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Abstract

Jacob Epifano
BETTER MODELS FOR HIGH-STAKES TASKS

2023-2024
Ravi Ramachandran, Ph.D.

Doctor of Philosophy in Electrical & Computer Engineering

The intersection of machine learning and healthcare has the potential to transform

medical diagnosis, treatment, and research. Machine learning models can analyze vast

amounts of medical data and identify patterns that may be too complex for human analysis.

However, one of the major challenges in this field is building trust between users and the

model. Due to things like high false alarm rate and the black box nature of machine learning

models, patients and medical professionals need to understand how the model arrives at its

recommendations. In this work, we present several methods that aim to improve machine

learning models in high-stakes environments like healthcare. Our work unifies two sub-

fields of machine learning, explainable AI, and uncertainty quantification. First we develop

a model-agnostic approach to deliver instance-level explanations using influence functions.

Next, we show that these influence functions function are fairly robust across domains.

Then, we develop an efficient method that reduces model uncertainty while modeling

data uncertainty via Bayesian Neural Networks. Finally, we show that when combined

our methods deliver significant utility beyond traditional methods while retaining a high

level of performance via a real world deployment. Overall, the integration of uncertainty

quantification and explainable AI can help overcome some of the major challenges of

machine learning in healthcare. Together, they can provide healthcare professionals with

powerful tools for improving patient outcomes and advancing medical research.
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Chapter 1

Introduction

I began working on my first machine learning related publication in 2018 where

my team acquired a novel dataset to predict levels of cognitive impairment. The dataset

consisted of discrete measurements and statistics collected from a digital pen. Participants

were asked to draw an analog clock with the time “ten minutes after eleven”. The manner

in which the clock was drawn can be a factor in determining whether or not a patient

has Alzheimer’s disease. While the models that we developed achieved a high level of

performance, the part that struck me was that once published, these models were discarded

and our work concluded [1].

The next time I was exposed to this phenomena was during an internship at the

Children’s Hospital of Philadelphia. My team had just concluded research on a sepsis

prediction model for infants. This model achieved a high level of performance and can

detect sepsis up to approximately 4 hours before clinical recognition [2]. In general, early

detection of sepsis is a key in treating it as the earlier one can start treatment, the outcome

is often better. Designing a model to detect sepsis prior to clinical recognition can lead

to a high false alarm rate [3]. A common fix for this is to increase the complexity of the

model thereby increasing its performance. In healthcare and high risk fields in general,

complex models are undesirable due to their uninterpretable outputs [4]. These factors

make deploying models in sensitive areas quite difficult as even highly accurate machine

learning models have not been widely accepted or endorsed by clinical staff [5, 6]. At the

time, it was clear that several considerations needed to be made before prediction models

would be readily accepted in these environments.

1



1.1 Motivation

Artificial Intelligence (AI) and Machine Learning (ML) have started to gain traction

in medical domains [7]. However, due to the high-stakes nature of medicine, AI/ML

models rarely make it to real-world deployments [8]. While a few models have successfully

transitioned to deployment [2, 9, 10], user feedback is often negative [5, 6]. Factors such as

high false alarm rates and uninterpretable outputs [3, 4] demand several considerations for

AI/ML to flourish in high-risk environments like healthcare. [11]

1.2 Problem Statement

AI models have the potential to greatly enhance healthcare delivery by improv-

ing diagnostic accuracy, predicting patient outcomes, personalizing treatment plans, and

increasing overall efficiency. However, their reception in the healthcare sector has been

characterized by significant resistance and skepticism. This is largely due to concerns

around lack of interpretability and transparency in AI decision-making, potential for bias

in algorithms, and lack of appropriate technical understanding and skills in the healthcare

community. The ”black box” phenomenon is a prevalent problem in AI. This refers to the

situation where only the inputs and outputs of a learning model can be observed. It is not

precisely known how the parameters of the model interact to arrive at the final output.

Therefore, we need to devise strategies and solutions that can improve the perception

and acceptance of AI models in healthcare. This requires comprehensive efforts to address

the aforementioned issues and to enhance the understanding, trust, and usability of AI

technologies among healthcare practitioners and patients. In the pursuit of integrating

AI in healthcare, it is essential to ensure that the use of these models is transparent, and
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interpretable, while also providing tangible benefits to patient care and outcomes.

1.3 Outline of the Dissertation

Chapter 1 provides the introduction and motivation for the problem of improving

AI/ML research in the healthcare space. Chapter 2 provides relevant background informa-

tion in the areas where we have innovated including feature importance and uncertainty

quantification. Chapter 3 introduces our first crack at addressing this problem, mainly

improving the mortality prediction task with influence functions as the method of choice

for providing explanations. Chapter 4 addresses the problem of feature selection for the

mortality prediction task. We provide several approaches to choose a minimum set of

features that provides the highest performing model. Chapter 5 introduces a simplification

to a recent Bayesian framework for training neural networks with built-in robustness and

uncertainty quantification. Chapter 6 addresses claims from a recent work that shows influ-

ence function fragility. We reproduce their work and come up with different conclusions.

Chapter 7 unifies our prior work. We deploy a mortality prediction model with explanations

and uncertainty quantification and observe its performance during the COVID-19 pandemic

and afterwards. Finally, Chapter 8 summarizes our contributions and outlines future efforts

for this field.
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Chapter 2

Background

2.1 Motivation

Tonekaboni et al. [12] have provided the majority of the motivation for our work in

ML for healthcare by contextualizing the requirements to successfully deploy ML models

in clinical environments. Those requirements can be boiled down to a few components

which form the basis of our work: feature importance, instance level explanation, and

Uncertainty Quantification (UQ). Feature importance and explanations in general attempt

to attribute the prediction to one or several input features. Explanations can often be

categorized into global, where we try to measure the overall importance of each input

feature, and local, where we try to measure how the input features of one individual

sample affected the model output. The comcept of UQ refers to measuring the confidence

or certainty of a given prediction. This has become more important with the advent of

deep learning, where softmax outputs have drifted away from approximations of the true

posterior probability and often make models appear overconfident [13]. Feature importance

and instance level explanations typically go together. However, since the advent of deep

learning, these topics have been drifting apart. Due to the black-box nature of Deep Neural

Networks (DNNs), implementing a convincing solution for these components has proven

to be quite difficult.

Prior to our work in this field, less consideration has been given to the utility and

explainability of machine learning models in healthcare in favor of high performance and

self-indulgent publications. Tonekaboni et al. [12] have given us a framework to design

machine learning models for real world deployments. Using this framework as a guide,
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our objective was to reduce alarm fatigue, provide actionable insights and build user-model

trust through a combination of explainable predictions and uncertainty prediction.

2.2 Supervised Learning

For all inference problems in this thesis, we perform supervised learning. Supervised

learning assumes that the available data consists of data-label pairs wherein we try to find

a function that maps the data to the label. More formally, consider an inference problem

where X represents the input space and Y represents the output space. Given training points

𝑧1, 𝑧2, ..., 𝑧𝑛, where 𝑧𝑖 (𝑥𝑖, 𝑦𝑖) ∈ X × Y , we find a set of parameters, 𝜃 ∈ Θ that minimizes

the empirical risk 𝑅(𝜃) = 1
𝑛

∑𝑛
𝑖=0 𝐿 (𝑧, 𝜃) where 𝐿 is the loss function. Let the training set

𝑋 and 𝑌 be sampled from X (Equation 2.1) and Y (Equation 2.2), where 𝑛 is the number

of samples, 𝑘 is the number of features and 𝑓1, 𝑓2, . . . , 𝑓𝑘 are the input features.

𝑋 =



𝑥1 : [ 𝑓1 𝑓2 . . . 𝑓𝑘 ]

𝑥2 : [ 𝑓1 𝑓2 . . . 𝑓𝑘 ]
...

𝑥𝑛 : [ 𝑓1 𝑓2 . . . 𝑓𝑘 ]


(2.1)

𝑌 =



𝑦1

𝑦2

...

𝑦𝑛


(2.2)
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2.3 Feature Importance

In machine learning, the explainability of a model and its performance are generally

competing factors [14]. Explainable models, (logistic regression, trees, etc.) are often

outperformed by black-box models (neural networks (NNs)). Early work has been done by

Ribeiro, et. al who explain the predictions of any classifier using Local Interpretable Model-

Agnostic Explanations (LIME) and High Precision Model-Agnostic Explanations (Anchors)

[15, 16]. While LIME’s local explanation breaks down immediately upon changing the

point under test, Anchors resolves this by optimizing for the whole test set. These model

agnostic approaches leave much to be desired in terms of explainability, and, therefore,

model-specific approaches are preferred especially for NNs. A lot of work in the field of

explainable machine learning has been done for image datasets. Specifically, saliency maps

are used to propagate classification information from the last layers of Neural Networks to

their inputs. For image data specifically, this results in a 2D map that is the size of the

original input where each pixel’s intensity represents how important that pixel is to the

classification [17–22] [11].

In this thesis, we investigated analytical techniques known as influence functions,

which originate from robust statistics, as our primary method of explainability. Influence

functions allow one to approximate the change that a leave one out (LOO) training scheme

would have on the parameters [23]. Recently, Koh and Liang showed that influence functions

can be used to approximate which training points most effected the loss of a test point and

what features were most important for each training point [24]. Since this algorithm

is model-specific, it can be leveraged to extract multiple statistics about how the model
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interprets the data. This makes influence functions an ideal candidate for use in the medical

field. One of the limitations of their work is that the gradient is not propagated through

the multiple layers of the network [25]. Koh and Liang use features from the last layer

as an input to a logistic regression model and approximate influence functions [24]. The

algorithm cannot provide any information on how the original features affected functions

of the test loss [24] [11].

2.4 Influence Function Derivation

This derivation was taken directly from Koh et al. [24] and has been reproduced

below:

Influence functions are considered one of the classic techniques from robust statistics

that can quantify the change in model parameters attributed to up-weighting a training point

by an infinitesimal amount. In the following, we derive mathematical relationships for

influence functions, examine their underlying assumptions, and attempt to explain these in

the context of large neural networks. We start by defining an optimization problem where

𝜃 minimizes the empirical risk as defined by Koh et al. [24]:

𝑅(𝜃) def
=

1
𝑛

𝑛∑︁
𝑖=1

𝐿 (𝑧𝑖, 𝜃) (2.3)

where (as mentioned earlier) 𝐿 is the loss function, 𝑧𝑖 are the training data, 𝑛 is the total

number of training points, and 𝜃 are the network parameters.

A fundamental assumption for influence functions is that 𝑅 is twice-differentiable

and strongly convex in 𝜃. That is, the Hessian, as defined by:
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𝐻𝜃

def
= ∇2𝑅(𝜃) = 1

𝑛
∇2
𝜃𝐿 (𝑧𝑖, 𝜃), (2.4)

exists and is positive definite. The convexity assumption guarantees the existence

of 𝐻−1
𝜃

. Recallthat we approximate the removal of a training point by up-weighting the

parameters by a small quantity 𝜖 ≈ −1
𝑛
. The perturbed parameters, 𝜃𝜖,𝑧 can be written as

[24]:

𝜃𝜖,𝑧 = arg min𝜃∈Θ [𝑅(𝜃) + 𝜖𝐿 (𝑧, 𝜃)] . (2.5)

The total parameter change by up-weighting a training example can be defined as

Δ𝜖 = 𝜃𝜖,𝑧 − 𝜃. Differentiating with respect to 𝜖 and noting that 𝜃 doesn’t depend on 𝜖 , we

can write:

𝑑𝜃𝜖,𝑧

𝑑𝜖
=
𝑑Δ𝜖

𝑑𝜖
. (2.6)

We note that for the optimal parameters 𝜃𝜖,𝑧, we can rewrite Eq. 2.5 as:

0 = ∇𝑅(𝜃𝜖,𝑧) + 𝜖∇𝐿 (𝑧, 𝜃𝜖,𝑧). (2.7)

Since 𝜃𝜖,𝑧 → 𝜃 as 𝜖 → 0, the first-order Taylor expansion of the right-hand side

produces:

0 ≈
[
∇𝑅(𝜃) + 𝜖∇𝐿 (𝑧, 𝜃)

]
+

[
∇2𝑅(𝜃) + 𝜖∇2𝐿 (𝑧, 𝜃)

]
Δ𝜖 . (2.8)

Solving for Δ𝜖 ,
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Δ𝜖 = −
[
∇2𝑅(𝜃) + 𝜖∇2𝐿 (𝑧, 𝜃)

]−1 [
∇𝑅(𝜃) + 𝜖∇𝐿 (𝑧, 𝜃)

]
(2.9)

Since 𝜃 minimizes 𝑅, then ∇𝑅(𝜃) = 0. Neglecting higher order 𝜖 terms,

Δ𝜖 ≈ −∇2𝑅(𝜃)−1∇𝐿 (𝑧, 𝜃)𝜖 . (2.10)

When we substitute Equations 2.4 and 2.6, we have:

𝑑𝜃𝜖,𝑧

𝑑𝜖

����
𝜖=0

= −𝐻−1
𝜃
∇𝐿 (𝑧, 𝜃) def

= Iup,params(𝑧). (2.11)

To study how upweighting 𝑧 changes functions of 𝜃 we can apply the chain rule to

Equation 2.11. The influence of upweighting 𝑧 on the loss of a test point 𝑧test is:

Iup,loss(𝑧, 𝑧test) = −∇𝜃𝐿 (𝑧test, 𝜃)⊤𝐻−1
𝜃
∇𝜃𝐿 (𝑧, 𝜃). (2.12)

Finally, we can use the influence function to study the effect that perturbing 𝑧

(𝑧 → 𝑧𝛿), where 𝑧𝛿 = (𝑥 + 𝛿, 𝑦) has on the features of 𝑧test. This is given by

Ipert,loss(𝑧, 𝑧test) = −∇𝜃𝐿 (𝑧test, 𝜃)⊤𝐻−1
𝜃
∇𝑥∇𝜃𝐿 (𝑧, 𝜃). (2.13)

2.5 Uncertainty Quantification

The total uncertainty in a machine learning model can be characterized by two

distinct components. The first is epistemic uncertainty, which arises from the parameters of

the model. The second is aleatoric uncertainty, which stems from the data or environment.

Uncertainty quantification is becoming increasingly important in high-stakes decision-

making, as establishing trust between users and models is crucial for the widespread adoption

of such models [26]. To date, the implementation of machine learning models in high-stakes
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domains, such as medicine, has not achieved substantial user acceptance and confidence

[5, 6]. This is primarily due to high false alarm rates [4] and suboptimal test characteristics

[27]. Variational inference has been demonstrated to alleviate the impact of epistemic

uncertainty by effectively averaging predictions during inference [28–30]. Furthermore,

the output variance associated with a single prediction obtained from a Bayesian Neural

Network (BNN) can quantify the level of aleatoric uncertainty in that prediction [31, 32].
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Chapter 3

Towards an Explainable Mortality Prediction Model

In our preliminary work [33], we sought to approach the first two suggestions

provided by Tonekaboni et al. [12], feature importance and instance-level explanations, on

a medically relevant task. For this work, we chose to tackle mortality prediction for patients

in the Intensive Care Unit (ICU) using first-day (acquired within 24 hours of admittance)

lab values [33].

