
Rowan University Rowan University

Rowan Digital Works Rowan Digital Works

Theses and Dissertations

6-9-2022

An Empirical Study On Sampling Approaches For 3D Image An Empirical Study On Sampling Approaches For 3D Image

Classification Using Deep Learning Classification Using Deep Learning

Nicholas Michelette
Rowan University

Follow this and additional works at: https://rdw.rowan.edu/etd

 Part of the Artificial Intelligence and Robotics Commons

Recommended Citation Recommended Citation
Michelette, Nicholas, "An Empirical Study On Sampling Approaches For 3D Image Classification Using
Deep Learning" (2022). Theses and Dissertations. 3017.
https://rdw.rowan.edu/etd/3017

This Thesis is brought to you for free and open access by Rowan Digital Works. It has been accepted for inclusion
in Theses and Dissertations by an authorized administrator of Rowan Digital Works. For more information, please
contact graduateresearch@rowan.edu.

https://rdw.rowan.edu/
https://rdw.rowan.edu/etd
https://rdw.rowan.edu/etd?utm_source=rdw.rowan.edu%2Fetd%2F3017&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/143?utm_source=rdw.rowan.edu%2Fetd%2F3017&utm_medium=PDF&utm_campaign=PDFCoverPages
https://rdw.rowan.edu/etd/3017?utm_source=rdw.rowan.edu%2Fetd%2F3017&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:graduateresearch@rowan.edu

AN EMPIRICAL STUDY ON SAMPLING APPROACHES FOR 3D IMAGE

CLASSIFICATION USING DEEP LEARNING

by

Nicholas Michelette

A Thesis

Submitted to the

Department of Computer Science

College of Science and Mathematics

In partial fulfillment of the requirement

For the degree of

Master of Science in Computer Science

at

Rowan University

May 17, 2022

Thesis Chair: Shen-Shyang Ho, Ph.D., Associate Professor, Department of Computer

Science

Committee Members:

Bo Sun, Ph.D., Associate Professor, Department of Computer Science

Ganesh R. Baliga, Ph.D., Professor, Department of Computer Science

© 2022 Nicholas Michelette

Dedications

 This work is dedicated to my parents and grandparents, who have supported me

throughout my entire life and education. I would not be here without their continued

assistance. My father’s hard work in both academia and in the real world has also

inspired me throughout my studies.

iv

Acknowledgments

I would like to thank my supervisor/advisor Dr. Shen-Shyang Ho for his guidance

for the entirety of this thesis. He helped me pinpoint exactly what I wanted this thesis to

be as well as giving me direction. Additionally, his experience has helped tremendously

to ensure that this thesis is the best it could have been, from knowing how to pace the

work needed to technical writing. I would also like to thank Dr. Sun and Dr. Baliga for

providing some great insight for this thesis. Without everybody, this thesis would not

have been possible.

v

Abstract

Nicholas Michelette

AN EMPIRICAL STUDY ON SAMPLING APPROACHES FOR 3D IMAGE

CLASSIFICATION USING DEEP LEARNING

2021-2022

Shen-Shyang Ho, Ph.D.

Master of Science in Computer Science

A 3D classification method requires more training data than a 2D image

classification method to achieve good performance. These training data usually come in

the form of multiple 2D images (e.g., slices in a CT scan) or point clouds (e.g., 3D CAD

modeling) for volumetric object representation. The amount of data required to complete

this higher dimension problem comes with the cost of requiring more processing time and

space. This problem can be mitigated with data size reduction (i.e., sampling).

In this thesis, we empirically study and compare the classification performance

and deep learning training time of PointNet utilizing uniform random sampling and

farthest point sampling, and SampleNet which utilizes a reduction approach based on

weighted average of nearest neighbor points, and Multi-view Convolution Neural

Network (MVCNN). Contrary to recent research which claimed that SampleNet performs

outright better than simple form of sampling approaches used by PointNet, our

experimental results show that SampleNet may not significantly reduce processing time

and yet it achieves a poorer classification performance. Additionally, resolution reduction

for the views in MVCNN achieves poor accuracy when compared to view reduction.

Moreover, our experimental result shows that simple sampling approaches used by

PointNet as well as using simple view reduction when using a multi-view classifier can

maintain accuracy while decreasing processing time for the 3D classification task.

vi

Table of Contents

Abstract ..v

List of Figures ..viii

List of Tables ...ix

Chapter 1: Introduction ...1

1.1 Problem Statement and Investigation ..2

1.2 Thesis Outline ..3

Chapter 2: Literature Review ...4

Chapter 3: Compared Methodologies ..8

 3.1 VoxNet ...8

 3.2 PointNet ...10

 3.3 Multi-View Convolutional Neural Network (MVCNN)15

Chapter 4: Experimental Setup and Design ...17

 4.1 Dataset Description ..17

 4.1.1 PointNet and SampleNet ...17

 4.1.2 MVCNN ..17

 4.2 Evaluation Measures ..17

 4.3 Hardware and Code Used ..18

 4.3.1 PointNet and SampleNet Code ...18

 4.3.2 MVCNN Code ..18

 4.4 Investigated Issues ...19

 4.4.1 PointNet and SampleNet Classification Performance Comparison19

 4.4.2 MVCNN ..19

vii

Table of Contents (Continued)

Chapter 5: Experimental Results and Analysis ..21

 5.1 Sampling with PointNet Versus SampleNet ..21

 5.2 Different Types of Sampling With MVCNN...37

Chapter 6: Conclusions and Future Work ..52

References ..54

viii

List of Figures

Figure Page

Figure 1. Furthest Point Sampling (FPS) vs Uniform Random Sampling [5] 14

Figure 2. PointNet With 1024 Randomly Sampled Points (PointNet 1024) vs

SampleNet With Different Sampling Size .. 22

Figure 3. Comparing Classification Performance for PointNet 1024 vs

PointNet With Smaller Sample Sizes .. 24

Figure 4. Comparing Classification Performance for PointNet vs

SampleNet With Fixed Sample Size ... 26

Figure 5. Comparing Classification Performance for PointNet Random vs

Furthest Point Sampling With Fixed Sample Size .. 28

Figure 6. Comparing Classification Performance for PointNet Random vs

PointNet FP vs SampleNet Sampling Accuracy ... 31

Figure 7. Comparing Training Time for PointNet and SampleNet Sampling 32

Figure 8. Comparing Classification Performance for PointNet

and SampleNet 1024, 256, 128, 64, 32 ... 33

Figure 9. SampleNet With Different Number of Points in Initial Point Cloud and

PointNet Using 2048 Points. ... 35

Figure 10. MVCNN Validation Accuracy Over Time.. 43

Figure 11. MVCNN Validation Accuracy - Maximum vs Minimum

Evaluation Accuracy ... 45

Figure 12. MVCNN Sampling Method Loss .. 47

Figure 13. MVCNN Average Time per Trial vs Number of Views 48

Figure 14. MVCNN Validation Accuracy Using Various Sampling

Methods (From Table 4).. 49

ix

List of Tables

Table Page

Table 1. Comparing Classification Performance and Training Time for

PointNet Random vs PointNet FP vs SampleNet Sampling Accuracy30

Table 2. MVCNN Test Results – Batch Size 4 ..37

Table 3. MVCNN Test Results – Batch Size 1 ..40

Table 4. MVCNN Test Results – Batch Size 16 With 64 Epochs41

1

Chapter 1

Introduction

 Object classification is one of many computer vision problems, whether it is done

through single 2D images or using more three-dimensional (3D) data. A 2D image

classification model usually takes a long time to train but a 3D model requires even more

data in general to be processed and therefore takes longer to complete training, even if

there is less instances or objects to process. 3D data generally comes in the form of

meshes, point clouds, or multiple images [2]. Some point clouds contain thousands of

points and multiple images contain many more pixels than 2D images. For some

classification methods, the point cloud is converted to a grid of binary voxels. With more

data, the training of neural networks becomes more computationally expensive.

 3D image classification can be used in a variety of different situations. Robotics

require classification of objects before doing their task [26] and medical imaging can use

3D classification to identify diseases like the coronavirus [28]. Some specific applications

include self-driving cars [25], industrial production, domestic assistance, and healthcare

services [26]. Industrial production includes welding, assembly, and shipping of products

[26] as well as industrial part classification [23] and industrial bin picking [24]. Domestic

assistance applications include household chores, entertainment, personal assistance like

a chef assistant, and home defense [26]. Healthcare service applications include surgery,

caring for patients, being a receptionist, and being a nurse assistant,

 One method of reducing the training time as well as inference time is called

sampling, which reduces the amount of input data to a subset of the original input data or

2

a representation of the original input data. This can be done in many different ways [2, 3,

4, 6, 16, 30, 31, 32, 34, 35] for each classification method, but the objective of sampling

is to maintain the accuracy of the classifier while reducing the amount of data the

classifier needs for training. A simple example of sampling is randomly choosing points

from a point cloud to use as input into the classifier instead of using the whole point

cloud.

 There are many different ways to sample. For point clouds, the most common

methods of sampling include random point sampling as well as furthest point sampling

[6], both of which are simple functions. There are more complex sampling methods, like

those found in S-Net [6] and SampleNet [4], which attempt to learn which points are the

best points to sample and are overall more complex than furthest point sampling or

random sampling.

 Sampling generally is not done with multi-view classifiers, but the images are

taken at a certain resolution or resized to that resolution [3]. However, there are a few

simple sampling methods possible like reducing the resolution further or selecting a

subset of images from the multiple images taken for an object. Any sampling method that

could apply to multi-view classifiers could also apply to the voxel based classifiers, like

reducing the resolution of the voxel grid [1].

1.1 Problem Statement and Investigation

 The main problem with 3D classification is that there is a lot of data needed to

train a classifier and training the model is computationally expensive. Some possible

solutions include sampling as well as view reduction. This thesis investigates the effect of

3

sampling or multi-view reduction approaches on existing 3D deep learning approaches, in

particular PointNet [2], SampleNet [4], and Multiview Convolution Neural Network

(MVCNN) [3] for 3D image classification.

