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Abstract 

Kemal Yakut 
ELECTRO-MECHANICAL DATA FUSION FOR HEART HEALTH MONITORING 

2021-2022 

Wei Xue, Ph.D. and Francis M. Haas, Ph.D. 

Master of Science in Mechanical Engineering 

 

 Heart disease is a major public health problem and one of the leading causes of 

death worldwide. Therefore, cardiac monitoring is of great importance for the early 

detection and prevention of adverse conditions. Recently, there has been extensive research 

interest in long-term, continuous, and non-invasive cardiac monitoring using wearable 

technology. Here we introduce a wearable device for monitoring heart health. This 

prototype consists of three sensors to monitor electrocardiogram (ECG), phonocardiogram 

(PCG), and seismocardiogram (SCG) signals, integrated with a microcontroller module 

with Bluetooth wireless connectivity. We also created a custom printed circuit board (PCB) 

to integrate all the sensors into a compact design. Then, a flexible housing for the electronic 

components was 3D printed using thermoplastic polyurethane (TPU). In addition, we 

developed peak detection algorithms and filtering programs to analyze the recorded cardiac 

signals. Our preliminary results show that the device can record all three signals in real-

time. Initial results for signal interpretation come from a recurrent neural network (RNN) 

based machine learning algorithm, Long Short-Term Memory (LSTM), which is used to 

monitor and identify key features in the ECG data. The next phase of our research will 

include cross-examination of all three sensor signals, development of machine learning 

algorithms for PCG and SCG signals, and continuous improvement of the wearable device. 
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Chapter 1 

Introduction 

1.1 Heart Diseases and Heart Health Monitoring 

Heart disease is the leading cause of death worldwide. For example, someone in the 

U.S. dies of cardiovascular disease (CVD), on average, every 36 seconds, or about 2,400 

U.S. deaths from CVD each day [1]. Associated costs run into the hundreds of billions of 

dollars – between 2017 and 2018, the U.S. economy spent almost $378 billion on the 

diagnosis and treatment of heart disease [2]. Among heart conditions, arrhythmias, 

myocardial infarctions (heart attacks), and cardiomyopathies are the most common. These 

conditions often exhibit biophysical signals that can be detected before acute, irreversible 

damage is sustained by the heart or before more extensive damage is incurred. These and 

many other cardiac conditions can benefit from long-term heart monitoring. However, 

standard non-invasive electrocardiogram (ECG) monitoring systems with bedside monitors 

are large, heavy, and expensive. This makes home monitoring difficult, resulting in cardiac 

monitoring mostly limited to costly clinical settings. Accordingly, there has been extensive 

interest in developing wearable ECG-based health monitoring systems to detect cardiac 

conditions [3]. 

While electrocardiography is widely used to detect heart problems, it is unable to 

directly observe the mechanical performance of the heart and its proximate vasculature. 

Instead, the mechanical behaviors of the heart can be non-invasively monitored by acoustic 

(phonocardiogram, PCG) or vibratory (seismocardiogram, SCG) signals. Therefore, PCG 

has been used by physicians for decades to detect heart murmurs [4], while SCG can 



2 
 

complement ECG to provide a more accurate diagnostic for long-term post-ischemic 

survival than ECG alone [5]. 

Herein, in this thesis, we describe a rechargeable, compact, and wearable heart health 

monitor that acquires real-time ECG, PCG, and SCG signals from the human body. The 

recorded information can be transferred wirelessly to the user’s phone or computer, where 

a machine learning model can be used to monitor biophysical data and identify features 

such as abnormal heart rhythms. In other words, this thesis describes the design, 

development, and testing of a mobile health (M-health) platform for heart health 

surveillance. The relatively low cost of this device may permit home monitoring in many 

cases. 

1.2 Heart and Blood Flow 

The heart is one of the most critical organs in the human body. The size of the heart is 

approximately the one’s closed fist [6]. The heart has four chambers: right and left ventricles 

(lower chambers), and right and left atriums (upper chambers). Chambers are divided by a 

thin wall called the septum. There are four valves in total, with two of them located between 

the atria and ventricles and the other two valves between the ventricles and vessels. These 

valves help the blood to flow in one direction and allow unidirectional circulation inside the 

body. Figure 1 shows the main structure of the heart as well as the blood flow through the 

heart [6]. 

Deoxygenated blood from the two large veins flows to the right atrium. The tricuspid 

valve (located between the right atrium and right ventricle) allows the blood to move 

between the right atrium to the right ventricle. Once the right ventricle receives the blood, 
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it contracts to increase the blood pressure, and the tricuspid valve closes because of the 

higher internal pressure. When the tricuspid valve is closed, the blood can only flow through 

the pulmonary valve [7]. As a result, the blood leaves the right ventricle and moves to the 

pulmonary trunk and then to the lungs. The blood absorbs the oxygen in the lungs and 

releases its carbon dioxide. The oxygenated blood then flows into the left atrium through 

the pulmonary veins. 

Next, the left atrium contracts and the blood moves through the mitral valve and then 

into the left ventricle. Then the left ventricle contracts and the mitral valve closes. 

Afterward, the blood moves through the aortic valve and then into the aorta. The aorta is the 

largest artery in the body, and it extends down to the entire body.  
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Figure 1 

Blood Flow in the Heart [8] 

 

Note. The deoxygenated blood flows into the right atrium. Then the blood is pumped into 

the right ventricle where it is then delivered to the lungs. After reoxygenation as blood 

returns to the left atrium. Post-reoxygenation flows into the left ventricle and the left 

ventricle pumps blood to the rest of the body.  
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1.2.1 Heart as a Pump 

As mentioned above, the right and left sides of the heart are separated by a wall called a 

septum. There are two septa in the heart, with the interatrial septum separating the right and 

left atria, and the interventricular septum separating the right and left ventricles [7]. This 

wall separates the heart into two functional pumps. The right atrium and ventricle are one 

half, and the left atrium and ventricle are the other half.  

As is demonstrated in Figure 2, the right side of the heart pumps unoxygenated blood 

from the body through the lungs to release carbon dioxide and absorb oxygen. Then 

oxygenated blood moves through the left side of the heart, in the process called pulmonary 

circulation. Afterward, the left side of the heart pumps the oxygenated blood out to the entire 

body. In systemic circulation, the blood carries nutrients and oxygen through arteries and 

arterioles before delivering it to cells. Also, carbon dioxide and waste are exchanged. The 

deoxygenated blood then flows over the superior vena and interior vena before arriving at 

the right side of the heart. Usually, blood pressure measured on the right atrium and right 

ventricle (right side of the heart) is lower than the pressure on the left side [9]. 
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Figure 2 

Alternative Scheme Form for the Heart as a Mechanical Pumping System [9] 

 

 

1.2.2 Cardiac Cycle 

The cardiac cycle is a pumping process that includes all the events associated with the 

blood flow through the heart. It has two phases, systole and diastole, for each chamber. 

Systole is the period in which the chamber contracts and the blood is ejected. Diastole is the 

period of muscle relaxation during which the chambers are allowed to expand and fill with 

more blood. The cardiac cycle depends on the ability of the cardiac muscle to contract and 

on the condition of the heart’s conduction system. The efficiency of the heart may be 

affected by abnormalities of the cardiac muscle, the valve, or the conduction system. The 

pressure of each chamber of the heart rises in systole and falls in diastole. The valves of the 

heart help the blood to flow in the proper direction. As previously mentioned, the blood 

flows from one chamber to another, driven by the blood pressure, from higher to lower 

pressure [6, 7].  
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1.2.3 Conduction System 

Special electrical cells in the heart are arranged in a system of pathways called the 

conduction system. The cardiac conduction system is a network of nodes and specialized 

conducting cells that control and trigger heart muscle activity. In a normal heart, the cells 

of the conduction system are interconnected. The conduction system consists of the 

sinoatrial node, atrioventricular node, atrioventricular bundle, and Purkinje fibers.  

1.2.3.1 Sinoatrial Node. The sinoatrial node (SA) is a conducting tissue that is located 

in a place where the superior vena cava and the right atrium meet. The right atrium 

contraction begins and ends earlier than the left atrium because the SA is located in the 

right atrium [10]. The length of the SA node in an adult is usually 10-20 mm and the 

thickness is around 2-3 mm [11]. Two main types of cells exist in the SA node: the first 

one is round and small with some myofibrils, and the second one is elongated and thin. The 

round cells are known as pacemaker cells and the elongated cells are known as responsible 

for conducting the electrical impulse. Although the SA node is the heart’s smallest 

electrical tissue, it is normally the primary pacemaker. The electrical impulse that begins 

in the SA node causes the heart to beat normally [12].   

1.2.3.2 Atrioventricular Node. The atrioventricular (AV) node is a small structure 

located in the interatrial septum, close to the attachment of the septal cusp of the tricuspid 

valve, and near the coronary sinus. This specific place is called Koch Triangle[13]. The AV 

node is quite small (~1 mm × 3 mm × 5 mm). The depolarization and repolarization of cell 

membranes result from the movement of ions across cell membranes. The AV node is a 

vital part of the cardiac conduction system responsible for transmitting impulses from the 

sinoatrial (SA) node to the ventricles of the heart. An important feature of the AV node is 
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its ability to slightly delay electrical signals, thereby coordinating the contraction of the atria 

first and the ventricles second. Thus, the AV node regulates myocyte mechanical 

activity.[9].  

1.3  Electrocardiogram (ECG) 

     Electrocardiogram (ECG) is a graphical display of the heart’s electrical activity. It was 

introduced by William Einthoven in the 1900s [7]. ECG is a cheap and usually repeatable 

test. It is commonly used for monitoring a patient’s heart rate and cardiac rhythm, 

evaluating pacemaker functions, monitoring the response of medications, assessing the 

effects of a disease on heart functions, and more.  

1.3.1 ECG Electrodes 

ECG electrodes are adhesive pads with a conductive substance in the center. These 

electrodes can be applied to a specific position on the patient’s chest wall to view the 

electrical activity of the heart from different angles. As depicted in Figure 3, the electrodes 

are connected to the leads of the ECG module. They are used to monitor skin surface voltage 

changes. Once the electrodes are attached to the skin, the ECG monitoring machine 

functions as a voltmeter where it detects and records voltage changes during the 

depolarization and repolarization events. Before applying these electrodes, dead cells and 

oil must be removed from the patient’s skin. The ECG electrodes are usually gel-based with 

a sticky surface. Before they are applied to the skin, patients are usually recommended to 

shave or cut their chest hair to minimize negative effects on the skin.  
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Figure 3 

Electrodes are Connected to the Leads of the ECG 

 

 

1.3.2 Waveform 

 When electrical activity is not detected from the heart, a straight line is monitored by the 

ECG monitor. This line is called the baseline. Common waves are rounded curves or straight 

lines that leave or return to baseline. As Figure 4 demonstrates, if the wave of depolarization 

moves toward the positive electrode, the waveform will be upward and is called positive 

deflection. If the wave of depolarization moves away from the positive electrode, the 

waveform will be downward, which is called negative deflection. A standard ECG is made 

up of a group of waves that reflect specific electrical events in the heart. These waves are 

named alphabetically to be easily recognizable, and each wave is designated by one letter 

P, Q, R, S, or T. Figure 5 illustrates a typical waveform for one ECG signal cycle. 
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Figure 4 

Positive and Negative Complex of Depolarization 

 

Note. If the depolarization wave propagates towards the positive pole of that lead, a positive 

complex is seen (Above). If the depolarization wave propagates towards the negative pole 

of the lead (away from the positive pole), a negative complex is seen (Bottom). 
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Figure 5 

Schematic Signal Waveform for Electrocardiogram (ECG) Showing Important Fiducial 

Points Used in ECG Analysis 

 

 

1.3.2.1 P Wave. The P wave is the first waveform in the cardiac cycle. This wave 

is smooth and rounded. The amplitude of the P wave is usually no more than 2.5 mV, and 

it is duration is no more than 0.12 seconds. The P wave represents the electrical activation 

of the right and left atrial depolarization [14]. The first half of the P wave corresponds to 

the depolarization of the right atrium, and the second half corresponds to the left atrium 

depolarization [15]. The atrium contracts right after the P wave begins. Next, the atrium 

begins to repolarize at the same time as the ventricle depolarizes. However, it is not 

possible to see the waveform for this atrium repolarization event on the ECG because it is 

small and buried in the QRS complex. As shown in Figure 6, abnormal P waves such as 

notched, peaked, or inverted can be used to identify heart failure, valvular disease, or 

chronic heart problems [16].  
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Figure 6  

(A) Detailed Illustration of the P Wave in a Typical ECG Signal, (B) Normal and 

Abnormal P Waves: Notched, Peaked (pointed), and Inverted (negative), adapted from [7]  

 

 

 

1.3.2.2 QRS Complex. The QRS complex occurs right after the P wave. The QRS 

complex consists of the Q, R, and S waves and it is the electrical impulse through the 

ventricles. In other words, it represents the activation of ventricular depolarization. Right 

after the electrical impulse arrives in the ventricles, the ventricles contract and pump blood 

around the body. The QRS complex is higher in amplitude than the P wave. It is because 

the ventricles are larger than the atria. The depolarization of ventricles uses more muscle 

mass than the depolarization of the atria.  