The current state-of-the-art for mortality prediction exists in the form of evaluation

scores. Acute Physiology and Chronic Health Evaluation (APACHE), and Simplified Acute

Physiology Score (SAPS) are examples of mortality predictors [34, 35]. A simple logistic

regression model is fitted to these scores and a binary classifier is built. These methods have

been shown to have an area under the curve (AUC) of the receiver operating characteristic

(ROC) range from 0.6-0.7 depending on the time of prediction [36]. The prediction time

has a huge impact on the utility of these models. Predicting mortality at 48 hours from

admittance is not as useful as predicting at the time of admission or after 24 hours. In this

work, we focused on predicting mortality at 24 hours after admittance in the ICU [33].

3.1 Extended Influence Functions

Recall from Section 2.4, that the original influence function implementation utilizes

the bottleneck features of a deep learning model as input to a logistic regression model

[24]. This simplification reduces the complexity of the algorithm since the gradient only

has to propagate back through one layer. This simplification works when calculating the

influence on the model parameters (Equation 2.11) or the influence on the loss of a test
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point (Equation 2.12). While this may be good enough for most applications, if one would

want to estimate the influence that perturbing the input features would have on the loss

of a test point (Equation 2.13), this will not work due to the requirement of having to

compute the gradient with respect to the input features, ∇𝑥 . We remove this restriction of

using the extracted features by keeping the graph intact and providing a methodology for

layer-by-layer calculation of the influence functions.

In our settings, we compute the influence functions using Eqs. (3.1) and (3.2) with

respect to the output layer only rather than with respect to each layer of the Neural Net.

This enables an efficient computation of the influence functions. Our approach is inspired

by the techniques used in saliency maps [17–22] [33]

We perform stochastic estimation of the inverse of the Hessian using the LiSSA

algorithm [37]. As our approach involves the computation of the Hessian, all operations in

the Neural Network must be twice differentiable. Therefore, we used Scaled Exponential

Linear Units (SELU) [38] activation functions (as opposed to Rectified Linear Units (ReLU))

and the cross-entropy loss function [33].

3.1.1 Feature Importance - Local and Global

We define feature importances by taking the average of Equation (2.13) across all

training points in the dataset. Later, when examining the loss of one test point 𝑧test, we refer

to this as the local feature importance given by

𝐹𝐼local =
1
𝑁

𝑁∑︁
𝑖=1

Ipert, loss(𝑧𝑖, 𝑧test, point), (3.1)
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where Ipert, loss is given in Equation 2.13. The variable N denotes the number of training

points in the dataset. When using the average loss across all test points, we refer to this as

the global feature importance:

𝐹𝐼global =
1
𝑁

𝑁∑︁
𝑖=1

Ipert, loss(𝑧𝑖, 𝑧test, set). (3.2)

[33]

3.2 Synthetic Gaussian Dataset

In order to evaluate our implementation, we tested our extended influence functions

(given in Equations (3.1) and (3.2)) using simulated data. We generated two multivariate

Gaussian distributions, each having two dimensions. Both distributions shared the same

mean in the first dimension and had different means in the second dimension. Therefore, it

should be easy to quantify the feature importance. We split the data into train and test sets

and trained two classifiers, i.e., a logistic regression and a neural network with one hidden

layer. We evaluated the correlation between the logistic regression coefficients (ground

truth) and feature importance from Equation (2.13) [33].

Figure 1

Synthetic Multi-Variate Gaussian Distributions Data
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We evaluated how the feature importance values can change across test samples.

When evaluating the center points of each distribution as our test point (Figure 1), we

noticed very different average feature importances that were also different from the logistic

regression coefficients (Equation 3.1). However, when the entire test set is used to compute

the loss (Equation 3.2), the feature importance values approach the logistic regression

coefficients (the ground truth) with correlation values above 0.95 and with 𝑝 < 0.05, where

𝑝 is the p-value of the correlation statistic [33].

This correlation analysis shows that, at least for small models, the explanations

produced by influence functions align well with the logistic regression coefficients. These

results also validates our formulation for global feature importance (Equation 3.2).

3.3 Model Selection

3.3.1 eICU Collaborative Research Database

The eICU database is a collection of datasets from multiple intensive care units

(ICUs) across the United States [39]. We chose the dataset that included first-day laboratory

test results as input features (𝑥) and patient survival as labels (𝑦). Furthermore, we split the

dataset into two groups, (1) septic: dataset of patients who were diagnosed for sepsis only,

and (2) all-comers: dataset of patients with all types of diagnosis. The septic patient data

is a sub-set of the all-comers dataset. The decision to split the dataset was based on the

assumption that the features indicating mortality may differ depending on the diagnosis of

the patient, i.e., septic or non-septic. For the septic dataset, we have 19379 instances and 28

input features. For the all-comers dataset, we have 148532 instances and 20 input features

[33].
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3.3.2 Data Pre-Processing

We start with a correlation analysis of all features in the datasets. Subsequently, all

features with a correlation coefficient greater than 0.9 were dropped from the dataset. The

missing data were assumed to be missing at random and features with the number of missing

data > 50% of the total data were dropped from the dataset. For the rest of the missing data,

we used multiple imputation with chained equations via iterative imputer method available

in the ski-kit learn Python package [40] [33].

3.3.3 Training, Validation, and Testing

We used k-fold cross-validation with 𝑘 = 5 for the performance evaluation of all

models. For each split, the training and testing data were standardized using the mean and

the standard deviation of the training data. We observed a large class imbalance in our

dataset (90%-10% in septic and 95%-5% in all-comers). To explore further and address the

potential problem of class imbalance, we trained and tested two sets of models, (1) without

introducing any class balancing technique, and (2) performing minority class oversampling

using Synthetic Minority Oversampling Technique (SMOTE) [41]. SMOTE performs

synthetic sampling using interpolation along the space between a minority instance’s k-

nearest-neighbors until the number of points in each class are equal [33].

In addition to Simplified Acute Physiology Score (SAPS) and Acute Physiology and

Chronic Health Evaluation (APACHE), which were available in the database, we trained

three models, i.e., logistic regression, XGBoost, and a Neural Net with one hidden layer

using SELU activations. We used nested grid search to find optimal hyperparameters for
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the logistic regression (C, Penalty, etc.) and XGBoost (max depth, learning rate, etc.)

models. However, for the Neural Net, we used Bayesian optimization which is available in

Weights and Biases Python package [42]. For each patient, we extracted the corresponding

APACHE and SAPS scores and fit a logistic regression model using the same training and

testing scheme as described above for the other three models. We evaluated all five models

using the Receiver Operating Characteristic (ROC) curves and Area Under the Curve (AUC)

metric. The models scoring highest on the ROC AUC metric were selected to evaluate the

test set for each cross-validation loop [33].

Table 1

AUC Scores or Both Test Datasets

Septic Patients: ROC AUC

SMOTE Oversampling SAPS APACHE IVa Logistic Regression XGBoost Neural Network

No 0.7717 0.7849 0.7985 0.6901 0.7969

Yes 0.7736 0.7864 0.8001 0.7199 0.8046

All-Comers Patients: ROC AUC

No 0.8325 0.8451 0.8463 0.6892 0.8326

Yes 0.8330 0.8457 0.8474 0.8124 0.8564

3.3.4 Extraction and Comparison of Important Features

We extracted important features from each model using various techniques and

compared these with features manually selected by domain experts. We created a survey

16



that included all features from both datasets and asked ICU clinicians (n=50 for the septic

dataset and n=20 for the all-comers dataset) to pick the top the 10 features that they believed

were the best indicators for patient mortality [33].

For the logistic regression model, we selected features with the highest absolute

value. For XGBoost, we calculated SHapley Additive exPlanations (SHAP) values for each

feature and selected those with the highest values [43]. For the Neural Net, we used SHAP

(via DeepLIFT [44] which is another feature attribution method for neural networks) and

extended influence functions to select important features. To evaluate how each of these

methods performed, we found 10 features most often picked by the domain experts and

counted how many features were common in the top 10 ranked by the above methods [33].

Figure 2

ROC Curves for Different Models for Each Test Dataset

3.4 Results and Discussion

In Figure 2, we present ROC curves for both test datasets (septic and all-comers)

and for all five models, Neural Net, logistic regression, XGBoost, SAPS, and APACHE.

In Table 1, we present AUC scores for both test datasets (Septic and All-Comers) and all
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five models for two cases, i.e., with and without SMOTE oversampling. We note that for

both datasets, the Neural Network outperforms all other models and XGBoost is the worst

performing model [33].

Table 2

Feature Ranking (FR) of Septic and All-Comers Datasets

Septic Dataset

FR Survey LR - no SMOTE LR - SMOTE XG SHAP - no SMOTE XG SHAP - SMOTE NN SHAP - no SMOTE NN SHAP - SMOTE NN IFs - no SMOTE NN IFs - SMOTE

1 hepaticfailure CHLORIDE max CHLORIDE max PT max LACTATE max gender SODIUM max LACTATE max CHLORIDE max

2 LACTATE max BICARBONATE min BICARBONATE min LACTATE max BICARBONATE min day1motor BICARBONATE min age LACTATE max

3 age LACTATE max LACTATE max BICARBONATE min day1motor age diabetes PT max INR max

4 immunosuppression ALBUMIN min ALBUMIN min BUN max BUN max BILIRUBIN max WBC max SODIUM min BICARBONATE min

5 metastaticcancer SODIUM max SODIUM max INR max INR max diabetes SODIUM min SODIUM max PT max

6 CREATININE day1motor ANIONGAP max PLATELET min ALBUMIN min patientunitstayid ANIONGAP max BUN max SODIUM max

7 INR age age ALBUMIN min age BICARBONATE min day1motor HEMATOCRIT min day1motor

8 GCS-motor ANIONGAP max day1motor day1motor BILIRUBIN max hepaticfailure ALBUMIN min metastaticcancer BUN max

9 BILIRUBIN BUN max SODIUM min HEMATOCRIT min patientunitstayid SODIUM min BUN max INR max hepaticfailure

10 leukemia SODIUM min BUN max GLUCOSE min aids SODIUM max CHLORIDE max lymphoma diabetes

All-Comers Dataset

1 age day1motor day1motor LACTATE max day1motor ANIONGAP max CHLORIDE max day1motor day1motor

2 immunosuppression BICARBONATE min CHLORIDE max day1motor LACTATE max gender PLATELET min BICARBONATE min LACTATE max

3 hepaticfailure ALBUMIN min ALBUMIN min CREATININE max BUN max HEMATOCRIT min GLUCOSE min PT max INR max

4 LACTATE max CHLORIDE max BICARBONATE min ALBUMIN min CREATININE max GLUCOSE min day1motor ALBUMIN min PT max

5 metastaticcancer LACTATE max age PT max ALBUMIN min LACTATE max CREATININE max CHLORIDE max ALBUMIN min

6 CREATININE age LACTATE max BUN max PT max ALBUMIN min SODIUM max ANIONGAP max BICARBONATE min

7 leukemia SODIUM max SODIUM max INR max INR max age BICARBONATE min CHLORIDE min PTT max

8 PLATELET ANIONGAP max ANIONGAP max PLATELET min age BICARBONATE min INR max gender CREATININE max

9 BILIRUBIN BUN max BUN max PTT max gender SODIUM min PTT max SODIUM min ANIONGAP max

10 aids HEMATOCRIT min CREATININE max HEMATOCRIT min ANIONGAP max PTT max LACTATE max PTT max SODIUM max

If we look at each dataset by itself (Table 1), the difference in performance between

the mortality scores and our models is much better in the septic dataset. It appears that a

larger performance boost can be attained by creating models for specific diagnosis groups

rather than one model for all diagnosis groups. XGBoost consistently performed worse

than all other models in all scenarios. Logistic Regression performed about as well as the
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traditional mortality scores which is expected due to the predictions of these scores being

based on the same raw variables. Neural Nets consistently outperformed all other models

when the minority class was oversampled [33].

The 10 features selected for each experiment as well as the clinician opinion can

be found in Table 2 [33]. We note that there were significant differences between the top

ten features chosen by the clinician as compared to those by the algorithms. The features

selected by the clinician included comorbidities such as metastatic cancer, AIDS, and need

for immunosuppression but these were less likely to be in the algorithm feature selection

lists. The differences are stark but not necessarily surprising. Physicians being humans will

always have biases and blind spots, both of which are more likely with the inherent stressors

of the ICU. This study is limited due to the small size of our surveys as well as the known

variability in clinician decision making for end of life care [45].

In Table 3, we present the number of common features selected by the clinicians

and the various models for both datasets. We note that XGBoost with SHAP had more

in common with the features selected by the clinicians. However, XGBoost was the worst

predictor of mortality as compared to other models. It is important to note that both SHAP

algorithms (XGBoost and the Neural Net) extracted the control variable (patient ID) in their

top 10 features. However, this was not the case for the Neural Net with influence functions,

which was also the best predictor of patient mortality [33].

On the sepsis dataset, the runtime for the Neural Net extended influence functions

was around 1.5 minutes to calculate global feature importance. However, the runtime for

SHAP with Neural Net was around 220 minutes. The computational efficiency of the

proposed extended influence functions was even more evident in the all-comers dataset,
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e.g., SHAP calculations took more than one week on a NVIDIA TITAN V GPU [33].

Table 3

Common Feature Count

Model with algorithm Type Septic All-comers

Logistic regression coefficients 3 2

XGBoost with SHAP 5 3

NN with SHAP 4 2

NN with influence functions 4 2
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Chapter 4

Feature Selection Techniques for Mortality Prediction in the ICU

In a follow up work, we examined the 194 features from our previous dataset in

an effort to find the smallest subset that allows us to maintain State of The Art (SoTA)

performance. Our primary reason in seeking the smallest subset is to find a method that has

high performance while causing little burden to the users. The main user of such an ICU

prediction model would be ICU clinicians who don’t have the time to enter in 15+ variables

for each patient at a time. This is the case with the current tools available to clinicians [46].

4.1 Feature Selection

Feature selection is the process of reducing the number of input signals such that

the most relevant attributes are used to create a predictive model [47]. There are a total of

194 features within the eICU database [48]. Therefore, it is imperative that this number is

greatly reduced to not burden the user. Having excess tests or features not only slows down

the time it takes to collect and enter the data, but also can have a negative impact on the

results of the prediction [49]. Having the ability to decrease the number of features used

while maintaining a relative measurement of success is crucial for this experimentation and

is the motivation behind using feature selection for this research [46].

Feature selection can be further classified as either supervised or unsupervised.

In an unsupervised method, the function is provided inputs, but no target function. The

goal is to identify the most relevant features in the input dataset. This can be achieved by

calculating the correlation with the target variable, or by applying feature-specific statistical

tests (such as t-tests). Supervised methods, on the other hand, have the goal of identifying
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the most relevant features in order to improve the performance of a target function. This

can be done by using a training dataset, where the target output is known. The features that

correlate with the target variable are identified and used to optimize the target function. In

this work, the filter, wrapper, and embedded methods under supervised feature selection

will be utilized [46].