1.2 Thesis Outline

In Chapter 2, we will describe recent work on using deep learning for classifying

objects using 2D images to 3D representations and provide an overview of sampling

methods used in object classification. In Chapter 3, we will describe how each baseline

3D classification approach accomplishes the task of 3D classification. In Chapter 4, we

will describe the experimental setup and design for testing the selected sampling methods

for PointNet, SampleNet, and MVCNN. This chapter includes which dataset was used

and how each method was tested. In Chapter 5, we will present the results from the

experiment along with an analysis of those results. In Chapter 6, we present the

conclusion along with some potential future work.

4

Chapter 2

Literature Review

 To start, most image classifiers or object classifiers use some form of machine

learning, and most classifiers use a neural network. There are image processing

techniques that do not involve machine learning that helps with image classification with

one of the first being found in “Machine Perception of Three-Dimensional Solids” [10].

The first 2D image classifier, used to classify Japanese characters, was called

Neocognitron and created by Kunihiko Fukushima [11]. This was effectively the first

convolutional neural network and was one of the first instances of deep learning. After

Neocognitron came LeNet, created by Yaan LeCun [12] in the 1990s and based off of

Neocognitron. This project took the convolutional neural network from Neocognitron and

applied gradient backpropagation to it, effectively allowing the convolutional neural

network to learn more efficiently. This project was used to classify characters as well,

giving rise to the popular MNIST dataset [13].

After LeNet, some more datasets were compiled and challenges to classify the

datasets were made, notably the Pascal Visual Object Classes [14] and ImageNet [15]

datasets, the latter of which contains over 1 million images with 1000 classes. In the 2012

ImageNet competition, AlexNet [16] achieved an error rate much lower than any

previous classification projects for ImageNet. AlexNet used a convolutional neural

network similar to the neural network found in LeNet, but with many more layers and

parameters. Some reasons for the success of AlexNet include using the ReLU activation

function, dropout regularization, and the much deeper neural network that could finally

5

be used because technology finally had the processing power to do so along with the

ability to use a GPU for processing. 2D image classifiers continue to evolve with one

example being DenseNet [17].

The next big step for learning on 3D objects is ShapeNet [18], which used 3D

CAD models to create a volumetric occupancy grid to use as input into a three-

dimensional convolutional neural network (3D CNN). Along with the paper, Wu et al.

released the largest 3D CAD model dataset at the time called ModelNet [19]. This

allowed for many other methods to be developed. One of the methods improved upon

what ShapeNet had already done and improved the accuracy of using a voxel grid along

with a 3D CNN. Since VoxNet [1] was an improvement over ShapeNet, most projects

attempting to improve on voxel grid classifiers use VoxNet as a baseline. One example of

this being OctNet [20].

Another foundational method of classifying the models from ModelNet uses point

cloud data directly and is called PointNet [2]. This method takes a fixed number of input

points and uses their coordinates as input into a neural network, which then classifies the

object. One attempted improvement that targeted the accuracy of point cloud classifiers is

DensePoint [21], which applies the concept of DenseNet [17] to the point cloud instead

of an image. Some implementations attempt to reduce the training and interpretation time

of PointNet, like S-Net [6] or SampleNet [4]. They attempt to do this by sampling the

original point cloud using another neural network.

The last foundational method of classifying the models from ModelNet goes back

to using images instead of converting or using the point cloud directly. Multi-view

6

convolutional neural networks (MVCNN) [3] use multiple images of a single object to

help classify it. The MVCNN still uses the ModelNet dataset, opting to render pictures at

regular intervals around each object to use as input. Each object in the dataset has a

specified number of images associated with it, referred to as views. The MVCNN

essentially uses the image classifier found in AlexNet [16] on each view and does further

processing using the output of the previous step. According to the ModelNet website, an

implementation of MVCNN called RotationNet [22] currently holds the record for the

highest accuracy classifier on the ModelNet dataset. RotationNet attempts to align a

subset of views correctly on the object and take the classification of each view after the

correct alignment is achieved. In a way, it is not using all of the views of a single object

to classify it.

Sampling with point clouds starts with the simplest method: choosing random

points from the point cloud [2]. More complex sampling methods exist like Furthest Point

Sampling [2, 30], clustering [31, 32], iterative simplification [31], and particle simulation

[31]. Some sampling methods are more specific to image classification, like the sampling

found in S-Net [6], SampleNet [4], and “Task-Aware Sampling Layer for Point-Wise

Analysis” [32]. PointNet uses either random sampling or furthest point sampling.

Sampling with 2D images is typically not done with classifiers other than

rescaling images and pooling functions within the classification model [16], which stays

true for multi-view classifiers [3]. There are many image sampling methods to choose

from which include uniform, random, nonuniform, and measurement-adaptive sampling

algorithms [34]. Furthest point sampling can also be used with images [30]. Additionally,

some data compression algorithms can be used to reduce the size of images [35]. With

7

multi-view classifiers, it is important to select the necessary number of views needed to

classify datasets [3].

8

Chapter 3

Compared Methodologies

 In this chapter, we describe in detail how each basic 3D classifier functions. In

Section 3.1, we describe how voxel-based classifiers classify objects based on their

volumetric occupancy grid representations. In Section 3.2, we describe how point cloud

based classifiers classify an object using their point cloud representations. In section 3.3,

we describe how multi-view or multi-image based classifiers classify an object based on

their multi-view representations.

3.1 VoxNet

 VoxNet [1] is one of the first successful 3D classification programs. There are

three different types of datasets that VoxNet uses: CAD models, LiDAR point clouds,

and RGBD point clouds. The points sampled from the CAD models, or the raw LiDAR

point cloud data is then converted into a volumetric occupancy grid by mapping the point

coordinates (x, y, z) to voxel coordinates (i, j, k), depending on the origin, orientation,

and resolution of the voxel grid. Some constraints in this process are that the origin is

assumed to be given as input, the z-axis is aligned with gravity, and the resolution is

consistent for all objects. In VoxNet, the occupancy grid is 32 x 32 x 32 voxels, with the

object fitting within a 24 x 24 x 24 voxel sub volume. Each voxel with LiDAR data has a

fixed size, which is usually (0.1m)3.

 Working with a volumetric occupancy grid allows for easy and simple

manipulation of the data to be used in training. There are a number of reasons to not use

the points directly in PointNet [2] and VoxNet found that the volumetric occupancy grid

9

was more consistent than previous methods. CAD models can be voxelized easily, but

there are also a number of different types of occupancy grids that are used with LiDAR

data: the binary occupancy grid, the density grid, and the hit grid. The binary occupancy

grid is where each voxel is given a probability that it is occupied depending on if there

are points in that part of the grid and the state of the voxel before it. The density grid is

where the object is expected to have a uniform density, so the density of points within

each voxel with respect to the point density of voxels is given as input into the neural

network. Lastly, the hit grid is where each voxel has a number of points within it, which

is used as input for the neural network. The differences in performance between these

three is minimal, but it is a difference nonetheless and some of the grid types are faster to

process than others.

 To classify the volumetric occupancy grid, VoxNet uses a 3D convolutional

neural network, or 3D CNN. 3D CNNs can make use of spatial features and learn local

spatial features, which are important for classification. Also, increasing the number of

layers may allow the network to recognize more complex features. Additionally, once

trained, inference is feed-forward and fast, especially on modern hardware. The neural

network consists of the input, 3D convolutional layers, 3D pooling layers, and fully

connected layers.

 The structure of the VoxNet CNN starts with the input of the occupancy grid of

size I x J x K, followed by two convolutional layers, a pooling layer, and two fully

connected layers. The specific number for the CNN they found optimal are a 32 x 32 x 32

grid, one convolutional layer with 32 filters, kernel size of 5 x 5 x 5, and stride of 2,

another convolutional layer with 32 filters, kernel size of 3 x 3 x 3, and stride of 2,

10

followed by a pooling layer of size 2 x 2 x 2, with a fully connected layer going to 128

nodes, which then fully connect to another set of K nodes, where K is the number of

classes. This structure has 921,736 parameters.

 There is also another major problem with this approach: it is not rotation-

independent. Since the object is only aligned to gravity, the object could not be facing

“forward.” To combat this, during preprocessing, there must be n copies of the object

generated, each rotated 360o/n intervals around the z axis, with n being 12 or 18 in most

cases. This means that the object is rotated by 30o or 20o from the previous rotation. The

CNN is then trained on all rotations of every object, while at evaluation time, every copy

of each rotation of an object is pooled together to classify the object. This works

relatively well, but still occasionally fails.

 Training of the CNN uses stochastic gradient descent with momentum, dropout

regularization, and adds randomly perturbed copies of each instance of objects, which

consists of mirroring and shifting between -2 and 2 voxels.

 The methods of sampling on MVCNN [3] described later could also apply to

VoxNet, as both use different “views” of the object to help classify it more accurately as

well as have a defined resolution.

3.2 PointNet

PointNet [2], instead of transforming the data into voxels or an occupancy grid,

uses point cloud data directly and each point in the cloud can be represented by the

coordinates (x, y, z). There are three properties of point sets that are important: they are

unordered, the points interact with each other, and invariance under transformation.

11

Interaction among points means that neighboring points form meaningful subsets, so a

classifier model must capture local structures and interactions between local structures.

Invariance under transformation just means that if all points undergo a transformation of

some sort, whether it be translation or rotation, no data should be lost, and the

classification should not change. Most importantly, point sets are unordered, which gives

up to the factorial of the number of points, or N!, possible permutations on how to choose

points, which can get very large as the number of points is usually in the thousands and

the factorial operation results in extremely large numbers. This was the most important

problem to solve when creating the classifier for PointNet.