The Q wave is the first deflection, occurring right after the P wave, and it is down from 

the baseline. It is always a negative waveform, which represents the depolarization of the 

interventricular septum. The large triangular R wave occurs right after the Q wave. The R 

wave is always positive, in other words, it is always upwards. Right after the R wave, the S 

wave appears. The S wave is always downwards (or negative). The R and S waves represent 
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the depolarization of the right and left ventricles, respectively [16, 17].   

 The amplitude of the QRS complex can be affected by age, gender, race, ECG lead 

placements, electrodes, and skin surface [18]. Abnormalities of the QRS complexes are very 

important as they often indicate underlying diseases.  For example, the duration of the QRS 

complex is usually 0.075-0.11 seconds in a healthy adult under low stress condition. If the 

duration is greater than 0.11 seconds, the QRS complex can be identified as abnormal  [19].  

1.3.2.3 T Wave. The T wave always occurs directly after the QRS complex. It is usually 

small, rounded, and slightly asymmetric, representing the repolarization of the right and 

left ventricles. Additionally, the size of the wave can be changed due to the connection and 

quality of the ECG leads [10]. If the leads contain dust or liquid, the T wave appearance 

can change due to monitoring error. However, when the monitoring system is accurate, the 

abnormalities in T waves can help physicians to identify some diseases. For example, the 

T wave always moves in the same direction as the QRS complex. If the QRS complex 

points upward from the baseline and the T wave points downward from the baseline, a 

heart abnormality is present. A lower T wave amplitude is also a potential indicator of 

hypokalemia or hypomagnesemia [20]. 

1.3.2.4 U Wave. The U wave is usually small and follows the T wave of ventricular 

repolarization (see Figure 7). It usually appears when monitoring a slower heartbeat, 

representing the late repolarization of the Purkinje fibers. Abnormally large U waves or 

inverted U waves almost always indicate diseases such as hypertension, coronary disease, 

valve disease, cardiomyopathy, or hypo-kalmia [21]. Although the U wave can be an 

important metric, it is not found in many ECG recordings because of its small amplitude. 

For this reason, the U wave will not be studied in this thesis.  
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Figure 7 

U Wave of Schematic ECG Signal 

 

 

1.3.3 Segments and Intervals 

A segment is a baseline that connects two waves. Segments are always measured 

between waves but never include the waves. Intervals are periods of time including waves, 

segments, and complex. Figure 8 describes the components of common segments and 

intervals of the ECG signal. 

 

Figure 8 

Components of the Schematic ECG Signal with Critical Peaks Marked
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1.3.3.1 PR Segment. PR segment is the horizontal line between the end of the P wave 

and the beginning of the QRS complex. It is also called as PQ segment. It is isoelectric and 

represents the electrical impulse from the AV node. If there is a delay during the PR 

segment, it is more likely the result of slow conduction in the AV node [19]. The PR 

segment ends right before the QRS complex starts [15]. 

1.3.3.2 TP Segment. TP segment connects the end of the T wave and the beginning of 

the P wave. This segment presents only if the U wave is not present. As previously 

mentioned, the impact of the U wave is negligible and is omitted from considerations in 

this thesis. At a normal heart rate, the TP segment is usually isoelectric. When the heart 

rate is rapid, the TP segment is unrecognizable.  

1.3.3.3 ST Segment. ST segment is between the T and the QRS complex. It represents 

the early repolarization of the ventricles. ST segment should be isoelectric, but some 

displacements may happen depending on age, race, gender, or lead connection. The point 

between the ST segment and the QRS complex is called the J point. Any displacement of 

the ST segment or the J point from the baseline can help doctors identify some heart 

diseases. For example, myocardial ischemia, ventricular aneurysm, and pericarditis can be 

the reason for the deviation or elevation of the ST segment from the baseline [20]. 

1.3.3.4 RR Interval. RR interval starts at the peak of the one R wave and ends at the 

peak of the next R peak. It represents the time between the two QRS complexes. This 

measurement is used to determine heart rate and the regularity of the cardiac rhythm [22, 

23]. 
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1.3.3.5 PR Interval. PR interval begins at the beginning of the P wave and ends at the 

beginning of the QRS complex. It is also known as the PQ interval. This interval represents 

the time it takes for the cardiac impulse to reach the ventricles. The PR interval usually 

takes 0.12-0.20 seconds in healthy adults. The heart rhythm and the interval time are 

inversely proportional. If the heart rhythm increases, the PR interval time will decrease [7].  

1.3.3.6 QT Interval. QT interval represents the duration from depolarization to 

repolarization of the ventricles. It starts at the beginning of the QRS complex and ends at 

the end of the T wave. The duration of the QT interval can be different with age, race, 

gender, and heart rate. An inverse relationship between the QT interval and heart rhythm 

exists, where the QT interval shortens as the heart rhythm accelerates. There are multiple 

formulas to calculate the correct QT interval. Bazett’s formula [24] is one of the most 

common formulas, where the corrected QT interval is found by dividing the QT interval 

by the square root of the RR interval. All units must be based on second intervals during 

this calculation. Some diseases can also change the duration of the QT interval. For 

example, usually if the corrected QT interval is more than 450 milliseconds, it might be 

attributed to ventricular arrhythmias, where the lower chambers of the heart flutter rather 

than consistently pumping [25]. Medications, myocardial ischemia, neurologic events, or 

hypokalemia can increase the QT interval [19].  

1.4 Phonocardiography (PCG) 

Phonocardiography is a technique that is used for heart sound recording. 

Phonocardiogram is a recording of a heart sound’s intensity over time [26]. It evolved from 

auscultation and provided a record of the vibration of the chest wall originating from the 
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heart. 

1.4.1 Heart Sounds 

Acceleration and deceleration of the blood in the heart chambers results in sounds and 

murmurs. The closures of the valves are believed to be major contributors to heart sounds 

[27]. These sounds radiate to the surface, and they can be detected by a stethoscope. Two 

major heart sounds happen during the one complete cardiac cycle. It is also called as Lub-

Dub [28, 29] and it demonstrates the two components in a heart signal. Figure 9 

demonstrates the typical components of the PCG signal. 

 

Figure 9 

Components of the Schematic PCG Signal 

 

 

 

The first sound is Lub, which is also known as S1 in the medical community and can be 

divided into four components. The first component of the S1 occurs when the blood 

accelerates in the ventricle. The frequency of the first component is very low because 

ventricles are relaxed, and the acceleration of the blood is low. The movement of the blood 

closes the atrioventricular valves before the ventricular pressure rises [30]. The second 
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component of the S1 begins with abrupt tension of the closed AV valves, decelerating the 

moving blood. The frequency of these vibrations is greater than the first component. The 

third component of the S1 occurs during ventricular contraction. The pressure rises in the 

ventricle and the blood moves toward the semilunar valves. The frequency of this vibration 

is similar to the second component. The last or the fourth component represents the vibration 

caused by the turbulence in the blood flowing through the aorta and pulmonary artery [30]. 

The S1 sounds last for a period of 100-200 ms with a frequency range of 10-200 Hz [31].  

The second heart sound is Dub, which is also known as S2 in the medical community. It 

is associated with the vibrations of the closed aortic and pulmonary valves. Although the 

primary vibration occurs in the arteries, it is also transmitted to the ventricles and atria by 

the movement of the blood [30]. Its occurrence coincides with the end of the T wave of the 

ECG.  

The normal heart sounds S1 and S2 define systole and diastole periods, respectively, and 

form the basis for analyzing all cardiac auscultations. The S1 sound occurs due to the closing 

of the atrioventricular valves and the S2 sound occurs due to the closing of the semilunar 

valves [32]. 

There are two other sounds S3 and S4 which are both caused by the sound of blood 

entering the chambers of the heart. In some cases, an S3 sound corresponds to the rapid 

filling of the ventricle. It usually occurs right after S2. The S4 sound is associated with late 

diastolic filling, and it usually occurs right after S3 or right before the next S1. If S3 is 

audible, it is often associated with an innocent murmur in young people or children. The S3 

sound should not be heard from patients older than age 35; if it occurs, however, it is 

considered an abnormal heart sound. In addition, S4 is always considered an abnormal heart 
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sound [31].  

1.4.2 Murmurs 

The intervals between S1 and S2, and then S2 and S1 of the next cardiac cycle, are 

usually silent. Certain cardiovascular defects and diseases cause murmurs that occur in these 

intervals. As blood flows through the cardiac vessels, it may change its direction and speed, 

which can cause murmurs. Murmurs have high-frequency noises when the blood velocity 

becomes high in the presence of an irregularity through the blood flow. When a specific 

murmur indicates heart disease, it is called a pathologic murmur [33].  

1.5  Seismocardiography (SCG) 

Seismocardiography is a non-invasive method of measuring the mechanical vibration of 

the chest caused by the heartbeat [34]. The chest surface vibrations are usually measured by 

an accelerometer or a piezoelectric sensor. Seismocardiography was initially introduced by 

Eliot et al. in 1957 [35] and the signal was first observed and described by Bozhenko in 

1961 [36]. He used this method in his study of space flights to monitor the health conditions 

of cosmonauts. Although it was an important method to monitor cardiovascular events, its 

influence was negligible outside of Russia until the 1990s. The first modern use of SCG in 

a clinical setting was reported by Zanetti in 1991 [37]. Later, the progress in 

microelectromechanical systems (MEMS) technology produced lighter, smaller, lower-

cost, more effective, and more sensitive accelerometers. This made SCG one of the feasible 

methods for cardiac monitoring [38]. Several wearable systems for seismocardiogram 

assessment in daily life conditions have been reported and implemented in clinical 

applications. Specifically, in 1992, SCG was used with ECG in the diagnosis of artery 
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disease [39]. Also more recently, Inan et. al. developed a seismocardiogram with artificial 

intelligence (AI) algorithms that could be used to assess the patient’s clinical status [40]. 

 Figure 10 illustrates the position of the accelerometer and its 3-axis for chest vibration 

sensing. SCG is recorded by using a 1-axis or 3-axis accelerometer on the sternum. Usually, 

one sensor is enough to measure the SCG signals. If the sensor is placed closer to the heart, 

it gives a better representation of the vibrations of the heartbeat signals. J. Zanetti used a 1D 

accelerometer to introduce SCG, which was utilized to collect only the Z-axis acceleration 

[37]. 3-axis accelerometers can also be used for SCG sensing as they can collect the X-axis, 

Y-axis, and Z-axis accelerations of the heart. The maximum force generated by the heart is 

typically in the Z direction in all conditions such as laying down, or standing due to the 

accelerometer position , because of that, Z-axis is the main acceleration direction and the 

focus of most of the research studies on SCG monitoring [41]. Though gravity affects the 

magnitude of acceleration, it can be easily separated from the relatively high frequency 

cardiac motions captured by the SCG. Important cardiac events can be detected as peaks 

observed in the SCG signal. Figure 11 shows the main peaks in an SCG signal that is divided 

into two groups: (1) during the systolic cycle mitral valve closing (MC), isovolumic moment 

(IM), aortic valve opening (AO), and rapid ejection (RE) and (2) during the diastolic cycle 

aortic valve closing (AC), mitral valve opening (MO), and rapid filling (RF) [37].  
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Figure 10   

Recommended SCG Sensor (accelerometer) Position for Measurement of Chest Wall 

Motion  
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Figure 11 

Schematic SCG Signal with Some Important Events Marked   

 

 

1.6  Signal Correlation  

ECG is produced by the electrical activities of the heart, while PCG and SCG are 

produced by the mechanical activities of the heart. These three signals are produced in a full 

heartbeat, each with a different waveform containing similar information about important 

cardiac events. Figure 12 represents the cycle and correlation of ECG, PCG, and SCG 

signals with the main events marked. The S1 wave of the PCG signal occurs simultaneously 

with the MC wave of the SCG signal and directly after the R peak of the ECG signal. The 

MC wave of the SCG signal and the S1 wave (first sound of the heart) of the PCG signal 

represent the closure of the mitral valve [30, 37]. Also, the QRS peak of the ECG represents 

ventricular depolarization. Since the timing of these important cardiac events is closely 

grouped, the relationship between the signals is also a significant parameter. Furthermore, 
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the beginning of the S2 wave occurs with the AC peak of the SCG signal and directly after 

the T peak of the ECG signal.  The S2 wave (second sound of the heart) of the PCG signal 

and the AC wave of the SCG signal represent the aortic valve closing.  Furthermore, the T 

wave represents the repolarization of the right and left ventricles. These important cardiac 

events help to understand the correlation between ECG, SCG, and PCG signals.  In chapter 

5, we will discuss and show the correlation between these three signals from the collected 

data from different volunteers. 