4.1.1 Filter Methods

Filter methods are those that are typically performed during the preprocessing stage

of feature selection. For this method, the features are chosen based on certain characteristics

or scores that they achieve in various statistical tests. Some of the most popular examples of

filter methods include correlation, Chi-Square tests, and analysis of variance (also known as

ANOVA) [50]. The features are then sorted based on their scores and a threshold is chosen

either by heuristic or statistics to choose the final set of features [46].

4.1.2 Wrapper Methods

Wrapper methods are those that evaluate various subsets and combinations of fea-

tures in order to choose the one that produces the best result for the given algorithm. These

methods are often referred to as greedy due to the fact that they search through all subsets

and therefore can become computationally expensive and take a long time to execute. The

benefit of this method is that it is guaranteed to provide the optimal set of features. The

process of utilizing a wrapper method starts with choosing a search method or technique

in order to select an available subset of features. Once the subset is identified, the desired

machine learning algorithm is trained on the chosen subset. The model is then evaluated
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and the process is repeated with various other subsets of features until the best model is

identified. Popular search methods include forward selection, backward elimination, and

bi-directional searches [51] [46].

4.1.3 Embedded Methods

For embedded methods, as the name suggests, the feature selection is embedded

within the training of the model. In the previous two methods, feature selection was

performed before the model was trained. The process of the embedded method includes

training a machine learning model and then deriving the feature importance from the model.

As the model is being trained, the features that have the least impact on the prediction are

discarded. Examples of embedded methods include lasso/ridge regression and decision

trees [51] [46].

4.2 Methods

Our analysis consists of three components. First, an evaluation of the dataset with

all 194 features is done. Second, a 1-1 comparison is made with our prior work by

selecting the 20 features using each feature selection technique. Lastly, a quantitative and

qualitative study of the performance of each feature selection method is compared. The

following techniques were evaluated: variance threshold, Analysis of Variance (ANOVA),

Mutual Information (MI), Recursive Feature Elimination (RFE), Elastic Net, and Principle

Component Analysis (PCA) [46].
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4.2.1 Variance Threshold

The variance threshold method is a simple, baseline approach to feature selection.

It removes any feature that has a variance less than a chosen threshold. By default, this

technique eliminates features with zero variance, but can be changed to any desired threshold

value. Features with little to no variance may often not contain much significant information

and can in some instances reduce the overall performance of a model. Since this method is

dependent on the statistics of the feature, this method must be performed before standardizing

the data [40] [46].

4.2.2 Analysis of Variance

The Analysis of Variance method, often referred to as ANOVA, is a widely popular

filter method. For this research, the ANOVA f-test statistic was utilized. The ANOVA

technique is used to determine how similar or different the means of two or more variables

are to each other. It can also be utilized to realize the correlation between an independent

variable and the dependent variable. Using the ANOVA method, f-scores are assigned to

each feature where the higher f-score indicates a higher correlation between that particular

feature and its impact on the output [50] [46].

4.2.3 Mutual Information

Shannon Mutual Information between two random variables is defined by condi-

tional entropy. The entropy of the class variable, Y, is desired to be very low in order

to maximize classification performance. For a given feature X, the Mutual Information

24



between X and Y (denoted as 𝐼 (𝑋;𝑌 )) is a measure of the change in entropy of Y due to the

presence of X as defined in Equation 4.1. In this equation, 𝑝(𝑥𝑦) is the joint probability of

𝑥 and 𝑦 and 𝑝(𝑥) and 𝑝(𝑦) are the marginal probabilities. Therefore, a high Mutual Infor-

mation between a feature and the class label indicates that the feature is a good predictor of

the class label [52] [46].

𝐼 (𝑋;𝑌 ) =
∑︁
𝑥𝜖𝑋

∑︁
𝑦𝜖𝑌

𝑝(𝑥𝑦) log
(

𝑝(𝑥𝑦)
𝑝(𝑥)𝑝(𝑦)

)
(4.1)

4.2.4 Recursive Feature Elimination

Recursive Feature Elimination (RFE) is a wrapper-type feature selection algorithm.

It operates by first building a model on a dataset containing all features and then computing

an importance score for the features using the model (ROC AUC for our case). Next, a set

of features are removed, the model is retrained and the outputs are an updated importance

score on the reduced feature set. This process is then repeated until all the least important

features, determined by the importance score from the model, are eliminated. RFE requires

two inputs to operate; number of 𝑘 features to keep and an estimator model with a built-in

importance score [40] [46].

To find the 𝑘 number of features to keep, RFE with cross validation (RFECV) can

be utilized. RFECV keeps track of a score computed from the model for a given number

of features. Using logistic regression as the model for RFECV and tracking the ROC AUC

score, the number of features to keep was based on the specifications from previous work

[53] [46].

The following parameters were used; a five-fold stratified for cross-validation, lo-
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gistic regression as the estimator and the area under the receiver operating characteristic

curve (ROC AUC) for scoring the performance of the estimator. The dataset was divided

into 33% testing (for scoring) and the remaining was used for training the estimator [46].

Table 4

Statistics for Classifier Trained on all 194 Features

Measurement Mean Standard Error

Accuracy 0.855106 0.002542

Precision 0.260902 0.003493

Sensitivity 0.819577 0.008339

Specificity 0.857289 0.002884

ROC AUC 0.918066 0.002748

PRC AUC 0.507141 0.009412

Balanced Accuracy 0.838433 0.003765

4.2.5 Elastic Net

Elastic net is an embedded type feature selection algorithm that combines two types

of regression. The first is Least Absolute Shrinkage and Selection Operator (LASSO). The

second is Ridge regression. Both LASSO and Ridge Regression use regularization to avoid

overfitting. Regularization achieves this by penalizing complex models by adding a penalty

to the following cost function, 𝑊 in Equation 4.2. In this equation, 𝑦𝑖 is the target class

for instance 𝑖, 𝑥𝑖 𝑗 is the feature value for instance 𝑖 and feature number 𝑗 and 𝑤 𝑗 is the
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corresponding weight value [46].

𝑊 =

𝑁∑︁
𝑖=1

©«𝑦𝑖 −
𝑀∑︁
𝑗=0

𝑤 𝑗 𝑥 ij
ª®¬

2

(4.2)

Ridge regression uses L2 regularization, which modifies the cost function by adding

a penalty term to the residual sum of squares. Equation 4.3 shows the added penalty term

of lambda times the sum of square of weights, where 𝑁 is the total number of training

instances and 𝑀 is the total number of input features [46].

𝑊 =

𝑁∑︁
𝑖=1

©«𝑦𝑖 −
𝑀∑︁
𝑗=0

𝑤 𝑗 𝑥 ij
ª®¬

2

+ 𝜆

𝑀∑︁
𝑗=0

𝑤2
𝑗 (4.3)

For LASSO regression, L1 regularization is used. This modifies the cost function by

adding a penalty term of lambda times the sum of absolute value of weights to the residual

sum of squares. This is shown in Equation 4.4 [46].

𝑊 =

𝑁∑︁
𝑖=1

©«𝑦𝑖 −
𝑀∑︁
𝑗=0

𝑤 𝑗 𝑥 ij
ª®¬

2

+ 𝜆

𝑀∑︁
𝑗=0

|𝑤 𝑗 | (4.4)

Finally, when combining the two penalty terms from LASSO and Ridge in Elastic-

Net, an additional 𝛼 term is added that determines the ratio of L1 to L2 regularization. The

Elastic-Net cost function is given in Equation 4.5 [46].

𝑊 =

𝑁∑︁
𝑖=1

©«𝑦𝑖 −
𝑀∑︁
𝑗=0

𝑤 𝑗 𝑥 ij
ª®¬

2

+ 𝛼𝜆

𝑀∑︁
𝑗=0

|𝑤 𝑗 | + (1 − 𝛼) 𝜆
𝑀∑︁
𝑗=0

𝑤2
𝑗 (4.5)

The values of 𝛼 and 𝜆 for Equation 4.5 can be computed using elastic net with a

cross validation (ElasticNetCV) function. A list of 𝛼 values was provided and the value of

𝜆 was picked automatically from the ElasticNetCV function [40]. The value of 𝛼 was then
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chosen by performing a grid search on the interval [0, 1]. The following parameter values

were found to be optimal: 𝜆 = 4.317e-4, 𝛼 = 0.995 [46].

Table 5

Comparison of Feature Selection Techniques

Method ROC AUC

Clinician Chosen [33] 0.8564 ± 0.002748

Variance Threshold 0.7661 ± 0.00747

ANOVA 0.8901 ± 0.00309

Mutual Information 0.8365 ± 0.00554

PCA 0.8980 ± 0.00302

ElasticNet 0.9056 ± 0.00336

Recursive Feature Elimination 0.8512 ± 0.00415

4.2.6 Principal Component Analysis

Principal Component Analysis, more commonly known as PCA, is an unsupervised

method that can be used for dimensionality reduction while having a maximum variability.

The overall goal is to make sure all of the of the transformed features are linearly independent,

as well as, finding components in order of highest importance. The PCA approach can be

defined as the eigendecomposition of the covariance matrix XTX [46].

There are five steps to complete the process of principal component analysis. To

begin with, the data must be standardized using Equation 4.6, where 𝜇 is the mean and 𝜎
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is the standard deviation of all features [46].

𝑥stand =
𝑥 − 𝜇

𝜎
(4.6)

The standardized data would then have a mean of 0 for each feature while having a

standard deviation of 1. Doing this will scale all features properly and prevent skewing in

the results. Step 2 involves finding the covariance matrix of the standardized data. Equation

4.7 was used to find the covariance matrix where 𝑥𝑖 is the mean of the 𝑖th column, 𝑥 𝑗 is the

mean of the 𝑗 th column, 𝑥𝑖𝑚 is the 𝑖th column and 𝑥 𝑗𝑚 is the 𝑗 th column [46].

Table 6

Minimum Number of Features Required

Method Number of features

Variance Threshold 102

ANOVA 13

Mutual Information 30

PCA 3

ElasticNet 6

Recursive Feature Elimination 26

Cov (𝑖, 𝑗) = 1
𝑛 − 1

𝑛∑︁
𝑚=1

(𝑥im − 𝑥𝑖)
(
𝑥jm ¯−𝑥 𝑗

)
(4.7)

The resultant covariance matrix will be a square matrix XTX. The next step was

to find the eigenvectors and eigenvalues using eigendecomposition. After finding the
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eigenvalues, the fourth step is to sort them and its corresponding eigenvectors in descending

order. The fifth and final step is to choose the number of components to keep from the

highest importance to then transform the standardized data into a transformed matrix using

Equation 4.8 [46].

Table 7

Top 10 Features Selected

FR Clinician Survey [33] Variance Threshold ANOVA Mutual Information Recursive Feature Elimination Elastic Net

1 Age CPK Lactate Lactate Potassium Lactate

2 Immunosuppresion AST (SGOT) GCS Motor Mechanical Ventilation paCO2 GCS Motor

3 HepaticFailure Lymphs GCS Eyes GCS Eyes pH paCO2

4 Lactate ALT (SGPT) GCS Verbal GCS Motor Myglobin Bicarbonate

5 Metastatic Cancer FiO2 Intubation GCS Verbal Lactate Fio2

6 Creatinine Glucose Ventilator Albumin Glucose BUN

7 Leukemia Platelets AST (SGOT) Age Respiratory Rate WBC

8 Platelet Akaline PT-INR Creatinine Chloride Mechanical Ventilation

9 Bilirubin PaO2 Anion Gap BUN Albumin Sodium

10 Aids Glucose ALT (SGPT) INR TV Age

𝑇𝑅 = 𝑋𝑊𝑅 (4.8)

In Equation 4.8, 𝑇𝑅 is the transformed matrix, 𝑊𝑅 are the loadings or eigenvectors,

𝑋 is the standardized data, and 𝑅 itself is the number of components chosen [46].

4.3 Model Selection

For our first and second analyses, missing data was assumed to be missing at

random and features with missingness at 70% or greater were dropped from the dataset.

Next, features with pair-wise Pearson correlations greater than 0.9 were also discarded.
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The data was then standardized and imputed with multiple imputation [54]. To correct for

the 95%-5% class imbalance, we apply the Synthetic Minority Oversampling (SMOTE)

technique [55]. For each 20-feature set, we perform a 10-fold cross validation and determine

the mean ROC AUC and 95% confidence interval. The classifier is a multi-layer perceptron

(MLP) with 2 hidden layers and SELU activations [38]. The model is trained for 127 epochs

using full-batch stochastic gradient descent with a learning rate of 0.03104 and Nesterov

momentum of 0.4204 [56]. The hyperparameter values were obtained by performing

Bayesian Optimization using ROC AUC as the target metric [33] [46].

For our third analysis, we want to consider all features. Therefore we do not drop

features based on missigness and correlation. For each method, we choose an increasing

number of features and perform 10-fold cross validation to collect a ROC AUC and 95%

confidence interval. The rest of the preprocessing procedure remains the same as the

previous analyses. This process results in 194 ROC AUC means and 95% confidence

intervals. To quantitatively measure which method performs the best, we compute the

area under the ROC AUC vs number of features curve. In addition, for each method,

we determine the minimum number of features that can provide a statistically significant

result over the work in [33]. Lastly, we provide a qualitative measure of performance by

comparing the top selected features from each method compared to clinician opinion [33].

Our baseline measure of performance is to consider using all features. The performance

metrics for this baseline can be found in Table 4 [46].
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4.4 Results and Discussion

In Table 4, we show the target performance by using all 194 features. Next, we

reduce the number of features to what was used in the previous state-of-the-art [33], which

is 20 features. The results for each method is shown in Table 5. Here, we observe that the

top methods are ANOVA, PCA and ElasticNet. When looking at the number of features

required to outperform the opinion of the clinicians (as in Table 6), we show that PCA and

Elastic Net vastly do better than other methods. This trend continues in Figure 3. The PCA

approach is quick to rise to a ROC AUC value of 0.89 but has trouble increasing as more

components are added. The best performing method overall is Elastic Net due to it having

the highest ROC AUC value as features are increased as well as consistent performance

across the other experiments [46].

In Table 7, we show the top 10 features chosen by each method and compare them

to what is selected by ICU clinicians. In the clinician column, we observe a large amount of

indicator variables as opposed to the columns selected by feature selection. There are also

many common features/feature sets that are selected by multiple methods. These include:

lactate, GCS scores (Eyes/Motor/Verbal), mechanical ventilation, and age. We postulate

that this difference can be attributed to clinician focus on comorbidities with our machine

learning models having no knowledge of diagnosis and patient history. It is possible that

the optimal feature set lies somewhere in the combination of these methods. We defer the

use of a meta set of features selected by multiple methods for future work [46].
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Figure 3

10 Fold Cross Validated ROC AUC
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Chapter 5

Efficient Scaling of Bayesian Neural Networks

The state of machine learning research has seen tremendous growth, with increas-

ingly complex and large-scale models being developed [57]. This increase in size and

complexity, however, has led to a notable concern regarding overfitting [58]. As models

become larger, they may inadvertently memorize training data instead of learning to gener-

alize, resulting in poor performance on unseen or novel data samples. A guiding principle

against complexity increase has been the The Minimum Description Length Principle which

states that the best model is one which minimizes the distance between the model and data

and the models description of itself [59]. This principle is the foundation of stochastic

modeling and a benefit of using Bayesian inference [60].

