned previously, when

we searched through the entire heatmap, we saw six different sections where the

twenty-six genes known to participate in capsaicin biosynthesis fall. A few of these

sections were large and easily identifiable by eye with the trend we were looking for

while some of the other smaller sections had small parts that exhibited the trend but were

not easily visualized without combing through in a more magnified lens. Therefore,

looking through the sections that exhibited the trend we were looking for and trying to

make a connection between capsaicin production and the gene itself would be difficult.

Therefore, we decided the better method to explore our data was to take known genes that

are associated with capsaicin production and locate where they fell on our heatmap which

could give rise to interesting sections since the heatmap is organized by hierarchical

clustering. Although the capsaicin pathway is still not well established, there was a paper

released in 2016 by Zhang et. al., called “Discovery of putative capsaicin biosynthetic
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genes by RNA-Seq and digital expression of analysis of pepper”. This paper was

discussed previously and for our study, these authors generated a list of a one hundred

and thirty-five genes that are known to be present in the capsaicin biosynthesis pathway

(Zhang et. al., 2016). Using this list of specific genes, we searched each of the genes up

in our heatmap and identified if they were present or not because many of the genes were

removed in the filtering step. All of the genes should have been present using the

unfiltered 30,242 heatmap but if those genes did not have much variation or a significant

read depth, then they would not tell us much information. Therefore, we decided to filter

the data and then search to see if the genes were still present or not from the list of one

hundred and thirty-five.

After identifying if the genes were present or not in our heatmap, we then

recorded the samples that had a trend similar to our expression we were looking for.

Many of the genes from the list were still present and many did have strong variations in

expression, but we narrowed down the list to include a total of twenty-six genes that

exhibited the relative trend of high expression in pungent peppers and low expression in

non pungent peppers. The list of these twenty-six genes can be found in table 7 where

they exhibit the trend we were looking for to some extent. Some of them such as BCKDH

E1a, KASI, FatA, pAMT, and AT all exhibited relatively strong expression in the pungent

peppers and low expression in the less-pungent peppers. Other samples such as

CCoAOMT, NADH-GOGAT, C4H, CCR, and HCT all have a little more variation in

their expression where there are some high expression levels in a few of the less pungent

peppers but were still included as their pungent pepper expression levels were very high

too. Using this information, we then constructed multiple heatmaps to evaluate the data.
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Four of the five heatmaps are listed in the appendix section and these heatmaps were

included as they are ones that show strong trends of high expression in pungent peppers

and low expression in less pungent peppers. These are heatmap figures A8 through A10

with their corresponding tables also listed in the appendix section as tables A2 through

A5. These heatmaps could contain useful information as there are a large number of

genes that exhibit this trend and included after each heatmap figure is a table listing the

genes corresponding protein functions if available. Even though we narrowed down the

list to twenty-six known genes and obtained the sections they resided in, there was still

such a large number of genes to scan through these specific sections. Since the heatmaps

were generated through hierarchical clustering, the other genes that were clustered

together according to the program must exhibit strong similarities to the genes around

them. Therefore, by searching the genes that are known to be part of the capsaicin

biosynthesis pathway, we will find genes surrounding them that would exhibit similar

expression patterns and may also partake in the pathway.

When we searched all twenty-six genes that appeared to have similarities to the

trend we were looking for and are known to be part of the capsaicin biosynthesis

pathway, we were looking for the regions these genes resided. To keep things simple, we

took sections of the heatmap that spanned eleven genes in total, five above and five

below the gene we searched. This means that we would search each of the twenty-six

genes in our heatmap, then record the five genes that fell above and five genes that fell

below the gene we searched, and compile screenshots of the heatmap for this section. We

decided arbitrarily on recording five genes above and below for a total span of eleven for

each search, this could have been changed to a broader search of ten, twenty, or whatever
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number of genes above and below but we chose five to keep the search range relatively

small increasing the significance of the results. We then tried to determine if there was

any overlap between the regions we recorded by pieces together the sections if they had

genes in the same order. The reason we attempted to piece together the sections was to

see if a majority of the genes we searched were clustering in specific regions and how

many were in that region. The more of these searched genes are located together in the

same general region means the more similar those genes are related and the other genes

listed in this region have strong similarities to these searched genes. What we found was

a section of the heatmap where seven of the twenty-six genes appeared to cluster together

in a span of thirty-one genes within each other. This section of the heatmap which can be

seen in figure 22, is of high interest to us and may contribute to new identified genes that

could relate to capsaicin synthesis. The reason for this is that out of the 11,052 genes that

were present in the heatmap, we identified twenty-six that have similar expression trends

that are known to contribute to capsaicin synthesis. Of these twenty-six, seven of them all

are clustered in one small section, a section that is thirty-one genes long. So, out of the

11,052 possible genes we have a large percent of genes responsible for capsaicin

synthesis that exhibit the trend we are looking for, all clustered together in a very small

section.

This means that these seven genes out of the twenty-six are highly similar to each

other and they were clustered here because of that, but more importantly it means that the

other genes listed in this section are highly similar to these known genes and may play a

role in capsaicin synthesis. Some important genes that would be interesting to look into

are the ones that do not have a known protein function such as CA01g11020,
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CA12g21630, CA09g00520, CA03g28900, CA09g15570. These genes all resulted in the

literature saying they detected proteins of unknown function with the exception of

CA09g15570 which resulted in confused function. All of these genes could use more

research into them to identify the role they play and they are extra important as they all

resided in this section where many genes from the capsaicin pathway resided. Identifying

these gene functions could result in understanding more about the capsaicin pathway and

these genes may have a connection to the pathway when more information of their

protein function is uncovered. Another thing to consider is genes that are located closely

to the known capsaicin genes and seeing the similarities in their protein functions. For

example, the gene CA02g19250 encodes an acyltransferase and it resides below the other

two genes CA01g32880 and CA01g32920 which both encode for an acyltransferase 2.