 

Figure 12 

Schematic, Concurrent Waveforms for ECG, PCG, and SCG Signals with Key Features 

Labeled  
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1.7  Wearable Devices in Health Monitoring 

The development of MEMS technology in the past two decades has affected the health 

sector. With the new MEMS technology and other advancements in materials and devices, 

the overall sizes of the devices used in healthcare applications have been significantly 

reduced [42]. These advances not only make devices more accessible and reliable, but they 

are also more affordable, enabling long-term monitoring of patients' daily lives [43]. Many 

companies and researchers are working to make these devices more wearable for use in 

healthcare applications [44-46]. These wearable devices have been used in many applications 

for psychological diseases such as Parkinson's disease and Alzheimer's disease, as well as 

physical diseases such as cardiovascular diseases, hypertension, and muscle disorders [47]. 

Wearables come in a variety of formats, including skin-based, textile-based, tattoo-based, 

clothing-based, and jewelry-based. In a broad sense, the new trend in healthcare monitoring 

requires the device to have a minimum size and weight, functional and power autonomy, and 

be easy to use and comfortable to wear [48]. 

Wearable devices have the potential to be an integral part of today's healthcare systems, 

as they can offer alternatives and solutions to a variety of medical and social needs. Not 

only can it help improve the quality of life and healthcare providers of people with chronic 

illness and disability, but it can also help financially by reducing healthcare costs in hospital 

admissions through prevention or the provision of appropriate measures [49]. In the United 

States alone, 6 of 10 adults have diabetes, asthma, and chronic conditions such as heart 

disease and Alzheimer's disease. 90% of the $3.8 trillion in annual healthcare spending in 

the United States goes to people living with chronic and psychiatric conditions. It is clear 

that chronic diseases place significant medical and economic burdens on the population in 
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the United States. Preventing chronic diseases or managing symptoms when prevention is 

not possible can reduce these costs [50, 51]. 

Typical devices are usually built around a central processor combined with the use of 

microelectronics and mechanical functions. These devices enable physiological monitoring, 

data storage, data processing, and other functions by using recorded health data from 

sensors. Most wearable devices have three key components: a data input mechanism, a 

processing unit, and a data output mechanism. The input mechanism deals with the 

collection of data from the patient using sensors, data entered directly by the patient, or data 

transfers. The processing unit is responsible for generating appropriate feedback by 

processing the incoming information in real-time. These feedbacks are presented to the user 

as monitoring, informing, alerting, and decision support functions [48]. The output 

mechanism usually provides visual, audio, or telemetric services through computers or 

smartphones. 

Wearable devices have been on the market for a long time. One of the most used and 

known noninvasive devices is the Holter monitor [52, 53]. Holter monitor is a wearable 

electrocardiogram device and has been used in the detection of heart diseases for many 

years. ECG signals up to 24 hours can be recorded on magnetic tape. The system is sensitive 

enough to detect a variety of cardiac arrhythmias, as well as conduction pattern changes, ST 

segment, and T wave anomalies [49]. Holter monitoring plays an important role in the 

assessment of various symptoms that may be associated with abnormal heartbeats, such as 

dizziness, fainting, chest pain, and palpitations.  In addition,  Holter monitoring provides 

useful information for pacemaker function, diagnosis of transient myocardial ischemia and 

evaluation of antiarrhythmic drug treatment [48, 49].  
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1.8  Applications 

For more accurate diagnosis of heart diseases, numerous companies and researchers are 

doing extensive research in order to reduce deaths from heart diseases, increase the chance 

of early diagnosis, and minimize the money spent on treatment. Researchers are trying to 

diagnose heart diseases using methods such as electrocardiogram, seismocardiogram, 

phonocardiogram, photoplethysmography (PPG), and blood pressure measurement. A 

number of researchers have produced wearable devices using a single method, while others 

have produced multisensory wearable devices that can produce more effective results by 

combining these methods. 

In 2020, Ozkan et al. developed a wearable Tele-ECG and heart rate monitoring system 

[54]. Their work features a reconstructed flexible single with textile electrodes (TEs), textile 

threads, snap closures, Velcro, sponges, and an ECG circuit. They developed Bluetooth low 

energy (BLE) communication, smartphone application, server, and webpage for remote 

monitoring of heart signals and integrated these functions with the device. Although the 

device they have produced is large, it is very successful for ECG monitoring and can detect 

heart rhythm successfully. 

In 2021 Lo Presti et al. introduced a multipoint heart rate monitoring system based on 

fiber-optic technology [55]. In the system they used, they acquired the ECG and SCG 

signals with awareness and investigated the relationships between the signals. They place 

the fiber optic system they have developed for SCG on the t-shirt. Later, the t-shirt is worn 

by the user and they collect data while the user is in the laying down position. They 

simultaneously record ECG signals from the same user and work on the correlation between 

SCG and ECG. In addition to these, they also detect the heart rhythm. This fiber optic system 
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they have made gives successful results to measure heart rhythm using ECG and SCG 

methods. 

In 2020 Rienzo et al. presented a multi-sensor wireless platform for cardiovascular 

monitoring in telemedicine [56]. They have designed a device that can record three different 

signals together, about 2-3 quarters in size. The device they use can monitor ECG, PPG, and 

SCG signals simultaneously. They also provide data security thanks to the SD card in the 

device. The device consists of two ECG leads and contains a PPG sensor. They use a USB 

as a hub and start their devices on that hub. Then, after the communication between the 

computer and the device is set, they perform real-time monitoring over the computer. 

Although the device is suitable for data recording by being worn on certain parts of the 

body, when used together for three signals, it is worn on the chest area. 

In 2020 Cotur et al. reported a different method to collect the PCG signal. Using the 

microphone in combination with a flexible and mechanically strong low-cost soft composite 

made of silicone polymers and water, they monitored sounds coming from the hearts of 

humans or animals [57]. First, a mold is formed from silicone, then water is filled into this 

mold. Later, this mold is covered with another silicone reinforcement to prevent water 

leakage. Then, a microphone is placed on the outside of this water-filled silicon system. 

Finally, it is placed on the user's chest with the help of a belt. With this system, they can 

successfully receive the PCG signal. 

1.9 Motivation and Objectives 

     Deaths from heart disease are the leading cause of death not only in the United States 

but worldwide. With the increase in the world population, the number of deaths from heart 
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diseases is also increasing significantly [1]. Countries spend billions of dollars on the 

diagnosis and treatment of heart diseases as well as lives lost [2]. Early diagnosis of 

cardiovascular diseases plays a key role in saving the patient's life. That's why companies 

are developing devices, drugs, and technologies that can prevent death from heart disease. 

Many companies have made wearable electrocardiogram devices that will provide long-

term monitoring. This technological development has seriously affected the health sector 

and has saved the lives of many patients. Although ECG is the most common and important 

method for diagnosing cardiovascular disease, it is still insufficient to detect CVD with 

high accuracy [3]. 

        With each beat cycle, the heart generates acoustic, vibration, and electrical signals, as 

scientists have shown in previous studies [7, 26, 36, 37, 58]. Previously, companies and 

researchers have created wearable devices that include ECG, combined ECG / PCG and 

combined ECG / SCG [58-61]. By looking at these simultaneously recorded signals, we 

can obtain important findings in diagnosing heart problems. We can create datasets using 

the data collected from healthy and sick people, and we can provide an early diagnosis by 

developing a machine-learning algorithm to learn the patterns of sick patients. In this thesis, 

we describe a rechargeable, compact, and wearable heart health monitor that measures 

ECG, PCG, and SCG signals from the human body in real-time. The recorded data can be 

wirelessly sent to the user's phone or computer, where a machine learning model can be 

used to monitor biophysical data and identify abnormalities such as abnormal cardiac 

rhythms. In other words, this study describes the mobile health (M-health) platform for 

monitoring heart health. The relatively inexpensive cost of this device may permit home 

monitoring in many cases. 
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1.10 Thesis Layout 

In the next chapter, we give information about the previous design, hardware and 

software improvements, PCB design, as well as the stethoscope, and housing designs. 

Chapter 3 mostly covers data acquisition, device programming, real-time monitoring on 

different platforms, device placement on the chest, and phone application. Chapter 4 

contains the signal processing process of the raw data, different signal filtering processes 

using different platforms, and peak detection for ECG signals. Device performance and 

machine learning are detailed in Chapter 5, as well as the correlation between ECG, PCG, 

and SCG signals from healthy individuals. The paper is concluded in Chapter 6, which 

contains a summary of all work completed to this point, as well as the future works and 

goals of this research as it continues into the future. 
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Chapter 2 

System Design 

 

2.1 Previous Work and Hardware Improvement 

        The current design is based on an earlier prototype developed in 2019 in which three 

signals were received. This device, which consists of three different layers, is placed on the 

chest area with the help of a strap (Figure.13A). A microphone and an accelerometer are 

in the first layer, a battery and an ECG sensor are located in the second layer, and a battery 

control unit is in the third layer (Figure.13B). The previous student working on this project 

combined the microphone with a tube and a stethoscope to receive the PCG signal with 

better quality (Figure.13C). A microcontroller module Arduino Uno is used as the 

processor and is located in a separate place from the prototype. Although this device was 

wearable, it was quite large and not very comfortable for long-term use. In addition, this 

design did not allow any backup data collection as it did not have an SD card module. Since 

Bluetooth or Wi-Fi was not used, the device was not suitable for remote information 

transfer, instead, the received data was transferred from the device to a computer using a 

cable.  
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Figure 13 

The Previous Prototype Including (A) Assembled Three-decker(right) (B) Individual 

Tiers(left) (C)MEMS Microphone Testing Setup 

 

 

        While previous work was sufficient to collect data, some aspects needed 

improvement. The microprocessor was far from the prototype and the device was not 

suitable for remote information transfer. Initially, we planned to reduce the size of the 

device, integrate the microprocessor into the device, and at the same time, give the device 

wireless communication capability. Accordingly, we made changes on the device and 

developed different designs, Figure 14 shows a small-sized design including a 

microprocessor was made on the prototype. Instead of the first microcontroller Arduino 

Uno, the smaller size Arduino Nano with the same clock speed was used in the new design. 
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HM-10 Bluetooth module was used for remote data transfer. Later, the custom PCB was 

designed to make the device more compact. In addition, an SD card module was added to 

the device for the security and sustainability of the collected data. Using the new design, 

all components could be placed on a single layer. The Bluetooth module, Arduino Uno, 

ECG sensor, and SD card module were placed on the upper part of this layer, while the 

battery system, microphone, and accelerometer were placed on the lower layer. A serious 

improvement has been achieved in the device in terms of size and function. 

 

Figure 14  

Initial Prototype Update with Modifications Including SD Card Module, Bluetooth 

Module, Arduino Nano, and PCB 
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 Although the first device designed could give the desired result in line with the tests 

and collected data, it still suffers from the low speed of the microcontroller, the low quality 

of the sensors used, and the low Bluetooth speed. As shown in Figure 15, the device size 

has been greatly reduced and made more efficient. As a result, a second design is 

implemented to overcome these issues. Instead of the Arduino Nano microcontroller (16 

MHZ clock speed and 10-bit ADC resolution), the ESP32 microcontroller (240 MHZ clock 

speed with 32-bit ADC resolution) is selected as it is suitable for programming in the 

Arduino IDE platform. The ESP32 not only has a higher clock speed but also has an 

internal battery charger as well as Wi-Fi and Bluetooth modules [62].  