Most deep learning focuses on regular inputs and not unordered sets of

information like a point cloud. VoxNet [1] gets around this by mapping the points to an

occupancy grid, which is an ordered input. However, using voxel-based methods have

their limitations and some important data might be lost, so PointNet tries to use just the

raw points as input. Some options include sorting the points or using an RNN, but

PointNet found that symmetric functions give the best results. Operations like addition

and multiplication are symmetric because the order of the numbers do not matter in the

operation. PointNet accomplishes this with a combination of multi-layer perceptrons and

a max pooling function.

The PointNet paper summarizes the overall function of the network well by

stating “effectively the network learns a set of optimization functions/criteria that select

interesting or informative points of the point cloud and encode the reason for their

selection. The final fully connected layers of the network aggregate these learnt optimal

values into the global descriptor for the entire shape” [2]. One effect of this network is

12

that it finds a sparse set of points that can effectively be used to construct a skeleton of

the object.

A simple explanation of the PointNet neural network structure is that each point

gets its own multi-layer perceptron or MLP. Each MLP has the input of each coordinate

in the point, so the x value, y value, and z value of the current point. After a few fully

connected layers, a max pool function is used to extract features out of the multiple

MLPs. The result from the max pool function is then used in another MLP to finally

classify the object. The symmetric function used is the single max pool function. Within

the basic structure of PointNet, there are also input and feature transformations to help

the network a bit. They found that these transformations improve the performance by

about 1.9%. PointNet without these transformations has about 800,000 parameters with

148 million floating point operations (FLOPs) per sample and 3.5 million parameters

with 440 million FLOPS per sample while using the transformations. According to

Theorem 1 in [2], in the worst case scenario, the network can voxelize a point cloud, but

ultimately finds a better way to probe the 3D space.

During training, noise is added to some of the points and the overall object is

slightly rotated about the up-axis. Inference is also quick because of the use of simple

fully connected layers and a max pool function. Inputs are also normalized to a unit

sphere as some objects may have larger coordinates than others despite being a similar

shape. PointNet is also more robust than earlier methods as deleting points or forcing the

“important” points to be outliers do not affect the results much until extreme levels, like

80% of the data missing, are achieved.

13

 As stated previously, the more accurate version of PointNet has around 3.5

million parameters with 440 million FLOPS per sample. This was much more space and

time efficient than the previous 3D classifiers that were slightly more accurate like

MVCNN [3], which has 60 million parameters and 62 billion FLOPs according to the

PointNet paper. Point-based classifiers also scale with points linearly or O(N), while 2D

convolutional networks squarely or O(N2), with image resolution in image-based

methods, and cubically or O(N3) in volumetric convolution.

 Some more applications of PointNet include retrieving models based on the

selected “important” points from another point cloud, selecting points that correlate in

two separate point clouds, and extracting the general shape of objects that have no

category [2].

 Since point clouds could have a large number of points as well as having an

inconsistent number of points between many objects, sampling in some form is required.

The dataset used for performance evaluation in [2] already has 2048 points sampled from

the surface of a 3D CAD mesh, but 2048 points is too large to be performant. Therefore,

PointNet uses further sampling on these point clouds by uniform random sampling or

Furthest Point sampling.

 Furthest Point Sampling (FPS) [30] is a simple sampling algorithm that consists

of only a few steps. There are two sets: one set for all of the sampled points and one set

for all of the remaining points that are not yet in the sampled points set. To start, a single

point is randomly selected and put into the sampled set. Then, for each point in

remaining, find the nearest neighbor in sampled, and save the distance to the point it

14

corresponds to in the remaining set. Then, select the point in the remaining set where the

nearest neighbor distance is the largest and move that point from the remaining set to the

sampled set. Then, repeat these steps until the sampled set has the specified number of

points in it. Figure 1 shows how FPS gives a better representation of an object [5].

Figure 1

Furthest Point Sampling (FPS) vs Uniform Random Sampling [5]

SampleNet [4] proposes that classical sampling approaches like FPS do not

consider the processing of the sampled point cloud. According to the work of Dovrat et

al. [6], a neural network can be used to produce a set of simplified points which is

optimized for point cloud learning, which then uses a post-processing step to match the

simplified points to their nearest neighbors in the original point cloud. SampleNet

continues this work by introducing a differentiable version of nearest neighbor selection

15

during training, which they call soft projection. Soft projection replaces the simplified

points with a weighted average of the points nearest neighbors. This effectively

approximates the nearest neighbor selection portion of the algorithm proposed by Dovrat

et al. It is important to note that normal nearest neighbor sampling is a non-differentiable

function with regard to neural networks, and therefore, cannot be learned on, but the

approximation of the nearest neighbor is differentiable, and therefore, learnable, while

also being able to use the original point cloud directly.

3.3 Multi-View Convolutional Neural Network (MVCNN)

 Instead of classifying an object using a point cloud or volumetric occupancy grid

as input, MVCNN [3] uses multiple 2D images as input. MVCNN uses multiple CNNs to

classify objects. To use MVCNN, multiple images of the same object at different angles

are required. The distance of each image origin to the object must be similar as well as

the at regular intervals around the object for maximum performance.

 To create the rendered images of the objects, shapes are scaled to fit into a

viewing volume and cameras are set up to capture the images within the virtual scene.

The cameras are placed in specific spots around the object depending on the assumed

situation the object is in. For example, one of the cameras placing methods involves

placing 12 cameras in a circle around the center of an object at 30 degrees intervals while

being elevated 30 degrees from the ground plane. This is used assuming the objects are

consistently aligned upright in the z-axis, which is the case for most 3D model datasets.

Some datasets may not do this, so other methods for placing the camera may be needed.

16

 MVCNN uses image descriptors based on Fisher vectors and CNN activation

features to start the classification process. The first CNN in the network is shared

between all 12 different views and when classifying, is used on all 12 views where the

results are aggregated together in a “view pool,” which is similar to a max pool function.

A separate neural network is used after this view pooling to finally classify the object.

The parameters across all 12 views in the first neural network are shared.

17

Chapter 4

Experimental Setup and Design

In this chapter, we describe in detail which dataset, evaluation metrics used,

hardware, and code were used to conduct the set of experiments.

4.1 Dataset Description

 All experiments in this paper use the ModelNet [19] dataset in the form that they

need it in. ModelNet is a dataset containing 12,311 CAD-generated meshes across 40

different classes, 9,843 meshes set aside for training and 2,468 for testing [27].

4.1.1 PointNet and SampleNet

 PointNet and SampleNet use a point cloud representation of ModelNet.

Additionally, the experiments in this thesis use the entire dataset.

4.1.2 MVCNN

 MVCNN uses multiple images to represent every mesh in the ModelNet dataset.

Additionally, the experiments in this paper use a subset of the dataset found on the

MVCNN web page, consisting of 10 classes with 100 objects per class, 80 of which are

for training and 20 for testing.

4.2 Evaluation Measures

 Overall, the metrics for all tests in this paper are accuracy and training time. All

tests in this paper use either validation accuracy after each epoch as a metric for

comparison or evaluation accuracy. The MVCNN tests use average, maximum,

18

minimum, and median accuracies as evaluation accuracies as each method was tested

multiple times. Additionally, the MVCNN tests use average training time for each trial.

4.3 Hardware and Code Used

All tests were done using a RTX 2080 super GPU, Ryzen 3700x CPU, and 32

gigabytes of RAM. The tests were conducted on the Ubuntu operating system with the

assistance of Docker [28].

4.3.1 PointNet and SampleNet Code

For the experiments done in this paper, the code from the SampleNet GitHub page

[7] were used along with the Docker image provided by that GitHub page.

Implementations of PointNet and SampleNet were included in the code, so both PointNet

and SampleNet were tested using the code found on this GitHub page. By default,

PointNet uses random sampling, so Furthest Point sampling was implemented manually

based on the Chainer [8] implementation of the code. This code uses python 3.6.9 along

with Tensorflow 1.13.2. The sampling for PointNet random sampling happened at the

beginning of each epoch while the Furthest Point sampling happened as a preprocessing

step before training.

4.3.2 MVCNN Code

For the experiments done in this paper, the implementation of MVCNN from

MVCNN with CRF-RNN [9] was used. The CRF-RNN portion was ignored. A subset of

the image data found at the MVCNN website [3] was used. Some custom python scripts

were made to organize the data in a way that worked with this MVCNN implementation.

19

By default, this implementation chooses the first views found, so if there are 12 total

views and 6 views were to be selected, the first 6 would be selected each epoch. A

modification was made so that this could be 6 random views selected per epoch or 6

evenly spaced views instead of the first 6. The resolution reduction was done at the

beginning of the neural network with a max pool function, which was also not included in

the original code.

4.4 Investigated Issues

4.4.1 PointNet and SampleNet Classification Performance Comparison

 We investigate the effect of varying the methods of sampling and the number of

points sampled on evaluation accuracy and training time.

The suite of experiments that are performed are as follows:

1. Use PointNet random sampling and vary between using 32, 64, 128, 256, 512, and

1024 points.

2. Use PointNet Furthest Point sampling and vary between using 32, 64, 128, and

256 points.

3. Use SampleNet sampling and vary between using 32, 64, 128, 256, and 512

points.

4.4.2 MVCNN

 We investigate the effect of varying the methods of sampling, the number of

views sampled to, batch size, and number of epochs of training on average, maximum,

minimum, and median accuracies as well as average training time.

20

The suite of experiments that are performed are as follows:

1. Fix Batch size to 4 and number of epochs to 16 and vary sampling method

between first views, random views, selected views, resolution reduction with first

views, resolution reduction with random views, and resolution reduction with

selected views, additionally vary number of views used between 3, 4, 6, 8, and 12

views.

2. Fix Batch size to 1 and number of epochs to 16 and vary sampling method

between first views, random views, selected views, resolution reduction with first

views, resolution reduction with random views, and resolution reduction with

selected views, additionally vary number of views used between 3, 4, 6, 8, and 12

views.