However, the gene CA02g19250 that encodes the acyltransferase was not listed in the

paper by Zhang et. al. as one of the known genes to participate in the capsaicin

biosynthesis pathway. This gene has an extremely similar expression profile as both the

acyltransferase 2 genes and is located right next to them but through literature searches

and the published paper by Zhang et. al., we do not see it being incorporated as a gene

that is part of the capsaicin biosynthesis pathway. This could be true, that it does not

partake in the capsaicin biosynthesis pathway or it could also be an oversight as there are

a total of twenty-one known acyltransferases listed by Zhang et. al., two are

acyltransferase 3s, eleven are acyltransferase 2s, four are acyltransferase 1s, three are

acyltransferases, and one is an acyl transferase-like protein. This is a large list of

acyltransferases that have been discovered thus far and based on the proximity and

similarity that the CA02g19250 gene exhibits to the other acyltransferases, but its absence
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in the contribution to the capsaicin synthesis pathway could be an oversight. This specific

section of the heatmap could contain promising data that could lead to the identification

of other important genes being part of the capsaicin pathway. In addition to this heatmap,

there are also the four other heatmaps that had very high expression for pungent peppers

and low expression for non-pungent peppers which are all included in the appendix

section. There is a lot of data that was generated from the heatmap and we picked out

what we thought were some of the most important sections.

Identifying Protein Functions from Heatmap

After generating our heatmap which contained the genes of high interest, we

decided to further evaluate these genes identifying their protein and molecular functions

to determine if other genes in these sections perform similar roles. The idea was to

identify other important genes that were clustered to these known genes that may also

play a role in capsaicin biosynthesis. The three main groups we grouped our genes into

were if they were related to the branched-chain fatty acid pathway, phenylpropanoid

pathway, and capsaicin biosynthesis pathway. The three other groups we clustered our

genes into if they did not fit the first groups were if they played a part in transcriptional

regulation, had an unknown relationship compared to any of the other groups, or an

unknown function. What we found from this further investigation was that the fatty acid

biosynthesis pathway is the most prominent feature in pungent peppers. We come to this

conclusion because when identifying these functions for the proteins and grouping genes

together based on pathways they contribute to, we found a large majority of the genes

produce proteins that participate in the fatty acid biosynthesis pathway. Out of the
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forty-two total genes we investigated from our heatmap section, thirteen of those total

genes participate in the fatty acid biosynthesis pathway. We had four genes of those

thirteen that are known to participate in the capsaicin biosynthesis that were grouped into

the fatty acid biosynthesis pathway. On the other hand,  there are only four genes that are

listed that participate in the phenylpropanoid biosynthesis pathway, one of those four that

is known to participate in capsaicin biosynthesis. Then there are four that are listed to be

associated with both pathways, where only two of those four are known to participate in

capsaicin biosynthesis. Although this is a small section of the entire heatmap, this section

was a very interesting sub suction with the large clustering of known capsaicin related

genes so it makes it interesting that there are so many genes with high expression in

pungent peppers that produce proteins whose functions are related to the branched-chain

fatty acid pathway. This makes the branched-chain fatty acid pathway a particularly

interesting pathway to look more closely into, as much of the early research and

experiments for our study focused on the phenylpropanoid pathway. It may be that

peppers that are highly pungent, producing a large amount of capsaicin may have higher

expression of genes in the branched-chain fatty acid pathway. Studies we originally

investigated looked into the two important genes pun1 and pAMT which reside in the

phenylpropanoid pathway and how in highly pungent peppers pun1 expression is more of

a driving force for capsaicin production while pAMT is still needed. Maybe for highly

pungent peppers too, high expression of the genes in the branched chain fatty acid

pathway also contribute to the overall capsaicin production and limiting the expression of

one of these genes could contribute to a reduction in overall capsaicin production like we

see in pun1. Another interesting feature in this heatmap section is that many of the genes
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that are upregulated in pungent peppers are transmembrane and stress response genes.

Since capsaicin is a noxious stimuli, at least when ingested by mammals, maybe high

production of capsaicin molecules in turn also leads to high expression of stress response

genes to cope with the production of this molecule. The stress response genes exhibited

similar expression of upregulation in pungent peppers so as a response to producing

capsaicin, peppers may also increase expression of stress response genes to compensate.
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Chapter 5

Conclusion and Future Directions

Part 1: Genetically Modifying Saccharomyces cerevisiae with the Capsaicin
Biosynthesis Pathway

The overall experiment to induce a strain of Saccharomyces cerevisiae to

synthesize capsaicin was not achieved but progress has been made that may allow for

proper synthesis in the future. It would appear that of the two crucial genes we were

inserting into the yeast, pAMT and pun1, we achieved successful insertion pAMT but not

successful insertion or expression of pun1. Although it appeared that the pun1 may have

been present at some point due to the series of screening processes we performed, it is

possible for the yeast to lose the plasmid after a series of replications. Plasmid stability in

yeast is an issue where the yeast can lose or alter the foreign plasmid. There was a large

time span between the creation of the yeast and the testing for expression experiments

due to closures that arose from covid-19. This large time span resulted in many colonies

being inoculated over multiple months to keep the yeast cell line going, so through these

multiple generations the pun1 plasmid could have been lost even though we believed we

had a successful colony with plasmid at one point. We believe that the pAMT plasmid

has been successfully inserted into our yeast strain but we have to repeat the qRT-PCR

experiment to determine the expression level due to contaminating genomic DNA.

Contaminating genomic DNA can result in an overrepresentation of the DNA sequence

that would result in inaccurate amplification readings compared to a truly isolated RNA

sequence.

What we would plan on doing next is to repeat the golden gate transformation
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experiment for the pun1 gene and conduct another series of screening experiments to

confirm if the transcriptional units are present or not. After confirming this, we would

again transform the plasmid into the By4741 strain of yeast and test for expression again.