In addition to replacing the microprocessor, some changes were also made to the 

sensors. The AD8232 development board was able to obtain a medium quality ECG signal, 

but it was very sensitive. Furthermore, it has caused problems in collecting quality signals 

in long-term recordings. Therefore, the Sen0312 development board (DFROBOT) was 

then used with the AD8232 chip to improve both measurement accuracy and device design. 

The Sen0312 is more compact, uses modern components and has wider filtering 

capabilities. Using the new development board, better quality and cleaner ECG signals are 

obtained. Also, the initial microphone used was sufficient for PCG signal recordings and 

for this reason, no changes were made. Since the stethoscope used was large, inefficient, 

and needed a tube for amplification, it was replaced with a new specially designed 

stethoscope. In addition, although the initial accelerometer (ADXL335) gave the desired 

information with filtering, the received data still contained significant noises and the 

overall device was not sensitive enough. MPU6050, which is much more sensitive and 

offers different range of gravitational acceleration (g) measurements, was selected over the 
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ADXL335 used in the previous study [63-65]. In addition, a more compact PCB was 

designed to house all the modules (Figure 17.).  

 

Figure 15    

Last Prototype Update with Modifications Including Accelerometer, Stethoscope, ESP32 

Microcontroller, Sen0213 ECG sensor, and Custom PCB 

 
Note. a) prototype top look b) prototype bottom look. 

 

 

 

        To detect all three signals simultaneously, a wearable heart monitoring system is 

designed, as represented by the block diagram shown in Figure 16. ECG measurement is 

performed by three Ag/AgCl electrodes in a grounded lead configuration. The conductive 
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gel on the electrodes reduces the noise and skin-electrode contact impedance, hence 

improving the signal quality. Furthermore, a stethoscope (Orange - S) and a 3-axis 

accelerometer (Blue - A) are placed on the sternum to measure the PCG and SCG signals, 

respectively. The signals acquired from the human body are processed in the sensor 

module. The analog data collected in the sensor module is transferred to the analog-to-

digital converter (ADC) in the microcontroller and converted into digital form there. Then, 

the data is simultaneously recorded on the memory card via the processing unit and 

transferred to the computer and phone with the help of a Bluetooth connection or a cable 

connection.  

 

Figure 16 

Simplified Block Diagram of the Prototype Wearable Heart Health Monitoring System  

 

Note. White R (right anterior) – Orange S (stethoscope) – Black L (under the left clavicle, 

mid-clavicular line within the rib cage frame) – Red L (the lower left abdomen within the 

rib cage frame) – Blue A (accelerometer) 
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2.2 Sensor Module 

        The ECG signals acquired from the body are processed using a SEN0213 

development board (DFROBOT). An AD8232 chip is included on the custom-designed 

PCB The chip contains an active bandpass filter that removes the DC offset as well as high-

frequency noises from the measured ECG signals, including power line interference (50-

60 Hz) and EMG noise (100-500 Hz) [66]. In addition to the gain provided by the active 

filter, an operational amplifier with a gain of 11× is also used, resulting in an overall system 

gain of 1100× [67]. To save power, the development board contains a lead-off detection 

circuit, which enables the device to perform the processing only when the ECG leads are 

connected. The sensor module also contains an electrostatic capacitor-based microphone 

interfaced with a stethoscope to measure PCG signals. The signals acquired by the 

microphone are amplified by using a Maxim Max4466 amplifier; this op-amp provides an 

adjustable amplification gain from 25× to 125×. The sensor module also contains an 

MPU6050 3-axis accelerometer, which is used to measure the acceleration of the chest wall 

caused by cardiac vibrations.  

2.3 Microcontroller Module 

        The controller module consists of an ESP32 Dev Kit V1 development board featuring 

a dual-core, 32-bit ESP-WROOM-32 chipset, supporting a clock frequency of up to 240 

MHz and a 32-bit ADC. Once the signals are recorded by the individual sensor modules, 

they are processed through the ADC before being acquired by the controller. The controller 

module also provides wireless connectivity. Bluetooth, BLE and Wi-Fi are integrated into 

the ESP32 chip, enabling the establishment of a wireless connection with a smartphone or 

a computer. Furthermore, the signal data can be saved in a micro-SD card which can be 
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used as a backup in case the wireless communication is interrupted. In this project, we have 

used the Blynk and Remote XY platforms for creating applications. These applications are 

compatible with Android, iOS phones, and personal computers.  

 

Table 1 

Cost of The Prototype 

 

 

        Table 1 lists all the components that are used in this prototype implementation, as well 

as their respective costs. The total cost of the prototype is ~$67. This device can be easily 

manufactured with off-the-shelf components and can be interfaced with any smartphone. 

The device is low-cost and can be used at home for long-term monitoring of heart health. 

By using a device strap or medical tape on the chest area, the user can wear the device for 

a long time without feeling uncomfortable. As future development progresses, data 

preprocessed by the prototype can be uploaded to the cloud, enabling medical professionals 

Cost Breakdown of Components 

Part Part Number Price 

Accelerometer MPU6050 $15 

ECG Module Sen0213 $20 

Microphone Max4466 $7 

SD Card - $4 

SD Card Module SPI $2 

Microcontroller ESP32 $12 

Battery 3.7V 500 mAh $5 

Wet Disposal 

Electrodes 

3M Red Dot $2 

 Total = $67 
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to track patients’ heart conditions from their phones or computers in real-time or after the 

recordings. Trained AI algorithms running on the cloud can similarly track heart 

conditions, as further described below.  

2.4 Artificial Intelligence (AI) Processing Module 

        The AI processing module consists of a trained machine learning model, which takes 

the input data from the controller module and classifies the signals into a set of pre-defined 

classes, e.g., a signature of a known heart condition, normal heartbeat, etc. The machine 

learning model used in this module is Long Short-Term Memory (LSTM), which is an 

artificial recurrent neural network [68]. We chose this model because it has been proven to 

be well-suited for time series learning, and in particular, for certain cardiac conditions [69]. 

It can be directly applied to the analysis of ECG, PCG, and SCG signals as they are all-

time series in nature. In addition, compared to image-based approaches, treating signals as 

time series requires fewer data preprocessing, leading to higher performance in real-time 

detection. The output of the AI processing module is a set of heart conditions detected in 

the signals. 

2.5 Printed Circuit Board (PCB) Design  

       The PCB design both eliminates unnecessary cables and makes the device as small as 

possible. First, the wiring between the ESP32 and the sensors was done using the Eagle 

CAD application, as shown in Figure 17. Then, using the auto-router feature, the wiring 

process on the PCB provides the best routes for the PCB with the help of the algorithm (see 

Figure 18-A). These routes, which are made by using both the lower and upper parts of the 

PCB, not only reduce the complexity but also enable the creation of PCB designs with 
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maximum efficiency. The correct pins must match the wiring process. For example, when 

making the connection between the ESP32 and the ECG sensor, we have to make sure that 

the voltage-voltage, ground-ground, and analog out-35 pins of the ESP32 are connected. 

There is no overlap between the code and the connection. Figures 18B and 18C 

demonstrate the top and bottom views of the PCB design, respectively. 

 

Figure 17   

Schematic Wiring Design on Eagle CAD for ESP32 and Sensors Connections 
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Figure 18 

PCB Design Includes A) Wire Connection of the Board B) Top Look C) Bottom Look  

 

 

 

2.6 Stethoscope and Housing 

The stethoscope is very important for increasing the received sound quality of the heart. 

For this reason, we have produced studies on different stethoscopes (see Figure 19). We 

produced different stethoscope designs using different materials. As a material, we tested 

metal, polylactic (PLA), thermoplastic polyurethane (TPU), and Formlabs elastic 50A 

resin. For the first design of stethoscopes for our design, we used a hospital type of 

aluminum stethoscope to amplify the PCG signal (Figure 19-1). Initially, we opened a hole 

the size of a microphone on the top of the stethoscope. Then microphone is placed on top 

of the stethoscope for the recording process. Although the collected signals were efficient, 

sometimes there could be a short circuit due to the connection between the microphone and 

the metal part of the stethoscope. Other than that, it was also not comfortable for wearable 
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designs because it was heavy, big, and bulky. After that, we first designed a stethoscope 

slightly larger than the quarter coin size, using PLA material (Figure 19-2). Although it 

was suitable for our expectations in terms of design and size, it was not suitable due to its 

rigidity. Also, this design made the user sweat and it could not amplify the sounds coming 

from the heart at the desired level. Then we tried the same design using the TPU material 

(Figure 19-3). The TPU material was advantageous because it was flexible and did not 

make the user sweat. At the same time, it gave slightly better results in sound quality than 

the PLA material. However, although our results were improved, they were not suitable for 

long-term recordings. For this reason, we obtained a similar design from an SLA printer 

using Formlabs elastic 50A resin (Figure 19-4). Due to its flexibility, this material is 

suitable for long-term use and does not make the user sweat. Overall, the quality of the 

received signal is very close to the signal received from a metal stethoscope. After making 

sure of the quality of the material and the efficiency of the stethoscope, we produced a 

certain number of them for testing.  

 

Figure 19   

Stethoscope Designs Made with Different Materials 
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The housing design of the device, which will form the layer between the user's skin 

and the device, is important for the comfort and ergonomics of the user. The enclosure not 

only protects the device from external factors but also protects the user against problems 

that may arise from the device. At the same time, since the user aims to use the device for 

a long time, it will increase the efficiency of the housing made of comfortable, ergonomic, 

non-sweating, and non-itchy material. Figure 20 illustrates the housing designs made with 

different materials for the device. Considering the changes in the dimensions of the device, 

the smaller the device size, the smaller the housing design. First, we used PLA material for 

housing as shown in Figure 20-1 and Figure 20-2. PLA was not ergonomic because it was 

rigid, and it also causes sweating and itching. For this reason, instead of PLA, we tested 

the Formlabs elastic 50A resin, this material is durable, flexible, and ergonomic, and does 

not cause sweating and itching, with a printed housing shown in Figure 20-3. However, it 

is too expensive to produce for its wide deployment for device testing. For this reason, we 

3D printed the designs using TPU, as shown in Figure20- 4A, B, C, D, E and F. Similar to 

Formlabs elastic 50A, TPU is flexible, ergonomic, durable, and comfortable to wear. At 

the same time, it is suitable for cheap production. The housing model shown in Figure 20-

4F is the design used for the final prototype. The shape of this model received the best 

evaluation of all designs based on user input. It allows the lid to be positioned correctly in 

a reliable and stable manner. 
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Figure 20   

Housing Designs Made with Different Materials 
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Chapter 3 

Data Acquisition  

       As mentioned in the previous chapter, the device acquires ECG, PCG, and SCG signals 

from the heart. To perform data acquisition, the device must be programmed to have the 

required functions. Apart from this, for the programmed device to collect data properly, it 

must be properly placed on the body as well. This section covers the programming of the 

device, proper placement on the body, data acquisition, real-time monitoring, and 

smartphone application. 

3.1  Device Programming 

3.1.1  Arduino Programming for the Device 

            An ESP32-based microcontroller is used as the “brain” of the whole prototype 

system. The ESP32 must be programmed to receive data from sensors and provide wired 

or wireless communication with external devices. The Arduino Integrated Development 

Environment (IDE) platform was used as a basis for programming the device using a C++ 

based software language. The full code of the final iteration of the prototype device is 

presented in Appendix 1. 

           First, libraries need to be installed on the Arduino IDE platform, so it can program 

the ESP32 microcontroller. These libraries ensure that the written code is properly 

transmitted to the ESP32 and that the ESP32 can run the given commands properly. 

"BLEDevice" library for Bluetooth communication, "RemoteXY" library for a phone 

application, "FS", "SD" and "SPI" libraries for the SD card, “Wire" and "MPU6050_tockn" 
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libraries for the MPU6050 sensor are all used in this code on the Arduino IDE platform to 

ensure proper communication between the ESP32 and the code. 

            After the libraries are defined, the baud rate and Bluetooth name of the device are 

defined in the setup section. In addition, the codes defined for the SD card are used to check 

whether the SD card is properly connected to the device. If the connection is correct, a new 

text file (.txt format) is opened on the SD card, and the collected data is stored in this file. 

