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Doctor of Philosophy in Chemical Engineering 

According to the World Economic Forum report, the U.S. currently has an energy 

efficiency of just 30%, thus illustrating the potential scope and need for efficiency 

enhancement and waste minimization. In the U.S. energy sector, petroleum and solar 

energy are the two key pillars that have the potential to create research opportunities for 

transition to a cleaner, greener, and sustainable future. In this research endeavor, the focus 

is on two pivotal areas: (i) Computer-aided perovskite solar cell synthesis; and  

(ii) Optimization of flow processes through multiproduct petroleum pipelines. In the area 

of perovskite synthesis, the emphasis is on the enhancement of structural stability, lower 

costs, and sustainability. Utilizing modeling and optimization methods for computer-aided 

molecular design (CAMD), efficient, sustainable, less toxic, and economically viable 

alternatives to conventional lead-based perovskites are obtained.  

In the second area of optimization of flow processes through multiproduct petroleum 

pipelines, an actual industrial-scale operation for packaging multiple lube-oil blends is 

studied. Through an integrated approach of experimental characterization, process design, 

procedural improvements, testing protocols, control mechanisms, mathematical modeling, 

and optimization, the limitations of traditional packaging operations are identified, and 

innovative operational paradigms and strategies are developed by incorporating methods 

from process systems engineering and data-driven approaches.
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Chapter 1 

Introduction 

1.1 Motivation 

The resources on our planet, necessary to maintain our present rate of consumption, 

are not infinite or even plentiful enough to last through several generations [1], [2]. The 

products and processes that allow our modern lifestyle – like making electronic devices 

and driving automobile engines have consumed a tremendous number of resources such as 

rare earth metals and petrochemicals [3], [4]. Increased consumption and diminishing 

resources are making us reconsider our current production technologies and the way we 

use materials. Meanwhile, the world is dealing with pollution caused by the production and 

use of products [5]–[8]. A potential solution to this issue is to improve the efficiency of the 

manufacturing processes and strategically select and use resources in order to get the most 

out of our limited resources [9], [10]. In this regard, this thesis introduces a method to 

improve the process efficiency of the energy industry by employing strategic approaches 

to resource conservation and waste minimization, ensuring we make the best and most 

responsible use of our resources. 

Process efficiency in the energy industry refers to the optimization of various 

processes involved in the production, conversion, transmission, and distribution of energy, 

with the aim of maximizing output while minimizing input and waste [11]. Improving 

process efficiency is vital for minimizing operational costs, conserving resources, and 

minimizing environmental impacts. The key aspects of process efficiency include effective 

resource utilization, waste minimization, and pollution prevention [12]. For positive 
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contribution towards global sustainability efforts, improving process efficiency in the 

energy industry is a multifaceted challenge that involves technological innovations and 

best operational practices. In response to the aforementioned challenges, this research 

endeavors to enhance the efficiency of processes within the energy industry. This 

improvement is pursued through the conservation of resources, reduction of production 

costs, increased productivity, enhanced managerial performance, and adherence to 

environmental standards. Figure 1 illustrates the pictorial representation of the main 

hypothesis of this research. 

 

 

Figure 1. Research Hypothesis - Enhancement of Efficiency of Process Operations in the 

Energy Industry Using the Five Key Aspects. 
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The energy sector is at a pivotal juncture, bridging innovation with sustainability. 

It's within this context that the development of manufacturing devices and refinement of 

energy-related processes become crucial. Sustainable advancements in these domains can 

enable profound shifts within the energy industry, steering it towards a paradigm of 

improved efficiency and environmental consciousness. This research is focused on 

advancing operational efficiency and sustainability in the energy industry, targeting two 

pivotal domains: (a) Perovskite Solar Cells and (b) Packaging operations in multiproduct 

petroleum pipelines. 

1.2 Computer-Aided Design of Perovskite Solar Cells 

Out of many possible energy sources, solar energy is the most plentiful and easily 

accessible in most parts of the world. Each year, roughly 4 million Exajoules (1EJ=1018J) 

of solar energy reaches our planet, with an estimated 5 × 104 EJ being readily  

harvestable [13]. Consequently, this significant potential has motivated global scientists 

and engineers to harness this energy in a more practical form. The technologies used to 

harness solar energy can be grouped into two main categories: (1) Solar thermal technology 

that transforms solar energy into thermal energy using devices such as solar collectors, 

heaters, dryers, etc. [14]–[16], (2) Photovoltaic (PV) technology that converts solar energy 

directly into electricity [17], [18]. In recent years, photovoltaics has gained comprehensive 

attention due to its ability to provide sufficient amounts of energy to satisfy our power 

demands and different types of PV materials have been developed over time. Since the 

discovery of the PV effect in the nineteenth century, PV cells have been classified into 

three generations of technology: The first generation includes commercially available 

silicon solar panels [19], [20]. However, due to the high cost associated with the fabrication 
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of silicon solar cells, advancement in technologies to harvest solar energy more 

economically and efficiently has always been an area of interest. The second generation of 

solar cells encompasses the thin-film solar technology usually fabricated using the element 

cadmium, while the efficiency of these cells is comparable to those of silicon, the rarity, 

and high toxicity of cadmium has prevented this technology from reaching its full  

potential [21], [22]. The third generation of photovoltaic cells includes the emerging cell 

technologies that are still under the R&D phase: Dye-Sensitized Solar Cells (DSSC), 

Quantum Dots and Perovskite Solar Cells [23]. Perovskite, the third material classified as 

the generation three solar cell, has shown an exceptional increase in performance since its 

discovery. Calcium Titanate (CaTiO3) was the first perovskite discovered by Gustav Rose 

in 1839 in the Ural Mountains of Russia and was named after a famous geologist at the 

time, Lev Perovski [24]. Structurally, perovskite is a three-dimensional, simple, and highly 

symmetric crystal consisting of two cations combined with three anions and is defined with 

the stoichiometry of ABX3, where A is a monovalent cation, B is a divalent metal cation 

and X is an anion (usually a halide or oxygen). One of the most stimulating property of 

perovskites that is fascinating researchers around the world is its application in 

photovoltaic cells. Since then the advancement in the field has increased drastically and 

perovskite solar cells have shown remarkable progress in recent years with a rapid increase 

in power conversion efficiency, from about 3.8% when the field took off in 2009 to 

efficiencies exceeding 26%  (for single-junction cells) in 2023 [25]–[29]. The unremitting 

entity that has led to a drastic increase in efficiency of the perovskites is the device structure 

engineering and material composition [30]. Furthermore, the possibility of less expensive 

fabrication techniques through the use of low-cost materials has made perovskites the 
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fastest improving PV technology. Despite the advancements, the majority of high-

efficiency perovskite solar cells (PSCs) remain confined to laboratories, unable to 

withstand harsh environmental conditions including extreme light, heat, and humidity, 

which leads to their degradation [31]. The instability of the cells has been mostly related 

to the organic ions of the cell such as Methylammonium (MA) and Formamidinium (FA) 

[20], [32], [33]. These organic cations are hygroscopic and volatile and thus, absorb 

moisture from the surrounding environment [34]. Continuous attempts are being made by 

the researchers to achieve better stability devices and different solutions are being 

proposed, such as improvisations to the structure design and composition of the cells. In 

recent years it has been found that replacing the organic cations with inorganic cesium ion 

resulted in better stability of the cell [35]–[37].  To raise the transition from lab to 

commercial production, it is vital to overcome several hurdles such as creating stable, 

scalable, and economical high-efficiency devices. A significant aspect of this involves 

replacing the toxic lead-based components with more sustainable alternatives without 

compromising on power conversion efficiency and keeping fabrication costs low [30]. 

Hence, modeling and simulation of materials can play a significant role in finding new 

functional materials that meet the requirements of perovskites.  

Addressing these challenges, our research leverages computer-aided molecular 

design (CAMD) to develop novel perovskite crystals with desired features by exploring 

different combinations of components at the A, B, and X sites in the ABX3 structure. Our 

focus extends to using Goldschmidt tolerance factor and octahedral factor to achieve 

improved stability and durability. Through CAMD, we aim to explore new materials for 

PSC technology characterized by low-cost, reduced toxicity, high PCE, and sustainable 
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solutions, bringing forward an optimized synthesis pathway for innovative  

organic-inorganic analogs for perovskite crystals. Figure 2 illustrates a graphical approach 

of our work.  

 

 

Figure 2. Optimal Selection of Ions Using Computational Tools for Computer-Aided 

Synthesis of Perovskite Solar Cells. 

 

 

Despite the advancements in the development and adoption of renewable energy 

resources like solar energy, the global reliance on petroleum (oil and its byproducts) is 

unlikely to decrease significantly in the near future. Given that oil is a finite resource, it 

becomes crucial to enhance the efficiency of processes involved in converting crude oil 

into refined petroleum products. This is essential to maximize the judicious use of 

resources and mitigate associated environmental risks. To this end, the following section 

introduces the second domain of this research which entails developing efficient and 

sustainable manufacturing and packaging operations in multiproduct petroleum plants.  
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1.3 A Roadmap for Efficient Manufacturing and Packaging Operations in 

Multiproduct Plants 

Multiproduct plants refer to industrial facilities or manufacturing plants that 

produce more than one type or category of product through batch operations within a single 

location. These plants are designed to handle the manufacturing and processing of various 

products simultaneously, allowing for efficiency in resource utilization and operational  

processes [38]. Therefore, such facilities are commonly utilized in numerous downstream 

petroleum operations [39], [40]. Instead of having separate pipelines for each product, the 

multiproduct plants utilize a multiproduct pipeline system for efficiently transporting 

various products from one location to another. Although, multiproduct pipelines make the 

transportation cost-effective, however, they present a unique challenge: the necessity for 

thorough cleaning between changeovers to prevent cross-contamination. At present, the 

cleaning procedure heavily depends on a trial-and-error method, involving the use of a 

valuable finished product from an upcoming batch, known as flushing. This practice results 

in the degradation of the high-value product, and due to stringent quality standards, it 

becomes unsuitable for its intended purpose, causing considerable economic setbacks. The 

trial-and-error approach often leads to excessive consumption of these valuable products, 

a situation that could be mitigated with more effective decision-making strategies. In 

extreme cases, the product has to be discarded, giving rise to environmental concerns. To 

this end, our work focuses on the implementation of novel process optimization methods 

and greener production techniques to improve the manufacturing and packaging operations 

in multiproduct plants. Our goal of improving the process efficiency will be achieved by 

reductions in the greenhouse gas (GHG) emissions, energy conservation, efficient raw 
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materials, and resource utilization, waste minimization, cost savings, and integration of all 

the aforementioned aspects into a novel and modernized greener production processes at 

the multiproduct plants. Our research follows a holistic approach, incorporating a wide 

array of techniques ranging from experimental characterization and process design to 

mathematical modeling, optimization, and data driven approaches. Through the integration 

of testing, control, and unit operations, we aim to explore and eventually rectify the existing 

shortcomings in these facilities.  Our research is structured around a three-pronged 

approach, as depicted in Figure 3. 

 

Figure 3. Strategic Optimization of Manufacturing and Packaging Operations in 

Multiproduct Petroleum Pipelines. 

 

 

The first approach, Procedural Enhancements, involves an in-depth analysis of 

current flushing operations through collaboration with a leading lube oil industry based in 

North America. The primary objective of this phase is to understand the limitations of 

existing operations and develop solutions that require minimal to no capital investment. 

Three-Pronged 
Approach

1.) Procedural Enhancements

2.) Process Systems Engineering

3.) Data-Driven



 

9 

 

Improving standardized operations to address the shortcomings of the current procedures 

was chosen as the focus for this approach. The second approach is Process Systems 

Engineering, where we aim to capture the dynamic nature of the flushing operation by 

framing it as an optimal control problem. The third prong of our research is the Data-Driven 

approach. In this phase, we delve into the data generated by the existing operations, 

employing machine learning algorithms to recognize patterns and identify key features 

with significant impact on the flushing operations. These identified key features are then 

incorporated into the existing process models to optimize the flushing operations, 

enhancing their efficiency and effectiveness.  