3. Fix Batch size to 16 and number of epochs to 64 and vary sampling method

between first views, random views, selected views, resolution reduction with first

views, resolution reduction with random views, and resolution reduction with

selected views, additionally vary number of views used between 3, 4, 6, 8, and 12

views.

21

Chapter 5

Experimental Results and Analysis

 In this chapter, we present the results from the experiment outlined in chapter 4

along with an analysis of the experimental results.

5.1 Sampling with PointNet Versus SampleNet

The set of graphs in Figure 2 show the validation accuracy after each epoch of

PointNet (red) with 1024 points sampled using random sampling versus SampleNet

(blue) with various amounts of points sampled along with the testing accuracy in the

legend at the bottom right of each graph. PointNet 1024 was run twice, taking 70.7

minutes and 73.2 minutes to complete 100 epochs respectively while having accuracies

of 87.1% and 87.2% respectively. The graph at the bottom right is the only graph that

uses the second run of PointNet. Each run of SampleNet ran for 200 epochs.

SampleNet 256 (top left) took 66.1 minutes to complete with an 82.7% accuracy,

SampleNet 128 (top right) took 43.8 minutes to complete with a 79.8% accuracy,

SampleNet 64 (bottom left) took 34 minutes to complete with an 81.6% accuracy, and

SampleNet 32 (bottom right) took 30.2 minutes to complete with an accuracy of 77.2%.

22

Figure 2

PointNet With 1024 Randomly Sampled Points (PointNet 1024) vs SampleNet With

Different Sampling Size

Note. Compares Classification Performance for PointNet with 1024 randomly sampled

points (PointNet 1024) vs SampleNet with different sampling size x = 32, 64, 128, 256

(SampleNet x)

SampleNet does not maintain accuracy while reducing the amount of work

needed. In Figure 2, the default PointNet implementation with 1024 points is

considerably more accurate than any SampleNet run. The closest accuracy that

SampleNet has to the default PointNet implementation is 82.7% accuracy with 256 points

sampled, which is a whole 4.42% less accurate than PointNet’s 87.12% accuracy using

23

1024 points. This significant decrease in accuracy comes saving roughly 4 minutes of

training time, which is only 7% faster than PointNet with 1024 points.

The set of graphs in Figure 3 show the validation accuracy after each epoch of

PointNet with 1024 points sampled (red) versus PointNet with various amounts of points

sampled (blue), both using random sampling, along with the testing accuracy in the

legend at the bottom right of each graph. PointNet 1024 took 70.7 minutes to complete

100 epochs while having an accuracy of 87.1%. Every run of PointNet 256, 128, 64, and

32 with ran for 200 epochs.

PointNet 256 (top left) took 40.87 minutes to complete with an 87.6% accuracy,

PointNet 128 (top right) took 26.6 minutes to complete with an 86.7% accuracy, PointNet

64 (bottom left) took 19.48 minutes to complete with an 86.4% accuracy, and PointNet

32 (bottom right) took 17.4 minutes to complete with an accuracy of 82.8%.

24

Figure 3

Comparing Classification Performance for PointNet 1024 vs PointNet With Smaller

Sample Sizes

The default PointNet sampling method, which is uniform random sampling,

performs much better than SampleNet. In Figure 3, the difference between 1024 points

and smaller sample sizes is noticeable, but not significant until the number of points

sampled is in the double digits. The evaluation accuracy of using 256 points sampled is

comparable to the accuracy of using 1024 points. There is a 0.44% accuracy difference

between 1024 points and 256 points sampled in favor of 256 points sampled. Sampling to

256 points improved speed by 72.9%, which is a considerable speed up for no accuracy

25

lost. This is reflected in the top left graph of Figure 3, where the validation accuracy of

using 256 points sampled is slightly lower than using 1024 points but catches up once it

is allowed to run for more epochs. The gap between using 1024 points and sampling to

128 or 64 points is apparent, although still small. The speed up is larger, with sampling to

128 points being 165.7% faster and sampling to 64 points being 262.8% faster than using

1024 points. Sampling to 32 points is significantly less accurate than using 64 or more

points while only being 12% faster than using 64 points.

26

Figure 4

Comparing Classification Performance for PointNet vs SampleNet With Fixed Sample

Size

27

The set of graphs in Figure 4 show the validation accuracy after each epoch of

PointNet (red) with various amounts of points sampled using random sampling versus

SampleNet (blue) with various amounts of points sampled along with the testing accuracy

in the legend at the bottom right of each graph. The number of points sampled is the same

for both methods in each graph. Each method was run for 200 epochs with the exception

of PointNet 512, which ran for 75 epochs.

Comparing PointNet random sampling with SampleNet with the same number of

points sampled shows how random sampling is better. Throughout the entirety of Figure

4, PointNet sampling consistently outperforms SampleNet. The gap between the

validation accuracies after each epoch is significant between sampling methods as well as

the evaluation accuracies and time spent training, all in favor of random sampling.

SampleNet starts to catch up in accuracy towards the later epochs, but still takes around

70% more time to complete than random sampling.

28

Figure 5

Comparing Classification Performance for PointNet Random vs Furthest Point Sampling

With Fixed Sample Size

The set of graphs in Figure 5 show the validation accuracy after epoch of

PointNet with random sampling (red) with various amounts of points sampled versus

PointNet with furthest point sampling (blue) with various amounts of points sampled

along with the testing accuracy in the legend at the bottom right of each graph. The

number of points sampled is the same for both methods in each graph. Each method ran

for 200 epochs.

29

Furthest Point 256 (top left) took 36.82 minutes to complete with an 87.7%

accuracy, Furthest Point 128 (top right) took 21.5 minutes to complete with an 87.12%

accuracy, Furthest Point 64 (bottom left) took 14.67 minutes to complete with an 86.5%

accuracy, and Furthest Point 32 (bottom right) took 12.6 minutes to complete with an

accuracy of 83.7%.

PointNet using random sampling is not too different from PointNet using furthest

point sampling. The accuracy of each, shown in Figure 5, is within 1% of each other for

each respective sampling size. However, FPS is slightly more accurate in all cases, and

this is most apparent when sampling to 32 points. The validation accuracies after each

epoch are relatively close, with FPS being slightly more accurate and learning faster than

random sampling, which is reflected in the evaluation accuracy of FPS also being higher.

It is important to note that furthest point technically did take less time, but that is because

the furthest point sampling algorithm took place before training, while random sampling

happened before each epoch. The furthest point algorithm does start with a random point,

so it could possibly benefit from sampling before each epoch, but also requiring an

algorithm that can run on the GPU. The CPU implementation takes too long to complete

before each epoch, especially for an algorithm that will result in a similar structure on

across different runs on the same set of points.

30

Table 1

Comparing Classification Performance and Training Time for PointNet Random vs

PointNet FP vs SampleNet Sampling Accuracy

Accuracy

 1024 512 256 128 64 32

Random 87.12 86.22 87.56 86.67 86.35 82.78

Furthest

Point

- - 87.72 87.12 86.47 83.67

SampleNet - 86.35 82.7 79.78 81.56 77.15

Time

 1024 512 256 128 64 32

Random 70.67 28.92 40.87 26.6 19.48 17.35

Furthest

Point

- - 26.82 21.49 14.67 12.58

SampleNet - 103.95 66.08 43.77 34.04 30.2

Note. The column names are the number of points sampled to and the row names are the

sampling methods used. The accuracies are percentages, and the time is in minutes.

 Table 1 shows the accuracy and time values for each method and number of

points sampled to pair.

With 512 points, PointNet random is 0.13% less accurate than SampleNet.

However, SampleNet also ran for many more epochs. Also, in the top left graph of Figure

4, SampleNet’s validation accuracy is much lower than the test accuracy. With 256

points, PointNet random is 4.86% more accurate than SampleNet and PointNet took 25.2

less minutes than SampleNet to complete. With 128 points, PointNet random is 6.89%

more accurate than SampleNet and PointNet took 17.2 less minutes than SampleNet to

31

complete. With 64 points, PointNet random is 4.79% more accurate than SampleNet and

PointNet took 14.6 less minutes than SampleNet to complete. With 32 points, PointNet is

5.63% more accurate than SampleNet and PointNet took 12.9 less minutes than

SampleNet to complete.

With 256 points, Furthest Point is 0.12% more accurate than random and Furthest

Point took 4 less minutes than random to complete. With 128 points, Furthest Point is

0.45% more accurate than random and Furthest Point took 5.1 less minutes than random

to complete. With 64 points, Furthest Point is 0.12% more accurate than random and

Furthest Point took 4.8 less minutes than random to complete. With 32 points, Furthest

Point is 0.89% more accurate than random and Furthest Point took 4.77 less minutes than

random to complete.

Figure 6

Comparing Classification Performance for PointNet Random vs PointNet FP vs

SampleNet Sampling Accuracy

32

The graph in Figure 6 shows the accuracy of using different numbers of points

when sampling. Num points is the number of points used when sampling, ranging from

32 to 1024 points sampled. The specific accuracies of each are found in Table 1.

Figure 7

Comparing Training Time for PointNet and SampleNet Sampling

The set of graphs in Figure 7 show the amount of time training took with different

numbers of points when sampling with PointNet Random (red), PointNet Furthest

Point(blue), and SampleNet (green). Num points is the number of points used when

sampling, ranging from 32 to 1024 points sampled. The left graph shows the total amount

of time taken for that method to run and the right graph shows the amount of time per

epoch per method.

Looking at the training time per epoch graph in Figure 7, it is confirmed that

PointNet takes a linear amount more time with more points used, which also stands true

for SampleNet. The slopes of each method are linear and almost identical to each other,

33

with SampleNet starting with a higher time per epoch. PointNet took less time per epoch

with 128 points than SampleNet with 32 points. Additionally, PointNet with 256 points

took less time per epoch than SampleNet with 128 points.