Bayesian inference provides a principled approach for dealing with uncertainty by

combining prior knowledge and observed data to update beliefs about model parameters

[61]. In the context of machine learning, Bayesian Neural Networks (BNNs) extend this

framework by incorporating Bayesian principles into the architecture and training of neural

networks [62]. BNNs estimate the posterior distribution over model parameters, allow-

ing them to capture and quantify uncertainties in both predictions and model structures.

By leveraging Bayesian inference, BNNs offer a more robust and adaptive learning ap-

proach, which can potentially alleviate overfitting and improve generalization performance

in complex machine learning tasks [28] [60].

BNNs have demonstrated successful implementations across a wide range of tasks,

including computer vision [29, 31, 63], speech [64], and natural language processing

[65]. BNNs have shown particular promise in critical decision-making tasks [66–68],
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due to their ability to capture and model uncertainty in both parameters and predictions

[29]. Several classical techniques have been used to approximate Bayesian inference for

neural networks, such as Laplacian approximation [69], Hamiltonian Monte Carlo [70], and

Variational Inference (VI) [28]. Specifically, estimating the parameters of the variational

distribution that approximates the posterior of the latent variables given an observation

is analogous to averaging model parameters via Monte Carlo sampling [71]. This model

averaging inherently reduces variance in computed parameters, thus mitigating overfitting

[30]. Moreover, the regularization term of the VI algorithm can lead to extreme self-

compression of the model’s parameters [72], further decreasing overfitting [60].

A major drawback of BNNs is their limited scalability in terms of both model

and data size [73]. A high-quality implementation of a VI-based training scheme called

Variational Density Propagation (VDP) has emerged, offering state-of-the-art performance

on various computer vision tasks, reduced epistemic uncertainty, and an estimate of aleatoric

uncertainty [31, 63]. However, the primary limitation of the VDP algorithm is the substantial

computational load due to the propagation of the full covariance matrix through layers of

the neural network. Propagating these large matrices quickly becomes infeasible in terms

of space and time for all but the smallest ResNets, significantly limiting the applicability of

the VDP method for problems that require training on datasets larger than CIFAR-10 [74]

[60].

In this chapter, we propose a modification to the VDP method, in which we disregard

the off-diagonal terms of the covariance matrix and only propagate the diagonal terms. This

simplification enables efficient scaling of these models to larger and more complex datasets,

with a theoretical memory requirement only twice that of a traditional deep neural network,
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while retaining all the benefits of BNNs [60].

5.1 Related Work

5.1.1 Self-Compression

Since their inception in the early 1990s, BNNs have been developed with the goal

of minimizing the information content in the weights of a neural network. This approach

is based on the principle that smaller model sizes often lead to more generalizable models

[28, 69]. However, contemporary BNN methods such as Bayes by Backprop (BBB) [29]

and Dropout CNNs [75] appear to lack this property. In the case of BBB, parameter

histograms suggest a less efficient use of parameters compared to traditional deterministic

neural networks [29]. To the best of our knowledge, the only modern framework that exhibits

this self-compression property is Variational Density Propagation (VDP) [31, 63, 72]. The

self-compression characteristic of VDP can be attributed to the propagation of variance

information through the network layers [72]. By quantifying parameter uncertainty, the

model can selectively target less important parameters during training. In the absence of

uncertainty quantification, the network’s utilization of its parameter space is less efficient

[60].

5.1.2 Uncertainty Quantification

The total uncertainty in a machine learning model can be characterized by two dis-

tinct components. The first is epistemic uncertainty, which arises from the parameters of the

model. The second is aleatoric uncertainty, which stems from the data or environment. Un-

certainty quantification is becoming increasingly important in high-stakes decision-making,
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as establishing trust between users and models is crucial for the widespread adoption of

such models [26]. To date, the implementation of machine learning models in high-stakes

domains, such as medicine, has not achieved substantial user acceptance and confidence

[5, 6]. This is primarily due to high false alarm rates [4] and suboptimal test characteristics

[27]. VI has been demonstrated to alleviate the impact of epistemic uncertainty by effec-

tively averaging predictions during inference [28–30]. Furthermore, the output variance

associated with a single prediction obtained from a BNN can quantify the level of aleatoric

uncertainty in that prediction [31, 32] [60].

5.1.3 Explainability

A common approach to interpreting predictions in computer vision models involves

calculating sensitivity maps. These gradient-based methods are used to determine the contri-

bution of each image pixel to the classification output [17]. However, interpretations derived

from deep neural networks, particularly sensitivity maps, are often fragile—meaning they

are sensitive to small perturbations in the input or model [76–78]. One potential solution to

this issue involves sampling the surrounding input space, adding Gaussian noise, and aver-

aging the resulting interpretations [18]. This averaging technique for reducing uncertainty

aligns with our hypothesis on BNNs and weight averaging. It has been demonstrated that

the explanations generated by the VDP model outperform those from traditional models

[79] [60].
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5.2 Variance-Only Variational Density Propagation (VDP++)

Our work presents a novel simplification of the VDP algorithm developed in [31].

This method utilizes VI and assumes Tensor Normal Distributions (TNDs) defined over

the parameters of the neural network in order to propagate the first two moments (mean

and covariance) of these TNDs through the layers of a neural network [31]. However, in

an experimental setting, propagating covariance proves to be computationally expensive

in terms of both time and space. As these networks scale, calculating such large matrices

becomes increasingly burdensome, rendering the method impractical. In this work, we have

streamlined the VDP algorithm by propagating only the diagonal elements of the covariance

matrix, i.e., the variance. This simplification, originally discussed by Hinton [28], is akin

to the assumptions of the Naive Bayes classifier [80] [60].

For the sake of brevity, we have omitted the original derivation of the VDP algorithm

and only provide the modifications needed to compute the variance-only version [31]. To

describe our method, we use a 2-layer fully-connected neural network as an example. In a

traditional or deterministic neural network, Equation 5.1 describes the forward pass of the

model [60].

𝑧 = 𝑊𝑥 + 𝑏 [1] ,

𝑎 = 𝑓 (𝑧),

�̂� = 𝑔(𝑉𝑎 + 𝑏 [2]),

(5.1)

where 𝑊 ∈ R 𝑗×𝑘 is the weight matrix of layer 1, 𝑥 ∈ R𝑘×1 is the input vector, 𝑏 [1] ∈ R 𝑗×1

is the bias vector in layer 1, 𝑧 ∈ R 𝑗×1 is the result of the linear operation in layer 1, 𝑓 is an

arbitrary element-wise non-linear function, 𝑔 is an arbitrary non-linear activation function
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that does not operate element-wise, 𝑎 ∈ R 𝑗×1 is the result after applying the non-linear

activation function in layer 1, 𝑉 ∈ R𝑙× 𝑗 is the weight matrix in layer 2, 𝑏 [2] ∈ R 𝑗×1 is the

bias vector in layer 2, �̂� ∈ R𝑙×1 is the predicted output, 𝑘 is the dimensionality of the input

vector, 𝑗 is the number of nodes in layer 1 and 𝑙 is the number of classes to predict [60].

To propagate the first two moments, several assumptions must be made. First, let us

consider 𝑤⊤
𝑚 = 𝑚th row of𝑊 , 𝑚 = 1, 2, ..., 𝑗 and 𝑧𝑚 = 𝑤⊤

𝑚𝑥+𝑏
[1]
𝑚 , 𝑚 = 1, 2, ..., 𝑗 . Next, con-

sider the following assumptions: the input vector 𝑥 is deterministic, 𝑎 ∼ N (𝜇𝑎, Σ𝑎), 𝑤𝑚 ∼

N (𝜇𝑤𝑚
, Σ𝑤𝑚

), 𝑚 = 1, 2, ..., 𝑗 , 𝑏 [1]𝑚 ∼ N (𝜇
𝑏
[1]
𝑚
, 𝜎2

𝑏
[1]
𝑚

), 𝑚 = 1, 2, ..., 𝑗 , 𝑣𝑛 ∼ N (𝜇𝑣𝑛 , Σ𝑣𝑛),

𝑛 = 1, 2, ..., 𝑙, 𝑏 [2]𝑛 ∼ N (𝜇[2]
𝑏𝑛
, 𝜎2

𝑏
[2]
𝑛

), 𝑛 = 1, 2, ..., 𝑙 and the weight vectors 𝑤𝑚, 𝑎, bias 𝑏 [1]

and 𝑏 [2] are mutually uncorrelated with each other for 𝑚 = 1, 2, ..., 𝑗 . Based on these

assumptions, the elements of 𝜇𝑧 and 𝜎2
𝑧 are given in Equations 5.2 and 5.3 [60].

𝜇𝑧𝑚 = E[𝑤⊤
𝑚𝑥 + 𝑏

[1]
𝑚 ],

= E[𝑤⊤
𝑚]𝑥 + E[𝑏

[1]
𝑚 ],

= 𝜇⊤𝑤𝑚
𝑥 + 𝜇

𝑏
[1]
𝑚
.

(5.2)

𝜎2
𝑧𝑚

= Var[𝑤⊤
𝑚𝑥 + 𝑏

[1]
𝑚 ],

= 𝑥⊤𝑚Σ
2
𝑤𝑚

𝑥𝑚 + 𝜎2
𝑏
[1]
𝑚

,

= 𝑥2
𝑚 [𝜎2

𝑤𝑚
]⊤ + 𝜎2

𝑏
[1]
𝑚

.

(5.3)

Since we have assumed the weight vectors and the elements of the bias vector to be

uncorrelated, Σ𝑤𝑝𝑤𝑞
= 0 and 𝜎𝑏𝑝𝑏𝑞 = 0 for 𝑝 ≠ 𝑞, where 𝑝, 𝑞 = 1, 2, ..., 𝑗 . Hence, the

covariance is zero. To propagate the first two moments through an arbitrary element-

wise non-linear function, we utilize the first-order Taylor series approximation shown in
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Equations 5.4 and 5.5 [60].

𝑎 = 𝑓 (𝑧),

= 𝑓 (𝜇𝑧) + 𝑓 ′(𝜇𝑧) (𝑧 − 𝜇𝑧) + ...

≈ 𝑓 (𝜇𝑧) + 𝑓 ′(𝜇𝑧) (𝑧 − 𝜇𝑧),

E[𝑎] = 𝜇𝑎 ≈ 𝑓 (𝜇𝑧),

𝜇𝑎 = 𝑓 (𝜇𝑧).

(5.4)

𝜎2
𝑎 = 𝜎2

𝑧 ⊙ ( 𝑓 ′(𝜇𝑧))2. (5.5)

For the second layer of the network, we can no longer consider the incoming vector,

𝜇𝑎, to be deterministic. Additionally, we now need to propagate the incoming variance,

𝜎2
𝑎 . Again, we assume the off-diagonal elements of the covariance Σ𝑎 to be 0 and choose

to only propagate the variance. The mean and variance propagated through the second

fully-connected layer are given in Equations 5.6 and 5.7 [60].

𝜇 �̃� = E[𝑣⊤𝑛 𝑎 + 𝑏
[2]
𝑛 ],

= E[𝑣⊤𝑛 ]E[𝑎] + E[𝑏
[2]
𝑛 ],

= 𝜇⊤𝑣𝑛𝜇𝑎 + 𝜇
𝑏
[2]
𝑛
.

(5.6)

𝜎2
�̃� = Var[𝑣⊤𝑛 𝑎 + 𝑏

[2]
𝑛 ],

= Var[𝑣⊤𝑛 𝑎] + Var[𝑏 [2]𝑛 ],

= Tr(Σ2
𝑣Σ

2
𝑎) + 𝜇⊤𝑣 Σ

2
𝑎𝜇𝑣 + 𝜇⊤𝑎 Σ

2
𝑣𝜇𝑎 + Σ2

𝑏
[2]
𝑛

,

= 𝜎2
𝑣 [𝜎2

𝑎 ]⊤ + 𝜇2
𝑣 [𝜎2

𝑎 ]⊤ + 𝜇2
𝑎 [𝜎2

𝑣 ]⊤ + 𝜎2
𝑏
[2]
𝑛

.

(5.7)
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Since the diagonals of the covariance matrix are along the rows of the variance matrix, the

trace of the product of two vectors is equivalent to their inner product [60].

Next, we use a non-linear activation function such as softmax to obtain the predic-

tions of our model. Since 𝑔 does not operate element-wise on our mean and variance, we

use a slightly different Taylor-series to obtain Equations 5.8 and 5.9 [81] [60].

𝜇 �̂� ≈ 𝑔(𝜇 �̃�), (5.8)

𝜎2
�̂� ≈ 𝐽2

𝑔𝜎
2
�̃� , (5.9)

where 𝐽𝑔 is the Jacobian matrix of the softmax function 𝑔 with respect to �̃� and calculated

at 𝜇 �̃� [60].

Finally, we use the Evidence Lower Bound (ELBO) function, L(𝜙, 𝐷), which con-

sists of two parts: the expected log-likelihood of the training data given the weights, and a

regularization term, 𝐷 = {𝑥 (𝑖) , 𝑦 (𝑖)}𝑁
𝑖=1 given by Equation 5.10 [60].

L(𝜙, 𝐷) = E𝑞(𝜙) [log 𝑝(𝐷 |𝜙)] − KL[𝑞(𝜙) |𝑝(𝜙)] . (5.10)

In Equation 5.10. 𝜙 represents two aspects, namely, the (1) weights 𝑊 and 𝑉 and (2) biases

𝑏 [1] and 𝑏 [2] . The expected log-likelihood is given in Equation 5.11 and the KL term is

given in Equation 5.12 [60].
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𝐸𝑞(𝜙) [log 𝑝(𝐷 |𝜙)] ≈ 1
𝑀

𝑀∑︁
𝑚=1

log 𝑝(𝐷 |𝜙),

≈ −𝑁𝑙

2
log(2𝜋) − 1

𝑀

𝑀∑︁
𝑚=1

[
𝑁

2
log( |Σ�̂� |)

+ 1
2

𝑁∑︁
𝑖=1

(𝑦 (𝑖) − 𝜇
(𝑚)
�̂�

)⊤(Σ(𝑚)
�̂�

)−1(𝑦 (𝑖) − 𝜇
(𝑚)
�̂�

)
]
,

≈ −𝑁𝑙

2
log(2𝜋) − 1

𝑀

𝑀∑︁
𝑚=1

[ 𝑙∑︁
𝑘=1

log𝜎2
�̂�𝑘

+ 1
2

𝑁∑︁
𝑖=1

(
𝑦 (𝑖) − 𝜇

(𝑚)
�̂�

)2
diag(𝜎2

�̂� )
−1

]
.

(5.11)

In Equation 5.11, 𝑦 (𝑖) is the true label of the 𝑖th data point, 𝑁 is the number of data points

and 𝑀 is the number of Monte Carlo samples needed to approximate the expectation by

summation [60].