To this end, the thesis is organized into eight chapters to systematically address the 

research objectives. In Chapter 1, the motivation behind the work is introduced, and a brief 

overview of the solution approach is provided. Chapter 2 offers an in-depth literature 

review and important background information relevant to the research. Chapter 3 details 

the work on Computer Aided Design on Perovskite Solar Cells, outlining the research 

methodology, solution strategy, and presenting the results and discussions. Chapter 4 

explores the Optimization of Flushing Operations in Lube Oil Industries, offering insights 

into existing packaging operations and alternative solution strategies. Chapter 5 focuses on 

the first solution approach, presenting experimental studies 1, which involve the 

development and examination of a benchtop experimental rig. Moving on, Chapter 6 

provides details of experimental studies 2, concentrating on the design and development of 

the pilot plant. Chapter 7 introduces the second approach, which involves process systems 

engineering. In Chapter 8, the third approach is explored, incorporating data-driven 
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methods and machine learning. Finally, Chapter 9 summarizes the key findings and 

recommendations for future work. 
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Chapter 2 

Literature Review and Background 

2.1 Perovskite Solar Cells 

Inspired by the experimental findings for perovskite solar cells, researchers have 

carried out numerous computational studies in recent years. Atomistic modeling and 

simulation methods such as density functional theory (DFT), many-body perturbation 

theory, and pair-wise interatomic potential molecular dynamics (MD) have been 

successfully applied to find higher efficiency halide perovskites [41]. Through computer 

modeling, an understanding of the practical efficiency limitations of perovskite 

photovoltaics was developed based on the transfer-matrix analysis. This led to the 

prediction of the relationship between photocurrent and incidence light [42]. The light 

transmission to the perovskite absorbers was modeled using a transfer matrix method. 

Besides the conventional fluorine-doped tin oxide (FTO) transparent conductors, 

aluminum-doped zinc oxide (AZO), and indium-doped (ITO) tin oxide were also 

investigated to optimize the efficiency [43]. A physics-based analytical model that 

describes the current-voltage characteristics of perovskite solar cells has been developed. 

This model helps in determining the parameters of the solar cell [44]. Machine learning 

(ML) and density functional theory (DFT) have been combined to predict undiscovered 

hybrid organic-inorganic perovskites based on bandgap to solve the problems of toxicity 

and stability. To determine the crucial features that have significant impact in the bandgap 

of the device, the authors implemented a gradient boosting regression (GBR) algorithm 

[45]. To evaluate the exposed lead-containing compounds in perovskite solar cells and their 

impact on the environment and humans, environmental fate modeling (EFM) was carried 
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out by Yoo et al. 2019 [46]. The authors proposed a methodology to define a safe 

management range for perovskites. The potential hazard under two main accidental 

conditions in practical usage (fire and water exposure) was studied using EFM. Qiu et al. 

2018 [47] evaluated the sustainability of perovskite solar cells for industrial production 

through a Life Cycle Analysis (LCA). The authors highlighted that the lead concentration 

of the conventional lead-based cells is 0.55%, which is five times higher than the limits 

stated by the Restriction of Hazardous Substances Directive (RoHS) (0.1%). Optical and 

electrical modeling was combined by Da et al. 2018 [48], to understand the energy loss 

mechanisms and promote the device performance of perovskite solar cells. Futscher et al. 

2017 [49] merged optical model with an analytical model to simulate perovskite solar cells 

and predict the behavior of the cells under realistic conditions. Albrecht et al. 2016 [50], 

derived a thermodynamic model to predict the energy storage efficiencies of oxide-based 

perovskites. A modified drift-diffusion model was described by Liu et al. 2017 [51], to 

optimize the photocurrent in the UV visible region of a complete solar cell device. Raj et 

al. 2021 [52], used solar cell capacitance simulator (SCAPS 1D) to investigate suitable 

electron transport layer (ETL) for lead free CsGeI3 based perovskites. The PSCs with C60 

and SnO2 ETLs exhibited superior device performance with power conversion efficiency 

of 8.46%. Tiwari et al. 2023 [53] studied the replacement of lead (Pb) based PSCs with tin 

(Sn) based for developing environmentally friendly solar cells. The authors selected methyl 

ammonium tin iodide (CH3NH3SnI3) as the absorber layer and studied the effect of 

different electron transport layer (ETL) and hole transport layer (HTL) in the device 

structure by using SCAPS 1D simulation tool. Rani et al. 2023 [54], conducted 

computational investigation of inverse perovskite SbPX3 (X = Mg, Ca, and Sr) structured 
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materials using density functional theory (DFT). The authors tested the theoretical power 

conversion efficiency of the proposed materials and reported that the materials are 

extremely stable and have substantial absorption in visible, UV, and NIR bands.  

As can be gleaned from the existing literature, there has been enormous work in the 

perovskite field, however, there has not been any specific work that simultaneously focuses 

on stability and cost of perovskite crystals. Furthermore, from literature, it can be noted 

that there are other possible alternatives to site-A, site-B, and site-X ions that can serve as 

a potential substitute for the conventional lead-based perovskite solar cells. To bridge this 

gap, presented here is an integrated stability and cost-based perovskite crystals synthesis 

approach. Our work presents the platform that can help find other possible combinations 

of ions for the synthesis of perovskite crystals with desirable stability characteristics at low 

costs.  

2.2 Manufacturing and Packaging Operations in Multiproduct Petroleum Plants 

Renewables growth did not diminish the dominance of petroleum-based fuels. The 

United States encompasses a diverse array of energy sources, categorized broadly as 

renewable and non-renewable [55]. Among these sources, petroleum has traditionally held 

the dominant position in terms of annual energy consumption, contributing to 36% of the 

total energy consumption as depicted in Figure 4 [27]. In 2022, the United States averaged 

approximately 20.28 million barrels per day of petroleum consumption [28]. It is now 

widely recognized that our reliance on petroleum is significantly unfavorable to the 

environment. However, finding a viable alternative to oil remains a considerable challenge, 

given its availability and suitability for various purposes. To this end, sustaining the vitality 

of the U.S. petroleum refining sector necessitates a continual focus on enhancing 
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operational efficiency, which involves integrating operational efficiency into a company's 

strategy as a pivotal aspect of its environmental sustainability effort.  

 

 

Figure 4. U.S. Energy Consumption by Source and Sector (U.S. Energy Information 

Administration (EIA), 2022 [55])  

 

 

In today's business landscape, organizations are required to take into account three 

fundamental elements while formulating their strategies: people, planet, and profit. 

Consequently, industries must carefully evaluate two key factors in the management of 

their energy consumption: its environmental impact and its financial implications. When it 
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comes to crude oil, even though it can be traded, it's not useful until it goes through a 

process to turn it into valuable products like fuels, lubricants, and bitumen [56]. This 

refining process is called "downstream operations" in the petroleum industry [57]. Being 

able to make this process more efficient and use less energy is a key factor in how 

competitive a company can be in the downstream sector [58]. To achieve these goals, 

companies need to make smart and cost-effective investments in technologies and practices 

that use energy more efficiently, helping them meet both their environmental constraints 

and financial targets. 

2.2.1 Lubricants: One of the Highest Consumed Petroleum Products 

Among various other extensively consumed petroleum products like Gasoline, 

Diesel Fuel, and Hydrocarbon Gas Liquids, the United States holds the distinction of being 

the largest consumer of petroleum lubricants [59]. In the year 2022, the U.S. exhibited an 

average consumption of 41 million barrels of lubricants [58]. Lubricants are substances 

that play a pivotal role in enhancing the performance and lifespan of bearings and 

machinery. The idea of lubrication is not novel at its core, it is rather straightforward. 

Centuries ago, farmers used animal fat to lubricate the axles of their ox carts. However, 

with the evolution of modern machinery, which is significantly more complex than the ox 

carts of the past, the requirements placed on lubricants have become much more precise. 

Despite this, the fundamental principle remains unchanged: preventing direct metal-to-

metal contact by introducing a layer of fluid or fluid-like material [60]. The lubricants 

enhance the performance of modern machinery by reducing wear on moving parts, 

minimizing friction between rotating and stationary components, absorbing shocks, 

lowering operating temperatures, preventing corrosion of metal surfaces, maintaining 
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system cleanliness by excluding contaminants, and sealing and safeguarding critical 

components. Every liquid offers some degree of lubrication, but there are significant 

variations in their effectiveness. The choice of lubricating substance can often determine 

whether a machine operates successfully or faces failure. Lubricating modern machinery 

is essential for extending its lifespan. It is noteworthy that the incorrect selection and 

application of lubricants are significantly responsible for all machinery failures, 

underscoring the vital role of lubrication procedures in maximizing equipment  

reliability [61].  

2.2.2 Composition of Lubricants 

A lubricant is a complex mixture of 85-90% base stock and 10-15% of a 

combination of functional additives as illustrated in Figure 5.  

 

 

Figure 5. A Finished Lubricant Product Composition: Consists of 85-90% Base Stocks and 

10-15% Functional Additive
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The primary role of the base stock is to provide lubrication and serve as a carrier 

for additives. Additives, on the other hand, serve either to improve existing properties of 

the base stock or introduce new desired properties. Existing properties that can be enhanced 

include viscosity, viscosity index, pour point, and oxidation resistance. Examples of new 

properties additives can introduce encompass cleaning and suspending abilities, as well as 

antiwear performance. For instance, antioxidants can enhance the stability against 

oxidation and degradation in engine oil, while specific additives are employed to establish 

extreme pressure (EP) anti-wear properties required for gear lubrication. The base stock 

serves as the medium for these additives and, as a result, must have the capacity to keep 

them dissolved under typical operational conditions [62].  

2.2.3 Lubricant Basestock 

The lube oil basestock serves as the foundational element in which suitable 

additives are chosen and blended to achieve a precise equilibrium in the performance 

attributes of the final lubricating substance [63], [64]. Diverse methods for producing 

basestocks can yield products with the necessary qualities to create finished lubricants 

featuring desired performance standards. The basestocks contribute significantly to 

finished lube oil properties and can be of the following types: (i) Petroleum-based (from 

crude oil by distillation and special processing, (ii) Synthetic (from a chemical reaction of 

two or more simple chemical compounds), and (iii) Bio-based (from agricultural 

feedstock). Modifications in the standards for finished motor oils are driving a greater need 

for superior-quality lubricants that go beyond what traditional lubricant production 

methods involving solvent extraction, solvent dewaxing, and hydrofinishing can  

deliver [65]. To meet the demands for automotive lubricants with these upgraded 
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specifications, alternative methods like lube hydrocracking, deep hydrotreating, and wax 

hydroisomerization are being employed to produce lubricant base stocks [66]. In 

consideration to these shifts, the American Petroleum Institute (API) introduced a 

classification system for base oils. This classification uses physical and chemical 

parameters to divide the base stocks into five groups (I to V) as shown in Table 1. 

 

Table 1  

 API Classification of Lube Base Stock (Source: [37]) 

 

 

The classification is based upon saturates content, viscosity index, sulfur content 

and additives [61], [66], [67]. Transitioning from group I lubricants to group II lubricants 

results in an increase in both the paraffin content and the viscosity index (VI) of the base 

stock. Conventional lubricant technology, which includes solvent dewaxing and solvent 

dewaxing processes, remains economically viable primarily for the production of group I 

lubricants [65], [66]. On the other hand, group II and group III lubricant base stocks, which 

require very low sulfur levels, low volatility, and high VI to meet the demands of modern 

Group Saturates, wt.% Sulfur, wt.% Viscosity Index 

I <90 <0.03 >80 - <120 

II ≥90 <0.03 ≥ 80 - ≤ 120 

III ≥90 ≤0.03 ≥ 120 

IV All poly alpha olefins   

V All base stocks not in groups I to IV   
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automobile engines, can only be efficiently produced through alternative hydroprocessing 

methods [68], [69].  This does not imply that traditional lubricant manufacturing processes 

will be entirely replaced by alternative methods. Conventional techniques will continue to 

be essential for the production of high-viscosity lubricants. Additionally, lubricants 

intended for industrial applications, where a high viscosity index is not a critical 

requirement, may still be efficiently produced using conventional methods. The key factor 

in attaining the utmost levels of performance in these finished lubricants lies in 

understanding the interaction between base stocks and additives and aligning these with 

the requirements of machinery and operating conditions. 