We would make sure to utilize DNase to remove any contaminating genomic DNA from

the RNA samples prior to creating their complementary DNA sequences. In the end, we

would hope to obtain a strain of yeast that would have both plasmids present in it with

expression of said genes. This would allow us to see if the addition of the precursor

molecule vanillin would result in synthesis of capsaicin. If this strain of yeast did not

synthesize capsaicin then we would have to reevaluate the capsaicin pathway and

possibly add other genes that may not be highly expressed in our strain of yeast in the

branched-chain fatty acid pathway. The reason is that the phenylpropanoid pathway

would be essentially complete as the last steps are vanillin converts to vanillylamine

through pAMT which then is combined with 8-methyl-6-nonenoyl-CoA, the last step in

the branched-chain fatty acid pathway to synthesize capsaicin. We would predict that

there would be missing genes or low expression of previous genes in the branched-chain

fatty acid pathway that would result in the failure to synthesize capsaicin if we did have

pun1 and pAMT present and expressing. A closer look at the regulation and expression of

the genes in this pathway will show insight into what cellular conditions may influence

the expression of the genes or what else we would have to add. This is what the future

plan would be to further pursue the spicy yeast project and, in addition, any findings from

our RNA sequencing experiments of important genes that may not have been identified

can also influence what we would want to insert into our yeast.
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Part 2: Performing Illumina RNA Sequencing Analysis on Placenta and Skin Tissue
Samples from Seven Different Peppers of Varying Scoville Intensity to Identify
Novel Genes for Capsaicin Synthesis

The results that we obtained from our RNA-sequencing data appears to be

promising as we generated several heatmaps with large lists of genes that appear to have

trends of high expression in highly pungent peppers and low expression in lowly pungent

peppers. More importantly, one specific heatmap had a large clustering of known

associated capsaicin genes present and in this section there may be more possible

capsaicin candidate genes that exist. Specifically, there were five genes with unidentified

functions present in these sections which are as follows: CA01g11020, CA12g21630,

CA09g00520, CA03g28900, CA09g15570. The identification of the protein functions of

these genes would be a valuable asset as since they are clustered closely to known genes

in the capsaicin pathway, they have very similar expression patterns and could possibly

be related back to the pathway. There are also many genes that were listed in the

heatmaps we generated that also have unidentified functions but similar trends in which

we were analyzing. There were a total of fifty other genes that had proteins with

unidentified, confused, or unknown functions in the several other heatmaps listed figures

A8-A10 and tables A2-A5 of the appendix section. Further analysis of these unidentified

protein products could shed light onto more genes that may be associated with the

capsaicin biosynthesis pathway.

After further analyzing the genes from the interesting heatmap in figure 22, we

were able to assign some protein functions and proposed functions for said genes and

what parts of the pathways these genes may be associated with. We discovered that out of

the forty-two genes from the heatmap, there appears to be a large number of genes that
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are associated with the branched-chain fatty acid pathway. Out of the seven known genes

to be associated with the capsaicin biosynthesis pathway, five of those genes are

associated with the branched-chain fatty acid pathway, one of those genes are associated

with the phenylpropanoid pathway, and lastly two of those genes are associated with both

pathways. Discovering that in this section of the heatmap, there is such a large number of

genes that contribute to the branched-chain fatty acid pathway is interesting to our next

direction for research as we would like to incorporate a fatty acid biosynthesis regulating

protein in to our S. cerevisiae to help induce long chain fatty acid biosynthesis. The

heatmap tells us that apparently for very pungent peppers, high expression of the

branched-chain fatty acid pathway occurs and since these peppers produce high levels of

capsaicin, then we should attempt to incorporate a regulating protein for the fatty acid

biosynthesis into our yeast as high expression of these genes help with capsaicin

biosynthesis. Furthermore, we would like to evaluate the several other heatmaps we

produced, evaluating the genes and identifying their protein functions, molecular

functions, and grouping them into clusters to identify what pathways they are most likely

associated with. Then taking this larger list into consideration, we can gain a better

understanding of the distribution of genes and their relatedness to the different pathways

for highly pungent peppers overall.
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Appendix

Supplemental Material

Figure A1

Scatterplot Matrix of the Serrano Pepper Log2 FPKM Values

Figure A2

Scatterplot Matrix of the Cayenne Pepper Log2 FPKM Values
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Figure A3

Scatterplot Matrix of the Ghost Pepper Log2 FPKM Values

Figure A4

Scatterplot Matrix of the CherryPepper Log2 FPKM Values
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Figure A5

Scatterplot Matrix of the JalapenoPepper Log2 FPKM Values
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Figure A6

Java Treeview Heatmap for the Unfiltered Data of the Log2 FPKM Values from the 46

Pepper Samples
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Table A1

List of 135 Genes that were Identified to be Associated with the Capsaicin Biosynthesis

Pathway from Zhang Z. X. et. al.

Enzyme Abbreviation GeneID Present?

Chorismate mutase CM1 CA02g27850 Yes

Prephenate aminotransferase PAT CA12g09590 Yes

Arogenate dehydratase ADT CA11g14180 No

Arogenate dehydratase ADT CA02g18350 No

Arogenate dehydratase ADT CA06g23200 Yes

Phe ammonia-lyase PAL CA00g95510 No

Phe ammonia-lyase PAL CA05g20790 Yes

Phe ammonia-lyase PAL CA09g02420 Yes

Phe ammonia-lyase PAL CA10g12380 Yes

Phe ammonia-lyase PAL CA09g02410 Yes

Gln synthetase GS2 CA01g24340 Yes

NADH-dependent Glu synthase NADH-GOGAT CA02g10690 No

NADH-dependent Glu synthase NADH-GOGAT CA03g19580 Yes

Cinnamate 4-hydroxylase C4H CA06g25930 Yes

Cinnamate 4-hydroxylase C4H CA06g25940 Yes

4-Coumaroyl-CoA ligase 4CL CA03g30500 Yes

Hydroxycinnamoyl transferase HCT CA03g30250 Yes

p-Coumaroyl shikimate/quinate 3-hydroxylase C3H CA08g09680 Yes

Cytochrome P450 reductase CPR CA04g12460 Yes

Cytochrome P450 reductase CPR CA04g16280 Yes

Caffeoyl-CoA 3-O-methyltransferase CCoAOMT CA00g52190 No

Caffeoyl-CoA 3-O-methyltransferase CCoAOMT CA02g14450 Yes

Caffeoyl-CoA 3-O-methyltransferase CCoAOMT CA02g14470 Yes

Caffeoyl-CoA 3-O-methyltransferase CCoAOMT CA02g14460 Yes

Caffeoyl-CoA 3-O-methyltransferase CCoAOMT CA00g18340 No
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Enzyme Abbreviation GeneID Present?