Recall that we have assumed the weight vectors and the elements of the bias vector

to be uncorrelated, Σ𝑤𝑝𝑤𝑞
= 0 and 𝜎𝑏𝑝𝑏𝑞 = 0 for 𝑝 ≠ 𝑞, where 𝑝, 𝑞 = 1, 2, ..., 𝑗 . It follows

that Σ�̂� is a diagonal matrix with elements 𝜎2
�̂�
. The log determinant of a diagonal matrix

simplifies to the product of the elements that can be implemented as a sum of the log of the

elements, 1
𝑁

∑𝑁
𝑖=1

(∑𝑙
𝑘=1 log𝜎2

�̂�𝑘

)
to prevent numerical overflow. Additionally, the inverse

of a diagonal matrix is equivalent to the reciprocal of each element, diag(𝜎2
�̂�
)−1 [60].

KL[𝑞(𝜙) |𝑝(𝜙)] = −1
2

𝑙∑︁
𝑛=1

( 𝑗 log𝜎2
𝑣𝑛
− ||𝜇𝑣𝑛 | |2𝐹 − 𝑗𝜎2

𝑣𝑛
). (5.12)

5.2.1 VDP++ for Convolutional Kernels

In practice, convolution operations are implemented as matrix multiplications.

Therefore, no additional derivations are needed to propagate the first two moments through
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convolutional kernels. For max-pooling, we cannot take the maximum variance. Instead,

we utilize the co-pooling operation. The co-pooling operation is the same for the first

moment: the maximum of the means in the kernel is passed forward. For the variance, we

keep only the elements of the variance that correspond to the maximum means [31] [60].

5.2.2 VDP++ for Residual Connections

Residual connections are a module used in deep architectures to resolve the issue of

vanishing gradients. These connections propagate parameters from previous layers in the

neural network by concatenating the output of one layer to the input of the next layer [82].

The residual function is effectively a non-elementwise, non-linear function. Therefore, we

can use the same formulation for Softmax as in Equation 5.9 [63] [60].

𝜇x𝑙+1 ≈ 𝜇x𝑙 + F (𝜇x𝑙 ),

𝜎2
x𝑙+1 ≈ 𝐽2𝜎2

x𝑙 .

(5.13)

In Equation 5.13, 𝐽 is the Jacobian of 𝑥𝑙+1 with respect to 𝑥𝑙 and F is the residual function

[63] [60].

5.2.3 VDP for Vision Transformers

A novel contribution in this work, we extend the VDP framework to Vision Trans-

formers (ViTs). Given the simple nature of the ViT architecture, to implement models like

ViT-S/16 and ViT-B/16 [83, 84], we need only implement the layer normalization operation

[85] for VDP. Similar to the batch normalization formulation for VDP [63], layer normal-

ization for VDP++ is given in Equation 5.14 where 𝑥 is the input and 𝑦 is the output of the
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layer [60].

𝜇𝑦 =
𝜇𝑥 − 𝜇𝐿𝑁√︁
Var(𝜇𝑥) + 𝜖

⊙ 𝛾 + 𝛽,

𝜎2
𝑦 =

(
𝜇𝐿𝑁√︁

Var(𝜇𝑥) + 𝜖

)2

⊙ 𝜎2
𝑥 ,

(5.14)

Also in Equation 5.14, 𝜇𝑥 and 𝜎2
𝑥 are the incoming mean and variance, 𝜇𝐿𝑁 is the mean of

the layer norm layer, 𝛾, 𝛽, and 𝜖 are hyperparameters of the layer norm layer and ⊙ denotes

element-wise multiplication.

5.3 Validation and Robustness

To validate our approach, we will assess the VDP++ method on the MNIST dataset

using various back-ends: a deterministic CNN, VDP [31], Bayes by Backprop (BBB) [29],

and VDP++. On the CIFAR-10 dataset, we will evaluate the deterministic model and

VDP++. For the MNIST dataset, we employ a LeNet architecture, while for CIFAR-10, we

use ResNet-18. In order to determine whether any of the backends result in significantly

different test accuracy, we will repeat training five times and perform a one-way Analysis

of Variance (ANOVA) on the results. As our approach aims to simplify the original

method while preserving its properties, we would like to show no significant differences in

performance among the methods, i.e., 𝑝 > 𝛼 [60].

To evaluate the robustness properties of VDP, we will replicate an experiment from

the original implementation, which entails adding zero-mean Gaussian noise to the test set at

varying magnitudes and examining the pattern of the normalized output variance [31]. We

will use the Spearman rank-order correlation measure to compare the two implementations.

Additionally, we will compare the maximum GPU memory allocation and training time for
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each formulation at a fixed batch size of 512 to benchmark each method’s performance [60].

To examine the self-compression properties of VDP++ [72], we will evaluate the

performance of each backend on the MNIST test set as each model undergoes global pruning

by weight magnitude (L1 unstructured pruning) [60].

Lastly, we will assess the explainability of saliency maps produced by the deter-

ministic model and VDP++. The metrics we will utilize to evaluate the quality of the

explanations are Infidelity and Sensitivity Max [86]. We will employ pair-wise t-tests to

determine statistical significance, if any. For all statistical analyses, we choose 𝛼 = 0.01

[60].

Figure 4

Epoch Time (a), GPU Memory (b) and Test Accuracy (c)

(a) (b) (c)

5.4 Scaling to Large Datasets

Remember that the primary limitation of using Bayesian neural networks lies in the

original formulation’s inability to scale to model sizes larger than ResNet-18. Overcoming

this drawback would enable the application of BNNs to more complex problems and larger

datasets, which is essential for advancing the state-of-the-art in machine learning. To that

end, we will evaluate the performance of VDP++ on the ImageNet-1k dataset using Vision
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Transformers (ViTs). This analysis involves examining the ViT-B/16 [84] and ViT-S/16

[83] architectures. To our knowledge, this is the first analysis of BNNs on ImageNet-1k

using the ViT architecture [60].

5.5 Results

5.5.1 Time-Space Improvements

We began first by examining the advantages of our method in both time and space.

On the MNIST dataset, Figure 4 shows a comparison of average epoch time and maximum

GPU allocation for each method. The original VDP method [31] denoted “VDP Cov” takes

nearly 10 times longer to complete one epoch of training as well as 10 times the GPU

memory requirement as compared to traditional networks (DET) and Bayes-by-Backprop

(BBB) [29]. Training on MNIST with a batch size of 512 requires nearly 40GB of GPU

memory. Our proposed method, VDP++, reduces the average epoch time by about 4 times

over the prior method and reduces the GPU memory requirement by a factor of 10 [60].

Figure 5

Global Unstructured Pruning on (a) MNIST and (b) CIFAR-10

(a) (b)
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5.5.2 Self-Compression

The first of the inherent properties of VDP that we investigated was self-compression.

We began by training 5 models from each method on MNIST (DET, BBB, VDP Cov,

VDP++) and CIFAR-10 (DET, VDP++). A one-way ANOVA statistic was computed on the

test statistics of each method and it was found that the performances were not significantly

different from one another (𝑝 > 0.01). Next, we iteratively pruned each model using global

L1 unstructured pruning and computed test statistics. Figure 5 shows the result of this

procedure. The VDP Cov and VDP++ approaches perform similarly on MNIST (Figure

5a). However, VDP++ is able to prune > 90% of its parameters before the performance

begins to drop significantly. This is verified by using a t-test of the statistics that compares

< 90% pruning and > 90% pruning. This trend continues to hold for the CIFAR-10

experiments (Figure 5b) [60].

Figure 6

Model’s Noise Robustness

(a) (b)
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5.5.3 Noise Robustness and Uncertainty Quantification

Figure 4c shows the result of adding zero-mean Gaussian noise to the test set of

MNIST and examining the test accuracy at the highest level of noise (SNR of -6 dB).

Here, the Bayesian models (BBB, VDP Cov, VDP++) all significantly outperform the

deterministic network (DET). Pair-wise t-tests were performed on deterministic versus each

Bayesian method at this level of noise and all p-values were significant (𝑝 < 0.01). Figure

6 shows the output variance as a function of SNR normalized by the -6 dB value for both

MNIST (Figure 6a) and CIFAR-10 (Figure 6b). When comparing the behavior of VDP-Cov

and VDP++ in the presence of varying amount of noise (Figure 6a), it was found that there

was no significant difference (Spearman correlation 𝑝 < 0.01) between the methods [60].

Figure 7

Explanation Quality of (a) MNIST and (b) CIFAR-10

(a) (b)
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5.5.4 Explanation Sensitivity

Due to the high regularization of the network, we postulated that explanations via

saliency maps from Bayesian Networks would be less sensitive to perturbations. Figure

7 shows the average Sensitivity Max and Infidelity on MNIST (Figure 7a) and CIFAR-

10 (Figure 7b) (lower is better). Pair-wise t-tests indicate significant differences between

methods for all experiments (𝑝 < 0.01). The deterministic method narrowly outperformed

VDP++ by Sensitivity Max. However, VDP++ significantly outperformed all methods by

Infidelity [60].

Figure 8

Pruning Experiments (a), and Robustness Experiments (b) ImageNet

(a) (b)

5.5.5 ImageNet and VDP-ViT

To first validate our implementation of VDP-ViT, we trained a small ViT on MNIST

and confirmed noise robustness using the variance vs SNR experiment. We then began

parameter sweeps for ViT-B/16 and ViT-S/16 but ultimately decided on only optimizing
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ViT-S/16 due to long training times. The training was split across 6 Quadro RTX 8000

GPUs following the regime outlined by Beyer et al. [83]. Ultimately, we were only able

to obtain a model with 45% top-1 training accuracy given the long training times and large

parameter space to search. Figure 8 shows the same analyses as above using the underfitted

ImageNet-1k model. Even in this state, the VDP++ model still retains noise robustness and

self-compressing properties, remaining consistent with the smaller models. The results for

explanation sensitivity were not consistent with our prior results most likely due to the low

performance of the model [60].

5.6 Discussion

Our study aimed to investigate the benefits and properties of the proposed novel

VDP++ method compared to the original VDP method and other traditional networks.

The results show that VDP++ offers several key advantages, including significant time-

space improvements, self-compression, noise robustness, and uncertainty quantification.

The time-space improvements demonstrated by VDP++ enable more efficient training and

reduced GPU memory requirements, which are crucial in large-scale applications. This

addresses the primary limitations of the original VDP method, which required much longer

training times and higher memory consumption [60].

In terms of self-compression and noise robustness, VDP++ performs similarly to the

original VDP method. Additionally, we show that it is able to prune more than 90% of its

parameters before performance significantly declines. This ability to maintain performance

despite substantial pruning suggests that VDP++ learns more efficient representations and

could lead to more compact models that may be beneficial for edge computing [60].
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The evaluation of the explanations produced by the various backends revealed un-

expected results. Our original hypothesis was that due to the averaging effect of BNNs,

we would have expected to see an improvement in Sensitivity Max (measures the stability

and robustness of the explanation with respect to small perturbations in the input data)

over deterministic models. An improvement in infidelity would suggest that the explanation

approximates the underlying model’s decision-making process better in BNNs than in deter-

ministic models. The difference in Sensitivity Max, while significant (𝑝 < 0.01), was quite

small. According to the original work from which it was derived, this score can be reduced

by modifying the formulation of the saliency map, while infidelity cannot [86]. This yields

promising results for the use of BNNs in areas where interpretability and explainability are

desirable [60].

During our testing, we found that the balance between the two terms of the loss

function in Equation 5.10 had the largest effect on the convergence and subsequent properties

of our models. Since the KL term of Equation 5.12 is largely dominated by matrix norms,

in larger models especially, this term tends to dominate. When this happens, the model

compresses itself at the cost of performance. Conversely, when the KL term is scaled down

too much (i.e. E𝑞(𝜙) [log 𝑝(𝐷 |𝜙)] ≫ KL[𝑞(𝜙) |𝑝(𝜙)]), the model overfits and the resulting

models lack the inherent properties like self-compression and noise robustness, effectively

becoming a deterministic model. To mitigate this behavior, we provided scaling terms to

our hyperparameter optimizer and searched outright. This proved to be the fastest and most

reliable method for training VDP++ models with high performance while retaining their

inherent properties [60].

For classification problems such as ImageNet-1k, the Negative Log-Likelihood
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(NLL) term in the ELBO loss function became a bottleneck. In practice, the NLL term

uses one-hot encoded labels. This led to vanishing gradients and low model performance.

To alleviate this problem, we changed the NLL term to categorical cross-entropy for our

ImageNet-1k experiments. We confirmed that this change did not negatively affect our prior

results [60].

5.7 Limitations

Our limitation in this study was a lack of computing resources. Given the increased

parameter space we needed to search for our ImageNet-1k experiment, it became infeasible

to expect high model performance in a short period of time. It is also worth noting that the

original ViT formulation made use of the JFT-300M dataset for pretraining, which is not

publicly available. We have substantially reduced the computational burden of the original

VDP method while preserving its desirable properties. In tandem with our preliminary

results on ImageNet-1k, scaling this approach to larger datasets is both possible and feasible

given adequate computing resources and time. The robustness and improved explanatory

capabilities of the VDP framework make it highly attractive for high-risk domains such as

healthcare. Furthermore, the self-compressing properties render this technique suitable for

applications with varying resource constraints, such as edge computing and large language

models where computational resources are highly valuable [60].
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Chapter 6

Revisiting the Fragility of Influence Functions

Influence functions were originally proposed to diagnose and debug linear models

by predicting the parameter or loss change due to removing a training instance [87]. Their

extension to deep learning models, however, did not occur until recently [24]. Influence

functions and their applications have been well studied since their reemergence and have

since been adopted as a mainstream tool for the interpretation of deep models in a variety of

data modalities [88–91], including high-risk areas such as mortality prediction for patients

in the Intensive Care Unit [33]. Due to the diversity of the use cases for influence functions,

understanding their limitations is imperative if they are to be used to explain model behavior.

Without key validation procedures, we run the risk of providing misleading or incorrect

information to the model users [92].

To validate these methods, we must first agree on a metric to rate explanations.

Spearman correlation between the approximate and true loss differences has been used as a

metric to determine the accuracy of influence estimates. The approximate loss differences

are given by the influence functions and the true loss differences are obtained by retraining

an already trained network after removing a specific training sample [24]. Recent works

have used this metric to study the effects that increases in model and dataset size have on

the influence functions. It has been found that influence functions are extremely sensitive

to these increases [93] [92].

It is well known that increases in model and dataset size affect the curvature of the

loss function [94–97]. Convexity of the loss function is a critical assumption of influence

functions as they heavily rely on the approximation of the inverse Hessian-vector product.
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The stochastic estimation algorithm used to compute the inverse Hessian-vector product

assumes that the Hessian is positive semidefinite [37, 98]. Preliminary work has been done

to try to remedy these problems via higher-order approximations [99] and group influences

[100], i.e., computing loss differences for more than one training instance at a time [92].

In this chapter, we examine the cases where influence functions seemingly fail, i.e.

have low Spearman correlation between approximate and true loss differences. We obtain

the operands for the correlation using the retraining procedure introduced in [24], where

the approximate loss differences are computed for the test point with the maximal loss

using influence functions. Each training point is removed one at a time and the neural

network is retrained from the optimal parameters until convergence in order to obtain the

true difference in the loss function values. We determined that this training procedure is

not valid for most applications of deep learning and present evidence for these cases [92].