Figure 8

Comparing Classification Performance for PointNet and SampleNet 1024, 256, 128, 64,

32

The set of graphs in Figure 8 show the validation accuracy after each epoch of

each sampling method, comparing various amounts of points sampled.

34

The top left graph shows the accuracy of PointNet using Random sampling and

different amounts of points sampled to. Red is 1024 points, blue is 256 points, green is

128 points, cyan is 64 points, and purple is 32 points. The final evaluation accuracies and

how long training took are on the graph legend.

The top right graph shows the accuracy of SampleNet using different amounts of

points sampled to. Red is 512 points, blue is 256 points, green is 128 points, cyan is 64

points, and purple is 32 points. The final evaluation accuracies and how long training

took are on the graph legend.

The bottom left graph shows the accuracy of PointNet using Furthest Point

sampling and different amounts of points sampled to. Red is 256 points, blue is 128

points, green is 64 points, and cyan is 32 points. The final evaluation accuracies and how

long training took are on the graph legend.

Comparing the methods with themselves at different number of points sampled

also shows some interesting results. In Figure 8, the two PointNet sampling methods

show steep increases in accuracy at the beginning of training followed by a plateau of

validation accuracy, improving at a slow rate. This stays true for any number of points

sampled. The validation accuracy after each epoch between the number of points sampled

for random sampling seems to be more spread than with furthest point sampling.

SampleNet also improves the validation accuracy after epoch quickly, but this sharp

increase stops sooner than in PointNet, leading into a somewhat linear increase in

accuracy after that. This is technically an improvement over PointNet as SampleNet

seems like it will plateau at a later epoch than PointNet. However, SampleNet is still

35

much less accurate than PointNet and would take significantly longer to train to have a

similar accuracy to PointNet. These observations stay true for any number of points

sampled with SampleNet.

Figure 9

SampleNet With Different Number of Points in Initial Point Cloud and PointNet Using

2048 Points

The set of graphs in Figure 9 are some auxiliary graphs that showcase some other

situations. Ordinarily, SampleNet first uses Furthest Point Sampling (FPS), the type of

36

sampling PointNet uses, before doing further sampling. These graphs show the effect of

changing the number of points sampled from FPS compared to the PointNet counterpart.

In PointNet 2048 vs SampleNet 2048-32 (top left), PointNet (red) is sampled to

2048 points while SampleNet first samples to 2048 points using random sampling, then

to 32 points using the SampleNet in the second part of sampling. PointNet took 70.8

minutes to complete 50 epochs with an accuracy of 82.2% while SampleNet took 20.83

minutes to complete 100 epochs with an accuracy of 49.47% accuracy.

In PointNet 512 vs SampleNet 512-32 (top right) and PointNet 512 vs SampleNet

512-256 (bottom left), PointNet (red) took 28.92 minutes to complete 75 epochs with an

accuracy of 86.2%. SampleNet 512-32 took 17.2 minutes to complete 150 epochs with an

accuracy of 79.6%. SampleNet 512-256 took 40 minutes to complete 150 epochs with an

accuracy of 84%.

Overall, the best type of sampling to use with PointNet is furthest point sampling.

It maintains accuracy until there are about 64 points sampled. Random sampling also

maintains accuracy in the same way but is less accurate to start. Sampling to 256 points

seems to be a sweet spot where accuracy is above sampling using 1024 points and

training time is significantly reduced. Sampling to 64 points will still keep the accuracy

within 1% of using 1024 points, along with any number of points above 64. SampleNet

does not maintain accuracy while taking significantly longer to train than either PointNet

method.

37

5.2 Different Types of Sampling With MVCNN

Table 2

MVCNN Test Results – Batch Size 4

AVERAGES

+------------+------------+------------+--------------+------------------+------------------+--------------------+

| # of Views | firstx-rot | random-rot | selected-rot | reduction-firstx | reduction-random | reduction-selected |

+------------+------------+------------+--------------+------------------+------------------+--------------------+

| 12 | 90.1 | - | - | 89.8 | - | - |

| 8 | 90.3 | 91.3 | 89.9 | 90.1 | 89.2 | 87.4 |

| 6 | 93.0 | 91.9 | 91.1 | 86.6 | 91.5 | 88.2 |

| 4 | 91.1 | 92.9 | 90.8 | 92.6 | 89.6 | 88.0 |

| 3 | 91.5 | 90.2 | 89.4 | 89.0 | 89.1 | 87.3 |

+------------+------------+------------+--------------+------------------+------------------+--------------------+

MAX

+------------+------------+------------+--------------+------------------+------------------+--------------------+

| # of Views | firstx-rot | random-rot | selected-rot | reduction-firstx | reduction-random | reduction-selected |

+------------+------------+------------+--------------+------------------+------------------+--------------------+

| 12 | 94.0 | - | - | 94.0 | - | - |

| 8 | 93.0 | 95.0 | 92.0 | 93.0 | 92.0 | 91.0 |

| 6 | 95.0 | 94.0 | 94.0 | 91.0 | 95.0 | 90.0 |

| 4 | 95.0 | 95.0 | 93.0 | 95.0 | 92.0 | 90.0 |

| 3 | 93.0 | 96.0 | 92.0 | 92.0 | 94.0 | 92.0 |

+------------+------------+------------+--------------+------------------+------------------+--------------------+

MIN

+------------+------------+------------+--------------+------------------+------------------+--------------------+

| # of Views | firstx-rot | random-rot | selected-rot | reduction-firstx | reduction-random | reduction-selected |

+------------+------------+------------+--------------+------------------+------------------+--------------------+

| 12 | 86.0 | - | - | 87.0 | - | - |

| 8 | 88.0 | 87.0 | 87.0 | 88.0 | 87.0 | 84.0 |

| 6 | 92.0 | 88.0 | 88.0 | 84.0 | 88.0 | 81.0 |

| 4 | 86.0 | 88.0 | 87.0 | 89.0 | 87.0 | 84.0 |

| 3 | 89.0 | 75.0 | 86.0 | 87.0 | 83.0 | 82.0 |

+------------+------------+------------+--------------+------------------+------------------+--------------------+

RANGE

+------------+------------+------------+--------------+------------------+------------------+--------------------+

| # of Views | firstx-rot | random-rot | selected-rot | reduction-firstx | reduction-random | reduction-selected |

+------------+------------+------------+--------------+------------------+------------------+--------------------+

| 12 | 8.0 | - | - | 7.0 | - | - |

| 8 | 5.0 | 8.0 | 5.0 | 5.0 | 5.0 | 7.0 |

| 6 | 3.0 | 6.0 | 6.0 | 7.0 | 7.0 | 9.0 |

| 4 | 9.0 | 7.0 | 6.0 | 6.0 | 5.0 | 6.0 |

| 3 | 4.0 | 21.0 | 6.0 | 5.0 | 11.0 | 10.0 |

+------------+------------+------------+--------------+------------------+------------------+--------------------+

MEDIAN

+------------+------------+------------+--------------+------------------+------------------+--------------------+

| # of Views | firstx-rot | random-rot | selected-rot | reduction-firstx | reduction-random | reduction-selected |

+------------+------------+------------+--------------+------------------+------------------+--------------------+

| 12 | 90.0 | - | - | 89.0 | - | - |

| 8 | 90.0 | 91.0 | 90.5 | 90.0 | 89.5 | 87.0 |

| 6 | 93.0 | 92.0 | 91.5 | 86.5 | 91.5 | 89.0 |

| 4 | 91.5 | 94.0 | 91.0 | 93.0 | 90.0 | 89.0 |

| 3 | 92.0 | 91.0 | 89.5 | 89.0 | 89.5 | 87.5 |

+------------+------------+------------+--------------+------------------+------------------+--------------------+

TIME

+------------+------------+------------+--------------+------------------+------------------+--------------------+

| # of Views | firstx-rot | random-rot | selected-rot | reduction-firstx | reduction-random | reduction-selected |

+------------+------------+------------+--------------+------------------+------------------+--------------------+

| 12 | 264.6 | - | - | 141.73 | - | - |

| 8 | 203.65 | 203.74 | 204.07 | 105.55 | 105.77 | 105.62 |

| 6 | 175.47 | 175.63 | 175.65 | 91.52 | 90.3 | 90.37 |

| 4 | 148.23 | 148.38 | 148.2 | 74.7 | 74.71 | 74.68 |

| 3 | 134.74 | 134.75 | 134.75 | 66.8 | 66.7 | 66.9 |

+------------+------------+------------+--------------+------------------+------------------+--------------------+

Table 2 consists of 6 separate sub-tables, due to each method being tested 10

separate times, training for 16 epochs per trial. There are 6 sampling methods listed at the

top – firstx-rot, random-rot, selected-rot, reduction-firstx, reduction-random, and

38

reduction-selected. Firstx-rot selects the first few views, random-rot selects a few random

views, and selected-rot selects evenly spaced views (for example, 6 “selected” views

would be every other view if there were 12 views total for an object). Reduction-firstx

selects the first few views along with reducing the resolution of the images to half the

original value for each axis, reduction-random selects a few random views along with

reducing the resolution of the images, and reduction-selected selects evenly spaced views

along with reducing the resolution of the images.

There are also 5 different number of views used on the left. Since there were 10

trials for each view-method combination, the average, maximum, minimum, and median

accuracies get their own tables. The range table is just the maximum minus the minimum

accuracies. The time table displays the average time in seconds that one training run takes

for that view-method combination.

Each MVCNN sampling method found in Table 2 were tested 10 times each,

which is why the sub-tables have maximum, minimum, and average accuracies. The top

left entry in each table (firstx-rot 12) does not use any sampling method. Most of the

view sampling methods maintain an accuracy around or higher than using no sampling at

all. In particular, using the first 6 views yields the best overall results, having the second

highest maximum accuracy of 95%, the highest minimum accuracy of 92%, and the

highest average accuracy. The highest accuracy of 96% was achieved using 3 random

views, but the lowest accuracy of 75% was also achieved using 3 random views. This

makes using 3 random views one of the more volatile than other methods of sampling,

but it still maintains the average accuracy from using no sampling. In all non-reduction

methods, using 6 views seems to be the most accurate, while selecting every few views

39

tends to have the worst accuracy out of the non-reduction methods. The reduction

methods all perform worse than the non-reduction counterparts with the exception of a

couple methods.