S-Adenosylmethionine synthetase SAMSyn CA09g01970 Yes

S-Adenosylmethionine synthetase SAMSyn CA10g15500 Yes

Cinnamoyl-CoA reductase CCR CA04g23420 Yes

Cinnamoyl-CoA reductase CCR CA03g32090 Yes

Cinnamoyl-CoA reductase CCR CA08g13650 Yes

Cinnamoyl-CoA reductase CCR CA03g32100 No

Cinnamoyl-CoA reductase CCR CA00g69270 No

Cinnamoyl-CoA reductase CCR CA02g29680 No

Cinnamoyl-CoA reductase CCR CA01g16660 No

Cinnamyl alcohol dehydrogenase CAD CA08g04910 Yes

Cinnamyl alcohol dehydrogenase CAD CA08g04950 No

Cinnamyl alcohol dehydrogenase CAD CA00g51870 No

Cinnamyl alcohol dehydrogenase CAD CA06g10220 Yes

Cinnamyl alcohol dehydrogenase CAD CA02g03280 Yes

Cinnamyl alcohol dehydrogenase CAD CA12g14850 Yes

Cinnamyl alcohol dehydrogenase CAD CA00g84360 No

Cinnamyl alcohol dehydrogenase CAD CA02g00320 Yes

Putative aminotransferase pAMT CA12g10090 Yes

Putative aminotransferase pAMT CA03g08530 Yes

Thr deaminase1 TD CA00g84990 No

Acetolactate synthase ALS CA04g12110 Yes

Acetohydroxyacid reductoisomerase AHRI CA07g14810 Yes

Dihydroxyacid dehydratase DHAD CA05g17070 No

Isopropylmalate synthase IPMS CA01g29060 Yes

Isopropylmalate synthase IPMS CA06g08090 Yes

Isopropylmalate dehydrogenase IPMDH CA02g23730 Yes

Isopropylmalate dehydrogenase IPMDH CA02g23740 Yes

Isopropylmalate dehydrogenase IPMDH CA11g00650 Yes

Branched-chain amino acid aminotransferase BCAT CA04g16630 Yes
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Enzyme Abbreviation GeneID Present?

Branched-chain amino acid aminotransferase BCAT CA04g16660 Yes

Branched-chain amino acid aminotransferase BCAT CA12g15820 No

a-Ketoacid decarboxylase E1a BCKDH E1a CA06g10910 Yes

a-Ketoacid decarboxylase E1b BCKDH E1b CA01g17970 Yes

Dihydrolipoamide transacylase BCKDH E2 CA01g18360 Yes

Dihydrolipoamide dehydrogenase BCKDH E3 CA12g21080 Yes

Pyruvate dehydrogenase E1a PDH E1a CA07g07490 Yes

Pyruvate dehydrogenase E1b PDH E1a CA05g07180 Yes

Pyruvate dehydrogenase E1b PDH E1a CA03g22370 Yes

Dihydrolipoamide acetyltransferase PDH E1b CA04g11620 Yes

Dihydrolipoamide dehydrogenase PDH E1b CA00g80920 No

Pyruvate dehydrogenase E1a PDH E1b CA05g08380 Yes

Pyruvate dehydrogenase E1b PDH E1b CA08g03630 Yes

Pyruvate dehydrogenase E1b PDH E1b CA06g21080 No

Pyruvate dehydrogenase E1a PDH E2 CA09g17310 No

Pyruvate dehydrogenase E1b PDH E3 CA11g14500 Yes

a-Carboxyltransferase α-CT CA09g06200 Yes

Biotin carboxylase BC CA08g00580 Yes

Biotin carboxyl carrier protein BCCP CA00g87420 No

Biotin carboxyl carrier protein BCCP CA06g18470 Yes

b-Carboxyltransferase β-CT CA02g01350 No

b-Carboxyltransferase β-CT CA04g12500 No

b-Carboxyltransferase β-CT CA00g79900 No

Malonyl-CoA:ACP transacylase MCAT CA00g33160 No

Malonyl-CoA:ACP transacylase MCAT CA00g33150 No

Ketoacyl-ACP synthase I KasI CA02g11910 Yes

Ketoacyl-ACP synthase I KasI CA01g00840 Yes

Ketoacyl-ACP synthase I KasI CA06g02660 No

Ketoacyl-ACP synthase I KasI CA07g11150 Yes
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Enzyme Abbreviation GeneID Present?