If there is a file with the same name, a new text file will be opened automatically. To 

prevent problems that may occur with the device due to the battery, if the device loses 

power, the last data is automatically saved to the file in SD card. When the power is back 

on again, the new data is saved in a newly opened text file. In this way, the security of the 

collected data is ensured. Furthermore, this section contains the code for resetting and 

restarting the MPU6050 accelerometer to ensure that when the device is restarted, the axes 

of the accelerometer are properly aligned. 

            The code runs continuously in the Loop section. In this section, sensors are defined 

to the appropriate pins on the ESP32 and each pin represents a different sensor. Along with 

the commands from the code, ESP32 detects the data coming from the pins and transfers 

this data to be displayed  in Arduino, LabVIEW, MATLAB and phone application. For 

example, in simplified terms, the ECG sensor is defined to pin 35 of the ESP32 with the 

command "int a = analogRead (35);". For wired connections, "Serial.print(a);" command 

is used to write and transfer values from the existing ECG sensor. In this way, data can be 

viewed and tracked in a suitable format. (For example, 1/14/2022 13:45 ECG: 1453). 

"SerialBT.println(a);” command is used for Bluetooth transfer of this data to the computer 

and to display it in real-time. Finally, the data from the ECG sensor is written to the first 
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graph in the phone application with the command "RemoteXY.onlineGraph_1 = float (a); 

". In this way, the data can be tracked in real-time via graphs with the user's phone.  Similar 

steps are done for PCG and SCG signals as well. 

3.1.2 LabVIEW Programming for the Device 

            LabVIEW is a powerful platform for real-time signal monitoring, signal processing, 

and data tracking. Usually, the sensors are connected to LabVIEW compatible Data 

Acquisition (DAQ) devices, connected to a computer, and signals are observed on the 

screen of the computer running LabVIEW software. However, since our device is 

wearable, has remote communication, and uses ESP32, it would be very unreasonable to 

use an additional DAQ device. For this reason, a wired or wireless connection is established 

between the ESP32 and LabVIEW using the serial communication method. Figure 21 

shows the schematic program to connect the ESP32 to the LabVIEW platform and display 

the ECG, PCG, and SCG signals. Visa serial command helps identify and screen available 

visa resources connected to the laptop.  From the Visa Resource Name section, the port 

where the device is defined is selected. Then, the baud rate written in ESP32 is written to 

the baud rate tab in Visa Serial to ensure the baud rate match. Then a while loop is created 

that will keep the program running over and over until it is stopped. Visa Read commands 

are generated in the while loop and these commands allow LabVIEW to detect data read 

by the serial port. Each Visa Read command is associated with a different signal from a 

different sensor. Then graphics are created and connected with Visa Read commands. 

Thus, it is ensured that the signals are displayed individually or collectively on the graph. 

Figure 21 shows the schematic design for ESP32-LabVIEW communication. 
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Figure 21 

Schematic Design for Using ESP32 Microprocessor with 3 Sensors on LabVIEW 

 

 

3.2  Device Placement 

       For the device to perform long-term data collection, the device must be placed 

comfortably on the user's body. The placement of each sensor plays an important role in 

obtaining smooth and quality data from the three sensors. This device has a 3-electrode 

system for ECG and uses RA, LA, and LL electrodes (see Figures 3 and 16). To receive 

ECG data, the electrodes are placed on the user's body, and the leads are connected to these 

electrodes accordingly as shown in Figure 22.  
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Figure 22 

ECG Lead-Electrode Connection 

 

Note. Green represents LA, Red represents RA, and Yellow represents LL. 

 

       For a phonocardiogram, positioning the microphone close to the heart will improve 

the quality of the signal to be received. For this reason, the microphone is used with a 

stethoscope and is placed close to the heart with the help of medical tape. The 

stethoscope acts as an amplifier, increasing the quality and size of the received signal. 

In this way, the maximum amount of information is obtained from the heart sound 

before filtering the data. The accelerometer placed close to the sternum improves the 

quality of the received seismocardiogram signal of chest vibrations caused by heart 

vibrations. The position of the accelerometer plays a major role in the quality of the 

received signal (see Figure 10), as evidenced by the studies and tests of H. Ashouri and 

O. T. Inan on this subject [70].  
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3.3  Real-Time Monitoring  

Displaying these three signals collectively in real-time plays an important role in 

monitoring the relationship between the signals, monitoring the quality of the signals, 

monitoring the abnormalities in the signals, and heart rhythm monitoring. In this thesis, 

two different methods were used for real-time monitoring. The first method is to use 

the Arduino IDE platform's own graphics system. The second method is to use ESP32 

on the LabVIEW platform. 

3.3.1 Real-Time Monitoring Using the Arduino IDE Platform 

           The Arduino IDE serial plotter is used for real-time monitoring of simple signals. It 

can give practical and meaningful results in a short-term display of signals. It is difficult to 

achieve a simultaneous high-quality display of three signals on this platform. This platform 

would not be useful as a primary monitoring environment, since both the timeline is fast 

and the data is difficult to track. Its use is primarily to test the device, monitor changes in 

coding, and make any on-the-fly changes. Figure 23 displays the raw ECG signal on the 

Arduino IDE platform. 
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Figure 23 

ECG Signal Monitoring on Arduino Serial Plotter 

 

 

3.3.2 Real-Time Monitoring Using LabVIEW 

           Real-time monitoring using LabVIEW is comparatively advantageous. Not only 

raw signals but also frequency range and filtered signals can be displayed in real-time. This 

allows both and real-time monitoring, recording of data, and also facilitates the detection 

of abnormalities in the signal. Figure 24 shows the monitoring of the PCG signal on 

LabVIEW. The first graph in the upper left shows the raw signal received from the 

microphone. The second graph at the top right shows the frequency range of the PCG signal 

determined from real-time fast Fourier transform (FFT). The third and fourth graphics 

show the filtered version of the raw signal using bandpass filters in different frequency 

ranges, as explained in the next chapter (Signal Processing) of this thesis. 
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Figure 24   

Real-Time PCG Signal Monitoring on LabVIEW 

 

Note. First graph on the top left side displays original PCG signal, second graph on the 

top right side displays the frequency range of the PCG signal, the third and fourth graphs 

display the filtered PCG signals with different cut-off frequency ranges. 
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3.4  Phone Application 

           For a wearable health monitoring device, it is very important to be able to view and 

access the data from the computer as well as at least monitor the data on a smartphone. In 

this way, in an abnormal situation, the user can be aware of the situation early and doctors 

can intervene early before a problem occurs. Many companies and researchers are working 

on software that will enable communication between wearable devices and phones [71-

73]. In this study, a simple application has been developed to exchange information, data, 

and commands between a phone and microcontroller over Bluetooth or Wi-Fi. This 

application is compatible with iOS or Android and is only responsible for transferring the 

data it receives from the sensor to the three graphics in its interface. In this way, the data 

can be followed in real-time from the user's phone. The application can be designed on 

websites such as Blynk or RemoteXY and the code can be generated for free. This phone 

app is suitable for all microcontrollers compatible with Arduino IDE. Figure 25 displays 

the real time monitoring using the RemoteXY phone application. 
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Figure 25  

Real-time Monitoring Using the RemoteXY Phone Application 

 

 

3.5  Data Harvesting from SD Card to Spreadsheet 

           Besides real-time data monitoring and data transfer, all data is simultaneously saved 

on an SD card to ensure data security. The data received from the sensors are written to the 

text file created on the SD card, on which this file can then be transferred to a computer. 

Information stored in the text file can then be processed using software such as Origin or 

Microsoft Excel. This process is usually very simple. First open a spreadsheet file using 

Microsoft Excel then click on Data tab. Then click on the Get Data tab and select the text 

file that needs to be examined on the SD card. After the data is determined in the window 

that opens, the process is terminated by using the transfer data command. 
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The transferred data can be visualized with the help of graphs. Figure 26 shows 

data on the SD card exported to Excel and graphed. The graphs of ECG, PCG, and SCG 

signals are shown on the right side of the figure as well as their relationships with each 

other.  

 

Figure 26 

Transferred Raw Data from the SD Card to Excel Spreadsheet 

 

 

Note. Column 1 represents the number of samples, column 2 represents the magnitude 

of ECG signal, column 3 represents the magnitude of PCG signal, and column 4 

represents the magnitude of SCG signal. First graph on the top left side displays the 

raw ECG signal, second graph on the top right side displays the original PCG signal, 

third graph on the bottom left side displays the original SCG signal, and fourth graph 

on the bottom right side displays the correlation between three signals. 
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Chapter 4 

Signal Processing 

           Signals received from sensors often contain noise, which can be caused by 

environmental effects, electromagnetic fields, the quality of the cable used, or the sensor, 

among other factors. Although noisy signals often contain the desired information, the 

information is difficult to understand, interpret and monitor. Therefore, the signal is de-

noised using signal processing methods. There are many methods to complete signal 

processing, only some of which are introduced in this chapter. Signals can be physically or 

digitally processed (or both). In this thesis, signals were processed in the digital 

environment. 

           Certain steps are required for cardiac electro/mechanical signal processing. First, it 

is necessary to determine the frequency range of the received signal that contains most of 

the meaningful information content. Although there are many methods for this, one of the 

most known and used methods is the fast Fourier transform (FFT). After the frequency 

range of the signal is determined, filtering is applied to remove the noise from the signal. 

Thus, the signal can a cleaner form. 

4.1. Fast Fourier Transform (FFT) 

The primary use of FFT in research is to transform time-domain signals into frequency-

domain signals and vice versa (see Figure 27) [74]. This method is quite useful for 

calculating the modal parameters of frequency components. If the system generates noise, 

the noise can be recorded in a digital wave file and used for further processing [75]. 
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Figure 27 

Schematic of a) Signal in the Time Domain and b) Signal in the Frequency Domain Used 

to Explain FFT

 

 

           There are several advantages to digital signal transmission over analog signal 

transmission. Digital technologies encode information into a discrete signal, whereas 

analog technologies employ continuous signals [76]. Such changes are quickly computed 

by factorizing the Discrete Fourier Transform (DFT) matrix into a product of sparse 

(mainly zero) elements [76, 77]. The FFT is an efficient algorithm for computing the DFT, 

where the compute time reduces from the order of N2 to NLog2N and N is the number of 

samples of the discrete signal. For large N, this means enormous computational time 

savings for the FFT compared to the elementary DFT.  

         It is critical to review the FFT results before and after filtering. Performing the FFT 

of the ECG signal on LabVIEW can play an important role in both real-time and post-

processing. Increasing the sampling rate and sampling frequency of the device will also 

increase the frequency domain quality. For this reason, spectral measurement features or 
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FFT commands are used in the program. The received line signal is coupled to the block 

box of the spectral measurements. Then, as seen in Figure 28 in the spectral measurements 

section, Magnitude (Peak) is selected for the measurement option, and Linear is selected 

for the Result option. A chart is then created and linked to the results from the spectral 

measurements. Figure 29 shows 6-7 seconds of raw ECG signal and frequency domain. As 

the frequency domain shows, information in the signal mostly lies between 0.1 and 65 Hz. 

However, we see that the actual desired signal is mostly between 0.2 and 35 Hz. In the next 

section, we will use these values in the filtering process, and we will talk about the details 

there. Figures 30 and 31 show 5-6 seconds of raw PCG signal and its frequency domain. 
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Figure 28 

Fast Fourier Transform (FFT) Set up on LabVIEW  
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Figure 29 

Raw ECG Signal in Time Domain and Frequency Domain 

 

 

Figure 30  

Raw PCG Signal in Time Domain
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Figure 31  

PCG Signal in Frequency Domain 

 

 

4.2 Filter 

         One of the most important tools for signal processing is filtering. Collected noisy 

signals from sensors are often difficult to understand and appear complex because of the 

noise they contain (see Figure 32). One of the easiest ways to fix this is to filter the signal 

based on the frequency range of the signals to remove noise. In this way, the signal is clear 

and suitable for working in machine learning algorithms. Since digital filters are generally 

much more flexible and easier to use, the work described in this thesis uses digital filtering. 