2.2.4 Functional Additives 

Lubricant additives are continually evolving to enhance the performance and 

properties of modern lubricants [70]. Emerging technologies, including applications in 

space exploration and oceanic environments, demand the development of new lubricants 

with novel additive chemistries [71]. These additives can be organic or inorganic 

compounds that are either dissolved or suspended as solids within the base stock. Typically, 

they constitute anywhere from 0.1% to 30% of the total oil volume, depending on the 

specific application [72]. The primary functions of lubricant additives can be categorized 

into three basic roles: 

(1) Enhancement of existing base stock properties: This involves the use of additives such 

as antioxidants, corrosion inhibitors, anti-foam agents, and demulsifying agents to 

improve the inherent characteristics of the base oil. 
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(2) Suppression of undesirable base stock properties: Additives like pour-point depressants 

and viscosity index improvers are employed to mitigate negative attributes of the base 

stock. 

(3) Introduction of new properties to the base stock: Extreme pressure additives, including 

detergents, metal deactivators, and tackifiers, are utilized to impart unique qualities to 

the lubricant. 

Lubricant additives are costly chemicals, and formulating the right mixture of 

additives is a complex science [70]. The choice of additives plays a crucial role in 

differentiating lubricants designed for specific applications, such as turbine oil, hydraulic 

oil, gear oil, and engine oil. Selection of these additives depends on their ability to 

effectively perform their intended functions, compatibility with the chosen base oils, 

interaction with other additives in the formulation, and overall cost-effectiveness [68]. 

2.2.5 Classification of Lubricants 

Lubricating oils have numerous applications in a variety of fields and depending 

upon their final use they can be classified into the following types: (i) Engine oils (petrol 

and diesel engines, aircraft, marine engines), (ii) Turbine oils, (iii) Gear oils, (iv) Quench 

oils in metalworking, (v) Insulating oils, (vi) Chain lubricants, and (vii) Hydraulic oils. 

Each of these oils have distinguishing features [60]. Automotive engine oils have strict 

product performance claims and the viscosity index for these oils must match the desired 

levels to avoid plugging during the winter when temperatures can be extremely low. 

Industrial oils are incompatible with automotive oils. Industrial oils must be metal-free and 

are sensitive to contamination. When combined with automotive oil, emulsions and 

foaming can become an issue. Metalworking oils sometimes contain water which can 



 

21 

 

contaminate other oils and can corrode the system. Gear oils are made to withstand high 

pressures and can also form emulsions or lead to foaming when combined with another 

type of oil. Product integrity is extremely important to the oil-based automotive and 

chemical industries and therefore these different grades of oil must remain separate to 

ensure the best quality. 

2.2.6 Lubricant Oil Blending Plants (LOBP) 

The process of developing finished lubricants by combining different basestocks 

with functional additives is commonly known as lube oil blending, and the facilities 

dedicated to this process are referred to as lube oil blending plants (LOBP). Lube oil 

blending is the preferred term because it primarily involves mixing without significant 

chemical reactions. Nevertheless, the efficient operation of a modern blending plant is 

crucial for ensuring the production of the right quality and performance lubricants for 

customers. While blending lubricants may seem relatively easy, however, operating a 

blending plant is certainly not.  

The blending process takes place in either inline blenders or off-line blenders, such 

as mixing kettles. Following this, the resulting finished products that are stored in storage 

tanks undergoes processing through a multiproduct pipeline system for packaging in 

various styles, including bottles, drums, and pails, as illustrated in Figure 6.
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Figure 6. Blending and Packaging of Lubricant Products through a Multiproduct Pipeline 

System 

 

 

Given that a typical lube oil blending plant produces over 2000 distinct products 

annually, it becomes impractical to maintain a separate processing system for each of these 

products. Hence, these facilities are categorized as multiproduct plants [40]. In these plants, 

various types and grades of products are manufactured and processed in sequential batch 

operations with batch capacities typically falling between 1000 and 30,000 liters. To 

maintain the integrity of each product batch, the entire system must be thoroughly cleaned 

and flushed between each changeover operation to prevent cross-contamination. The 

pipeline network within these plants can vary in diameter from as small as 1/8 inch to 

sometimes 4 inches or more. This network extends from the initial stages of vessel mixing, 

through the various process equipment used to the final packaging of products in containers 

like plastic bottles, pails or drums. The network often features numerous twists and turns, 

with raw materials passing through flow meters, filters, pressure regulators, and other 
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process instrumentation or metering devices. The complexity of this network makes 

thorough cleaning a challenging task. Furthermore, the use of external solvents for flushing 

operations is strictly prohibited because it introduces impurities into the high value finished 

products. Therefore, the traditional method involves using a finished product from an 

upcoming batch to clean any residues from the previous batch. Unfortunately, this flushing 

process generates a commingled (mixed) oil that doesn't meet the desired specifications of 

either batch, resulting in downgraded oil with low economic value. These issues have 

persisted for a long time and represent a significant economic challenge in these industries, 

with typical large-scale commercial facilities incurring losses exceeding $1 million per 

year due to these drawbacks. 

2.2.7 Challenges with the Traditional Flushing Operations and Quality Control 

Techniques 

Despite significant advancements in the field of lubricant tribology, the challenge 

of efficient packaging and successful flushing operations remains unaddressed in current 

literature. Presently, flushing procedures primarily rely on a trial-and-error approach, 

regulated by a flush timer. Operators select a flush duration based on their past experiences 

with a specific product. At the conclusion of the flushing process, samples are collected 

and sent to the laboratory, where it undergoes a series of physical and chemical tests to 

confirm the lubricant's top-grade quality. Typical physical tests involve assessing viscosity, 

specific gravity, and color, while common chemical tests include flash and fire point 

evaluations. Out of the several tests, viscosity is the preliminary and most crucial test that 

ensures the batch quality and the success of the flush. If viscosity test results fall outside 
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the desired range, additional flushing is carried out, and this cycle continues until the 

desired specifications are met. 

In the traditional flushing method, sampling serves as the primary quality control 

and monitoring technique. However, this approach results in extended hold times and 

downtime. Moreover, in many cases, it leads to excessive flushing, resulting in the 

generation of large quantities of commingled oil and substantial economic losses for these 

industries. In some instances, the commingled product becomes commercially unviable 

and poses challenges in terms of disposal. Lubricants, both fresh and used, can pose 

significant environmental hazards, primarily due to their potential for severe water 

pollution [73]. The main classes of additives, such as succinimide ashless dispersants, 

calcium sulphonates, calcium phenates, zinc dialkyldithiophosphates, oxidation inhibitors, 

and anti-wear inhibitors, can be harmful to the environment's flora and fauna. The 

persistence of lubricants in the environment depends largely on the basestock, but the use 

of highly toxic additives can worsen this persistence issue. To minimize the inadvertent 

release of lubricants into the environment, it is imperative to develop more environmentally 

friendly and energy-efficient technologies by optimizing the efficiency of processing 

operations. With this objective in mind, our study aims to address these limitations and 

explore alternative operational methods aimed at reducing commingled oil volumes and 

improving the economic and resource management aspects of flushing operations in the 

lubricant industry. To achieve this goal, our work seeks to rectify existing drawbacks and 

enhance flushing operations by employing model-predictive optimization techniques, 

experimental characterization, innovative solution strategies, and data-driven approaches. 
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2.3 Product Cross Contamination in Crude and Refined Petroleum Pipelines  

A common example of pipeline flushing operation is also encountered by the crude 

oil refineries during the process of batching. Batching involves the transportation of 

different grades of crude oils and finished petroleum products such as diesel and gasoline 

through an extensive length of pipelines that are operated continuously throughout the year.  

Interfacial mixing and cross contamination, therefore, arises as an unavoidable problem in 

the refineries. Various approaches that are used by the crude oil refineries for the key 

predictions in their respective flushing operations are used as guidance in our work.   

Pipeline flushing is greatly influenced by the hydrodynamics and flow regimes of 

the fluids [74]. Therefore, for conducting an efficient flushing operation, it is important to 

understand the fluid flow characteristics and estimate various parameters such as pipe 

dimensions, fluid viscosity, density, flow rates, and mixing length. One of the earliest 

investigations of longitudinal mixing during sequential transportation was studied by  

Taylor 1922 [75]. The author reported “Convection-Diffusion” as the theoretical 

phenomenon that governs interfacial mixing. The convection-diffusion equation is 

established by convection and diffusion effects which are the two most important factors 

affecting the mixed segment. The concepts introduced by  Taylor 1953 [76], [77],  have 

been extensively used as the starting point in most of the studies of interfacial mixing, and 

a number of empirical models have been reported for approximating the interfacial mixing. 

Investigators have identified a list of parameters and put forth empirical correlations 

regressed from experimental data. The system-specific empirical models provide essential 

knowledge of the formation of the mixed oil in the form of length or volume basis [78].  
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Currently, the formulas predominantly utilized by major petroleum corporations to 

determine the length of mixed oil segments are largely empirical, one-dimensional, and 

tailored to each company's individual systems, taking into account intricate operational 

circumstances, pipe variables, and oil varieties [79]. The industry lacks a universally 

accepted standard formula applicable to all systems under real-world conditions. Key 

parameters influencing the decision-making process in determining the length of the mixed 

oil segment encompass the transportation range, the diameter of the pipeline, and the 

Reynolds number. Two-dimensional and three-dimensional simulation models have been 

employed to enhance the one-dimensional models as reported in various references  [79]–

[81]. Specifically, He et al. 2018 [79], used  three-dimensional numerical simulations using 

computational fluid dynamics (CFD) to represent the volume concentration distribution of 

oil mixing in horizontal pipelines. Despite providing detailed insights, these three-

dimensional models had a notable limitation; they are unsuitable for real-time calculation 

applications. To determine the efficacy of the empirical formula and validate the simulation 

results, a series of tests were conducted utilizing a sequential transportation experimental 

loop platform. Baptista et al. 2000 [80], introduced models that factor in the time-

dependent flow rate and concentration-dependent effective dispersion coefficient to 

estimate mixing volumes of consecutive product batches operating under turbulent flow 

conditions. They validated the performance of their non-linear models using a finite 

volume method and demonstrated superior alignment with existing semi-empirical models. 

Zhang et al. 2017, [81] devised a scheduling strategy using a MILP approach, aiming to 

decrease operating expenses by addressing both operational constraints and interfacial 

mixing issues while taking into account the physical properties of different oil batches. In 
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parallel, Liu et al. 2019 [82], analyzed the formation mechanism of trailing oil during the 

transportation of diesel oil followed by gasoline, employing CFD simulations and multi-

nonlinear regression to understand various factors including oil substitution time and flow 

speed. Liu et al. 2020 [83], explored the mixing phenomena at inclining pipeline sections, 

deriving correlations involving batch replacement time, mixing section volume fraction 

change time, and sectional flow velocity. Together, these studies offer a comprehensive 

view of the complexities of multiproduct pipeline operations and propose strategies to 

optimize them through detailed mathematical and computational approaches. 

Extensive studies have been conducted on the formation of commingled oil within 

crude and refined petroleum pipelines, which transport multiple fluids consecutively 

during continuous operations. However, to the best of the author’s knowledge, no prior 

studies have been published concerning multiproduct pipelines utilized in the production 

and packaging of finished lubricants. 