Ketoacyl-ACP synthase II KasII CA07g05890 Yes

Ketoacyl-ACP synthase II KasII CA03g35350 Yes

Ketoacyl-ACP synthase II KasII CA03g12190 Yes

Ketoacyl-ACP synthase II KasII CA09g14750 No

Ketoacyl-ACP synthase III KasIII CA01g28560 Yes

Ketoacyl-ACP synthase III KasIII CA10g11450 No

Ketoacyl-ACP synthase III KasIII CA10g11480 No

Ketoacyl-ACP reductase KR CA08g14900 Yes

Ketoacyl-ACP reductase KR CA10g21800 No

Ketoacyl-ACP reductase KR CA01g24640 Yes

Hydroxyacyl-ACP dehydratase DH CA08g15600 Yes

Enoyl-ACP reductase ENRa CA10g20920 Yes

Enoyl-ACP reductase ENRa CA01g27690 No

Acyl carrier protein ACLd CA01g27220 Yes

Acyl carrier protein ACLd CA05g00980 Yes

Acyl carrier protein ACLd CA06g11050 Yes

Acyl carrier protein ACLd CA12g01130 Yes

Acyl carrier protein ACLd CA03g31150 Yes

Acyl-CoA synthetase ACS CA01g01120 Yes

Acyl-CoA synthetase 9 ACS CA04g10340 No

Acyl-CoA synthetase ACS CA07g08100 Yes

Acyl-CoA synthetase ACS CA03g18160 Yes

Acyl-CoA synthetase 7 ACS CA08g12160 No

Acyl-CoA synthetase 8 ACS CA00g74260 No

Acyl-CoA synthetase 2 ACS CA08g18140 Yes

Acyl-CoA synthetase 1 ACS CA01g22440 No

Acyl-CoA synthetase 4 ACS CA08g08360 No

Acyl-CoA synthetase 2 ACS CA08g18150 No

Acyl-CoA synthetase 4 ACS CA01g34500 No
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Enzyme Abbreviation GeneID Present?

Acyl-ACP thioesterase FatB CA09g15720 Yes

Acyl-ACP thioesterase FatA CA06g26640 Yes

Acyltransferase 3 AT CA02g31200 No

Acyltransferase 3 AT CA02g19260 Yes

acyltransferase 1 AT CA11g05940 Yes

acyltransferase 2 AT CA01g32810 No

acyltransferase 2 AT CA01g32940 No

acyltransferase 2 AT CA01g32950 No

acyltransferase 2 AT CA01g32880 Yes

acyltransferase 2 AT CA01g32860 No

acyltransferase 2 AT CA01g32960 No

acyltransferase 1 AT CA03g34400 No

acyltransferase AT CA02g19270 No

acyltransferase 2 AT CA01g32820 Yes

acyltransferase 2 AT CA01g09180 No

acyltransferase 2 AT CA00g98730 No

acyltransferase 1 AT CA05g20230 No

acyltransferase 2 AT CA01g32920 Yes

acyltransferase 1 AT CA05g20240 No

acyltransferase 2 AT CA01g32970 No

acyltransferase AT CA02g19280 No

acyltransferase AT CA02g19300 No

acyltransferase-like AT CA12g22900 Yes

Note. Each of these 135 genes were searched against our generated heatmap of 11,052
genes and we identified if the genes were present or not from the list of 135. The genes
that were present then were recorded in table 7 if they had high expression in pungent
peppers and low expression in less pungent peppers.
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Figure A7

Heatmap 1 of the Filtered Data

Note. Columns are representative of the pepper samples for a total of 46 while rows are
representative of the gene identification associated with each pepper with a total of
11,052. This is the first of four total heatmaps generated that have a strong trend of high
expression in pungent peppers and low expression in less pungent peppers. Red sections
represent upregulated genes, green sections represent genes that are downregulated, and
black sections represent no changes in gene regulation. Peppers are ordered left to right
from low pungency to high pungency.
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Table A2

List of Genes Taken from Heatmap 1 with their Functional Annotations

Heatmap 1

Gene ID Annotation

CA06g08400 RNA-binding protein with multiple splicing

CA03g30320 Detected protein of unknown function

CA07g06320 Glycosyltransferase

CA02g14090 PREDICTED: abscisic acid receptor PYL12-like [Glycine max]

CA10g04090 Eukaryotic translation initiation factor 3 subunit%2C putative

CA01g18360
Lipoamide acyltransferase component of branched-chain alpha-keto acid
dehydrogenase%2C putative

CA09g07380 Transparent testa 12 protein

CA04g23410 Chromatin remodeling complex subunit

CA05g04920 Protein kinase APK1B%2C chloroplast%2C putative

CA12g21390 Epoxide hydrolase 1

CA01g29320 Retrotransposon protein%2C putative%2C unclassified

CA04g15780 Ripening regulated protein DDTFR18

CA06g10910 Putative branched-chain alpha-keto acid dehydrogenase E1 alpha subunit

CA03g00660 Selenium-binding protein

CA09g02070 membrane family protein [Populus trichocarpa]

CA05g00190
PREDICTED: protein EARLY RESPONSIVE TO DEHYDRATION 15-like
[Solanum tuberosum]

CA06g26640 Acyl-ACP thioesterase

CA04g07090 Allyl alcohol dehydrogenase

CA05g13240 PREDICTED: histone H3.3-like [Glycine max]

CA06g26060 RAN

CA09g15570 Detected protein of confused Function

CA08g13430 Ran3A-1

CA12g06090 Detected protein of unknown function

CA05g18320
PREDICTED: putative GPI-anchor transamidase-like isoform 1 [Solanum
lycopersicum]

CA11g09810 MADS box protein

CA01g16920 Unknown protein

CA02g08600 Nucleosome/chromatin assembly factor group (Fragment)
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Gene ID Annotation

CA03g28130 PREDICTED: ribonuclease 3-like [Solanum lycopersicum]

CA08g02750 Detected protein of unknown function

CA01g13330 PREDICTED: E3 ubiquitin-protein ligase RING1-like isoform 1 [Vitis vinifera]

CA08g17680 Serine/threonine-protein kinase SAPK10%2C putative

CA10g06760 Detected protein of unknown function

CA04g07280 PREDICTED: ocs element-binding factor 1-like [Solanum tuberosum]

CA02g03060 NAC domain protein NAC6

CA01g23760 Hypersensitive-induced response protein

CA11g18980 Unknown protein

CA03g02670 Myb domain protein 79 isoform 1 [Theobroma cacao]

CA05g04290 Detected protein of confused Function

CA11g05560 Putative sterol desaturase

CA06g06820 Detected protein of unknown function

CA07g13760 zinc finger family protein [Populus trichocarpa]