6.1 Influence Function Guidance

Ideally, a model must be trained until the optimal parameters 𝜃 are obtained in

order to compute the influence functions. For a single test instance, 𝑧test, we would then

compute the inverse Hessian-vector product, ∇𝜃𝐿 (𝑧test, 𝜃)𝑇𝐻−1
𝜃

, using stochastic estimation

[98]. In reality, due to non-linearities in our networks, our objective function may become

non-convex and we obtain our parameters 𝜃 via SGD, where 𝜃 ≠ 𝜃. In this case, the Hessian

may have negative eigenvalues which would cause the stochastic estimation algorithm to

not converge. To address this, we adopt a regularization scheme similar to L2 regularization

discussed by Koh et al.[24]. We regularize the computation of the Hessian-vector product

using a damping term of 𝜆 = 0.01. We can then compute the gradient of the loss as
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∇𝜃𝐿 (𝑧, 𝜃). The inner product of the Hessian-vector product and the gradient of the training

instance results in a scalar value that tells us the approximate change in loss to expect on

𝑧test if we were to remove the training instance 𝑧. Note that we compute the gradient of the

loss function with respect to only the parameters of the last layer [24] [92].

6.2 Non-Convexity and Eigenvalues of the Hessian

Due to the importance of the Hessian in the computation of influence functions,

the convexity of the loss function and its effects on the Hessian are important. Recall that

influence functions assume the Hessian is positive definite such that it is invertible. Koh et

al. [24] have shown that even with negative Hessian eigenvalues it is still possible to obtain

good influence estimates . It is understood that large overparameterized networks affect

the convexity of the loss function [95, 96], which we observe via the eigenvalues of the

Hessian. Basu et al. [93] have shown that larger eigenvalues are correlated with decreases

in the Spearman correlation metric when network depth (i.e., the number of hidden layers in

the network) and width (i.e., the number of nodes in each hidden layer) are increased. This

contradicts the literature where the long tail of the Hessian Eigen Spectral Density (ESD)

has been well studied for large DNNs and it has been shown that the largest eigenvalue does

not tend to increase as the width of the network increases [94]. In this paper, we utilize a

method developed by Yao et al. [101] to compute the eigenvalues of the Hessian in an effort

to quantify the effect if any, of non-convexity and non-convergence on Influence functions

[92].
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6.3 Bayesian Deep Neural Networks

The current state of the art for influence functions, suggests that by applying L2

regularization to our networks during training, we can reduce the negative effects that

are associated with overparameterization [93]. Variational Bayesian Learning has been

shown to result in superior regularization, better model averaging and built-in uncertainty

prediction [29]. We select this method specifically for its regularization strength. In this

chapter we utilize the VDP++ algorithm presented in Section 5.2 [92].

6.4 Experiments

6.4.1 Iris Dataset

To study the effect of random initialization on influence function estimates, we

reproduced an experiment from Basu et al. [93] using the Iris dataset. The Iris dataset

consists of 150 instances with 4 features and 3 classes. The decision to use this dataset as a

benchmark is due to its simplicity. To make our models more robust to random initialization,

we considered weight decay as well as Stochastic Weight Averaging (SWA) and Bayesian

Neural Networks (BNNs) as novel additions to this experiment [31, 102, 103] [92].

This experiment was repeated for two types of DNNs: (1) DNNs with constant

width (number of nodes in a hidden layer) and variable depth (number of hidden layers),

and (2) DNNs with constant depth and variable width. In the experiments with variable

depth, the number of nodes per hidden layer was held constant at 5 as in Basu et. al. [93].

In the variable width experiments, the depth of the network was held constant at 1, i.e., one

hidden layer only. We used the Adam optimizer with an initial learning rate of 0.001 as in

Basu et. al. [93]. A learning rate scheduler was used to decrease the learning rate by a
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factor of 10 if the loss did not decrease for 100 epochs. For the experiments with weight

decay, we used a constant value of 0.005 as in Basu et. al. [93]. Each experiment was

repeated 50 times [92].

Koh et al.[24] showed that fine-tuning a trained DNN from the optimal parameters

is approximately equal to retraining the same network with a training instance removed.

Therefore, to obtain the true differences in loss when removing a test point, we replicate

the training procedure outlined by Basu et al. [93]. The models are initially trained for 60k

epochs of full-batch gradient descent instead of SGD. The training instances are then sorted

by their loss and the 40 training instances with the maximal loss are identified. We then

fine-tune only the top layer for 7.5k epochs when individually removing each of the training

points with the highest loss. Finally, we compute the influence function estimates for those

training instances with respect to the test instance with the highest loss. The Spearman

correlation between the true and approximate differences in loss are then computed. The

eigenvalues of the Hessian for each network were computed via power iteration using the

PyHessian Python package [101] [92].

6.4.2 MNIST and CIFAR10

We drastically increase the model and dataset size to study the performance of

influence functions in non-convex settings. Similar to the experiment described in Basu et

al. [93], we chose to look at a small fully connected network, LeNet, and VGG13. Each

model was trained in a similar manner as our previous experiment. The Adam optimizer

was used with an initial learning rate of 0.001 and weight decay of 0.001. The learning

rate was reduced by a factor of 10 if the loss did not decrease after 2 epochs. The test
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instance with the maximal loss was used to compute the influence functions. Also, the

influence functions were computed for all training instances. We deviate from our previous

experiment when choosing the training instances to remove and retrain. The true loss

difference was computed for the top 40 most influential training points (highest absolute

value) using the re-train from optimal approximation. The Spearman correlation between

the true and estimated differences in loss was computed [92].

6.4.3 Statistical Analysis

We use one-way analysis of variance (ANOVA) to compare various dependent

variables and establish statistical significance in various experiments described above [92].

Figure 9

Influence Function Performance Evaluation on Iris Dataset

6.5 Results and Discussion

6.5.1 Effect of Model Size on the Influence Function Estimates

In Figure 9, we present the Spearman’s rank correlation coefficient (𝜌) between the

true and estimated loss differences for the Iris dataset for a variety of model types and
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sizes. We present four different types of models, including a model with L2 regularization,

a model without L2 regularization, a model with SWA, and a BNN. The figure presents

models trained using an increasing number of neurons in one layer (Figure 9-A) and

increasing number of layers with fixed number of neurons in each layer (Figure 9-B). The

true loss difference is found using the re-training strategy and the estimated loss difference is

found using equation 2.12. The error bars represent the 95% confidence intervals obtained

by repeating the experiment 50 times. It is evident from both sub-figures that for any type

of model (L2, No-L2, SWA, and BNN), there is a minimal effect of increasing the number

of neurons or number of layers on the quality of the estimate (of the influence of a training

point on the selected test data point) provided by influence functions (using equation 2.12).

A statistical analysis performed using ANOVA did not reveal any significant effect of the

number of neurons or layers on the Spearman correlation (𝑝 > 0.5 for all cases). Previously,

Basu et al. [93] had reported increasing model size (depth and width) degrades influence

function estimates. We believe that the discrepancy between the reported results is linked

to statistical rigor as no statistical tests or analyses were reported by Basu et al. [93] to

establish the effect of model size on the quality of estimates produced by influence functions

[92].

We also observe that the estimates provided by influence function are more accurate

for models with regularization, as shown in Figure 9. In particular, the Bayesian models

(BNNs) outperform all other methods. We consider that the observed behavior is linked

to (1) the “ensemble” or “average” effect introduced by Bayesian approaches in the model

training, and (2) the type of regularization present in the ELBO loss function which has been

shown to give these models superior self-compression properties [72]. This performance
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increase, however does not seem to carry over to our experiments with larger datasets

(Figure 10), where all models were trained with regularization. This is congruent with the

results obtained by Basu et al. [93] on the same datasets [92].

Figure 10

Spearman Correlation Between True and Approximate Loss Differences

Figure 11

Iris Dataset: Largest Eigenvalue
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6.5.1.a The Largest Eigenvalue. In Figure 11, we observe the same trend that Basu

et. al. [93] found in the Iris experiment, e.g., the eigenvalues of the Hessian increase

with model width and depth (ANOVA 𝑝 < 0.05). We do not however, relate the supposed

decrease in influence function estimates to the increasing top eigenvalue as a proxy for

curvature of the loss function given that our statistical results from Figure 9 show that there

are no significant differences between model sizes and influence function performance.

Given that Koh et al. [24] have shown that even when most assumptions about convexity

of the loss function have been broken, i.e., the optimal parameters have not been obtained

(𝜃 ≠ 𝜃) and the Hessian has negative eigenvalues (Hessian not PD), we can still obtain

“good” influence estimates. We postulate that the problem lies with the methods that have

been used to evaluate influence functions [92].

Figure 12

The Loss Trajectories Followed During Re-Training
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6.5.2 The (In-)validity of Spearman’s Rank Correlation Coefficient

Spearman’s rank correlation coefficient is an established metric for determining the

accuracy of influence function estimates [24, 93, 100]. We note that the output of Equation

2.12 is the difference in the loss function value for the test instance if the training instance

is removed. This loss difference can be positive or negative. For a training instance to be

influential, it needs to have a large magnitude [92].

Figure 13

Example of Miss-Relation

In Figure 13, we provide an example where the Spearman’s correlation coefficient is

unable to capture the underlying relationship between the true loss difference and estimated

loss difference, where the estimate is being calculated using Equation 2.12. The horizontal

axis in both sub-figures (Figure 13 left and right) corresponds to the rank of the training

point, where the rank is determined by the approximate loss difference. Thus, we should

expect to see the exact loss differences (blue points) move from a large magnitude towards

zero as we move from left to right on the horizontal axis. In Figure 13 (a), the estimated and

true values (after ignoring the scale) are close to each other. In Figure 13 (b), the values of
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true and estimated loss differences are significantly different from each other. However, the

value of the Spearman’s correlation coefficient for both cases is approximately 0.85 [92].

We consider that since the relationship between the estimated and true loss function

difference values may not always be monotonically decreasing or increasing, the Spear-

man’s correlation can lead to misleading results [92].

6.5.3 Re-Training for Optimal Parameters

To compute the Spearman’s correlation coefficient, we need to know the true differ-

ence in the loss function value. This requires retraining models for every training instance

that we want to analyze. This is a very costly operation in time. The re-training from

optimal parameters has been shown to be an approximately equivalent alternative to re-

training from scratch [24]. Previous works have not proven that this approximation is valid

for large datasets [24, 93]. It has been well established that increasing model and dataset

complexity increases the largest eigenvalue of the Hessian of the loss function [95, 96].

While we have demonstrated that the increasing curvature does not affect estimates made

by influence functions with small datasets and models, with large datasets and models the

extreme curvature of the loss function makes us question the validity of the re-training

approximation [104]. To study this, we looked at the loss of the test instance at each epoch

during re-training in both the Iris and MNIST experiments. In Figure 12, the test loss

difference is plotted against epochs on the horizontal axis. We note significant differences

in the trajectories followed by the gradient descent algorithm for two cases (Iris - Figure 12

left and MNIST 12 right). The Iris model has a well damped convergence whereas the the

MNIST model is underdamped and does not seem to converge as smoothly as did Iris [92].
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6.5.4 The Effect of Large Networks

We consider large neural networks as having more parameters, more non-linear

operations owing to their depth, and reluctantly requiring large datasets for training. We

note that originally Cook and Weisberg derived influence functions for regression models

(which can be considered as neural networks with one layer) and the mean-square error

loss function [87]. Recently, Koh et al. [24] extended the idea of using influence functions

in deep neural networks by treating all but the last layer of the deep neural network as a

feature extractor. The influence functions were computed with respect to only the last layer.

This practice seems to work in some cases and produce promising results [24]. However, it

does not account for the large dimensionality of the final layer of modern neural networks.

This proves to be a problem when these large parameter matrices become ill-conditioned

[105]. This problem was captured by Basu et al. [93] in their analysis of large datasets like

CIFAR-100 and ImageNet where true differences in losses from removing training instances

resulted in very noisy results [92].

Large neural networks may have more layers (depth) and/or more operations per

layer (width). This results in increasing the number of non-linear operations which are

performed on the data for calculating the loss function. The most popular implementation

of influence functions, as defined by Koh et al. [24], relies on only a first-order Taylor series

approximation to efficiently compute influence (Eq. 2.8). We argue that the increasing

number of non-linear operations strongly affects the convexity assumption of the loss

function 𝑅(𝜃) (Eq. 2.3) as used in the mathematical relationships derived for influence

functions (Eq. 2.4). There is evidence suggesting that adding the second term of the Taylor

64



series in the influence function approximation improves the estimates [99, 100] [92].

Finally, large networks typically go hand-in-hand with large datasets. From Equation

2.11, it is evident that removing a training instance is equivalent to up-weighting it by 𝜖 = −1
𝑛
.

In the Iris dataset, |𝜖 | ≈ 6.6𝑒 − 3 compared to MNIST where |𝜖 | ≈ 1.6𝑒 − 5. Any larger

datasets will lead to smaller epsilon, that is:

θ̂−𝑧 − θ̂ ≈ 0 or θ̂−𝑧 ≈ θ̂. (6.1)

In other words, owing to the large dataset, the influence of a single training point on

a test sample is asymptotically approaching zero. Perhaps the first-order Taylor series

approximation of the influence functions does not provide enough resolution to predict

loss differences when predicting on only one training instance. If one wanted to use

influence functions in large datasets like CIFAR-100 and ImageNet, one would have to turn

to higher-order approximations of influence functions as well as group influences. In Basu

et al. [100], promising results were obtained by examining the effect of a second-order

approximation as well as group influence. These solutions of course have an associated cost.

Adding a second-order term increases the cost and complexity of the analysis. Optimal

group selection is also a non-trivial and expensive operation [92].

While there is theoretical evidence to suggest that the first-order implementation

of influence functions is fragile, due to the difficulty of finding robust ways to empirically

evaluate them in difficult settings, their supposed fragility remains unclear [92].

6.6 Limitations

While we have established that the procedures used to measure the accuracy of influ-

ence functions are flawed in multiple ways, we have not been able to ascertain exactly where

65



or why these procedures break down. It appears that the answer lies with increasing model

and dataset size. To precisely define the boundaries on where violating the approximations

that Koh et al. [24] have established is valid, we would need to exhaustively search the

space of increasing complexity of the model and dataset [92].
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Chapter 7

Deployment of a Robust and Explainable Mortality Prediction Model

In this chapter, we tie together the contributions made in previous chapters and

unite the methods under one application. Again, we revisit first-day mortality prediction in

the ICU. However, this time we utilize Bayesian Neural Networks combined with influence

function based explanations to deliver one application that satisfies the requirements outlined

in [12] to achieve widespread acceptance by ICU clinicians. Two components we haven’t

discussed yet has been dataset shift and algorithmic bias [11]. Dataset shift is a common

problem in machine learning where the distribution of the data once deployed may be

different or drift over time. Algorithmic bias deals with biases in the training dataset that

may affect the performance of the model in the deployed environment. The classic example

of algorithmic bias in machine learning is the inclusion of race/ethnicity data in bond price

prediction.