To this end, concluding with the literature review and background of the two 

domains of this research, the next chapter delves back into the exploration of Computer-

Aided Design for Perovskite Solar Cells. It provides an overview of the research 

methodology, explains the solution strategy, and presents a comprehensive discussion of 

the results. 
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Chapter 3 

Computer-Aided Design of Cost-Effective Perovskite Crystals 

Text and figures are reproduced and adapted with permission from S. S. Jerpoth, J. 

Iannello, E. A. Aboagye, and K. M. Yenkie, “Computer-aided synthesis of cost-effective 

perovskite crystals: an emerging alternative to silicon solar cells,” Clean Technol. Environ. 

Policy, vol. 22, no. 5, pp. 1187–1198, Jul. 2020, doi: 10.1007/s10098-020-01861-8. 

3.1 Overview 

Perovskites are promising materials that have gained attention in recent years due 

to their increasing efficiencies in application to photovoltaic devices [82]. However, the 

high-efficiency perovskite solar cells (PSCs) that have been reported by far have only been 

manufactured on a lab scale under controlled environmental conditions. The device does 

not possess the capability to withstand severe atmospheric circumstances such as light 

illumination, heat, and humidity; hence, it tends to degrade.  For the commercial-scale 

development of PSCs, the key challenges that need to be addressed include developing a 

stable, scalable, and cost-effective high-efficiency device. Another area is the use of less 

toxic and sustainable alternatives to conventional lead-containing perovskites that have 

high toxicity index. 

The key component of a PSC is the perovskite crystal, which is used as a photo 

absorber and is represented by the stoichiometric formula of ABX3, where A and B are 

cations, and X is an anion. The essential stability criteria for a crystal to be classified as 

perovskite include Goldschmidt’s tolerance and octahedral distortion factors [31]. Almost 

all the high-efficiency PSCs consist of methylammonium or formamidinium at the ‘site-
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A’, lead at the ‘site-B’, and halide (chloride, bromide or iodide) at the ‘site-X’ [30]. 

However, there can be different combinations for the site-A cations, site-B cations, and 

site-X anions, which can aid in devising novel crystals with superior properties. In addition 

to being stable, other key factors for determining the market competence of PSCs include 

the Power Conversion Efficiency (PCE) and device fabrication costs. Hence, we propose 

Computer-Aided Molecular Design (CAMD) methods for generating novel PSC 

configurations with superior properties. 

This work is an attempt to solve the complex problem of synthesizing PSCs at low 

costs, low toxicity, high power conversion efficiency, long-term stability, and 

sustainability. We formulate and solve an optimum synthesis problem that accounts for 

finding new organic-inorganic analogs for the perovskite crystals through computer-aided 

molecular design.  

3.2 Parameters Affecting the Structural Stability and Power Conversion 

Efficiency of Perovskite Solar Cells 

The work focuses on designing cost-effective perovskites by finding out candidate 

options for positions A, B, and X for the ABX3 chemical structure of perovskite using 

computational tools. To determine the formability of perovskites two important 

dimensionless descriptors, the tolerance factor ‘t’ and the octahedral factor ‘µ’ play an 

important role [83]–[85]. These descriptors were proposed by Victor Moritz Goldschmidt 

in 1926 and are stability factors. In this approach, the perovskite is considered as a 

collection of rigid spheres with ionic radii RA, RB, and RX. Goldschmidt inferred a relation 

between these ionic radii and confirmed that size and geometry play an important role. 
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3.2.1 Tolerance Factor 

The tolerance factor ‘t’ is defined as the ratio of the distance A-X to the distance B-

X. For an idealized solid sphere model: 

𝑡 =
𝑅𝐴 + 𝑅𝑋

√2(𝑅𝐵 + 𝑅𝑋)
 (1) 

Where:  

RA: Ionic radii of cation A 

RB: Ionic radii of cation B, and 

RX: Ionic radii of anion X. 

The ionic radius of cation A is always greater than that of cation B. Figure 7 depicts the 

different configurations of perovskite crystal based on the tolerance factor. The best device 

performance is obtained with cubic symmetry due to high ionic bonding. When the 

tolerance factor exceeds the ideal range an octahedral or tetragonal tilting occurs which 

affects the electronic properties of the device [86]. 

 

 

Figure 7. Illustration Depicting Different Configurations of Perovskite Crystal Based on 

Tolerance Factor (Red: A site, Blue: B site, Green: X site) 
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3.2.2 Octahedral Factor 

The octahedral factor µ is defined as the ratio of ionic radii of cation B to the ionic 

radii of the anion X.  

µ =
𝑅𝐵

𝑅𝑋
 (2) 

Table 2 shows the desired range of t and µ for the formation of a stable perovskite. When 

considering perovskite as a light harvester the material must fall within the ideal range of 

tolerance factor and octahedral factor. Materials that do not lie within the ideal range will 

degrade rapidly resulting in disruption of the device. 

 

Table 2  

Stability Factor Range for Ideal Crystal Structure (Source: [7], [19], [48], [49]) 

Stability Factors Range Description 

 

 

Tolerance factor (t) 

 

0.7-1.11 

The material can be 

defined as a perovskite 

crystal 

0.8-1 Ideal cubic structure 

0.94-0.98 Best device performance 

<0.8 Orthorhombic structure 

>1 Hexagonal structure 

Octahedral factor (µ) 0.44-0.90 Ideal crystal structure 
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Our present contribution proposes a methodology that can select an optimum 

combination of different materials for the perovskite solar cell based on the tolerance factor 

and the octahedral factor, which are amongst the important parameters that determine the 

stability and formability of a perovskite solar cell. Through an extensive literature review, 

we have explored some of the analogs to the hybrid lead halide perovskites that have been 

investigated in some recent work (Kieslich et al. 2015, 2014; Hoye et al. 2017). The goal 

is to develop a model that selects the possible combination of different ions for the 

perovskite cell based on the stability factors and simultaneously minimizes the material 

cost, which is considered a significant criterion for large scale commercialization of 

perovskite solar cells. 

3.3 Formulation of Optimal Synthesis Problem for Finding Novel Analogs in the 

Perovskite Crystals 

In our model, we first define three sets representing cation A, B, and anion X.  Set 

A and B consist of fifteen elements (or ions), whereas set X consists of nine ions. These 

elements or ions (shown in Table 3) have been explored through extensive literature 

review and can serve as the potential analogs for each of the positions A, B and X in the 

perovskite crystal structure [87], [88]. 

The parameters associated with our models are the ionic radii of the ions, the 

molecular weight of each ion, as well as the cost of each ion per gram ($/g). The 

mathematical constraints are categorized into three parts: molar constraints, binary 

constraints, and stability constraints. The molar constraints constitute the ratio 1:1:3, which 

conforms to the general perovskite crystal structure. The binary constraints consist of that 

for cation A, cation B, and anion X. The stability constraints equation is made up of 
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Goldschmidt’s tolerance factor, octahedral factor, and ionic radius constraints. The 

tolerance factor has a lower limit of 0.9 and an upper limit of 1.12. Correspondingly, the 

octahedral stability factor has a lower limit of 0.44, and an upper limit of 0.9. The radius 

constraint is implemented to make sure that cation A always has a bigger ionic radius than 

cation B. The cost objective function is made up of multiplication of the moles of each ion 

required, the molecular weight of that particular ion, and the cost per gram of that ion.  

Equations (3) - (12) gives a summary of all the mathematical equations that were 

developed.  

 



 

 

 

3
4
 

Table 3 

Potential Ions for the Position A, B and X in the Perovskite Crystal (Source [51], [52]) 

Ion Effective Ionic Radii (Å) Cost ($/gram) 

Cation A Cation B Anion X Cation A Cation B Anion X Cation A Cation B AnionX 

Ammonium Cadmium Chloride 1.46 0.95 1.81 13.4 68.3 30.75 

Hydroxyl-ammonium Lead Iodide 2.16 1.19 2.2 152.4 183 84 

Methyl-ammonium Tin Bromide 2.17 1.18 1.96 32.6 25.9 91 

Hydrazinium Bismuth Fluoride 2.17 1.03 1.285 56.5 59.6 980 

Azetidinium Calcium Selenium 2.5 1 1.98 712 83 725 

Formamidinium Indium Oxygen 2.53 0.8 1.4 54.5 992 146 

Imidazolium Mercury Sulphur 258 1.02 1.84 1396 77 13.9 

Dimethylammonium Palladium Tellurium 2.72 0.86 2.21 1052 8576.09 112 

Ethylammonium Strontium Formate 2.74 1.18 1.36 940 768 18.2 

Guanidinium Magnesium   2.78 0.72 
 

740 19.1 

Tetramethylammonium Lithium   2.92 0.76 
 

70.6 215 

Thiazolium Gallium   3.2 0.62   473 758 

3-Pyrollionium Iridium   2.72 0.82 
 

16000 2780 

Tropylium Lanthanum   3.33 1.03 
 

3536 780 

Tert-butylamine Cobalt   3.03 0.7 
 

59.9 1428 
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The following are the steps involved in the mathematical formulation of the 

problem: Step#1 define the parameters and sets needed for the problem, Step#2 construct 

a discrete optimization model as a mixed integer linear program which   consists of mass 

balances, and cost equations, Step#3 minimize the cost of perovskite crystal based on the 

selected sites A, B, and X ions.  

3.3.1 Definition of Sets 

A set of fifteen cations for position A, fifteen cations for position B, and nine anions 

for position X are developed based on an extensive literature review. Each ion in set i can 

take up different elements in set j. For example, the number of cations for site-A are A1, 

A2, and A3. Equation (3) shows the mathematical expression for these sets. 

𝑆𝑒𝑡𝑠  𝑖  ∊ (𝐴, 𝐵, 𝑋)  

𝑗  ∊  (1,2,3, … . 9) (3) 

3.3.2 Model Parameters and Variables 

Below are the model parameters and variables used for the problem formulation. 

The model parameters are: 

                𝛼                    -- total moles (1 mol) of perovskite 

                𝜋(𝑖,𝑗)    -- Cost ($/g) of ion  

                𝛾(𝑖,𝑗)    -- Ionic radii (Å) of ion  

  𝜔(𝑖,𝑗)    -- molecular weight of ion  

and the model variables are: 

 𝑚(𝑖,𝑗)      --  moles of ion 

 𝑌(𝑖,𝑗)    -- Binary variable for ion 

 𝑡    -- Goldschmidt’s tolerance factor 

 µ    -- Octahedral factor 

 𝐶    -- Total cost ($) of perovskite crystal 
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3.3.3 Objective Function 

Similarly, model parameters, being the ionic radii, molecular weight, and cost per 

g of each selected ion are also deduced from literature. Integer optimization is employed 

in the problem formulation. This allows us to select one site-A cation, site-B cation, and 

site-X anion that satisfies the earlier factors stated, as well as minimize the cost.  Below is 

the mathematical equation for the objective function (Obj).  

𝑂𝑏𝑗 = 𝐶 =  ∑  

𝑖=𝐴,𝐵,𝑋

∑ 𝜋(𝑖,𝑗)𝑚(𝑖,𝑗)𝜔(𝑖,𝑗)

3

𝑗=1

   ;   ∀    𝑖, 𝑗 (4) 

3.3.4 Model Constraints 

The total moles of perovskite crystal considered is 1 mol as shown in Equation (8). 

Since the ratio of A, B, and X in the perovskite crystal is 1:1:3, a constraint is added to 

make sure the perovskite produced satisfies this requirement as shown in Equation (7). The 

upper and lower limits required for the moles of each ion is shown in Equation (5) and 

Equation (6) respectively.  

𝑚(𝑖,𝑗) ≤  𝛼𝑌(𝑖,𝑗) ;   ∀  𝑖, 𝑗 (5) 

             

          
𝑚(𝑖,𝑗)  ≥ 0  ;  ∀  𝑖, 𝑗 (6) 

           

𝑚(𝐴,𝑗) =  𝑚(𝐵,𝑗) ;  3𝑚(𝐴,𝑗) =  𝑚(𝑋,𝑗) ;   ∀  𝑗 (7) 

                          

∑  

𝑖=𝐴,𝐵,𝑋

∑ 𝑚(𝑖,𝑗)

3

𝑗=1

 ≥  𝛼 ;  ∀ 𝑖, 𝑗 (8) 

        

Since only one ion can be selected for each ion category, a binary variable constraint is 

added which limits the choice of each ion to one. Equation (9) gives the mathematical 

equation for this constraint.  
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∑ 𝑌(𝑖,𝑗) = 1

3

𝑗=1

 ;  ∀ 𝑖, 𝑗 (9) 

          

Stability is of paramount importance in the production of any perovskite crystal. 