CA03g16900 Hypersensitive induced reaction protein 4

CA12g16110 Detected protein of unknown function

CA07g16150 Detected protein of confused Function

CA06g09140 Phosphatidylcholine transfer protein%2C putative

CA10g03720 PREDICTED: nudix hydrolase 15%2C mitochondrial-like [Solanum tuberosum]

CA02g03060 NAC domain protein NAC6

CA01g23760 Hypersensitive-induced response protein

CA10g03720 PREDICTED: nudix hydrolase 15%2C mitochondrial-like [Solanum tuberosum]

CA09g14830 Pectinesterase

CA01g12030 Serine/threonine-protein phosphatase

CA03g08540 Beta-glucosidase%2C putative

CA02g24620 Cysteine desulfurase

CA06g09300 5'-nucleotidase surE

CA06g16910 2-oxoglutarate-dependent dioxygenase

CA03g08980 Flavin monooxygenase-like protein

CA01g24180 Hydroxymethylglutaryl-CoA lyase%2C putative
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Figure A8

Heatmap 2 of the Filtered Data

Note. Columns are representative of the pepper samples for a total of 46 while rows are
representative of the gene identification associated with each pepper with a total of
11,052. This is the second of four total heatmaps generated that have a strong trend of
high expression in pungent peppers and low expression in less pungent peppers. Red
sections represent upregulated genes, green sections represent genes that are
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downregulated, and black sections represent no changes in gene regulation. Peppers are
ordered left to right from low pungency to high pungency.

Table A3

List of Genes Taken from Heatmap 2 with their Functional Annotations

Heatmap 2

Gene ID Annotation

CA02g27160 Mitochondrial carnitine/acylcarnitine carrier protein%2C putative

CA01g19570 Papain-like cysteine proteinase isoform I

CA02g28790 Acetylglucosaminyltransferase%2C putative

CA02g08710 Detected protein of unknown function

CA02g20800 Detected protein of confused Function

CA03g19670 PREDICTED: pleiotropic drug resistance protein 1-like [Solanum lycopersicum]

CA08g04120
PREDICTED: probable phosphoinositide phosphatase SAC9-like isoform X1
[Solanum tuberosum]

CA03g34590 Aspartate aminotransferase%2C putative

CA06g24630 Putative cytochrome P450 monooxygenase

CA03g00920 Protein phosphatase 2c%2C putative

CA09g03280 ORF64c [Pinus koraiensis]

CA04g04990
PREDICTED: LRR receptor-like serine/threonine-protein kinase GSO1-like [Solanum
lycopersicum]

CA03g23200 DNA polymerase epsilon subunit B%2C putative

CA03g35130 Ethylene receptor

CA01g30230 PREDICTED: probable receptor protein kinase TMK1-like [Solanum lycopersicum]

CA03g19680 PREDICTED: pleiotropic drug resistance protein 1-like [Solanum lycopersicum]

CA05g03030 Cytochrome P450 CYP736A54

CA02g26980 Protein disulfide oxidoreductase%2C putative

CA05g08550 Beta-1%2C3-glucanase 24 (Precursor)

CA02g01600
PREDICTED: type II inositol 1%2C4%2C5-trisphosphate 5-phosphatase FRA3-like
isoform X1 [Solanum tuberosum]

CA08g14050 PREDICTED: CBS domain-containing protein CBSX5-like [Solanum lycopersicum]

CA03g16680 Peptidoglycan-binding LysM domain-containing protein [Theobroma cacao]

CA11g10770 Calcium-dependent lipid-binding family protein [Theobroma cacao]

CA04g08500 Dicel-like 2 (Fragment)
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Gene ID Annotation

CA04g08510 Dicel-like 2 (Fragment)

CA12g10770 Detected protein of unknown function

CA09g09290 Transposon MuDR mudrA-like protein%2C putative

CA11g11280 Alpha-L-fucosidase 2%2C putative

CA12g05780 T24M8.8 protein

CA08g02540 PPR repeat domain-containing protein

CA06g09240 PREDICTED: 2-hydroxyisoflavanone dehydratase-like [Glycine max]

CA08g05500 Ornithine aminotransferase

CA03g35250 Aldehyde dehydrogenase family 7 member A1

CA07g11040 PREDICTED: calcium-dependent protein kinase 3-like [Solanum lycopersicum]

CA10g12330 Serine/threonine-protein kinase

CA01g13680 Beta-D-glucosidase (Precursor)

CA10g03900
PREDICTED: transcription elongation factor 1 homolog isoform 1 [Solanum
lycopersicum]

CA02g23400 Detected protein of unknown function

CA04g17170 Catalytic%2C putative

CA09g12330 PREDICTED: clathrin light chain 2-like [Solanum tuberosum]

CA12g17370
PREDICTED: pre-mRNA-splicing factor ATP-dependent RNA helicase PRP16-like
[Solanum tuberosum]

CA05g06480 Aig1%2C putative

CA12g08230 PREDICTED: 3-oxo-5-alpha-steroid 4-dehydrogenase 2-like [Vitis vinifera]

CA04g09410 Pectinesterase

CA03g22320 Cathepsin B-like cysteine proteinase

CA07g00920 Pectinesterase

CA07g21080 Pectinesterase

CA11g13010 ALY protein

CA07g08840 Isoamylase isoform 1

CA07g08860 Isoamylase isoform 1

CA09g16040 Putative Ty3-gypsy-like retroelement pol polyprotein

CA02g28490 Protein C10orf22%2C putative

CA06g04640 NbPCL1 protein

CA05g08060 Bet v I allergen family protein

CA07g18320 PREDICTED: mediator of RNA polymerase II transcription subunit 18-like [Solanum
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lycopersicum]

Gene ID Annotation

CA05g20790 Phenylalanine ammonia-lyase

CA12g17150 2-hydroxyacid dehydrogenase%2C putative

CA04g21840 Detected protein of unknown function

CA08g02660
PREDICTED: probable xyloglucan endotransglucosylase/hydrolase protein 8-like
[Solanum lycopersicum]

CA05g10360 PREDICTED: dentin sialophosphoprotein-like [Citrus sinensis]