The amount of time saved from reducing the amount of data used is not equal to

the amount of data sampled. For example, looking at the Time section of Table 2,

reducing the number of views to 6 or ½ the original amount reduces the training time to

2/3. This becomes more apparent when getting closer to ¼ of the original number of

views, where the time spent on training is more than half of the original training time.

This also applies to the resolution reduction as well, where using 2x2 resolution reduction

results in the training time still taking over half of the no sampling training time. The

combination of resolution reduction and view reduction results in much lower training

times, but still do not maintain accuracy from using no sampling.

Since the resolution reduction implemented uses a 2x2 max pooling function, the amount

of input information reduces to roughly a quarter of the original size, going from 224

pixels high and 224 pixels wide pixels to 112 pixels high and 112 pixels wide, reducing

the number of pixels from 50176 to 12544. If the number of views is kept the same, then

this method reduces the amount of information by the same amount as reducing the

number of views to ¼ of the total number of views. In this case, resolution reduction has

the equivalent amount of information as reducing the number of views to 3. Resolution

reduction overall performs worse than view reduction with 3 views with the average and

median accuracies of resolution reduction being lower than of using 3 views. The average

time of one trial for view reduction is also lower than that of resolution reduction, making

view reduction to 3 views strictly superior to resolution reduction.

40

Table 3

MVCNN Test Results – Batch Size 1

AVERAGES

+------------+------------+------------+--------------+------------------+------------------+--------------------+

| # of Views | firstx-rot | random-rot | selected-rot | reduction-firstx | reduction-random | reduction-selected |

+------------+------------+------------+--------------+------------------+------------------+--------------------+

| 12 | 91.1 | - | - | 87.7 | - | - |

| 8 | 90.56 | 90.9 | 90.3 | 89.5 | 90.6 | 88.78 |

| 6 | 91.3 | 92.11 | 89.0 | 88.8 | 92.0 | 87.6 |

| 4 | 90.9 | 89.6 | 89.4 | 92.1 | 89.0 | 87.4 |

| 3 | 90.88 | 90.33 | 88.44 | 89.3 | 87.3 | 84.9 |

+------------+------------+------------+--------------+------------------+------------------+--------------------+

MAX

+------------+------------+------------+--------------+------------------+------------------+--------------------+

| # of Views | firstx-rot | random-rot | selected-rot | reduction-firstx | reduction-random | reduction-selected |

+------------+------------+------------+--------------+------------------+------------------+--------------------+

| 12 | 94.0 | - | - | 94.0 | - | - |

| 8 | 93.0 | 94.0 | 93.0 | 92.0 | 94.0 | 91.0 |

| 6 | 95.0 | 95.0 | 94.0 | 92.0 | 96.0 | 93.0 |

| 4 | 94.0 | 91.0 | 93.0 | 95.0 | 92.0 | 90.0 |

| 3 | 94.0 | 93.0 | 92.0 | 93.0 | 91.0 | 89.0 |

+------------+------------+------------+--------------+------------------+------------------+--------------------+

MIN

+------------+------------+------------+--------------+------------------+------------------+--------------------+

| # of Views | firstx-rot | random-rot | selected-rot | reduction-firstx | reduction-random | reduction-selected |

+------------+------------+------------+--------------+------------------+------------------+--------------------+

| 12 | 86.0 | - | - | 75.0 | - | - |

| 8 | 87.0 | 88.0 | 86.0 | 81.0 | 86.0 | 86.0 |

| 6 | 88.0 | 89.0 | 85.0 | 86.0 | 89.0 | 84.0 |

| 4 | 86.0 | 87.0 | 87.0 | 89.0 | 84.0 | 85.0 |

| 3 | 85.0 | 86.0 | 84.0 | 85.0 | 84.0 | 82.0 |

+------------+------------+------------+--------------+------------------+------------------+--------------------+

RANGE

+------------+------------+------------+--------------+------------------+------------------+--------------------+

| # of Views | firstx-rot | random-rot | selected-rot | reduction-firstx | reduction-random | reduction-selected |

+------------+------------+------------+--------------+------------------+------------------+--------------------+

| 12 | 8.0 | - | - | 19.0 | - | - |

| 8 | 6.0 | 6.0 | 7.0 | 11.0 | 8.0 | 5.0 |

| 6 | 7.0 | 6.0 | 9.0 | 6.0 | 7.0 | 9.0 |

| 4 | 8.0 | 4.0 | 6.0 | 6.0 | 8.0 | 5.0 |

| 3 | 9.0 | 7.0 | 8.0 | 8.0 | 7.0 | 7.0 |

+------------+------------+------------+--------------+------------------+------------------+--------------------+

MEDIAN

+------------+------------+------------+--------------+------------------+------------------+--------------------+

| # of Views | firstx-rot | random-rot | selected-rot | reduction-firstx | reduction-random | reduction-selected |

+------------+------------+------------+--------------+------------------+------------------+--------------------+

| 12 | 91.0 | - | - | 89.5 | - | - |

| 8 | 91.0 | 90.5 | 90.0 | 90.5 | 91.0 | 89.0 |

| 6 | 91.5 | 92.0 | 88.0 | 89.0 | 92.0 | 87.5 |

| 4 | 91.5 | 90.0 | 89.0 | 92.0 | 89.0 | 87.5 |

| 3 | 91.5 | 91.0 | 88.0 | 89.5 | 87.5 | 84.5 |

+------------+------------+------------+--------------+------------------+------------------+--------------------+

TIME

+------------+------------+------------+--------------+------------------+------------------+--------------------+

| # of Views | firstx-rot | random-rot | selected-rot | reduction-firstx | reduction-random | reduction-selected |

+------------+------------+------------+--------------+------------------+------------------+--------------------+

| 12 | 721.74 | - | - | 420.18 | - | - |

| 8 | 594.39 | 594.37 | 594.7 | 329.12 | 329.22 | 329.2 |

| 6 | 537.1 | 537.12 | 537.1 | 289.83 | 290.17 | 290.3 |

| 4 | 479.79 | 479.73 | 479.86 | 247.96 | 247.88 | 247.99 |

| 3 | 455.69 | 457.89 | 456.31 | 230.52 | 230.97 | 230.37 |

+------------+------------+------------+--------------+------------------+------------------+--------------------+

Table 3 is similar to Table 2 and uses the same set of tables as but uses a batch

size of 1 instead of a batch size of 4. Some full testing runs never actually learned and got

stuck at 10% accuracy, so those entries were omitted. This only happened with a batch

size of 1.

41

Table 3 also demonstrates many of the conclusions found from analyzing Table 2.

Selecting the first few views maintains evaluation accuracy down to 3 views, while

random view selection also maintains evaluation accuracy down to 6 views. Most other

methods do not maintain accuracy. Selecting the first 6 views also performs the best

overall. Interestingly, resolution reduction with no view reduction (reduction-firstx 12)

takes less time per trial than reducing the number of views to 3 views, which was the

opposite in Table 2. However, using view reduction down to 3 views maintains accuracy

better than simple resolution reduction.

Table 4

MVCNN Test Results – Batch Size 16 with 64 Epochs

AVERAGES

+------------+------------+------------+--------------+------------------+------------------+--------------------+

| # of Views | firstx-rot | random-rot | selected-rot | reduction-firstx | reduction-random | reduction-selected |

+------------+------------+------------+--------------+------------------+------------------+--------------------+

| 12 | 92.8 | - | - | 90.0 | - | - |

| 8 | 93.6 | 91.8 | 93.4 | 89.2 | 88.8 | 91.2 |

| 6 | 91.25 | 93.4 | 93.4 | 92.0 | 92.6 | 89.4 |

| 4 | 95.2 | 94.0 | 93.4 | 94.2 | 87.8 | 90.8 |

| 3 | 94.4 | 91.0 | 90.4 | 91.6 | 90.6 | 90.8 |

+------------+------------+------------+--------------+------------------+------------------+--------------------+

MAX

+------------+------------+------------+--------------+------------------+------------------+--------------------+

| # of Views | firstx-rot | random-rot | selected-rot | reduction-firstx | reduction-random | reduction-selected |

+------------+------------+------------+--------------+------------------+------------------+--------------------+

| 12 | 94.0 | - | - | 91.0 | - | - |

| 8 | 95.0 | 94.0 | 96.0 | 91.0 | 91.0 | 93.0 |

| 6 | 95.0 | 95.0 | 96.0 | 94.0 | 95.0 | 92.0 |

| 4 | 97.0 | 96.0 | 94.0 | 95.0 | 89.0 | 92.0 |

| 3 | 97.0 | 95.0 | 92.0 | 93.0 | 93.0 | 93.0 |

+------------+------------+------------+--------------+------------------+------------------+--------------------+

MIN

+------------+------------+------------+--------------+------------------+------------------+--------------------+

| # of Views | firstx-rot | random-rot | selected-rot | reduction-firstx | reduction-random | reduction-selected |

+------------+------------+------------+--------------+------------------+------------------+--------------------+

| 12 | 91.0 | - | - | 89.0 | - | - |

| 8 | 92.0 | 87.0 | 89.0 | 88.0 | 86.0 | 89.0 |

| 6 | 83.0 | 92.0 | 89.0 | 88.0 | 91.0 | 86.0 |

| 4 | 93.0 | 92.0 | 93.0 | 93.0 | 85.0 | 88.0 |

| 3 | 90.0 | 88.0 | 88.0 | 89.0 | 87.0 | 90.0 |

+------------+------------+------------+--------------+------------------+------------------+--------------------+