As described below, the passband contains frequencies that are allowed to pass, whereas 

the stopband contains frequencies that are not allowed to pass. The transition band is 

located in between. 
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Figure 32  

Schematic of Noise Isolation from the Signal 

 

 

4.2.1 Low-Pass Filter 

         A low-pass filter is a filter that allows signals with frequencies lower than a certain 

high cutoff frequency to pass while attenuating signals with frequencies greater than the 

cutoff frequency. The frequency response of the filter is determined by its design. In audio 

applications, the filter is also known as a high-cut filter or treble-cut filter. It is not possible 

to create a perfect low pass filter in the real world, but we can create a very close-to-perfect 

low pass filter by using the digital filtering method. Figure 33 shows the effect of a typical 

low pass filter on signal components at different frequencies.  
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Figure 33 

Schematic of a Low-Pass Filter 

 

 

4.2.2 High-Pass Filter 

           A high-pass filter is, in some way, the opposite of a low-pass filter and allows high-

frequency signals to pass while blocking low frequencies. A high pass filter attenuates 

frequencies below a cutoff frequency (stopband) while allowing signals above a low cutoff 

frequency to pass (passband) as shown in Figure 34. The amount of attenuation is 

controlled by the design of the filter. High-pass filters are often used to remove low-

frequency patterns from time-series data while highlighting high-frequency trends. 
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Figure 34  

Schematic of a High-Pass Filter  

 

 

4.2.3 Band Pass Filter 

The band-pass filter is designed to only allow a certain range of frequencies to pass. 

The frequencies within the band, between a low cut-off frequency and a high cut-off 

frequency, can pass the filter while frequencies outside this band will be stopped. As a 

result, a signal can be filtered for a certain frequency range, as shown in Figure 35. 
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Figure 35 

Schematic of a Band-Pass Filter 

 

 

4.2.4 Real-Time Filtering Using LabVIEW 

           Figure 36 shows the signal processing steps from the raw signal received from the 

sensor to the final version with the filtering process applied. The frequency range of the 

data imported into the computer is determined primarily by using FFT. Then, noise is 

removed by applying band-pass filtering. To filter the signal from noise at a maximum 

efficiency, filtering with different frequency ranges was tested. 
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Figure 36  

Block Diagram for the Signal Filtering Process 

 

 

 

           LabView is a powerful program for real-time signal filtering. It performs multiple 

filtering operations simultaneously in real-time, providing the user with the opportunity to 

monitor all filtering operations at the same time. In this way, we can find the most suitable 

cut-off frequency range. Figure 37 below shows the different filtering processes in the 0.2-

55 Hz range of the ECG signal. As the frequency range changes, serious changes occur in 

its structure. While decreasing the range, important information is missing from the signal, 

while increasing the range excessively, noise reappears on the signal. As a result of all the 

tests, as shown in the next section, we determined the most efficient cutoff frequency range 

for the ECG signal as 0.2-36/38 Hz. Figure 38 demonstrates the filtered PCG signals with 

different cut off frequency ranges. 
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Figure 37    

Filtered ECG Signals Acquired in Real Time Using a Band-pass Filter Using Different 

Cutoff Frequency Ranges  

 

Note. Due to recording constraints, the time duration of each recording differs; however, 

the effect of band pass filter smoothing should be evident when comparing among plots. 
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Figure 38   

PCG Signal is Filtered in Real-Time by Using a Band-Pass Filter Using Different Cutoff 

Frequency Ranges Selected Regarding Figure 31 

 

 

4.3  MATLAB Program for Signal Processing 

Filtering operations made via MATLAB are also powerful, but not in real-time. Our work 

on real-time filtering with MATLAB is still in progress. The data saved on the SD card or 

directly on the computer can be filtered in different frequency ranges via MATLAB. We 

have developed special programs for ECG, PCG, and SCG for this process. Thus, the 

desired filtering process of the desired signal can be performed. The code consists of 9 

different tabs and each tab is complementary to the next. While executing the code, instead 

of running the entire code at once, it is run piecemeal to make sure that the filtering process 

proceeds correctly. The code of this program can be found at the end of the thesis as an 

Appendix 2. Directions to run the program: 
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1) Ensure all files that are going to be utilized are within the same file as your scripts, so 

they can be seen in your “Current Folder” in MATLAB, shown here (see Figure 39): 

 

Figure 39    

Step 1 for Preparing Filtering Code 

 

 

2) Run The section titled, “Importing Files into Workspace and renaming”. To run a single 

section, click your mouse anywhere into that specific section, which is defined by the 

bolded section title and the next bolded section title. Click “Run and Advance”, shown 

in Figure 40, this will run the current section clicked into, and then prep for the next 

run by moving your cursor into the next section. 
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Figure 40    

Step 2 for Preparing Filtering Code 

  

 

3) This will prompt the user in the command window with “What is the file name?” 

Type in the command window the name of the file, excluding the file type. For 

example, if the entire file name in the folder is, “Data1.xlsx” the user will type, 

“Data1”. It will then prompt you for the specification sheet in the excel sheet, type the 

name of the sheet in the command window. For example, if the excel sheet says 

“ECG1”, type “ECG1”.  

4) Click “Run and Advance” this will run the next section titled “Loading data into 

workable arrays” and will separate the excel columns into usable arrays. 

5) Click “Run and Advance” this will run the “Plot unfiltered Data…” section, which will 

show you the unfiltered data on a graph. 

6) Click “Run and Advance” this will run the “Transform Unfiltered Data…” section, this 

will transform the data into the frequency domain instead of the time domain. 



70 
 

7) Click “Run and Advance” this will run the “Plot frequency domain values” section, 

this will prompt you to input the sampling frequency of this data, and type in the integer 

into the command window. It will then graph the values in the frequency domain 

alongside the original data unfiltered. This way you can analyze the two graphs to help 

determine what values to filter out. 

8) Click the “Run and Advance” button, this will run the “Create Frequency Filter” 

section. This will prompt you with a pop window to design a filter, as shown below. 

9) Once the correct values are inputted, hit the “Design Filter” button at the bottom of the 

filter designer window, shown below. Then, go to “File”, and click “Export”, as shown 

Figure 41. 
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Figure 41    

Step 9 for Preparing Filtering on MATLAB 
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10) Another window will pop up, asking how you want to export to the workspace, as 

shown in Figure 42.  Click under the drop-down menu “Export As” and click “Objects 

“Each time to use the filter designer, make sure the box that says, “Overwrite 

Variables” is Checked off, as shown on the right side below. Then click “Export”. The 

original window is shown on the left, what it should look like before hitting “Export” 

is on the right. Once the filter has been exported, you can run the next section, titled 

“Create Filtered Signal” by clicking “Run and Advance”.  

 

Figure 42    

Step 10 for Preparing Filtering on MATLAB 

   

 

11) The next two sections create graphs, both in the time domain, which is what we look at 

when looking at a signal, and the frequency domain, which shows which frequencies 
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are found in our signal, each is described by their section titles. You can run both or 

either of these by running each separately by clicking on the section you wish to run 

and hitting the “Run Section” button, shown below.        

 

4.3.1 Signal Filtering Using MATLAB 

           Datasets were obtained by subject 1, who participated in the study voluntarily. He 

was asked to sit in a quiet room during the recording period, and he was recommended not 

to move to minimize the noise from the environment. The sampling rate used with these 

sets is all equal to 760 Hz. About 5 minutes of real-time data were collected from him for 

ECG, PCG, and SCG. The following sections explain the application of filtering on this 

raw data acquired from the sensor hardware described in previous chapters. 

4.3.1.1 ECG Signal Filter.  Although the original ECG data contains a small 

amount of noise, the signal is largely free from noise thanks to the analog filtering system 

onboard the ECG sensor. Residual noise is removed from the signal using the filtering 

process. Figure 43 shows the original ECG signal filtered in the range of 0.2-36 Hz. Figures 

44 and 45 show the original signal and its filtered and zoomed state in the 0.2-38 Hz range. 

As it is understood after the filtering process, the 0.2-35/38 Hz range will give the best 

results for the signals received from the ECG sensor. For the ECG signal, the signal quality 

is successful and the filtering result gives the ECG signals closest to the optimal. Also, P, 

Q, R, S, and T peaks can be easily seen and identified on the signal.  
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Figure 43   

Original ECG Signal and 0.2-36 Hz Band-Pass Filtered Form  

 

 

Figure 44   

Zoomed in Version of Original ECG Signal and 0.2-36 Hz Band-Pass Filtered Form 
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Figure 45   

Zoomed in Version of the Original ECG Signal and 0.2-36 Hz Band-Pass Filtered Form 

 

Note. Filter removes DC bias from original ECG signal, reducing apparent Y axis range 

after filter is applied. 

 

           4.3.1.2. PCG Signal Filter. The original PCG data contains some noise and can be 

expected to have more if the subject is moving or is otherwise active. The heart-focused 

recording benefits from using a stethoscope, which specifically amplifies heart-related 

sounds. Other noise can be removed from the signal as much as possible using the filtering 

process. Figure 46 is the original PCG signal and its filtered version of these signals in the 

25-35 Hz range. Figure 47 displays the original signal and filtered in the 10-45 Hz range. 

Figure 48 illustrates the original signal and filtered in the 20-40 Hz range. As can be 

understood after the filtering process, the 25-35Hz range will give the best results for the 
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signals received from the PCG sensor. Although the signal quality for the original PCG 

signal is not very good, with the filtering result, it is made intelligible. S1 and S2 peaks can 

be easily seen on the signal, and this plays an important role in our understanding of the 

“Lub-Dub” phenomenon.  

 

Figure 46 

Original PCG Signal and 25-35 Hz Band-Pass Filtered Form 
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Figure 47 

Original PCG Signal and 10-45 Hz Band-Pass Filtered Form 

 

 

Figure 48   

Original PCG Signal and 20-40 Hz Band-Pass Filtered Form  
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4.3.2 Peak Detection and Heart Rate Calculation using MATLAB 

           Detection of heart rhythm plays an important role in the detection of important heart 

diseases such as arrhythmia. Detection of abnormal conditions in heart rhythm can play an 

important role in early diagnosis [78]. Although there are many ways to detect heart 

rhythm, the most used method is by taking the R peak of the QRS complex as a reference 

and measuring the distance between the next R peaks, that distance is also known as the R-

R interval. In order to do all these, R peak detection must be carried out successfully and 

the maximum efficient result must be obtained with the help of an algorithm. 

           When we look at the stages of the algorithm mathematically, firstly, the signal is put 

into the denoising process to get rid of the noise. Many methods for the denoising process 

have been done by researchers before [79, 80]. Some of them are morphological filtering, 

digital filtering, and decomposition-based denoising methods [81, 82]. If we use the 

decomposition-based denoising method, which is one of the most effective methods, we 

can decompose the signal in this way and convert the signal to a series of modes [83]. Then 

we can remove the noises by setting these modes to 0. Thus, we can detect a lot of noise, 

identify it, and remove it from the signal. For this, the signal is converted from time domain 

to frequency domain using FFT. 

           The R peak must be preserved while other frequencies must be suppressed. For this, 

the bandpass filtering method that we explained in the previous section is used. By using 

the wavelet transform method, the signal is transferred to a different frequency band, thus 

the higher scales (low frequency) and lower scales (high frequency) of the ECG signal are 

eliminated. Then signal is transferred back into the time domain again. It is aimed to get 
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the best result by performing this process once or twice, then finding the local maxima 

using the windowed filter, and then removing the small values and storing the significant 

ones. After these steps, the peaks are determined by the program. Since the ECG signal 

contains many R-R intervals, the optimal distance needs to be calculated to find the average 

distance between two peaks. For that, this process is repeated once again, and the finality 

of the result is assured. Then the distance between the first and the last peaks is calculated. 

Then the distance between these two peaks is divided by the total number of peaks to find 

the average distance between two neighboring peaks. To calculate the average heart rhythm 

in one minute, the sampling rate is multiplied by 60 seconds and then divided by the 

average distance of R-R peaks. 

           Subject 2 volunteered to collect the data by sitting for 5 minutes without making 

sudden movements. The originally collected data is shown in Figure 49. The first chart 

shows all data tabs together. First, this data is purified from signal noise by applying the 

filtering process as it mentioned above. Figure 50 shows the noise-free version of the total 

data set. As it is understood at first glance, there is a serious improvement in the total 

dataset. If we take a closer look at the given data, as shown in Figure 51, the top left side 

of the figure shows the zoomed-in version of 10000-15000 numbers of samples of the 

original ECG signal, which is noisy, and the baseline is not stable as well as peaks are up 

and down. The top right side of the figure shows the zoomed-in filtered version to 10000-

15000 numbers of the sample of the ECG signal. As is seen Filtered ECG Signal graph, 

most of the noise we see in the Original ECG graph has been removed. Figure52 shows the 

detected R peaks are properly placed on the original ECG signal. As a result of the collected 
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data of subject 2, his heart rhythm was determined as 82.1 beats per minute (BPM). This 

is a normal result for a healthy adult. 