Goldschmidt’s tolerance factor shown in Equation (10), helps in deciding which 

combination of ions will give a stable crystal structure. Further to this, the octahedral shape 

of the perovskite crystal should be maintained. Therefore, Equation (11) rectifies that 

problem. The size of cation A is greater than that of cation B hence, this constraint was 

added to ensure that this condition is met. Equation (12) shows the mathematical equation 

of this constraint. 

𝑡 =  
[𝛾(𝐴,𝑗)𝑌(𝐴,𝑗)][𝛾(𝑋,𝑗)𝑌(𝑋,𝑗)]

√2{[𝛾(𝐵,𝑗)𝑌(𝐵,𝑗)] + [𝛾(𝑋,𝑗)𝑌(𝑋,𝑗)]}

 ;    ∀   𝑗 (10)
 

      

𝑤ℎ𝑒𝑟𝑒 ∶  0.90  ≤   𝑡  ≤   1.12 

µ =  
𝛾(𝐵,𝑗)𝑌(𝐵,𝑗)

𝛾(𝑋,𝑗)𝑌(𝑋,𝑗)
 ;   ∀   𝑗 (11) 

              

𝑤ℎ𝑒𝑟𝑒: 0.44  ≤   µ  ≤   0.90 

𝛾(𝐴,𝑗)   >   𝛾(𝐵,𝑗)  ;    ∀   𝑗 (12) 

3.4 Solution Strategy for Exploring Novel Analogs for Perovskite Crystal Synthesis 

A tree representation approach is used to simplify the developed optimization 

problem. This kind of representation is used when one wants to represent a clear path to 

the final decision.  Three general nodes are involved in representing a problem in a tree 

format which are as follows: the initial nodes, the intermediate nodes, and the terminal 

nodes. In our problem, the initial nodes are cations A, the intermediate nodes are cations 
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B, and the terminal nodes are anions X. After developing the tree structure for the problem, 

the next step is to find an optimum path. Integer programming is used for the formulation 

of the optimization problem. This solution is executed using a mixed-integer programming 

(MIP) solver in General Algebraic Modeling Systems (GAMS) software. Even though 

GAMS possess higher capabilities for solving integer programming, we further implement 

our mathematical models in MATLAB to verify our results and test the strength of 

MATLAB when it comes to solving integer programming problems. The ‘Intlinprog’ 

solver is used in MATLAB for this analysis. Figure 8 shows a summary of our solution 

strategy. We first start by initializing our sets, parameters, and equations. Then the 

Goldschmidt’s tolerance factor and the octahedral factor are calculated for a set of cation 

A, cation B, and anion X. If the calculated values are within the tolerance limits, then the 

cost for that combination is calculated. If the selected ions do not meet the tolerance factor 

criteria, different combinations are selected, and the process repeats itself. This is done 

until all the possible combinations are covered. Furthermore, for the combinations which 

are within the tolerance limits, the cost is calculated, and finally, out of the calculated 

individual costs, the one with the minimum value is displayed. This displayed combination 

of A, B, and X along with the minimum cost is the optimum solution. 



 

39 

 

Figure 8. Flowchart for Optimal Perovskite Crystal Synthesis Based on Goldschmidt 

Tolerance Factor and Octahedral Factor. 

 

 

Our three-ion motivational case study is further extended to a second case wherein 

we use fifteen A-cations, fifteen B-cations, and nine X-anions which are decided through 

an extensive literature review. The objective of the problem is to extend the model to 

several possible combinations of A, B, and X to determine the perovskite ABX3 based on 

cost minimization, subject to the same mathematical equations used for case study#1 (see 

supplementary materials for all the ions used for this analysis, together with their ionic 

radii, molecular weight, and cost). Furthermore, this model is extended to a third case study 

in which the cation A is restricted to Cesium (Cs+) while all other ions for cation B and 
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anion X are maintained.  The goal is to determine a combination of Cesium with cation B 

and anion X that would result in the lowest cost subject to all the mathematical models 

presented earlier in case one. 

3.5 Results and Discussions 

The following sections illustrate the results of the two case studies and also provides 

detailed discussions. 

3.5.1 Case Study #1 

With A1(Methylammonium) being the root of the tree, the selected B site is 

B3(Tin), and the selected X site is X1(Chloride). The associated cost for this path is 0.2874 

$/g of perovskite crystal produced. With A2 (Dimethylammonium) being the root of the 

tree, the selected B site is B3(Tin), and the selected X site is X1 (Chloride). The associated 

cost for this path is 2.0222 ($/g) of perovskite crystal produced. With A3 (Formamidinium) 

being the root of the tree, the selected B site is B3(Tin), and the selected X site is X1 

(Chloride). The associated cost for this path is 0.3258 ($/g) of perovskite crystal produced. 

MATLAB gave the same combinations of ions, and costs, with a relative gap of zero. 

Figure 9 shows the tree representation with the stared ions being the optimal paths. The 

model statistics for this case are shown in Table 4.
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Figure 9. Tree Structure Depicting the Optimum Path Solution for the Three Ions in Case 

Study.
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Table 4  

GAMS Model Statistics for Case Study #1 

 

 

3.5.2 Case Study #2 

For Case study 2, the minimum cost was found to be a value of 0.1784 ($/g) of 

perovskite crystal produced. This value corresponded to a perovskite combination of 

Ammonium for site-A, Magnesium for site-B, and Formate for site-X. Table 5 shows the 

model statistics for the second case study. MATLAB also gave the same cost of 0.1784 

($/g), with the same ions, and relative gap of zero.

Model statistics 
Values 

Root, A1 Root, A2 Root, A3 

Equations 22 22 22 

Variables 18 18 18 

Discrete variable 7 7 7 

Relative gap 0 0 0 

Solution time 0.047 sec 0.062 sec 0.060 sec 

Solution 0.2874 ($/g) 2.0222 ($/g) 0.3258 ($/g) 
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Table 5 

GAMS Model Statistics for Case Study #2 

Model statistics Values 

Equations 54 

Variables 82 

Discrete variable 39 

Relative gap 0 

Solution time 0.187 sec 

Solution 0.1784 ($/g) 

 

 

The second-best perovskite crystal for this case study was hydroxylammonium-tin-

sulfur, with a cost of 0.2209 $/g. This corresponded to a 19.24% increase in the optimal 

cost. The third best crystal was ammonium-lithium-formate, with a cost of 0.2627 $/g. The 

percentage difference between this cost and that of the optimal was 32.09%. Metal halides 

perovskites are one of the emerging alternatives for solar energy harvesting among the 

photovoltaics. Much attention has been dedicated recently in identifying other 

combinations that will increase the current power efficiency of 23.7%. It is possible that a 

combination of ammonium and its derivatives with anions, other than halides, can give 

solar cells with higher conversion efficiencies and stability. Thus, this work presents the 

opportunity to further extend experimental research to our generated possible 

combinations. A comparison of the second and third best scenarios to the optimal for case 

study #2 is shown in Table 6.
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Table 6 

Comparison of the Second and Third Best Case Scenarios to the Optimal for Case Study 

#2 

Case Combination Cost ($/g) Difference (%) 

1st Best (Optimal Case) 

2nd Best Option 

3rd Best Option 

Ammonium-Magnesium-Formate 

Hydroxylammonium-Tin-Sulfur 

Ammonium-Lithium-Formate 

0.1784 

0.2209 

0.2627 

--- 

19.24 

32.09 

 

 

3.5.3 Case Study #3 

For case study 3, the cation A was restricted to cesium, while maintaining all other 

ions for cation B and anion X the same as case study 2. The cost of this perovskite crystal 

was 21.84 ($/g). This cost resulted in a perovskite crystal made up of cesium for Cation A, 

magnesium for Cation B, and formate for X. This high cost was due to the high cost of a 

99.98% pure cesium in 1-gram ampoules. Table 7 shows the model statistics for  

case study 3. MATLAB also selected the same ions, at the same cost.
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Table 7 

GAMS Model Statistics for Case Study #3  

Model statistics Values 

Equations 40 

Variables 54 

Discrete variable 25 

Relative gap 0 

Solution time 0.063 sec 

Solution 21.84 ($/g) 

 

 

Cesium-based perovskite crystal is also on the rise in recent years. Research has 

been conducted in adding cesium to site-A cation to improve stability, reproducibility, and 

efficiency [33], [35], [37]. Since this combination has shown an increase in stability and 

efficiency, it is possible that perovskites of cesium with other alternatives for site-B and 

site-X ions would further increase stability and help in the commercialization of the 

perovskite solar cells (PSCs). It is also possible that with cesium being the site-A cation, 

multiple ions for site-B and site-X can give a much-improved PSCs (CsByB’1-yXiX’1-i). 

Therefore, much attention should be directed toward this area of research.  

Cai et al. (2016) [89] predicted the levelized cost of energy (LCOE) of perovskite module 

to be between 3.5 to 4.9 cents/kWh. Also, Chang et al. (2017) [90] reported the 

manufacturing cost of 107 $/m2. Song et al. (2017) [91] also reported an LCOE of 4.93 to 

7.90 cents/kWh.  Li et al. (2018) [92] performed a cost analysis for the manufacturing of a 

perovskite solar cell. In their analysis, they used a perovskite crystal cost of 700 $/kg (0.7 
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$/g), 450 $/kg (0.45 $/g), and 400 $/kg (0.4 $/g). As stated earlier in our assumptions, the 

cost analysis was only made for the perovskite absorber the goal is to expand the search 

for cost effective perovskite crystals that satisfies the Goldschmidt and octahedral tolerance 

factors. It can be noted that only case study 3 and root-A2 scenario in case study 1 had 

values greater than that presented by Li et al. (2018) [92].  

With more emphasis on global sustainability, the need to drive processes towards a 

more sustainable and cleaner pathway has become paramount in the design of new and 

emerging alternatives to already existing processes. With the application of systems 

engineering, processes can now be implemented with a higher surety of sustainability. If 

there is a breakthrough in the solar energy field for perovskite crystals with higher solar 

energy conversion efficiencies, a more sustainable way of harnessing the sun’s energy 

could be achieved.   

3.6 Conclusion 

The work presented here, facilitates the identification and selection of innovative 

materials for each designated site A, B, and C in the perovskite crystal, taking into account 

crucial criteria such as stability and economic viability. This approach pivoted on the 

foundational principle of selecting an individual material based on its ability to provide 

both stability and affordability, a strategy applied uniformly across all three sites. 

The first case study opted for a uniform choice of cation B and anion X for every variant 

of cation A under study. This consistent selection strategy laid a structured foundation for 

the experiment, ensuring that the variables remained controlled and allowing for a focused 

analysis on the effects of the different cation A choices. In diving deeper into the initial 

methodology, it emerged that the optimum perovskite crystal combination could be 
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achieved through a combination of ammonium-magnesium-formate at a cost  

of 0.1784 ($/g). This combination gave a best solution in both stability and cost feasibility, 

costing a mere 0.1784 dollars per gram, presenting itself as a cost-effective solution. In the 

cesium case, the selected site-B cation and site-X anion were magnesium and formate 

respectively, with a cost of 21.84 ($/g). Both GAMS and MATLAB selected the same 

combinations in each case study. 