RANGE

+------------+------------+------------+--------------+------------------+------------------+--------------------+

| # of Views | firstx-rot | random-rot | selected-rot | reduction-firstx | reduction-random | reduction-selected |

+------------+------------+------------+--------------+------------------+------------------+--------------------+

| 12 | 3.0 | - | - | 2.0 | - | - |

| 8 | 3.0 | 7.0 | 7.0 | 3.0 | 5.0 | 4.0 |

| 6 | 12.0 | 3.0 | 7.0 | 6.0 | 4.0 | 6.0 |

| 4 | 4.0 | 4.0 | 1.0 | 2.0 | 4.0 | 4.0 |

| 3 | 7.0 | 7.0 | 4.0 | 4.0 | 6.0 | 3.0 |

+------------+------------+------------+--------------+------------------+------------------+--------------------+

42

MEDIAN

+------------+------------+------------+--------------+------------------+------------------+--------------------+

| # of Views | firstx-rot | random-rot | selected-rot | reduction-firstx | reduction-random | reduction-selected |

+------------+------------+------------+--------------+------------------+------------------+--------------------+

| 12 | 94.0 | - | - | 90.0 | - | - |

| 8 | 94.0 | 93.0 | 94.0 | 89.0 | 89.0 | 91.0 |

| 6 | 93.5 | 93.0 | 95.0 | 93.0 | 92.0 | 89.0 |

| 4 | 95.0 | 93.0 | 93.0 | 94.0 | 88.0 | 91.0 |

| 3 | 95.0 | 91.0 | 91.0 | 92.0 | 92.0 | 90.0 |

+------------+------------+------------+--------------+------------------+------------------+--------------------+

TIME

+------------+------------+------------+--------------+------------------+------------------+--------------------+

| # of Views | firstx-rot | random-rot | selected-rot | reduction-firstx | reduction-random | reduction-selected |

+------------+------------+------------+--------------+------------------+------------------+--------------------+

| 12 | 557.58 | - | - | 366.15 | - | - |

| 8 | 386.87 | 390.5 | 392.68 | 257.39 | 256.72 | 258.44 |

| 6 | 314.92 | 313.88 | 316.33 | 205.44 | 204.62 | 207.91 |

| 4 | 236.81 | 236.69 | 239.51 | 151.29 | 151.61 | 154.21 |

| 3 | 198.42 | 198.89 | 201.33 | 124.28 | 123.72 | 126.5 |

+------------+------------+------------+--------------+------------------+------------------+--------------------+

Table 4 is similar to Table 2 and uses the same set of tables but uses a batch size

of 16 instead of 4 along with training for 64 epochs instead of 16 epochs. There were also

only 5 training trials per method instead of 10 training trials per method.

Running each method for more epochs with a larger batch size gave some

interesting results. First, the maximum evaluation accuracy was 97% instead of 96%.

Also, the average accuracy of each sampling method increased. Additionally, using the

first 6 rotations was not the most accurate and had one trial that had 83% evaluation

accuracy, which was the lowest in this test run. This indicates that the trial using 3

random views in Table 2 that got an accuracy of 75% was due to luck to some extent.

Most of the view reduction methods maintained accuracy at or above the method using

no sampling, with the exception of a few methods, namely being 8 random views, 3

random views, and 3 selected views. Surprisingly, selected views mostly maintained

accuracy in this test run. Additionally, almost all of the resolution reduction methods did

not maintain accuracy. Comparing the average time per trial between choosing the 3

views against resolution reduction shows that resolution reduction takes almost double

the amount of time as choosing the 3 views. This indicates that batch size potentially has

43

an effect on the time that each method takes to complete, as using a batch size of 1

showed that resolution reduction was faster while using a batch size of 4 and 16. A

simple solution to this problem would be to simply select the views (if not using random

view selection) or do the resolution reduction before training, as resolution reduction on

the same image will always produce the same result. Likewise, view reduction that is not

random will always select the same views to train on, so they do not need to be selected

at the beginning of epoch. Instead, these can be done as a preprocessing step before

training. Nonetheless, every method of reducing the views to 3 without resolution

reduction are more accurate than resolution reduction.

Figure 10

MVCNN Validation Accuracy Over Time

The set of graphs in Figure 10 show the validation accuracy after each epoch of a

few different methods of sampling. The left graph shows the accuracy after each epoch

for the run with the maximum evaluation accuracy out of that sampling method’s training

44

trials. The right graph is the same but for the minimum evaluation accuracy of the

sampling method’s training runs. All final performance results can be found in Table 2.

In both graphs, the baseline of all 12 views used (red) is firstx-rot with 12 in

Table 2, which does not use any sampling method. The first 6 views sampling method

(blue) is firstx-rot with 6 views on the table, 3 random views (green) is random-rot with 3

views, and all 12 views with resolution reduction (cyan) is reduction-firstx with 12 views.

In the left graph showing the maximum evaluation accuracies, the final evaluation

accuracy of using all 12 views is 94%, using the first 6 views is gives an accuracy of

95%, using 3 random views give an accuracy of 96%, and using resolution reduction with

no view reduction gave an accuracy of 94%.

In the right graph showing the minimum evaluation accuracies, the final

evaluation accuracy of using all 12 views is 86%, using the first 6 views is gives an

accuracy of 93%, using 3 random views give an accuracy of 75%, and using resolution

reduction with no view reduction gave an accuracy of 87%.

Looking at Figure 10, the first 6 views method has the most stable validation

accuracy throughout each epoch in both the maximum and minimum evaluation accuracy

trials. The resolution reduction method starts off at a much worse accuracy as well as

taking longer to learn toward the beginning of the trials, but it catches up by around 8

epochs into the trials. The two notable decreases in validation accuracy occur between

epoch 9 and 10 of the maximum evaluation accuracy for using all 12 views, which it then

recovers from to attain a high evaluation accuracy. The second decrease happens for the

minimum evaluation accuracy trial for using 3 random views, which occurs at the end of

45

the trial, producing the model with the lowest accuracy of all the trials. Additionally,

using 3 random views gives the highest validation accuracy of any of the selected trials in

Figure 10.

Figure 11

MVCNN Validation Accuracy - Maximum vs Minimum Evaluation Accuracy

The set of graphs in Figure 11 take the max evaluation accuracy training runs

(red) of each sampling method and compares it with the minimum evaluation training

runs (blue) of each respective sampling method, using the validation accuracy after each

46

epoch. The top left graph is the baseline of all 12 views being used, or no sampling. The

top right graph is the resolution reduction with all 12 views sampling method, The

bottom left graph is the first 6 views sampling method, and the bottom right is the

random 3 views sampling method.

 In the top left graph (all 12 views/no sampling), the maximum evaluation

accuracy is 94% while the minimum evaluation accuracy is 86%. In the top right graph

(resolution reduction using no view reduction), the maximum evaluation accuracy is 94%

while the minimum evaluation accuracy is 87%. In the bottom left graph (first 6 views),

the maximum evaluation accuracy is 95% while the minimum evaluation accuracy is

93%. In the bottom right graph (random 3 views), the maximum evaluation accuracy is

96% while the minimum evaluation accuracy is 75%.

 Comparing each method’s maximum and minimum evaluation accuracy trials

with each other in Figure 11 shows the impact of random chance. Overall, the minimum

accuracy trials had more major decreases in accuracy between 2 epochs than the

maximum accuracy trials. This also applies to the beginning of the trials as well, where

learning is the quickest. Additionally, the minimum accuracy trial of using 3 random

views has a large decrease in accuracy at 4 epochs into the trial, which caused the rest of

the epochs to be less stable than other trials. Apart from the one massive decrease in

accuracy using all 12 views, using 3 random views have the most frequent large

decreases in validation accuracy throughout any trial.

47

Figure 12

MVCNN Sampling Method Loss

The set of graphs in Figure 12 show the training loss versus the validation loss of

a few different training runs across a few sampling methods. The top two graphs use the

maximum evaluation accuracy runs, while the bottom two graphs use the minimum

evaluation accuracy runs for each respective sampling method. The top left graph is the

baseline of all 12 views being used, or no sampling. The top right graph is the first 6

views sampling method, the bottom left graph is the resolution reduction with all 12

views sampling method, and the bottom right is the random 3 views sampling method.

48

The loss of each trial decreases at almost every epoch. Looking at Figure 12

shows that the validation loss after each epoch decreases almost every step. Some of the

larger decreases in accuracy, like the final epoch of the minimum evaluation accuracy

trial for 3 random views, are reflected in the respective loss graph, but the loss generally

decreases after each epoch, regardless of the change in accuracy. For example, epoch 10

of the minimum evaluation accuracy trial for 3 random views sees a decrease in accuracy,

but no rise in loss. Additionally, the loss graphs indicate that overfitting is not happening

in these trials. Figure 13 indicates that reducing the number of views reduces the amount

of time per trial linearly, which is to be expected.

Figure 13

MVCNN Average Time per Trial vs Number of Views

The graph in Figure 13 shows the average time per trial of using no resolution

reduction (red) and using resolution reduction (blue) with various numbers of views.

49

Figure 14

MVCNN Validation Accuracy Using Various Sampling Methods (From Table 4)

The set of graphs in Figure 14 show the validation accuracy after each epoch

using various sampling methods from Table 4.

The top left graph compares the validation accuracy after each epoch of the

maximum evaluation accuracy trial (red, 95% accuracy) and minimum accuracy trial

(blue, 83% accuracy) using the first 6 views method.

50

The top right graph compares the validation accuracy after each epoch of the

maximum evaluation accuracy trial (red, 97% accuracy) and minimum accuracy trial

(blue, 90% accuracy) using the first 3 views method.

The bottom left graph shows the validation accuracy after each epoch using

different sampling methods: no sampling (red, 94% accuracy), resolution reduction (blue,

91% accuracy), and first 3 views (green, 97% accuracy). This graph uses the maximum

evaluation accuracy trial for each method.