 

Figure 49 

Original ECG Signal Obtained from Subject 2   

  

Note. X axis measured as number of sampled at 500 Hz, Y measured in arbitrary units. 

 

Figure 50 

FFT Filtered ECG Signal Obtained from Subject 2 

 

Note. X axis measured as number of sampled at 500 Hz, Y measured in arbitrary units. 
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Figure 51 

Steps of Detecting R Peaks from the ECG Signal Obtained from Subject 2 

 

Note. X axis measured as number of sampled at 500 Hz, Y measured in arbitrary units. 

 

Figure 52   

Detected R Peaks are Placed on the Original ECG Signal Obtained from Subject 2 
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Note. X axis measured as number of sampled at 500 Hz, Y measured in arbitrary units. 

 

We decided to process a recording from another volunteer to ensure that the peak 

detection and heart rhythm program works accurately. For this reason, subject 1 

volunteered to collect data by sitting for 4 minutes without sudden movements. The 

original data collected from subject 1 is shown in Figure 53. First, this data is purified from 

noise by applying the bandpass filtering process. Figure 54 shows the filtered version of 

the total dataset. As it can be understood at first glance, there is a serious improvement in 

the total dataset. Major noise we see in the Original ECG graph have been cleared as seen 

in the Filtered ECG signal graph (see Figures 54 and 55). Figure 56 shows that the detected 

R peaks are properly placed in the original ECG signal. As a result of the data collected 

from subject 1, his heart rhythm was determined as 75.9 beats per minute (BPM). Similar 

to the conclusion for subject 1, this is also a normal result for a healthy adult. 

 

Figure 53  

 Original ECG Signal Obtained from Subject 1 
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Note. X axis measured as number of sampled at 760 Hz, Y measured in arbitrary units. 

 

Figure 54  

FFT Filtered ECG Signal Obtained from Subject 1 

 

Note. X axis measured as number of sampled at 760 Hz, Y measured in arbitrary units. 
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Figure 55 

Steps of Detecting R Peaks from the ECG Signal Obtained from Subject 1 

 

Note. X axis measured as number of sampled at 760 Hz, Y measured in arbitrary units. 

 

Figure 56 

R Peaks are Properly Placed on the Original ECG Signal Obtained from Subject 1 

 

Note. X axis measured as number of sampled at 760 Hz, Y measured in arbitrary units. 
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Chapter 5 

Device Performance and Machine Learning 

5.1 Device Performance 

           Figure 57 shows a representative 3-second-long window of simultaneously 

recorded, filtered ECG, PCG, and SCG signals acquired with the prototype described in 

earlier chapters. Filter parameters were set through an initial frequency-domain analysis of 

raw biophysical signals, which identifies a cutoff for rejecting high-frequency noise, as 

discussed in the preceding chapter. These real signals reaffirm the correlation among 

biophysical signals schematically illustrated in Figure 12 and are also representative of 

those sent to the AI module for diagnostic processing.  
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Figure 57    

Simultaneous ECG, PCG, and SCG Signals were Recorded by the Prototype Heart 

Health Monitor 

 

 

Raw, simultaneous, real-time signals recorded using a 500 Hz sampling rate from 

a healthy individual are presented in the following several figures. Note that no filtering 

process was used to identify the presented correlation among the signals. Figure 58 shows 

the ECG signal in 6 seconds (out of 10 minutes) recording from subject 2. The peaks of the 

ECG signal are so clear that they can be easily identified. Figure 59 demonstrates the PCG 

signal in 6 seconds (out of 10 minutes) of recording. The S1 and S2 heart sound signals are 

visible, and they can be easily identified. Figure 60 illustrates the SCG signal in 6 seconds 

(out of 10 minutes) of recording. Signal quality suffers from low signal-to-noise ratio, 

which could be improved using a filtering process. Nevertheless, the signal is still useful 
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in identifying important peaks. When we look at the graphs individually, peaks of the ECG, 

PCG, and SCG occur at nearly the same times.  

 

Figure 58    

Representative 6 Seconds of 10 min Recording of ECG Signal 
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Figure 59    

Representative 6 Seconds of 10 min Recording of PCG Signal 
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Figure 60    

Representative 6 Seconds of 10 min Recording SCG Signal 
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Taking a closer look at these signals together, such as the ECG and PCG (see Figure 

61), it is clear that the R peaks of the ECG signal and S1 peaks of the PCG signal, and the 

T peak of the ECG signal and S2 of the PCG signal have some correlation. As described 

earlier, such correlation is expected regarding important cardiac events. As is shown in 

Figure 62, the ECG and SCG signals also have a meaningful correlation with each other. 

Peaks of ECG and SCG signals follow each other and this can be used for identifying 

heartbeats, detecting abnormalities in heartbeats, and more. Last but not least, when we 

look at these 3 signals together in one graph as shown in Figure 63, we can easily see that 

ECG, PCG, and SCG have an important relationship. By looking at these three signals at 

once in real-time, we can identify abnormalities, important cardiac events, heart conditions, 

and more. 

 

Figure 61    

Correlation Between the ECG and PCG Signals 
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Figure 62    

Correlation Between the ECG and SCG Signals 
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Figure 63    

Correlation Between the ECG, PCG, and SCG Signals 
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5.2 Training LSTM 

           Our initial effort in using the long short-term memory (LSTM) model developed 

by collaborators at Washington State University – Vancouver to process the collected 

signals is focused on ECG data due to the wide availability of labeled ECG datasets in 

online databases. To train the LSTM model, the MIT BIH Arrhythmia database [84] was 

used. This contains 48 labeled records of different individuals, with varying ages and 

medical conditions. Each record includes a 30-minute ECG dataset recorded in two 

channels at a rate of 360 Hz. In addition, each record includes a list of annotations and their 

corresponding locations on the ECG. Table 2 shows a summary of the medical conditions 

annotated in the training dataset, along with the total number of samples for each label. 

 

Table 2 

Labels in Training Dataset, from [84] 

 

           

Label 

Description Total Label Description Total 

 

N 

 

Normal 

 

18686 

 

r 

R on T premature 

ventricular 

contraction 

 

0 

 

L 

Left bundle branch 

block 

 

2019 

F Fusion of ventricular 

and normal 

 

202 

R Right bundle branch 

block 

1814 e Atrial escape 5 

B Bundle branch block 0 j Nodal escape 58 

A Atrial premature  637 n Supraventricular 

escape 

0 

a Aberrated atrial 

premature 

39 E Ventricular escape 28 

J Nodal premature 22 / Paced 906 

 

S 

Supraventricular 

premature or ectopic 

 

0 

f Fusion of paced and 

normal  

 

66 

 

V 

Premature ventricular 

contraction 

 

1782 

Z Non-beat or 

unclassifiable 

 

758 
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          To prepare the dataset for training, the annotated QRS complexes were used to 

extract individual heartbeats into 1-second-long windows centered on the complex. Each 

annotated beat window has a 360 entry-long array of ECG millivolt readings. After all of 

the windows were extracted, they were split into testing and training datasets (25% and 

75%, respectively), and also stratified by annotation type to guarantee evenly distributed 

labels. This type of dataset splitting results in both groups of data having the same 

distribution of classification types.  

           The present LSTM model is made up of a layer of 90 Dense nodes, a layer of 45 

LSTM nodes, and an output layer of 18 Dense nodes with SoftMax activation to produce 

a probability matrix for each classification type. The model was trained using a 600 ms 

window around each annotation, divided into 200 ms before and 400 ms after the 

annotation location. This results in 216 input features given the MIT BIH Arrhythmia 

training data frequency of 360 Hz. Each sample was filtered with a 5th order Butterworth 

bandpass filter [85] with a passband between 0.5 Hz and 40 Hz to reject low-frequency 

artifacts caused by respiration and high-frequency artifacts caused by electrical noise.  

           After training the LSTM model for 50 epochs, the MIT BIH testing dataset was 

used to evaluate its accuracy. Figure 64 shows the receiver operating characteristic curve 

(area under curve (AUC) = 0.99) and the Precision-Recall plot for the LSTM model in 

classifying normal (label N) and abnormal (all non-N labels) signals. It has been 

demonstrated that the Precision-Recall plot is more informative than the ROC curve in 

evaluating binary classifiers on imbalanced datasets [86].  The results suggest that the 

LSTM model can classify heartbeats with an accuracy of 97-98%.  
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Figure 64    

ROC Curve and Precision-Recall Curve of The LSTM Model for Classifying Normal and 

Abnormal Signals 
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5.3 System Evaluation 

           To evaluate the entire prototype system, we have tested the whole workflow. This 

involves signal collection from the human body, signal transmission, data pre-processing, 

and finally, classification using the trained LSTM model. Specifically, we set the variable 

system frequency of the prototype to collect signals at 360 Hz from a healthy test subject. 

This frequency is consistent with the MIT BIH training dataset. The collected data were 

transmitted to the AI processing module, where the signals were segmented into 1-second 

windows, each of which was centered by the peak of the QRS. Here, we used a widely 

adopted QRS detection algorithm to detect the peaks. After pre-processing, these signals 

were fed into the training LSTM model for classification. The detected conditions and their 

occurrence counts are shown in Table 3.  

 

      

 

      As shown in the results, among the total 76 QRS complexes, 73 were classified as 

normal (N), 2 were classified as atrial premature (A), and 1 was classified as a nodal escape 

(j). No other conditions were detected in the data. While it is currently not possible to verify 

Table 3 

Detected Conditions on Data Collected by the System 

 
Conditions N A j Other 

Counts 73 2 1 0 

Percentage 96.1% 2.6% 1.3% 0% 
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these classifications as the data has not been reviewed by a cardiologist, the results appear 

to be close to what would be expected from a healthy individual. 

           In addition to the classification accuracy, running performance is also an important 

metric, especially if the system will be used for real-time detection of abnormal heart 

conditions. To this end, the AI processing module was evaluated on two types of hardware: 

a computer using an NVIDIA GTX 1080 GPU, and a Raspberry Pi 4. The average 

classification time per QRS complex on the computer is 0.010 seconds, while on the 

Raspberry Pi 4, the average classification time is 0.052 seconds. These results show that 

the AI Processing module is highly efficient, even when running on a small, portable device 

such as the Raspberry Pi. Given that a normal heart rate is usually under 180 beats per 

minute (BPM), the running performance of our system demonstrates great potential for 

real-time heart monitoring and anomaly detection. For future work, we will develop a 

multimodal learning algorithm that can learn from multiple data sources, so that the SCG 

and PCG signals can be leveraged in the learning process. 
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Chapter 6 

Conclusion 

6.1 Thesis Summary 

The number of deaths from heart disease continues to increase. Heart disease is not 

only deadly but also extremely expensive to treat. Early diagnosis of heart conditions is 

very important in order to avoid these consequences. For this reason, many studies have 

been carried out towards tools and techniques for the early diagnosis of heart diseases. One 

of the most commonly used methods for the diagnosis of heart conditions is the 

electrocardiogram. However, since the electrocardiogram only receives electrical signals 

from the heart, it is not a method that permits detection of all abnormalities that may occur 

in the heart. Every beat of the heart provides sound and vibration resulting from the initial 

electrical activity. If these three signals – electrical, acoustic, and vibrational – are 

monitored simultaneously, there is a chance of catching important findings missed by using 

ECG alone. This project presents a wearable device that could potentially detect abnormal 

cardiovascular function by sensing electrical (ECG), acoustic (PCG), and vibrational 

(SCG) changes in heart performance. The prototype device developed as part of this thesis 

shows that it can record ECG, PCG, and SCG signals simultaneously. 