7.1 Dataset Shift and Algorithmic Bias

Some studies highlight dataset-shift and algorithmic biases as crucial factors to

consider when designing AI/ML models for healthcare [106]. Dataset shift, in particular,

is often overlooked during the design and development process or is left for manual review

and update. It is naive to assume that the independent and identically distribution (i.i.d.)

assumption of many AI/ML algorithms will hold in a field like healthcare, where different

patient populations can exhibit vastly different distributions [107]. Algorithmic bias is a

related concern, as it has been demonstrated that mortality prediction models’ performance

can vary depending on patient ethnicity [108]. While these requirements can overlap, they
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collectively address the full spectrum of failure in previous models [11].

One obvious example of dataset-shift in healthcare came with the advent of COVID-

19. A particular issue is mortality prediction in the Intensive Care Unit (ICU). During several

periods of the pandemic, ICU mortality rates spiked [109]. Several biomarkers were found

to be better predictors of mortality in COVID-19 patients than standard AI/ML models

[110]. This same model was replicated and tried in the Netherlands and it was found

that the mortality prediction accuracy was much lower [111]. This case study shows that

even when a tool is tailor made to serve a specific subset of the population, it may only

work well in a specific region. When developing these models, it can become easy to fool

oneself about the performance of a model. Several strategies should be employed once the

model is deployed. These include periodical testing using data from the deployment, model

fine-tuning, and full model retraining [112] [11].

7.2 Methods

7.2.1 Model Selection

To train our model, we aggregated mortality data from two publicly available

datasets: MIMIC-III [113] and the eICU [39] databases. From these databases, we se-

lected data such as demographic information (age, gender), indicator variables (patient

on mechanical ventilation, metastatic cancer, etc.) and lab values (blood lactate, glucose,

creatinine, etc.) that are given within 24 hours of patient admittance. This results in nearly

200,000 instances and 200 features with a 92%-8% class imbalance where patient death is

the positive class. In order to get these features down to a reasonable number, we adopted an

aggressive feature selection procedure. First, pair-wise correlations were computed and all
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features with Pearson correlation coefficient greater than 0.9 were dropped from the dataset.

Next, any features with greater than 50% missingness were removed from the dataset. We

then computed the mutual information between the remaining features and the mortality

outcome and selected the top 20. Out of the top 20, a group of clinicians chose 12 based

on clinical opinion. We opted to not take a purely data science feature selection technique

since some of the top features chosen did not give clinicians any actionable insights. Ad-

ditionally by taking user opinion into account during the model selection stage, we hoped

to foster stronger understanding between model and user prior to deployment. Our final

set of features is as follows: Blood lactate, mechanical ventilation (yes/no), all Glasgow

Coma Scale parameters (eyes, motor, verbal), albumin, age, creatinine, Prothrombin Time

(PT-INR), White Blood cell Count (WBC), Blood Urea Nitrogen (BUN), and Mean Arterial

Pressure (MAP) [11].

Model training was performed in a similar manner to [33] where first-day mortality

prediction was investigated. Missing data was assumed to be missing at random and

multiple imputation with chained equations [114] used as the imputation method. Prior

to training, the data was standardized. The learning algorithm chosen here is a shallow

neural network. To optimize parameters and capture performance metrics, a 10-fold cross

validation scheme was used. We used Weight and biases [42] to optimize the hyper

parameters of our neural network. We chose to optimize for positive likelihood ratio (LR+)

as this will give our model a good balance between sensitivity and specificity. Additionally,

model performance given in likelihood ratios is readily understood by clinicians. Given the

large class imbalance, various options to rectify the imbalance were given to the optimizer:

Synthetic Minority Oversampling (SMOTE) [41, 115], majority undersampling [115], and
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loss function weighting (penalizing minority class predictions). After the hyperparameters

are selected, the models were trained using all available data [11].

7.2.2 Variational Density Propagation (VDP)

In addition to our traditional or deterministic neural net, we also trained a Bayesian

Neural Network (BNN) in the same manner. We will refer to this as the stochastic neural

net. For this study, we used the original formulation of Variational Density Propagation

(VDP) as VDP++ (Chapter 5 Section 5.2) was not researched at the time this project began

[31, 63, 116] [11]. Specifically, the mortality app project began in May of 2020. The app

was deployed and we began collecting results in January of 2021. We began research on

VDP++ in March of 2021. It is important to note that it is justifiable to use VDP for this

study as there is no significant difference in performance between VDP and VDP++. The

main difference is that VDP++ uses much less memory.

To describe the original VDP method by Dera et al. [31], let us use a 2-layer fully

connected neural network as an example. In a traditional or deterministic neural network,

Equation 7.1 describes the forward pass of the model [11].

𝑧 = 𝑊𝑥 + 𝑏 [1] ,

𝑎 = 𝑓 (𝑧),

�̂� = 𝑔(𝑉𝑎 + 𝑏 [2]),

(7.1)

where 𝑊 ∈ R 𝑗×𝑘 is the weight matrix of layer 1, 𝑥 ∈ R𝑘×1 is the input vector, 𝑏 [1] ∈ R 𝑗×1

is the bias vector in layer-1, 𝑧 ∈ R 𝑗×1 is the result of the linear operation in layer-1, 𝑓 is an

arbitrary element-wise non-linear function, 𝑔 is an arbitrary non-linear activation function

that does not operate element-wise, 𝑎 ∈ R 𝑗×1 is the result after applying the non-linear
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activation function in layer 1, 𝑉 ∈ R𝑙× 𝑗 is the weight matrix in layer 2, 𝑏 [2] ∈ R 𝑗×1 is the

bias vector in layer 2, �̂� ∈ R𝑙×1 is the predicted output and 𝑘 is the dimensionality of the

input vector, 𝑗 is the number of nodes in layer 1 and 𝑙 is the number of classes to predict

[11].

To propagate the first two moments, several assumptions must be made. First,

let us consider 𝑤⊤
𝑚 = 𝑚th row of 𝑊 , 𝑚 = 1, 2, ..., 𝑗 . Then, 𝑧𝑚 = 𝑤⊤

𝑚𝑥 + 𝑏
[1]
𝑚 , 𝑚 =

1, 2, ..., 𝑗 . Next, consider the following assumptions: the input vector 𝑥 is deterministic,

𝑎 ∼ N (𝜇𝑎, Σ𝑎), 𝑤𝑚 ∼ N (𝜇𝑤𝑚
, Σ𝑤𝑚

), 𝑚 = 1, 2, ..., 𝑗 , 𝑏 [1]𝑚 ∼ N (𝜇
𝑏
[1]
𝑚
, 𝜎2

𝑏
[1]
𝑚

), 𝑚 = 1, 2, ..., 𝑗 ,

𝑣𝑛 ∼ N (𝜇𝑣𝑛 , Σ𝑣𝑛), 𝑛 = 1, 2, ..., 𝑙, 𝑏 [2]𝑛 ∼ N (𝜇[2]
𝑏𝑛
, 𝜎2

𝑏
[2]
𝑛

), 𝑛 = 1, 2, ..., 𝑙 and the weight vectors

𝑤𝑚, 𝑎, and bias 𝑏 [1] and 𝑏 [2] are uncorrelated to each other for 𝑚 = 1, 2, ..., 𝑗 . The elements

of 𝜇𝑧 and 𝜎2
𝑧 are defined in Equations 7.2 and 7.3 [11].

𝜇𝑧𝑚 = E[𝑤⊤
𝑚𝑥 + 𝑏

[1]
𝑚 ]

= E[𝑤⊤
𝑚]𝑥 + E[𝑏

[1]
𝑚 ]

= 𝜇⊤𝑤𝑚
𝑥 + 𝜇

𝑏
[1]
𝑚

(7.2)

𝜎2
𝑧𝑚

= Var[𝑤⊤
𝑚𝑥 + 𝑏

[1]
𝑚 ]

= Var[𝑤⊤
𝑚𝑥𝑚] + Var[𝑏 [1]𝑚 ]

= 𝑥⊤𝑚Var[𝑤𝑚]𝑥𝑚 + Var[𝑏 [1]𝑚 ]

= 𝑥⊤𝑚Σ
2
𝑤𝑚

𝑥𝑚 + 𝜎2
𝑏
[1]
𝑚

(7.3)

Since we have assumed the weight vectors and elements of the bias 𝑏 to be uncorrelated,

Σ𝑤𝑝𝑤𝑞
= 0 and 𝜎𝑏𝑝𝑏𝑞 = 0 for 𝑝 ≠ 𝑞, where 𝑝, 𝑞 = 1, 2, ..., 𝑗 . Hence, the covariance is zero.
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To propagate the first two moments through an arbitrary element-wise non-linear function,

we utilize the first-order Taylor series approximation shown in Equations 7.4 and 7.5 [11].

𝑎 = 𝑓 (𝑧)

= 𝑓 (𝜇𝑧) + 𝑓 ′(𝜇𝑧) (𝑧 − 𝜇𝑧) + ...

≈ 𝑓 (𝜇𝑧) + 𝑓 ′(𝜇𝑧) (𝑧 − 𝜇𝑧)

E[𝑎] = 𝜇𝑎 ≈ 𝑓 (𝜇𝑧)

𝜇𝑎 = 𝑓 (𝜇𝑧)

(7.4)

Σ𝑎𝑝𝑎𝑞 ≈


𝜎2
𝑧𝑝
𝑓 ′(𝜇𝑧)2, 𝑝 = 𝑞,

𝜎𝑧𝑝𝑧𝑞 𝑓
′(𝜇𝑧𝑝 ) 𝑓 ′(𝜇𝑧𝑞 ), 𝑝 ≠ 𝑞.

(7.5)

For the second layer of the network, we can no longer consider the incoming vector,

𝜇𝑎, to be deterministic. Additionally we now need to propagate the incoming variance, 𝜎2
𝑎 .

The mean and covariance propagated through the second fully-connected layer are given in

Equations 7.6 and 7.7 [11].

𝜇 �̃� = E[𝑣⊤𝑛 𝑎 + 𝑏
[2]
𝑛 ]

= E[𝑣⊤𝑛 ]E[𝑎] + E[𝑏
[2]
𝑛 ]

= 𝜇⊤𝑣𝑛𝜇𝑎 + 𝜇
𝑏
[2]
𝑛

(7.6)

Σ�̃�𝑝 �̃�𝑞 =



Tr(Σ𝑣Σ𝑎) + 𝜇⊤𝑣 Σ𝑎𝜇𝑣

+ 𝜇⊤𝑎 Σ𝑣𝜇𝑎 + Σ
𝑏
[2]
𝑛

, 𝑝 = 𝑞,

𝜇⊤𝑣𝑝Σ𝑎𝜇𝑣𝑞 , 𝑝 ≠ 𝑞.

(7.7)
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Next, we must use a non-linear activation function such as softmax to obtain the

predictions of our model. Since 𝑔 does not operate element-wise on our mean and variance,

we use a slightly different Taylor-series to obtain Equations 7.8 and 7.9 [81] [11].

𝜇 �̂� ≈ 𝑔(𝜇 �̃�) (7.8)

Σ�̂� ≈ 𝐽𝑔Σ�̃�𝐽
⊤
𝑔 , (7.9)

where 𝐽𝑔 is the Jacobian matrix of the softmax function 𝑔 with respect to �̃� and calculated

at 𝜇 �̃� [11].

Finally, we use the Evidence Lower Bound (ELBO) function, L(𝜙, 𝐷), which con-

sists of two parts: the expected log-likelihood of the training data given the weights, and a

regularization term, 𝐷 = {𝑥 (𝑖) , 𝑦 (𝑖)}𝑁
𝑖=1 given by Equation 7.10 [11].

L(𝜙, 𝐷) = E𝑞(𝜙) [log 𝑝(𝐷 |𝜙)] − KL[𝑞(𝜙) |𝑝(𝜙)], (7.10)

where 𝜙 represents the (1) weights 𝑊 and 𝑉 and (2) biases 𝑏 [1] , 𝑏 [2] . The expected

log-likelihood is given in Equation 7.11 and the KL term is given in Equation 7.12 [11].

𝐸𝑞(𝜙) [log 𝑝(𝐷 |𝜙)] ≈ 1
𝑀

𝑀∑︁
𝑚=1

log 𝑝(𝐷 |𝜙)

≈ −𝑁𝑙

2
log(2𝜋) − 1

𝑀

𝑀∑︁
𝑚=1

[
𝑁

2
log( |Σ�̂� |)

+ 1
2

𝑁∑︁
𝑖=1

(𝑦 (𝑖) − 𝜇
(𝑚)
�̂�

)⊤(Σ(𝑚)
�̂�

)−1(𝑦 (𝑖) − 𝜇
(𝑚)
�̂�

)
] (7.11)

where, 𝑦 (𝑖) is the true label of the 𝑖th data point, 𝑁 is the number of data points and 𝑀 is
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the number of Monte Carlo samples needed to approximate the expectation by summation

[11].

KL[𝑞(𝜙) |𝑝(𝜙)] = −1
2

𝑙∑︁
𝑛=1

( 𝑗 log𝜎2
𝑣𝑛
− ||𝜇𝑣𝑛 | |2𝐹 − 𝑗𝜎2

𝑣𝑛
)) (7.12)

To compute the uncertainty, we have to modify the output of the network. The

output of the model contains the mean and covariance. The variance (diagonal elements

of the covariance) contain the information about the uncertainty of the prediction. Since

this value can range from [0,∞), it can be difficult to quantify the uncertainty of any one

given prediction. What we have done is to plot the distribution of variance outputs when the

prediction is wrong and when it is right. Figure 14a shows these distributions. As expected,

the variance output is, on average, lower (more confident) when the classifier is right versus

when it is wrong. Now that we know this, we can use the joint distribution to determine how

confident any given prediction is by computing the CDF along the distribution. Computing

1 − CDF(𝜎2) will put the confidence in the range [0, 1], where 0 indicates low confidence

and 1 indicates high confidence (Figure 14b) [11].

Figure 14

KDE of (a) Variance and (b) Uncertainty, and (c) Scores by Cohort

(a) (b) (c)
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7.2.3 Explanations and Interpretability

To satisfy the interpretability constraints requested by clinicians [12], we provide

instance-level explanations via influence functions for each prediction (Equation 3.1). Ex-

planations generated by influence functions are ideal for this application as the loss difference

provides a magnitude and direction indicating feature importance and sentiment, indicating

which class the feature value favors (in the binary case) [11].

In addition to the explanations, we have taken steps to make the model more inter-

pretable using the app UI. As suggested by clinicians during development, normative ranges

for each signal are provided via drop down on the input screen as shown in Figure 15a. We

have also computed some first order statistics for each feature in our dataset in an effort to

foster understanding between the model and users. These statistics are provided via drop

down on the output screen as shown in Figure 15d [11].

7.2.4 App Design for Android/Apple

The design of the app can be split into three components: front-end client, API

server, and ML background worker. The parts are deployed in a monolithic architecture on

a Google Compute Engine virtual machine (VM) with a graphical processing unit (GPU).