CA07g17070 CYP72A58

CA10g19130 F-box family protein [Theobroma cacao]

CA08g18340 1-acyl-sn-glycerol-3-phosphate acyltransferase

CA04g14210 Unknown protein

CA01g22200 Serologically defined colon cancer antigen-like protein

CA04g23030 Unknown protein

CA07g08770 Alpha tubulin (Fragment)

CA06g02590 Detected protein of confused Function

CA07g00460 Mitochondrial bifunctional diaminopelargonate synthetase

CA03g21500 Cytochrome P450

CA05g10430 4-hydroxyphenylpyruvate dioxygenase

CA05g10440 4-hydroxyphenylpyruvate dioxygenase

CA12g20770 15-cis-zeta-carotene isomerase [Theobroma cacao]

CA02g20810 Retrotransposon protein%2C putative%2C Ty1-copia subclass

CA11g18760 Ripening-related protein grip22

CA06g27610 Detected protein of unknown function

CA05g20590 PREDICTED: ankyrin repeat-containing protein At3g12360-like [Solanum tuberosum]

CA03g05260 Casein kinase%2C putative

CA06g22070 Detected protein of unknown function

CA10g20020 Thioredoxin fold

CA07g01660
PREDICTED: QWRF motif-containing protein 8-like isoform X1 [Solanum
tuberosum]
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Figure A9

Heatmap 3 of the Filtered Data

Note. Columns are representative of the pepper samples for a total of 46 while rows are
representative of the gene identification associated with each pepper with a total of
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11,052. This is the third of four total heatmaps generated that have a strong trend of high
expression in pungent peppers and low expression in less pungent peppers. Red sections
represent upregulated genes, green sections represent genes that are downregulated, and
black sections represent no changes in gene regulation.Peppers are ordered left to right
from low pungency to high pungency.

Table A4

List of Genes Taken from Heatmap 3 with their Functional Annotations

Heatmap 3

Gene ID Annotation

CA10g19090
PREDICTED: eukaryotic translation initiation factor NCBP-like isoform X1 [Glycine
max]

CA02g20000 PREDICTED: SRSF protein kinase 1-like isoform X1 [Solanum tuberosum]

CA03g10560 Alcohol dehydrogenase

CA03g23860 Detected protein of confused Function

CA01g19090 Cop11 protein

CA09g18640
PREDICTED: eukaryotic peptide chain release factor subunit 1-3-like isoform 1
[Solanum lycopersicum]

CA05g11160 Protein kinase Ck2 regulatory subunit 2

CA06g21240 Nucleic acid binding protein%2C putative

CA12g08610 PREDICTED: TSL-kinase interacting protein 1-like [Vitis vinifera]

CA12g08600 PREDICTED: TSL-kinase interacting protein 1-like [Vitis vinifera]

CA10g09720 CDPK11

CA01g17970
PREDICTED: 2-oxoisovalerate dehydrogenase subunit beta 2%2C mitochondrial-like
[Solanum tuberosum]

CA02g07580 HGWP repeat containing protein-like protein

CA02g22360 PREDICTED: transmembrane protein 53-like [Vitis vinifera]

CA02g16440 Cytokinin riboside 5'-monophosphate phosphoribohydrolase-like

CA03g29670 Cis-prenyltransferase 3

CA08g14950 At1g10280

CA03g31310 Detected protein of unknown function

CA01g19780 Salt-tolerance protein%2C putative

CA08g13100 Detected protein of unknown function

CA02g24000 Auxin:hydrogen symporter%2C putative

CA01g02080 PREDICTED: F-box protein At2g26160-like isoform X1 [Solanum tuberosum]
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Gene ID Annotation

CA04g23750 Aminotransferase family protein

CA10g00030 Aminotransferase family protein

CA10g00020 Aminotransferase family protein

CA01g10780 Sucrose-phosphatase

CA01g28880 Eukaryotic translation initiation factor 3 subunit%2C putative

CA03g33450 Putative receptor-like protein kinase

CA03g33460 Receptor-like protein kinase

CA08g15080 Detected protein of unknown function

CA01g15460 ADP%2CATP carrier protein-like

CA03g33220 PREDICTED: protein IFH1-like [Solanum tuberosum]

CA07g08850 Detected protein of unknown function

CA10g14970 Os02g0480100 [Oryza sativa] Japonica Group

CA10g15500 Detected protein of confused Function

CA02g30800 B2 protein%2C putative

CA06g05830 SGT1

CA03g31900 Detected protein of unknown function

CA07g19540 Ubiquitin2

CA02g29790 Detected protein of unknown function

CA04g14510 Disease resistance protein RGH2

CA06g07610 PREDICTED: F-box/FBD/LRR-repeat protein At1g13570-like [Solanum tuberosum]

CA10g18820
PREDICTED: probable mediator of RNA polymerase II transcription subunit 26b-like
[Solanum tuberosum]

CA09g00990 Unknown protein

CA10g01590 Os01g0698300 protein

CA01g25540 Dehydroquinate dehydratase/shikimate:NADP oxidoreductase

CA02g05110 BSD domain-containing family protein [Populus trichocarpa]

CA02g08700 Detected protein of unknown function

CA03g29960 Detected protein of unknown function

CA03g02360 AG-motif binding protein-2

CA01g16130 Actin cross-linking protein%2C putative [Theobroma cacao]

CA12g04640 Serine carboxypeptidase precursor family protein [Populus trichocarpa]

CA02g28280 Delta(3%2C5)%2Cdelta(2%2C4)-dienoyl-CoA isomerase 1

CA06g15690 26S protease regulatory subunit%2C putative

CA05g01620 Unknown protein
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Gene ID Annotation

CA01g29650 UDP-glucose:glucosyltransferase

CA07g03220 Ty3/gypsy retrotransposon protein

CA12g06810 UDP-glucose:glucosyltransferase

CA10g19590 Somatic embryogenesis zinc finger 2

CA07g08240
PREDICTED: F-box/kelch-repeat protein At1g16250-like isoform X1 [Solanum
tuberosum]