To sum up, this work has successfully presented a pathway to select a single, most 

appropriate material for each specified site, A, B, and X, based in an analysis of stability 

and cost parameters. This study helps in fine-tuning the methods for choosing the right 

materials carefully. It sets the stage for upcoming projects to build on this research. It also 

encourages more discoveries in finding cost-effective and stable materials for perovskite 

crystal synthesis. To this end, the next chapter revisits the second domain of this research, 

focusing on optimizing flushing operations in lube oil industries. It provides a detailed 

exploration of current packaging operations and proposes alternative solution strategies to 

enhance efficiency. 
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Chapter 4 

Optimization of Flushing Operations in Lube Oil Industries: 

Studies of Existing Packaging Operations and Alternative Solution Strategies 

4.1 Overview 

In a typical lubricant manufacturing facility, the production process is complex and 

comprehensive. It initiates at the feed tanks located in the tank farm, progresses into the 

blending room where different product formulations are created by combining basestocks 

with functional additives in blending vessels. Finally, it extends to the packaging station, 

where the finished products are packaged in various containers such as bottles, pails, and 

drums. Lubricating oils find diverse applications across various industries, and based on 

their intended use, they can be broadly categorized into several types: (i) Engine oils (for 

petrol and diesel engines, aircraft, and marine engines), (ii) Turbine oils, (iii) Gear oils, (iv) 

Quench oils used in metalworking, (v) Insulating oils, (vi) Chain lubricants, and  

(vii) Hydraulic oils. Each of these oil types possesses unique characteristics that require 

separation to uphold stringent quality standards [56]. Consequently, it is crucial to 

thoroughly clean the system before starting the blending and packaging operations for a 

different product batch to prevent any potential cross-contamination. The production 

network spans from the initial stages of vessel mixing, encompasses the various process 

equipment used, and concludes in the final filling of containers for distribution to 

customers, which could include plastic bottles, pails, or drums. This network often 

comprises numerous twists and turns, typically involving 45° and 90° angles, and the 

product may traverse through flow meters, filters, pressure regulators, and other process 

instrumentation or metering devices. This inherent complexity in the network makes it 
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challenging to achieve thorough cleaning. Consequently, existing flushing methods may 

prove insufficient for completely removing residual products left over from previous 

production runs. 

The main goal of this project is to introduce advanced process improvement 

strategies and methods to boost the effectiveness of cleaning processes during production 

changeovers and thereby improve the operational efficiency at lube oil blending plants, in 

partnership with our associated industry. Figure 10 illustrates a computer aided design 

(CAD) of the multiproduct pipeline system within a drum packaging station in a generic 

lube oil manufacturing facility.  

 

 

 

Figure 10.  Computer Aided Design (CAD) of a Packaging Station from a Multiproduct 

Pipeline System within a Generic Lube Oil Blending Facility. 
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The piping between the storage tanks and the Drum fill line equipment can be 

cleaned using a pigging device. These devices cannot be used in piping with fittings and 

bends. So, the end of this straight pipeline is at the pig catcher shown on the right side of 

Figure 10. More information on the pig catcher and the pigging technique is discussed in 

the following section.  

4.1.1 Pipeline Pigging 

Lubricant industries are progressively adopting 'pigging technology' for liquid 

product recovery. Within the lube oil sector, pigging systems utilize a distinct device 

known as a 'pig' to retrieve leftover liquid from pipelines [93]. This particular tool, a 

polymeric 'pig', is named for the unique squealing noise it produces while moving through 

the pipelines. Historically, the name 'pig' transformed into an acronym for 'pipeline 

inspection gauge'. Driven by compressed air, the pig serves as a scraper, sealing against 

the inner surfaces of the pipes and efficiently clearing oil residues [94]. The compact nature 

of the pig allows it to push the leftover product to its intended location, typically a storage 

or feed tank, as shown in Figure 11. 

 

 

Figure 11. Lube Oil Pipeline Cleaning Tool: Pipeline Inspection Gauge (PIG) 
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Crucially, pigging technology helps recover products that would otherwise be 

discarded, resulting in significant benefits and savings. Apart from the lube oil sector, 

industries like food, beverages, confectionery, household items, cosmetics, personal care, 

pet food, paint, and coatings also employ pigging in their production processes [95]. By 

extracting residual liquids from pipelines, pigging systems substantially boost product 

yields. The recovered product remains of high quality, identical to the product being 

processed, rather than being downgraded. In the absence of pigging, this product would be 

either wasted or repurposed for a lesser quality product during transition processes [96]. 

However, there is a notable challenge: the inflexibility of these polymeric pigs. They 

struggle with pipelines of differing diameters, can't handle sharp 90° bends, turns, or 

auxiliary equipment like filters. To cleanse parts of the system inaccessible to the pigs, a 

flushing oil technique is employed. This oil, a product from an upcoming batch, is used to 

clean residues of the previous batch. This action produces a mixed oil / commingled oil, 

not meeting the standards of either batch, resulting in a downgraded product of diminished 

economic value. Importantly, instead of sending product to waste, pigging recovers it. So, 

the benefits and savings from pigging are significant. In addition to lube oil industry, other 

industries that use pigging technology during their production process include food, 

beverages, confectionery, household liquids, cosmetics, personal care, pet food, paint, 

coatings and many others. By recovering the residual liquid product from the pipe, pigging 

systems are an extremely effective way to increase yields. The reclaimed product is 

perfectly saleable product. It’s in the same condition as the rest of the product being 

processed, and It’s not been downgraded. But, without a pigging system, this product 

would be sent to waste, or for use in a downgraded product, during the changeover process. 

https://www.hps-pigging.com/resources/savings-calculator/
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However, a significant limitation arises from the rigidity of these polymeric pigs, 

preventing them from navigating through variable diameter pipelines, negotiating 90° 

bends, handling turns, or dealing with ancillary equipment like filters. As a solution to 

clean the remaining sections of the system, a method involving the use of a flushing oil is 

employed. This flushing oil is a finished product from an upcoming batch, utilized to 

cleanse any residues of the preceding batch. This practice results in the creation of a mixed 

or commingled oil that does not adhere to the specifications of either of the two batches, 

and as a consequence, it is classified as a downgraded product having a significantly low 

economic value as compared to the pure product. 

4.1.2 Filtration 

In the lube oil industry, utilizing filters is pivotal in maintaining the high standards 

of purity, quality, and performance of the oils, thereby fulfilling customer expectations 

[97]. Figure 12 illustrates the bag filters of conventional designs that are currently used at 

these facilities. These filters are included in the system to eliminate various contaminants 

such as dust, metal particles from pipeline wear and tear, and rust
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Figure 12. Bag Filter and Filter Housing Utilized in Lube Oil Industries (Source [98]) 

 

 

Bag filters are commonly employed in the lube oil sector and other sectors 

involving fluid processing, serving a critical role in eradicating contaminants and securing 

the purity and high quality of the final products. These filters encompass several key 

components including a robust housing to secure the filter bags, the filter bags themselves 

which are central to the filtration process, and inlet and outlet ports for the fluid. The filter 

bags, available in diverse micron ratings, facilitate the removal of particles of various 

dimensions. Regular monitoring and changing of these filters are vital to sustain the 

efficacy of the filtration process, aligned with adherence to environmental norms during 

the disposal phase. One prominent downside of traditional bag filter designs is the 

substantial oil retention in the expansive design of the housing, leading to a considerable 
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hold-up of oil. This, coupled with the frequent necessity for manual changing of the filter 

bags, not only elevates labor demands but also triggers operational downtimes. In line with 

our principal objective of minimizing the amount of downgraded oil during transitions in 

production, we are setting forth to investigate contemporary and more compact filter 

designs. Our aim is to significantly diminish hold-up volumes, thereby reducing the 

downgrading of oil during changeovers. 

4.1 General Improvement Methods 

Through a comprehensive analysis of existing literature, we explore innovative 

strategies and general enhancements aimed at minimizing product downgrade during 

changeover operations in multiproduct pipelines. 

4.2.1 Gel Pigs 

We are considering replacing the current rigid polymeric pigs with more adaptable 

materials such as gel pigs, which would facilitate their passage through pipelines with 

varying diameters, consequently reducing the necessity for flushing [63]. These gel pigs, 

characterized by their high viscosity, function more like fluids than solid substances. Their 

working principle involves forming a high viscosity plug that establishes a firm seal against 

the pipeline walls, effectively cleaning the pipe surfaces [64]. A notable benefit is their 

resistance to breaking down under the pressure exerted by the compressed air used to 

propel the pigs. Leveraging their fluid-like nature, gel pigs can navigate bends, turns, and 

sections of pipelines with uneven diameters with ease.  
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4.2.2 Pipeline Coatings 

Omniphobic (Omni: all, phobic: repellent) coatings are gaining attention due to its 

ability to repel almost all types of liquids from its surface [99]. These surfaces force the 

liquid to form droplets that do not wet the surface. Consequently, they can repel almost all 

types of liquids reducing cleaning problems and time spent in cleaning operations [100]. 

Applying these kinds of coatings to lube oil pipelines can diminish the amount of oil 

retained in the system, thus decreasing the need for extensive flushing [101], [102]. Beyond 

this application, these surfaces have broader utilities encompassing automotive and marine 

sectors, as well as serving de-icing and anti-fouling functions in the oil & gas, chemical, 

and transportation industries. 

4.2.3 Fluid Blasting 

This advanced technology involves blasting the pipelines using either water or any 

other liquid at very high pressure (up to 20 kpsi) [103]. In this technique, the liquid is 

introduced in the inner walls of the pipelines utilizing high-pressure jets with suitable 

nozzles. The jet is created by forcing liquid through a nozzle at high-pressure. After 

spraying the walls this fluid, typically water must be removed by a drying process. Fluid 

blasting has the potential to serve as an efficient and versatile solution in maintaining the 

cleanliness and functionality of pipelines, especially in the lube oil industry. It not only 

ensures the removal of undesirable substances from the pipelines but also promotes the 

longevity and efficient operation of the systems. However, careful consideration must be 

given to the process parameters to avoid any damage and to ensure environmental 

compliance. 
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4.2.4 Vibration Cleaning 

Vibration cleaning is a process that leverages mechanical oscillations to dislodge 

and remove unwanted deposits and accumulated materials from the inner walls of pipelines 

[104]. It is sometimes used in industries to maintain pipeline efficiency and safety. A 

vibrator fixed directly on the machinery wall operates in a frequency range of 20 – 50 kHz, 

creating standing waves in the fluid [105]. These standing waves induce the formation of 

cavitation bubbles in the fluid, which are essentially voids or bubbles that are formed at 

low pressure regions [106]. The cavitation bubbles collapse once they move to high-

pressure regions, releasing substantial energy capable of dislodging solids and foul 

materials attached to the machinery or pipeline walls. Vibrator-induced cavitation presents 

an approach to maintaining cleanliness in industrial pipelines, ensuring operational 

continuity and efficiency. This methodology, proven by research and practical 

applications, has been demonstrating notable effectiveness in dislodging solids and 

mitigating fouling, promoting a cleaner and more efficient operational environment. 

However, care must be taken to manage the potential stress induced in the equipment due 

to long-term vibration. 

4.2.5 Alternative Filters 

In the conventional setup, bag filters have been employed in the pipeline system to 

eliminate solid impurities potentially present in the final product [97]. The current 

configuration which houses these bag filters in a metallic enclosure tends to retain a 

substantial amount of fluid, posing challenges in holdup. Moreover, the necessity for 

manual upkeep can lead to interruptions in operations. A potential alternative to this 
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traditional setup is the integration of inline welded filters with more compact designs as 

illustrated in Figure 13.   

 

 

Figure 13. Inline Welded Filters (Source [107], [108]) 

 

 

These filters are seamlessly incorporated into the pipeline of the fluid system 

through welding, creating a secure and leakage-resistant junction. Their capability to 

handle high-pressure scenarios stems from the resilient welded junctions that are superior 

to other forms of connections, offering enhanced longevity even in rigorous operational 

environments. Additionally, inline welded filters stand as space-efficient solutions 

compared to the bag filters housed in bulkier setups. They promise consistent functionality 

across varying pressures and temperatures, providing dependable filtration amidst unstable 

operational dynamics. In summation, inline welded filters present a series of benefits over 

their bag filter counterparts, including better leak resistance, expanded durability, 

improved filtration precision, and diminished maintenance demands. These merits position 

inline welded filters as the potential choice in circumstances that prioritize safety and 
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efficiency at high thresholds. A summary of the potential alternative technologies and 

improvement methods along with their pros and cons are discussed in Table 8. 