Ionic Framework and React library using TypeScript language was used to develop the

front-end UI as a Progressive Web Application. The application can be accessed by a

publicly accessible domain on a web browser and optionally installed on the device. With

communication to the API server, the UI allows users to create accounts, input data using the

interface, and view or update previous records with retrospective analysis [11]. The input
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pane is displayed in Figure 15a, The output pane for the Stochastic model and Deterministic

models with their explanations are displayed in Figures 15b and 15c respectively.

Figure 15

App UI

(a) (b) (c) (d)

7.3 Results

7.3.1 Model Selection

Upon the conclusion of model selection, the optimal parameters for each model

were as follows. For the deterministic network, the model had three hidden layers with

widths 197, 198, and 112 nodes, respectively. The loss function was weighted to account

for the large class imbalance with a positive weight of 14.80. The model was trained for

127 epochs of full-batch gradient descent using stochastic gradient descent (SGD) with
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parameters: learning rate 𝛾 = 0.03104, weight-decay 𝜆 = 0.0104, and Nesterov momentum

𝜇 = 0.4204 [11].

Table 8

10-fold Cross Validated Training Results

Deterministic Network Precision↑ Sensitivity↑ Specificity↑ ROC AUC↑ PRC AUC↑ Balanced Accuracy↑

eICU Only 0.21±(0.01) 0.79±(0.02) 0.82±(0.02) 0.89±(0.00) 0.43±(0.01) 0.81±(0.00)

eICU + MIMIC-III 0.19±(0.00) 0.80±(0.00) 0.77±(0.00) 0.87±(0.00) 0.39±(0.00) 0.79±(0.00)

Stochastic Network Precision↑ Sensitivity↑ Specificity↑ ROC AUC↑ PRC AUC↑ Balanced Accuracy↑

eICU Only 0.20±(0.01) 0.79±(0.02) 0.81±(0.02) 0.88±(0.00) 0.37±(0.02) 0.80±(0.00)

eICU + MIMIC-III 0.19±(0.00) 0.80±(0.01) 0.79±(0.00) 0.87±(0.00) 0.35±(0.02) 0.79±(0.00)

The stochastic model also had three hidden layers with widths 31, 93, and 94

respectively. The class imbalance was handled by majority undersampling. The model was

trained for 18 epochs with a batch-size of 1000 using mini-batch SGD with parameters:

learning rate 𝛾 = 0.0022, weight-decay 𝜆 = 0.0064, and Nesterov momentum 𝜇 = 0.7589.

A t-test was performed on the test statistics of the two models and no significant difference

was found (𝑝 > 0.01) [11].

Table 8 shows the results of a 10-fold cross validation using the optimal parameters

found for each model. The metric typically used to compare mortality prediction models is

the area under the Receiver Operating Characteristic Area Under the Curve (ROC AUC).

Both of our models achieve a significantly higher ROC AUC than the currently available

and widely used by ICU Clinicians (APACHE [34], SAPS [117]), as well as a recently

published Neural Network model [33] (𝑝 < 0.01 for all pair-wise t-tests). An initially
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troublesome result was the low precision obtained by both models. Due to the loss function

weighting/majority undersampling, both models predict the positive class (right or wrong)

about 40% of the time. This results in the model correctly classifying the positive class

about 76% of the time. Using Bayes rule, we can estimate a theoretical positive predictive

value of 0.15, given the positive class only occurs 8% of the time in the dataset. Therefore,

our models are performing as expected given this imbalance [11].

7.3.2 Deployment and Data Collection

Model deployment commenced in January 2021, during which data from two distinct

cohorts were gathered. The first cohort consisted of 59 subjects, with data collected between

January 2021 and November 2021 (COVID-19 surge). The second cohort included 25

subjects, and their data were obtained from January 2023 to May 2023 (Post COVID-19).

In both cohorts combined, a total of 43 subjects had their mortality outcomes documented

(21 from 2021 and 22 from 2023). This was accompanied by predictions from medical

professionals prior to viewing model predictions. We chose to collect data in this way in

order to study the effects that dataset drift may have on our models due to the COVID-19

pandemic [11].
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Table 9

Performance Metrics for Each Model by Cohort

Clinician Prediction Deterministic Network Stochastic Network

ROC AUC Accuracy ROC AUC Accuracy ROC AUC Accuracy

Traning Set - - 0.87±(0.00) 0.77±(0.00) 0.87±(0.00) 0.77±(0.01)

2021 Cohort - 0.95 0.99 0.90 0.99 0.95

2023 Cohort - 0.83 0.89 0.75 0.88 0.83

Combined - 0.90 0.93 0.84 0.90 0.90

7.3.3 Dataset Drift and Model Performance

A considerable drift in the label distribution between cohorts was observed. To

recall, the label distribution of our training set consisted of 92% for negative classes and

8% for positive classes. In contrast, the 2021 and 2023 cohorts exhibited label distributions

of 20%-80% and 64%-36%, respectively. A one-way Chi-square test was employed to

compare the relative frequencies of mortality outcomes in each cohort against the training

distribution. The results revealed that for the 2021 cohort, 𝑝 < 0.01, and for the 2023

cohort, 𝑝 > 0.01 [11].

To investigate the potential impact of dataset drift on performance, we utilized a

2-sample Kolmogorov-Smirnov test with bonferroni correction to compare distributions.

For all continuous features in our feature set, we assessed the distribution split by cohort

relative to the training set distribution. Blood lactate and blood albumin were identified as

significant (𝑝 < 0.01 for the 2021 cohort and 𝑝 > 0.01 for the 2023 cohort), implying that

the distribution of these variables significantly deviated from the training distribution for
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the 2021 cohort but not for the 2023 cohort. Figure 16 displays the kernel density estimates

of these two features, separated by cohort [11].

Figure 16

Kernel Density Estimates of Significant Features

(a) (b)

Turning our attention to model performance, we devoted substantial effort to optimiz-

ing the ROC AUC and LR+ during model selection, as these are conventional benchmarks

for this problem due to the prevalent class imbalance. Since we also gather clinician pre-

dictions during data input, we can directly compare our models to clinicians using accuracy

as a metric. Table 9 shows these results. We found that the stochastic model had achieved

clinician level performance while the deterministic model fell behind across all cohorts even

though the deterministic model had higher ROC AUC across cohorts [11].

7.3.4 Explainability

To assess the explanations generated by both models, we performed a correlation

analysis similar to that which was done in [24]. We computed the correlation between pair-

wise feature differences and pair-wise influence differences from our data collected from
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deployment by randomly sampling subjects and subject pairs without duplicate (N=500).

Figure 17 shows the absolute Pearson (Figure 17a) and absolute Spearman (Figure 17b)

correlations. All correlations above 0.05 were significant (𝑝 < 0.01) with bonferonni

correction.

Figure 17

Influence Function Performance

(a) (b)

To better understand the kinds of explanations generated by each model, we examined

the top three features by absolute magnitude for each subject and compared their frequency

across both cohorts. The stochastic model displayed greater variability in its explanations,

with nine features appearing in the top three positions for both cohorts. In contrast, the

deterministic model only had six features in the top three positions. Higher variability

is preferable in this setting as it is more desirable to have an explanation that is sensitive

to the particular instance, generating a local explanation, rather than an explanation that

is not sensitive, generating what is essentially global feature importance. Additionally,

the stochastic model included lactate and albumin in it’s top feature sets for both cohorts

indicating that the model is picking up on the distribution shift shown in Figure 16 [11].
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All models indicated importance in both continuous (e.g.., lactate, albumin, etc.) and

categorical/ordinal (e.g., mechanical ventilation, GSC sub-scores) features demonstrating

effective explanations for features of all types.

Recall, that in addition to importance scores, the influence function output is signed

which can be used to evaluate class sentiment. To evaluate the overall sentiment associated

with each feature, we applied the signum function to them. A highly positive/negative score

would suggest that the model consistently attributes importance to one class, while a score

closer to zero would indicate that the model is equally likely attribute importance to either

class. Our findings revealed that the stochastic model had more values near zero compared

to the deterministic model. The deterministic model exhibited mostly very positive or very

negative values, indicating limited inter-subject variability. The superior performance in

explanation quality by the stochastic model is consistent with literature on the explanations

generated by BNNs [79] [11].

7.3.5 Un(Certainty)

To assess the effectiveness of our uncertainty metric, we conducted another 2-sample

Kolmogorov-Smirnov test, comparing the “Confidence” metric reported by our stochastic

model. This test revealed significant (𝑝 < 0.01) differences between the training set and

the 2021 cohort, while no significant (𝑝 > 0.01) differences were observed between the

training set and the 2023 cohort. Figure 14 presents the kernel density estimates of the

training distribution, first broken down by classifier correctness (Figure 14b), and then

by cohort (Figure 14c). These visualizations demonstrate the utility of our uncertainty

metric identifying differences between the cohorts and the training set, providing valuable
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insights into the performance of our stochastic model across different conditions [11]. The

uncertainty metric may also be used as an outlier detection method. By utilizing the 2-

sample KS test on a set of incoming data a significant result would indicate that the incoming

data may be considered outliers compared to the training distribution.

7.4 Discussion

7.4.1 Robust Models and the Effect of COVID-19

Given the substantial label shift in the data, we should have expected a sharp

decline in performance. We attribute the robust performance of our models, in part, to

the class-weighting/resampling approach we took during model selection. By resampling

or weighting the loss function (instead of changing the decision threshold), we blind our

model to the inherent imbalance of the training dataset. Since, in both cohorts, the label

shift actually makes the classes more balanced than the training set, we see an increase in

performance [11].

Evaluating the explanations highlights the advantages of using stochastic models

(such as BNNs) in generating more diverse and nuanced explanations for individual subjects.

This increased variability can better capture the unique characteristics of different patients,

potentially leading to more accurate and personalized predictions in healthcare settings.

As a result, future research should continue to explore and develop AI/ML models that

can offer more detailed and individualized insights, ultimately enhancing their utility and

applicability in real-world clinical scenarios [11].

Figure 14 offers strong evidence supporting the robustness of BNNs. Our statistical

results indicate that the “Confidence” metric may be used to detect dataset shift in small
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populations. The ability to effectively quantify uncertainty is crucial for AI/ML models in

healthcare, as it allows clinicians to better understand the reliability of a given prediction

and make more informed decisions based on the model’s outputs. As such, future research

should continue to explore and refine methods for estimating uncertainty in AI/ML models,

ensuring that these tools can provide healthcare professionals with accurate, reliable, and

interpretable information to support their decision-making processes [11].

These findings underscore the importance of considering the deployment environ-

ment when developing AI/ML models. By utilizing stochastic models like BNNs that

enhance the robustness of AI models, researchers can develop AI solutions that maintain

their performance and reliability even in the face of changing conditions. This ultimately

improves their utility and applicability in real-world clinical settings [11].

7.4.2 Metric Chasing

The prevailing trend in the majority of AI/ML research for healthcare involves devel-

oping models to predict various clinical endpoints. Numerous studies showcase incremental

advancements in key performance metrics for these models. However, only a few extend

beyond these improvements to address other essential aspects of AI in healthcare. We firmly

believe that future efforts should prioritize implementation science over merely enhancing

the performance of predictive models [11].

Implementation science plays a crucial role in ensuring the successful deployment,

adoption, and sustainability of AI systems in real-world healthcare settings. By focusing

on this aspect, researchers can better understand the factors that facilitate the integration of

evidence-based interventions and strategies into routine clinical practice. This, in turn, can
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lead to the development of AI solutions that not only excel in their predictive capabilities but

also effectively address the unique challenges and complexities of healthcare environments

[11].

Moreover, emphasizing implementation science can promote interdisciplinary col-

laboration, user-centered design, and stakeholder engagement, all of which contribute to the

practical utility and long-term success of AI solutions in healthcare. By adopting a more

comprehensive approach that encompasses these aspects, researchers can help bridge the

gap between theoretical advancements and tangible improvements in clinical practice and

patient outcomes [11].

7.4.3 Limitations

The most significant limitation of our study was the lack of integration into clinicians’

workflow. At the outset, we underestimated the time and effort required for ICU clinicians

to interrupt their tasks and enter 12 values on their phones. This challenge was further

intensified by the COVID-19 pandemic, as clinicians faced longer working hours and

managed more critical patients. If Electronic Health Record (EHR) integration had been

possible, we estimate that we could have collected a considerably larger volume of data,

potentially an order of magnitude greater than our current dataset [11].

While obtaining more data could have strengthened our results, we believe that

it would not have fundamentally altered our findings. Given that our model was trained

on 200,000 instances, we anticipate that our models demonstrate satisfactory calibration.

Furthermore, the statistical testing we conducted produced positive results that corroborated

our hypotheses [11].
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In light of these limitations, future research should prioritize seamless integration

into clinical workflows to facilitate data collection and ensure that AI models are practical

and beneficial for healthcare professionals. Additionally, researchers should continue to

explore methods for improving model robustness and generalizability, ensuring that AI

solutions remain effective across diverse patient populations and varying medical conditions

[11].
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Chapter 8

Conclusion

In this dissertation, we examined the performance, explainability, and robustness

of AI models for predicting clinical endpoints. To our knowledge, this is the first study

of its kind to deploy interpretable and explainable models with uncertainty prediction

in a real-world setting. Our findings demonstrate the effectiveness of BNNs and the

importance of adoption by taking into account robustness during model selection in order

to maintain model performance in the face of significant dataset shifts. By addressing these

challenges, we were able to develop AI/ML models that matched or outperformed clinician

predictions even when confronted with substantial dataset drift. Our investigation into model

explainability revealed the advantages of stochastic models in generating more diverse and

nuanced explanations as well as offering more personalized insights for individual patients.

These findings emphasize the need for future research to focus on AI models that can

deliver detailed and individualized information to enhance their utility and applicability in

real-world clinical settings. We also highlighted the importance of quantifying uncertainty

in AI models for healthcare, as it allows clinicians to better understand the reliability of

predictions and make more informed decisions [11].

8.1 Future Work

Future research should continue to refine these methods to ensure these tools provide

accurate, reliable, and interpretable information for healthcare professionals. Our study

reinforces the need to prioritize implementation science in AI research for healthcare,

ensuring that AI solutions are practical, beneficial, and sustainable in real-world clinical
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environments. By addressing the unique challenges and complexities of healthcare settings,

researchers can develop AI models that not only excel in predictive capabilities but also

effectively improve clinical practice and patient outcomes [11].

8.2 Contributions

The contributions of this work include:

• Extension of the influence function derivation for neural networks provided by Koh

et. al. [24].

• Derivation of feature importance and instance-level explanations via influence func-

tions (Equations 3.1 and 3.2)

• Development of mortality prediction model using a minimum feature set that maxi-

mizes ROC AUC [46]

• Developed a simplified form of Variational Density Propagation (VDP++) that reduces

the memory requirements of the original method but retains all of its desirable

properties [60]

• Refuted the claims of influence function fragility by pointing out flaws in the preceding

work’s [93] methodology and replicating their results [92]

• Combined Bayesian neural networks with explanations from influence functions to

create an optimal mortality prediction model in both performance and interpretability

[11]
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• Deployed the optimal mortality prediction model and collected results in a real-world

setting [11]
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