The first aim of this thesis is to produce a device that can receive ECG, PCG, and 

SCG signals together. Thus, it was necessary to create a system in which the sensors and 

microcontrollers would work in harmony. First of all, sensors with which ECG, PCG, and 

SCG signals can be acquired were determined. Then, an ESP32 microcontroller was 

selected, which could simultaneously collect the data from these sensors and transfer the 
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collected data, both wired and wirelessly. After testing the compatibility of sensors and 

microcontrollers, a PCB was designed to host all these components. In addition, in order 

to ensure data security and not to lose information in any possible situation, the data was 

collected using an SD card system. This recorded data is saved to the SD card while also 

being transmitted wired/wirelessly. 

The second purpose of this thesis is to design a stethoscope adapter that will 

minimize the noise in the PCG signal and to design a housing to effectively contain all the 

previously described components. The microphone, when used alone, picked up too much 

noise from the environment, making it difficult to detect some of the important signals 

from the heart. For this reason, we produced a stethoscope using different materials and 

different designs. For the final prototype, we printed a stethoscope using an SLA printer 

with Formlabs elastic 50A resin material. This stethoscope was preferred because it is 

ergonomic and flexible, significantly reduces the noise coming from the outside, and does 

not make the user sweat or cause itchiness. After the stethoscope design was provided, a 

housing design was made to accommodate the whole system and protect it from external 

impacts. In addition, since the user is expected to wear this system for long-term 

recordings, soft-bodied 3D prints were made with TPU material, which is a flexible 

material that will not make the user sweat. Then, a strap system was created that will allow 

the system to stay on the patient's chest for a long time without discomfort. 

The third aim of this thesis was to create a platform where we can monitor the ECG, 

PCG, and SCG signals simultaneously. For this, we have set up different systems suitable 

for wired and wireless communication. First, using the LabVIEW platform, a program was 

for simultaneous monitoring of these three signals and signal processing. Later, a system 
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was established to enable communication between LabVIEW and the ESP32 board. In this 

way, there is no need to use intermediate DAQ devices. The data obtained from our device 

were monitored simultaneously via the LabVIEW platform, either wired or wirelessly. 

Afterward, an application was designed to enable the tracking of data from smartphones. 

The application is not suitable for signal processing, but it provides simultaneous wireless 

tracking of the user's data from the sensors. 

The fourth purpose of this thesis is to eliminate the noise in the collected signals. 

Two different programs were created for the signal filtering process. First of all, the 

LabVIEW system, where real-time filtering would be performed, was established. By using 

the FFT feature, the frequency ranges of the primary information content were determined; 

possible noise in the signal was filtered to boost the signal-to-noise ratio. The LabVIEW 

platform permitted simultaneous visualization of raw and filtered signals, aiding in filter 

design. Later, since LabVIEW is, comparatively, not an easy-to-access application, a 

MATLAB program was created for filtering. As mentioned in Chapter 4, the filtering 

process was successful. Then, an algorithm and a program that can perform peak detection 

were developed. This program can detect the R peaks of the ECG signal and calculate the 

user's heart rate. Data collected from different volunteers were evaluated in the filtering 

and peak detection programs, and the collected results were successful. 

The final purpose of this thesis is to process the collected data through an AI 

machine learning algorithm to detect abnormalities. For this, we worked with Washington 

State University and assessed our data in the machine learning algorithm they designed. 

They compared data acquired by the prototype described in this thesis with an LSTM 
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model trained using the MIT BIH training dataset. In essence, this demonstrates key aspects 

of end-to-end functionality of the heart monitor platform as introduced in Figure 16. 

6.2 Future Work 

More volunteers providing biophysical data to further optimize the prototype 

device is desirable. The deficiencies in the system can be minimized by processing 

different data sets collected from more, diverse volunteers who may demonstrate 

physiological variability or otherwise test the limits of device performance. For this reason, 

permission from the Rowan Institutional Review Board (IRB) will be required to test the 

device on an expanded set of different volunteers who are not otherwise associated with 

this work. With the permission obtained, it is planned for our team to collect 5-minute data 

sets from male and female volunteers from different age groups in various positions such 

as sitting, laying down, standing, walking, and running.  

Although the data collected by the device for the SCG signal gives data from the 

heart, it creates problems in long-term recordings because the data suffer from a low signal-

to-noise ratio. In order to solve these technical problems, future work should be focused on 

testing the device for a long time with different sensors and finding the most suitable SCG 

sensor and filtering combination. Once the quality of the SCG signal is assured, it can be 

tested in the already-developed peak detection algorithm. ECG and SCG should provide 

generally correlated heart rhythm results in the short term. Should the correlation drift over 

longer monitoring periods, the possibility of a problem in the heart within the scope of 

obtaining different results can be considered. 



100 
 

Real-time filtering is very important. For this reason, to the project should plan on 

establishing a system that can monitor abnormalities by performing real-time filtering on 

the phone application or a computer. In this way, the user can see data representations 

which isolate meaningful signals from the noise. In addition, monitoring algorithms can 

find problems more easily in noise-free signals, and in this way, can warn the user quickly 

in case of problems. In addition to the algorithm used only for ECG, it is suggested that 

similar algorithms for PCG and SCG signals should be developed. For this, we need to 

collect more data first. 

Although the size of the device has already been reduced from its original designs, 

it would be desirable to further reduce its size to that of a coin. The PCB board developed 

in this thesis includes an SD card module, ESP32 microcontroller development board, 

Sen0312 development board, microphone module, and MPU6050 accelerometer 

development board. The fact is that all these components have separate development 

boards and they take up a lot of space. In addition, these boards all have unnecessary 

components that are not used in our application. The size of the device can be reduced to a 

minimum by designing a system in which only the key components are combined. For this, 

optimization and miniaturization of the device should be pursued by working with 

electronics engineers. 
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Appendix A 

Arduino Code for ESP32 

#include "FS.h" 

#include "SD.h" 

#include <SPI.h> 

#define SD_CS 5 

#include "BluetoothSerial.h" 

#if !defined(CONFIG_BT_ENABLED) || 

!defined(CONFIG_BLUEDROID_ENABLED) 

#error Bluetooth is not enabled! Please run `make menuconfig` to and enable it 

#endif 

BluetoothSerial SerialBT; 

String c; 

String a; 

String b; 

String d; 

String k; 

String y; 

double f; 

double g; 

String dataMessage; 

double myTime; 

void setup() { 

  Serial.begin(2000000); 

  SerialBT.begin("ESP32test"); //Bluetooth device name 
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  Serial.println("The device started, now you can pair it with bluetooth!"); 

  // Initialize SD card 

  SD.begin(SD_CS); 

  if (!SD.begin(SD_CS)) { 

    Serial.println("Card Mount Failed"); 

    return; 

  } 

  uint8_t cardType = SD.cardType(); 

  if (cardType == CARD_NONE) { 

    Serial.println("No SD card attached"); 

    return; 

  } 

  Serial.println("Initializing SD card..."); 

  if (!SD.begin(SD_CS)) { 

    Serial.println("ERROR - SD card initialization failed!"); 

    return;    // init failed 

  } 

  File file = SD.open("/data.txt"); 

  if (!file) { 

    Serial.println("File doens't exist"); 

    Serial.println("Creating file..."); 

    writeFile(SD, "/data.txt", "ESP32 and SD Card \r\n"); 

  } 

  else { 

    Serial.println("File already exists"); 
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  } 

  file.close(); 

} 

void loop() { 

  RemoteXY_Handler (); 

  mpu6050.update(); 

  RemoteXY_Handler (); 

  RemoteXY.onlineGraph_1 = float (analogRead(35)) ; 

  RemoteXY.onlineGraph_2 = float (analogRead(34)) ; 

  RemoteXY.onlineGraph_3 = float (mpu6050.getAccZ()) ; 

  int a = analogRead(35); 

  int b = analogRead(34); 

  Serial.print("ecg : "); 

  Serial.print(a); 

  Serial.print("\tpcg : "); 

  Serial.print(b); 

  Serial.print("\taccZ : "); 

  Serial.println(mpu6050.getAccZ()); 

 

 

  SerialBT.print("ecg : "); 

  SerialBT.print(a); 

  SerialBT.print("\tpcg : "); 

  SerialBT.print(b); 

  SerialBT.print("\taccZ : "); 
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  SerialBT.println(mpu6050.getAccZ()); 

} 

// Write the sensor readings on the SD card 

void logSDCard() { 

  dataMessage = " Mic= " + String(c) + " " + " ECG = " + String(a) + " SCG = " + 

String(g) +  "\n"; 

  Serial.print("Save data: "); 

  Serial.println(dataMessage); 

  appendFile(SD, "/data.txt", dataMessage.c_str()); 

} 

// Write to the SD card (DON'T MODIFY THIS FUNCTION) 

void writeFile(fs::FS &fs, const char * path, const char * message) { 

  Serial.printf("Writing file: %s\n", path); 

  File file = fs.open(path, FILE_WRITE); 

  if (!file) { 

    Serial.println("Failed to open file for writing"); 

    return; 

  } 

  if (file.print(message)) { 

    Serial.println("File written"); 

  } else { 

    Serial.println("Write failed"); 

  } 

  file.close(); 

} 
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// Append data to the SD card (DON'T MODIFY THIS FUNCTION) 

void appendFile(fs::FS &fs, const char * path, const char * message) { 

  Serial.printf("Appending to file: %s\n", path); 

  File file = fs.open(path, FILE_APPEND); 

  if (!file) { 

    Serial.println("Failed to open file for appending"); 

    return; 

  } 

  if (file.print(message)) { 

    Serial.println("Message appended"); 

  } else { 

    Serial.println("Append failed"); 

  } 

  file.close(); 

} 
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Appendix B 

MATLAB Code for Filtering 

% This is to create a figure in matlab of the values recieved from the 

% ECG monitor.  % 

% RUN IN SECTIONS !!! %  

  

%% Importing files into Workspace and renaming 

prompt = "What is the file name? \n"; 

fileName = input(prompt, 's'); 

prompt = "What is the sheet name? \n"; 

sheetName = input(prompt, 's'); 

% If you don't want prompt and just to manually input, us this code: 

% fileName = "Data_1"; 

data = xlsread(fileName, sheetName); 

%% Loading data into workable and usable Array (Increase Efficency) 

%time = data(:,1); % Time values are in first column 

ECG = data(:,1); % ECG values are in second column 

  

%% Plot the unfiltered Data of ECG Values  

figure 

plot(ECG); xlim([2000, 5000]); 

xlabel("Time"), ylabel("Voltage"); 

title("ECG Monitor Values"); 

  

%% Trasnform Unfiltered Data into frequency domain 

% fft func trasforms signals from time to frequency 

ECGf = fft(ECG); 

  

%% Plot new frequency domain values 

prompt = "What is the sampling frequency? \n"; 

Fs = input(prompt); % set frequency sampling rate 

fECGv = linspace(0,Fs,length(ECG));  

% create vector for plotting  

% points for each signal value in original ECG data 

  

% Plot ECG values on figure in time and frequency for comparison 

figure 

subplot(2,1,1) 

plot(ECG); xlim([2000, 3000]); 

xlabel("Time"), ylabel("Voltage"); 

title("ECG Monitor Values"); 

  

subplot(2,1,2) 

plot(fECGv, abs(ECGf)); xlim([0.75, Fs]); 
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xlabel("Frequency (Hz)"), ylabel("Magnitude"); 

title("Frequency Graph of ECG Signal"); 

%% Create Frequency Filter 

filterDesigner % Allows creation of frequency filter 

  

%% Create filtered signal 

filteredECG = filter(Hd, ECG); 

  

% Transform filter in frequency domain 

filtECGf = fft(filteredECG); 

  

%% Compare signals 

  

figure 

subplot(2,1,1); 

plot(ECG); xlim([2000, 3000]); 

title('Original ECG Signal in Time'); 

xlabel('time (s)'); ylabel('magnitude'); 

  

subplot(2,1,2); 

plot(filteredECG); xlim([2000,3000]); 

title('Filtered ECG Signal in Time'); 

xlabel('time (s)'); ylabel('magnitude'); 

  

%% See difference in frequency domain 

  

figure 

subplot(2,1,1); 

plot(fECGv, abs(ECGf)); 

title('Original ECG Signal in Frequency'); xlim([0.75,Fs]); 

xlabel('Frequency (Hz)'); ylabel('magnitude'); 

  

subplot(2,1,2); 

plot(fECGv,abs(filtECGf)); 

title('Filtered ECG Signal in Frequency'); xlim([0.75, Fs]); 

xlabel('Frequency (Hz)'); ylabel('magnitude'); 
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