CA07g09880
Eukaryotic translation initiation factor 3 subunit 11 family protein [Populus
trichocarpa]

CA06g10250
PREDICTED: photosystem II 5 kDa protein%2C chloroplastic-like [Solanum
tuberosum]

CA07g08260 Guanine nucleotide exchange factor P532%2C putative

CA01g05700 AP2/ERF domain-containing transcription factor

CA05g13220 PREDICTED: protein MIZU-KUSSEI 1-like [Solanum tuberosum]

CA03g11780 Sulfate/bicarbonate/oxalate exchanger and transporter sat-1

CA03g31930 F9L1.26

CA04g16440 PREDICTED: zeatin O-glucosyltransferase-like [Solanum tuberosum]

CA05g15850 CBL-interacting protein kinase

CA08g07540 Mitogen-activated protein kinase 4

CA01g07880 Gamma-tocopherol methyltransferase

CA03g21490 Cytochrome P450

CA01g11040 Os08g0117900 protein

CA06g20910 Bcl-2-associated athanogene-like protein

CA03g18790 Defective in meristem silencing 3 [Theobroma cacao]

CA09g16810 Unknown protein

CA12g05770 PREDICTED: OTU domain-containing protein At3g57810-like [Cucumis sativus]

CA12g11350 Detected protein of unknown function

CA01g24840 Receptor serine/threonine kinase%2C putative

CA01g07130
PREDICTED: serine/threonine-protein phosphatase 7 long form homolog [Solanum
tuberosum]

CA11g12550 Kinesin light chain%2C putative
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Figure A10

Heatmap 4 of the Filtered Data

Note. Columns are representative of the pepper samples for a total of 46 while rows are
representative of the gene identification associated with each pepper with a total of
11,052. This is the fourth of four total heatmaps generated that have a strong trend of
high expression in pungent peppers and low expression in less pungent peppers. Red
sections represent upregulated genes, green sections represent genes that are
downregulated, and black sections represent no changes in gene regulation. Peppers are
ordered left to right from low pungency to high pungency.
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Table A5

List of Genes Taken from Heatmap 4 with their Functional Annotations

Heatmap 4

Gene ID Annotation

CA01g19820
PREDICTED: V-type proton ATPase 16 kDa proteolipid subunit c2-like [Solanum
tuberosum]

CA03g00420 PREDICTED: alkaline ceramidase 3-like [Solanum tuberosum]

CA06g16980
PREDICTED: cytochrome c oxidase subunit 5b-1%2C mitochondrial-like [Solanum
tuberosum]

CA06g03490 Calcineurin B-like 10

CA03g05780 PREDICTED: activating signal cointegrator 1-like isoform 2 [Solanum lycopersicum]

CA06g21190 PREDICTED: mitotic-spindle organizing protein 1B-like [Solanum lycopersicum]

CA10g02280 Ribose-phosphate pyrophosphokinase 4

CA07g19580 PREDICTED: GPI-anchored protein LORELEI-like [Solanum tuberosum]

CA10g04630 Nucleoporin

CA11g20430 50S ribosomal protein L27 [Medicago truncatula]

CA01g08920 Putative auxin-induced protein

CA12g20270 60S ribosomal protein L13a-like protein

CA04g21480 Unknown protein

CA02g22080 Mitogen-activated protein kinase 8

CA06g21270 PREDICTED: inositol-tetrakisphosphate 1-kinase 1-like [Solanum lycopersicum]

CA07g19400
PREDICTED: probable protein phosphatase 2C 55-like isoform X4 [Solanum
tuberosum]

CA04g16020 PREDICTED: purine permease 1-like [Solanum tuberosum]

CA06g00470 Unknown protein

CA11g01370 Catalytic%2C putative

CA09g04600
PREDICTED: MOSC domain-containing protein 2%2C mitochondrial-like isoform
X1 [Solanum tuberosum]

CA05g03460 GTP-binding protein

CA01g33650 Unknown protein

CA03g24770 small nuclear ribonucleoprotein D2 [Arabidopsis thaliana]

CA07g20530 SEC14 cytosolic factor%2C putative

CA09g18320 eukaryotic translation initiation factor 5A-4 [Solanum lycopersicum]

CA01g23340 Unknown protein
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Gene ID Annotation

CA06g23330 RNA binding protein-like protein

CA08g01950 Detected protein of unknown function

CA08g01770 PREDICTED: rab GDP dissociation inhibitor alpha-like [Solanum lycopersicum]

CA08g13290 Detected protein of unknown function

CA10g18650 Syntaxin-52

CA03g03240 Mitotic spindle assembly checkpoint protein MAD2B

CA03g17790 PREDICTED: microtubule-associated protein 1B-like [Solanum tuberosum]

CA12g02110 PREDICTED: centromere protein V-like [Solanum lycopersicum]

CA07g01160 Unknown protein

CA06g23770 Unknown protein

CA08g03250 Unknown protein

CA06g21950 Unknown protein

CA10g21690 Unknown protein

CA07g02520 Oxidoreductase%2C putative

CA02g01250 UDP-glucuronosyltransferase%2C putative

CA02g23040 Chloroplast geranylgeranyl diphosphate synthase

CA06g06910 PREDICTED: actin-related protein 5-like [Solanum tuberosum]

CA11g14670 Oxidoreductase

CA05g00180 Unknown protein

CA10g01990 Glutathione S-transferase/peroxidase

CA09g00330 Detected protein of unknown function

CA10g02030 Unknown protein

CA03g16100 Fructokinase

CA03g29050 JHL10I11.9 protein

CA03g14260 GTP-binding-like protein

CA10g18470 GrpE protein homolog

CA07g06860 Chromatin remodeling complex subunit

CA09g08660 Detected protein of unknown function

CA01g07890 Protein disulfide isomerase L-2

CA02g21120 Isocitrate dehydrogenase%2C putative
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