 

Table 8 

List of Potential Technologies and their Description  

 

 

Potential 

Technology 

Industrial 

Scale-up 

Relative 

Cost 

Relative 

Time 

Necessary 

Pros Cons 

Gel Pigging Yes Low Low Potentially 

replace flushing 

process 

Increased operational 

complexity 

Pipeline 

Coatings 

Yes Moderate Moderate Minimize film 

formation on 

pipeline walls 

Challenge in coating the 

inner walls of pipeline 

Fluid 

Blasting 

Yes High Low Efficient for 

residue removal 

More economical 

and 

environmentally 

safe 

System must be able to 

withstand high pressure 

Vibration 

Cleaning 

Yes Low Low Non-invasive 

method 

Potential cavitation 

damage 

Inline 

Filtration 

Yes Moderate Low Decreases 

amount of flush 

oil required 

Disrupting current 

production process  

Maintenance and 

replacement of filters 
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4.3 Data Analysis 

We realized that we had a great opportunity to collect valuable insights through 

careful data collection and analysis at our collaborative facility. The objective behind 

analyzing this data was to examine and identify patterns in the slop (commingled/ mixed 

oil) generated during each flushing operation. This data encompasses a variety of critical 

metrics such as the current and preceding products in the drum fill, the date of filling, the 

drumline number, properties like viscosity and density, the volume of fluid flushed 

(measured in gallons), and the product family classification, among other details.  

Figure 14 offers a depiction of the collected data set. 

 

 

Figure 14. Dataset of Information Collected and Analyzed through the Experiments 
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We began our analysis by organizing the data based on the time each order was 

completed and grouping them by their respective product families. Our objective was to 

identify patterns in the necessary volume of flush required during a changeover within the 

same product group, such as transitions between different lubricants within the Type-A or 

Type-B family. The terminology Type-A, Type-B is employed to distinguish between 

various oil families, with Type-A representing the engine oil family, Type-B representing 

the gear oil family, Type-C representing the industrial oil family, and so forth. In addition 

to this, we focused on understanding the range of viscosity within each product family by 

examining products with the highest and lowest viscosity levels. Next, we took a closer 

look at scenarios where the changeover happened from a Type-A family lubricant to other 

types, such as Type-B, Type-C, and so on as illustrated in Figure 15. 

 

 

Figure 15. Volume of Flush Generated When a Type-A Family was Changed to Other 

Families (pdt is used as an abbreviation for product) 
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Following this, we focused our analysis on observing the volume of the flushing 

required with respect to several factors, including the viscosity of the residual product, the 

viscosity of the new product, and the difference in viscosities between the two. We wanted 

to get a clear picture of how these parameters influenced the fluctuating volumes of flush 

created during the production process. Our detailed exploration, which is displayed in 

Figure 16, aimed to find any consistent patterns across various cases. On the first y axis is 

the flush volume which is given as a blue bar. The gray, orange and yellow bars refer to 

the second y axis represents the viscosity of the prior product on the drum fill line, viscosity 

of the current product, and the difference in viscosities of the two products. 

 

Figure 16. Flush in Gallons vs Viscosity of Prior Product, Viscosity of Current Product 

and Difference in Viscosities of the Two Products 

 

 

Unfortunately, despite our efforts, it appeared that there wasn't a defined trend 

identifiable through the different situations we analyzed. Next, we explored how seasonal 

changes affect the failure rate. Since viscosity changes with temperature, we were keen to 
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see how failure rates differed between warm and cold weather. Our findings are shown in 

the graph in Figure 17. The orange line on the graph shows the average monthly 

temperature and the blue bars are the proportion of the failed samples. As can be seen from 

the trend, in the cold months starting in November, the failure rate increases significantly 

to a maximum failure rate of 21% in February.  

 

 

Figure 17. Effect of Seasonal Change on the Failure Rate. 

 

 

In the warm months the failure rate is less than 10%. To better understand this trend, 

we transformed this graph from a plot of failures vs the calendar month to a plot of failures 

vs the average monthly temperature shown in Figure 18. This graph shows a clear trend of 

failures decreasing with increasing temperatures.
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Figure 18. Linear Decreasing Trend of the Proportion of Failed Samples with Respect to 

Temperature. 

 

 

To this end, after understanding the existing drawbacks we proceed towards our first 

solution approach out of the three-pronged solution approach. Chapter 5 entails our 

experimental studies 1, which involves the development and examination of a benchtop 

experimental rig. 
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Chapter 5 

Experimental Studies 1: Procedural Enhancements 

The inconsistencies observed from the data analysis of the regular flushing 

operations, paved us to get better insights into the current operational methods by 

mimicking the industrial set up benchtop plant design and higher capacity pilot plant 

setups. Our goal was to get an in-depth understanding of the existing procedures, study the 

drawbacks and develop enhanced operational methods with the help of an experimental 

approach. To this end, in this chapter, we explain the hands-on method we employed 

towards achieving the optimization of flushing operations.  

5.1 Process Flow Diagram of a Generic Lube Oil Industry 

Lube oil enters the pipeline system either from the storage tanks located in the tank 

farm or from the blending vessels situated in the blending room. The pipeline sections 

remain straight and can be pigged until they reach the packaging station which involves 

complex pipe geometry and hence are unpiggable. Figure 19 is an illustration of the 

unpiggable section from the commercial facility. 
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Figure 19. Schematic of the Unpiggable Section of the Multiproduct Pipeline 

Configuration at the Commercial Lube Oil Facility 

 

 

The finished lube oils are pumped to the packaging station where they are packaged 

in bottles, drums, and pails to reach the end users. The small cylinders following the 45° 

bend shown in Figure 19 is the pig catcher. The pig is passed through the straight pipe 

sections to scrap the residual oil and clean the straight lines prior to a changeover operation. 

After the pigging processes is completed, the pig sits in the pig catcher. Immediately 

following the pig-catching station is a 90° tee bend that leads to the remainder of the 

pipeline system which is unpiggable. The flushing time and procedure are dependent on 

the previous experience of an operator in regard to the specific product.  

In Figure 20 a process flow diagram of the drum packaging line is shown. This 

diagram was constructed with reference to the setup at the partnered commercial facility. 

It includes the important aspects of the drum fill line, such as pressure gauges and the 

airline.

Engine Gear IndustrialSynthetic Metal Working

Pig catcher

45° Bend

90° Bend
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Figure 20. Process Flow Diagram of the Drum Packaging Station at a Generic Lube Oil 

Facility 

 

 

The oil enters the system into the filter, which then travels through a U-bend and 

up through the manifold. Then, the oil travels through the flexible hose and out of the outlet 

pipe and sampling port. The pipelines are carbon steel 3" nominal size. The volume of the 

filter is approximately 13 gallons and the total volume of the rest of the system is 

approximately 32 gallons. Using this process flow diagram, the main configuration of the 

drum fill line can be determined, and the system can be analyzed for oil holdup and 

potential improvements. During a product changeover, the first step is using pigs to scrape 

out excess oil, sending it back to the feed tank. The second step involves gravity draining 

the filter, then purging it with compressed air for approximately 30 seconds to remove 

residual oil. In the third step, the rest of the unpiggable section is then gravity drained 

through the manifold line to remove some of the residual oil trapped within the system. 

The third step is gravity draining the remaining unpiggable section through the manifold 
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line to remove some trapped residual oil. However, this method is not entirely efficient, 

leaving a significant volume of residual oil in the system. Figure 21 illustrates the process 

flow diagram, with faint red sections indicating cleared lines and deep red sections 

representing trapped residual oil. 

Figure 21. Process Flow Diagram Illustrating the Inefficiency of the Current Draining 

Method and the Trapped Oil in the System 

 

 

In the fourth step, the system is then flushed with the incoming oil that is needed to 

be packaged. At the end of the chosen flush time that depends on the previous experience 

of the operator and ranges between 60 – 200 seconds, an oil sample is taken at the sampling 

station and sent to the lab to get it tested for specifications. The preliminary test that 

confirms the purity of the batch and the success of the flush is the kinematic viscosity of 

the oil sample at 40 ℃ or 100 ℃. The test is conducted as per the ADTM D445 guidelines 

and is estimated to take about 20-30 minutes [109]. If the kinematic viscosity falls within 

the desired range specified for the product, the product is approved for packaging. 
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However, if the product falls outside of the specifications, then a secondary flush is 

performed. This process is repeated until the product meets specifications. The amount of 

flush volume is controlled by the operator at the flushing station. And the commingled 

product is pumped into a storage tank. The limitations inherent in the current flushing 

procedures contribute to the high costs associated with the operation. Consequently, in our 

pursuit of an optimal solution, we have delved into enhanced procedures aimed at more 

effectively draining the system. The primary objective is to minimize the presence of 

residual products within the system to the greatest extent possible. By reducing the residual 

oil content, we anticipate a corresponding decrease in the necessary volume of the 

subsequent product required for system flushing. The study of the improved procedures 

was conducted through a benchtop experimental rig that is discussed in detail in  

section 5.2. 

5.2 Benchtop Plant Design 

After conducting multiple onsite flushing experiments and developing a process 

flow diagram of the drum filling line at the partnered facility, we developed a benchtop 

plant design, shown in Figure 22. 
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Figure 22. Benchtop Plant Design for Mimicking the Industrial Flushing Operation 

 

 

This setup was developed to reflect a flushing process more accurately at the drum 

filling line of the partnered facility, by using the process flow diagram of the plant. In this 

setup, the filter housing was replicated using a 1½ inch tee, with a bend in the pipe 

following the filter comparable to that of the drum filling line at the plant. This setup 

featured a one-way valve in the same location relative to the plant, as well as a drain line 

and a pressure gauge located on the manifold of the benchtop plant design. Finally, the 

benchtop features a spear and sampling port at the end of the design where oil samples can 

be collected. This benchtop plant design was constructed using threaded pipe lengths and 

Teflon tape to prevent leakage. Additionally, ball valves were placed in the system to 

replicate the location of valves at the partnered plant. To introduce air into this system, an 

airline pressure regulator and airline flow meter were utilized to keep the air pressure at  
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40 psig as well as the air flow rate at 3 scfm. For the current experiments utilizing this 

setup, a pump speed of 150 RPM was used, which gave a flow rate of approximately 137 

mL/s. The main goal of the first set of experiments conducted with this experimental setup 

was to determine the effect of improved drainage procedure on the volume of oil required 

to flush the system. Additionally, this set of experiments achieved the goals of determining 

whether air could be used to clear the oil holdup in the setup and determining whether the 

oil in the system behaves as a plug. 

5.2.1 Flushing Experiments 

For the first two experiments, two flushes were performed using a product A and  

Product B. In these two experiments, both oils were flushed through the system to 

determine whether the operating procedure that replicated the flushing procedure at the 

plant was accurate, determine whether the two second sampling rate was acceptable for 

this setup, and determine how much oil was required to flush the system. These two 

experiments yielded that the operating procedure was acceptable, that the sampling rate 

must be increased to one second, and that approximately 1500 mL was required to 

completely flush the system. Using these results, the next four sets of experiments were 

developed. 

For the next two experiments, the same two flush and residual oils were utilized, 

and the procedure used to drain the line was same as that at the collaborated facility (Prior 

Method). For this procedure, the filter was gravity drained and air blown, the manifold 

drain line was then gravity drained, and then the system was flushed, and samples were 

collected at equal time intervals. For the second set of two experiments, the same two flush 

and residual oils were utilized. The procedure used to drain the line was optimized by air 
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blowing the entire system to clear as much residual oil from the lines as possible (Improved 

Method). For this procedure, the filter was gravity drained and air blown, the manifold 

drain line was then air blown, the spear was air blown, and finally the system was flushed 

at the same pump speed and sampling rate as the prior two experiments. It was observed 

that when air blowing the system, the drainage technique was highly effective in removing 

residual oil. The outcomes of both experiment sets are visually represented in Figure 23 

and Figure 24. Further specifics regarding the results of both drainage methods for both 

sets of experiments are provided in Table 9 and Table 10.  