The bottom right graph shows the validation accuracy after each epoch using view

reduction down to 3 views using each method of doing so: first 3 views (red, 90%

accuracy), random 3 views (blue, 88% accuracy), and selected 3 views (green, 88%

accuracy). This graph uses the minimum evaluation accuracy trial for each method.

Training for more epochs and having a larger batch size seems to lead to more

stable results, as shown in Figure 14. Both the minimum evaluation accuracy trial of

using the first 6 views as well as using resolution reduction have a final epoch validation

accuracy that is significantly higher than the final evaluation accuracy of the respective

trial. For the first 3 views method, the validation accuracy decreased after the final epoch

and was close to the evaluation accuracy of that trial. Looking at the top right and both

bottom graphs of Figure 14, reducing the number of views to 3 views makes the

validation between each epoch more unstable, having the validation accuracy decrease

significantly then increase significantly repeatedly, than using more views.

Overall, sampling using view reduction will maintain accuracy while also

reducing training time. Resolution reduction without view reduction using a max pooling

51

function does not maintain accuracy. Combining both resolution reduction and view

reduction also does not maintain accuracy. However, combining resolution reduction and

view reduction does significantly reduce training time, even when compared to the fastest

view reduction only method.

52

Chapter 6

Conclusions and Future Work

We have presented empirical evidence that sampling can be used to reduce

training time while maintaining evaluation accuracy. On a point cloud, sampling using

random sampling or furthest point sampling will reduce training time significantly while

still maintaining classification accuracy, with furthest point sampling performing slightly

better than random sampling. The sampling found in SampleNet drastically decreases

accuracy while increasing training time. On multiple images, sampling by view reduction

maintains accuracy on a multi-view classifier while reducing processing time as well,

while resolution reduction does not accomplish this task.

In the future, the most obvious test to conduct is applying the sampling methods

used on MVCNN to VoxNet to see if VoxNet can also maintain accuracy while

undergoing “view” reduction or resolution reduction. In theory, VoxNet is similar to

MVCNN where VoxNet has “rotations” instead of “views” as well as having a specified

resolution, so the observations from MVCNN should apply to VoxNet. However,

sampling on VoxNet may not give the same results as sampling on MVCNN in practice.

Testing RotationNet [22] in the future would be good as it is claims to be the most

accurate multi-view classifier and does not use every view. The RotationNet paper does

not include training and inference time, so that would also need to be tested. The

RotationNet method of correctly aligning a subset of views could also be applied to

VoxNet to hopefully improve accuracy.

53

As for point cloud classifiers like PointNet, the idea of sampling using a

differentiable function seems enticing as then it could be learned. However, SampleNet

simply did not perform well. Perhaps the SampleNet learning method was too complex

and a simpler but still differentiable sampling method is needed. Furthest point sampling

maintains accuracy until around 64 points are sampled, so the neural network sampling

the point cloud needs to be quicker than SampleNet or maintain accuracy past 64 points

sampled while still taking less time than furthest point sampling with a higher number of

points sampled. There could also be an undiscovered sampling method that performs

better than furthest point sampling without learning.

54

References

[1] Maturana, D., & Scherer, S. (2015). Voxnet: A 3d convolutional neural network for

real-time object recognition. In 2015 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS) (pp. 922-928). IEEE.

[2] Qi, C. R., Su, H., Mo, K., & Guibas, L. J. (2017). Pointnet: Deep learning on point

sets for 3d classification and segmentation. In Proceedings of the IEEE

conference on computer vision and pattern recognition (pp. 652-660).

[3] Su, H., Maji, S., Kalogerakis, E., & Learned-Miller, E. (2015). Multi-view

convolutional neural networks for 3d shape recognition. In Proceedings of the

IEEE international conference on computer vision (pp. 945-953).

[4] Lang, I., Manor, A., & Avidan, S. (2020). Samplenet: Differentiable point cloud

sampling. In Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition (pp. 7578-7588).

[5] (2021). Furthest Point Sampling. Retrieved from

https://minibatchai.com/ai/2021/08/07/FPS.html

[6] Dovrat, O., Lang, I., & Avidan, S. (2019). Learning to sample. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 2760-

2769).

[7] Lang, I., Manor, A., & Avidan, S. (2020). Samplenet: Differentiable point cloud

sampling. Retrieved from https://github.com/itailang/SampleNet

[8] (2018). Chainer-PointNet. Retrieved from https://github.com/corochann/chainer-

pointnet/blob/master/chainer_pointnet/utils/sampling.py

[9] Lee, Ko., Yu, Y., Ha, B., & Lee, Kw. (2021). MVCNN with CRF-RNN for BIM.

Retrieved from https://github.com/kwanhoonlee/crfrnn-mvcnn

[10] Roberts, L. G. (1963). Machine perception of three-dimensional solids (Doctoral

dissertation, Massachusetts Institute of Technology).

[11] Fukushima, K., & Miyake, S. (1982). Neocognitron: A self-organizing neural

network model for a mechanism of visual pattern recognition. In Competition and

cooperation in neural nets (pp. 267-285). Springer, Berlin, Heidelberg.

[12] LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning

applied to document recognition. Proceedings of the IEEE, 86(11), 2278-2324.

[13] LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). The MNIST Database.

Retrieved from http://yann.lecun.com/exdb/mnist/

55

[14] Everingham, M., Van Gool, L., Williams, C. K., Winn, J., & Zisserman, A. (2010).

The pascal visual object classes (voc) challenge. International journal of computer

vision, 88(2), 303-338.

[15] Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., ... & Fei-Fei, L.

(2015). Imagenet large scale visual recognition challenge. International journal of

computer vision, 115(3), 211-252.

[16] Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with

deep convolutional neural networks. Advances in neural information processing

systems, 25.

[17] Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger, K. Q. (2017). Densely

connected convolutional networks. In Proceedings of the IEEE conference on

computer vision and pattern recognition (pp. 4700-4708).

[18] Wu, Z., Song, S., Khosla, A., Yu, F., Zhang, L., Tang, X., & Xiao, J. (2015). 3d

shapenets: A deep representation for volumetric shapes. In Proceedings of the

IEEE conference on computer vision and pattern recognition (pp. 1912-1920).

[19] Wu, Z., Song, S., Khosla, A., Yu, F., Zhang, L., Tang, X., & Xiao, J. (2015).

ModelNet. Retrieved from https://modelnet.cs.princeton.edu/

[20] Riegler, G., Osman Ulusoy, A., & Geiger, A. (2017). Octnet: Learning deep 3d

representations at high resolutions. In Proceedings of the IEEE conference on

computer vision and pattern recognition (pp. 3577-3586).

[21] Liu, Y., Fan, B., Meng, G., Lu, J., Xiang, S., & Pan, C. (2019). Densepoint:

Learning densely contextual representation for efficient point cloud processing. In

Proceedings of the IEEE/CVF International Conference on Computer Vision (pp.

5239-5248).

[22] Kanezaki, A., Matsushita, Y., & Nishida, Y. (2018). Rotationnet: Joint object

categorization and pose estimation using multiviews from unsupervised

viewpoints. In Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition (pp. 5010-5019).

[23] Merino, I., Azpiazu, J., Remazeilles, A., & Sierra, B. (2021). 3D Convolutional

Neural Networks Initialized from Pretrained 2D Convolutional Neural Networks

for Classification of Industrial Parts. Sensors, 21(4), 1078.

[24] Azpiri, A. I., Ortega, E. L., & Cobo, A. A. (2021). Affordance-based grasping point

detection using graph convolutional networks for industrial bin-picking

applications. Sensors, 21(3), 816.

[25] Qian, R., Lai, X., & Li, X. (2021). 3D object detection for autonomous driving: a

survey. arXiv preprint arXiv:2106.10823.

56

[26] Manzoor, S., Joo, S. H., Kim, E. J., Bae, S. H., In, G. G., Pyo, J. W., & Kuc, T. Y.

(2021). 3D Recognition Based on Sensor Modalities for Robotic Systems: A

Survey. Sensors, 21(21), 7120.

[27] Qiu, S., Anwar, S., & Barnes, N. (2021). Geometric back-projection network for

point cloud classification. IEEE Transactions on Multimedia.

[28] Merkel, D. (2014). Docker: lightweight linux containers for consistent development

and deployment. Linux journal, 2014(239), 2.

[29] Yi, L., Pei, X., & Guo, Y. (2021). 3D CNN classification model for accurate

diagnosis of coronavirus disease 2019 using computed tomography images.

Journal of Medical Imaging, 8(S1), 017502.

[30] Eldar, Y., Lindenbaum, M., Porat, M., & Zeevi, Y. Y. (1997). The farthest point

strategy for progressive image sampling. IEEE Transactions on Image Processing,

6(9), 1305-1315.

[31] Pauly, M., Gross, M., & Kobbelt, L. P. (2002). Efficient simplification of point-

sampled surfaces. In IEEE Visualization, 2002. VIS 2002. (pp. 163-170). IEEE.

[32] Lin, Y., Chen, L., Huang, H., Ma, C., Han, X., & Cui, S. (2022). Task-Aware

Sampling Layer for Point-Wise Analysis. IEEE Transactions on Visualization and

Computer Graphics.

[33] Alexa, M., Rusinkiewicz, S., Nehab, D., & Shilane, P. (2004). Stratified point

sampling of 3D models. In Proc. Eurographics Symp. on Point-Based Graphics

(pp. 49-56).

[34] Taimori, A., & Marvasti, F. (2017). Measurement-Adaptive Sparse Image Sampling

and Recovery. arXiv preprint arXiv:1706.03129.

[35] Dhawan, S. (2011). A review of image compression and comparison of its

algorithms. International Journal of electronics & Communication technology,

2(1), 22-26.

	An Empirical Study On Sampling Approaches For 3D Image Classification Using Deep Learning
	Recommended Citation

	tmp.1655128003.pdf.7YKEI