 

Figure 23. Comparative Analysis of Flushing Methods: Existing vs. Improved - First Set 

of Experiments 

 

 

The plot of the volume flushed vs kinematic viscosity for the first set of experiments 

is illustrated in Figure 23, the kinematic viscosity of the residual oil was 87.36 cSt 

(represented by the solid red line) and the desired viscosity of the new product was  

23.5 cSt (represented by the solid blue line). In the experiments we collected samples at an 

interval of two seconds and tested them for their viscosities. The dashed green line 
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represents the desired specification range for the flush oil. When the sample reaches the 

specification line, it confirms that the required purity level is attained, the flushing can be 

stopped, and the product can be packaged. As can be seen in Table 9, the minimum volume 

of flush required for the prior method was 811.6 mL whereas for the improved method, it 

was 591.5 mL. This illustrates that there was a 27.11% reduction in the required flushing 

volume. 

 

Table 9 

Results for Comparative Analysis of the Existing and Improved Drainage Method for the 

First Set of Experiments 

 

 

 

 

 

 

For the next set of experiments as illustrated in Figure 24, the viscosity of the 

residual product was 23.5 cSt and the viscosity of the pure flush product was 87.36 cSt.  

As explained in Table 10, the minimum volume of flush required with the prior drainage 

method was 525 mL whereas for the improved method it was 232 mL. This means that 

there was a 55.8% reduction in the required flushing volume.

Method Mass % 

Drained 

from Filter 

Mass % 

Drained 

from 

Manifold 

Mass % 

Drained 

from Spear 

Total % 

Drained 

Minimum 

Volume to 

Spec (mL) 

Prior 41% 11% 0 52% 811.6 

Improved 45% 39% 8% 87% 591.5 
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Figure 24. Comparative Analysis of Flushing Methods: Existing vs. Improved - Second 

Set of Experiments 

 

 

Table 10 

Results for Comparative Analysis of the Existing and Improved Drainage Method for the 

First Set of Experiments 

 

 

 

 

 

These experiments confirmed that the improved method of drainage was effective 

in reducing the necessary flushing volume to reach the desired specifications of the new 

product. However, these experiments were performed in 0.5" nominal pipe size 

experimental rig. Hence, to confirm that the method would be applicable to 3" nominal 

pipe size carbon steel pipes at the commercial facility, we conducted at scale experiments 

Method Mass % 

Drained 

from Filter 

Mass % 

Drained 

from 

Manifold 

Mass % 

Drained 

from Spear 

Total % 

Drained 

Minimum 

Volume to 

Spec (mL) 

Prior 45% 16% 0 60% 525 

Improved 45% 42% 8% 95% 232 
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by constructing a Polyvinyl chloride (PVC) experimental rig of 3" diameter. The details of 

these experiments are discussed in section 5.2.2. 

5.2.2 At Scale PVC Pipe Experiments 

To test whether the improved drainage technique developed using the benchtop 

pilot plant can be applied to plant scale with the same level of drainage in low sections of 

the plant such as a U-bend, we developed a rig constructed of 3" PVC pipe to test how well 

varying fluids can be air blown out of 3" pipelines and bends. The finalized rig which was 

used for experimentation is shown below in Figure 25. 

 

 

Figure 25. At Scale Experimental Setup 

 

 

The goal of the experiment was to understand how well different types of fluids 

were able to be cleared out of a U-bend in a 3" pipeline using compressed air at differing 
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flow rates and air pressures to simulate how effective the air blowing procedure would be 

at the industrial scale. Initially, water was used to fill up the pipeline to test how effective 

different flowrates and air pressures were to clear out the water from the system. Then, we 

used an 83 wt% 75 cSt Glycerin mixture with water to more accurately represent how a 

typical range of viscosity of oil would be removed from the U-bend when air is blown 

through. The results of both the water and glycerin system drainage can be seen in  

Figure 26 and Figure 27. 

 

 

Figure 26.  Drainage of 83 wt% 75 cSt Glycerine at 60 psig  
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Figure 27. Overall Results for the Drainage of Water and Glycerin at Varying Flowrates 

 

 

Through these set of experiments, we studied that increasing flowrate results in an 

increase in the fluid removed. However, air pressure did not have a large impact on the 

effectiveness of the drainage of the system. The volume of the fluid removed was inversely 

proportional to the viscosity of the fluid.  We also studied that low flowrates of air may not 

remove all of the residual fluid from the system. Furthermore, at a flowrate of 5 SCFM, air 

blowing the pipeline can remove up to 60% of the residual fluid from the U-bend. 

Therefore, we concluded that at the collaborated facility, the air blowing procedure would 

be greatly effective in removing most of the residual oil from the pipelines, including the 

U-bend, given that the facility uses an air flowrate higher than 5 SCFM. We then conducted 

onsite flushing experiments to test out the improved procedure with air blowing at the plant 

scale, which is detailed in the following section. 
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5.2.3 Implementation of the Enhanced Procedure at the Collaborated Facility 

We collaborated with operators, chemists, plant engineers, and managers to 

evaluate the process scale up to plant scale production with consideration of cost, safety, 

and workability. We successfully executed a HAZOP study, devised a standard operating 

procedure, and conducted thorough training sessions for plant operators, leading to process 

change implementation. Our goal was to determine the efficacy of the improved procedure 

at the commercial scale. This was accomplished by documenting 83 flushes via the 

improved drainage method and comparing the flushing failure rates with the prior and the 

improved method. A lower percentage of failed flushes using the improved procedure 

compared to flushed documented in the plant data statistically proved that the improved 

drainage technique significantly reduces the amount of residual oil left in the line prior to 

charging and thus the number of failed flushes.  Currently, there have been a total of 83 

documented flushes conducted with the improved procedure, and out of these 83 flushes 

there have been only 3 documented failures. Based on this sample size, there has been a 

significant decrease in the number of flushing failures using the improved procedure. The 

failure rate with the improved procedure has reduced to 3.6 % as compared to the traditional 

flushing procedure which results in an 11 % failure rate. It was also observed that using 

the improved procedure results in less pure flush oil being required to flush the drum filling 

line in a changeover. Considering these two developments the plant representatives, 

including the plant manager, decided to officially standardize this improved flushing 

procedure at the plant scale for their drum filling line operations. Additionally, in the near 

future this improved procedure will be standardized plantwide.  The projected cost savings 

for the implemented improved procedure is explained in section 5.2.3.  
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5.2.3 Projected Cost Savings 

The cost savings estimate is based on comparing past flushing operations to the enhanced 

flushing procedures. Our analysis factored in the yearly production capacity and the 

expected market price per gallon of the product. We also considered the operational 

downtime caused by unsuccessful flushes. The total cost of the process was calculated by 

assessing savings in product volume, reduction in downtime, labor costs, material cost for 

testing, and overhead expenses. No new equipment was required for the improved 

procedure, which eliminated capital costs. Additionally, utility costs were not considered 

in this analysis. 

Considering,  

a) Number of annual flushing operation, #𝐹𝑇 = 1500 

b) The total failure rate as per the plant data analysis owing to the existing flushing 

operation, 𝑅𝑂𝐿𝐷 = 11%  

c) The total failure rate per the improved procedure (based on 3 failures out of 83 flushes), 

𝑅𝑁𝐸𝑊 = 3.6% 

d) Downtime for a single failed flush, 𝑇𝐷   = 40 mins (0.67 hr) 

e) Volume used per flush, 𝑉𝐹   = 60 gal 

a. For a failed flush, total volume, 𝑉𝐹 = 2 × 60 = 120 gal 

b. Extra flush volume, 𝑉𝐸𝐹 = 60 gal 

f) Product selling price, SP = $ 12 / gal 

g) Labor cost, 𝐶𝐿𝐵  = $ 30 / hr 

h) Cost of Heptane = $ 45 / L.  

• Approximately 100 mL of Heptane is used to clean the viscometer after every 

test 

• Cost per viscometer cleaning, CC: $4.5 

• Considering a particular changeover operation, where the sample fails to meet 

the required specification, cleaning is repeated twice assuming the product 

passes on the second test. 
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Number of Failed Flushes Annually 

Existing flushing operation, NOLD  = FT × ROLD   

𝑁𝑂𝐿𝐷 = 1500 × 
11

100
= 165 flushes 

Improved flushing operation, NNEW  = FT × RNEW   

𝑁𝑁𝐸𝑊 = 1500 × 
3.6

100
= 54 flushes 

Annual Extra Flushing Volume 

Existing flushing operation, VEF,OLD =  NOLD × VEF 

𝑉𝐸𝐹,𝑂𝐿𝐷 = 165 × 60 = 9900 gal 

Improved flushing operation, VEF,NEW =  NNEW × VEF 

𝑉𝐸𝐹,𝑁𝐸𝑊 = 54 × 60 = 3240 gal 

Annual Recorded Downtime 

Existing flushing operation, TD,OLD =  NOLD × TD 

𝑇𝐷,𝑂𝐿𝐷 = 165 × 0.67 = 111 hr 

Improved flushing operation, TD,NEW =  NNEW × TD 

𝑇𝐷,𝑁𝐸𝑊 = 54 × 0.67 = 36 hr 

Product Volume Cost Savings, 𝑉𝑆 

 𝑉𝑆 =  (𝑉𝐸𝐹,𝑂𝐿𝐷 − 𝑉𝐸𝐹,𝑁𝐸𝑊)  × (𝑆𝑃) =  (9900 − 3240)  × (12) = $ 79, 920.00   

Labor Cost Savings, LBCS 

LBCS =  (𝑇𝐷,𝑂𝐿𝐷 − 𝑇𝐷,𝑁𝐸𝑊)  ×  (𝐶𝐿𝐵) =  (111 − 36)  × (30) = $ 2,250.00 

Overhead Cost Savings, OCS 

OCS =   LBCS × 2.2 = 2,250 × 2.2 = $ 4,950.00 

Material cost savings, MCS 
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MCS =  (𝑁𝑂𝐿𝐷 − 𝑁𝑁𝐸𝑊)  × 𝐶𝐶 =  (165 − 54)  × (4.5)  × 2 = $ 999.00   

Total Process Cost Savings, TCS 

TCS =  𝑉𝑆  +  LBCS  + MCS +  OCS   

TCS = $ 79, 920.00 +   $  2,250.00 +   $ 4,950.00 + $999.00 = $ 88,119.00 

 

 

Figure 28. Projected Cost Savings from the Improved Flushing Procedure 

 

 

The total cost savings with the implementation of the improved drainage method 

was projected as $88,119/ yr.  

Continuing our research, we recognized the significant influence of flow regimes 

on the efficacy of flushing operations. Hence, our subsequent initiative involved the 

development of an advanced pilot plant equipped with a more robust pump and a higher-

capacity storage tank to explore flushing operations at various flow rates to study the 

laminar and turbulent flow regimes. Additionally, we aimed to understand the efficiency 
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of real-time viscosity measurement by incorporating an inline viscometer, with the 

objective of mitigating the process downtime associated with conventional sampling 

methods. Further insights into the development of the pilot plant are thoroughly presented 

in Chapter 6. 
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Chapter 6 

Experimental Studies 2: Pilot Plant Development 

The principal objective of the pilot plant was to explore the importance of fluid 

hydrodynamics through the reduction in scale from the industrial operation. This involved 

the precise assessment of the impact of variations in process parameters, including flow 

rate, viscosity, and temperature. To achieve this, a laboratory-scale pilot plant was 

engineered to replicate the industrial process, with a focus on investigating necessary 

improvements related to flow rates and flow regimes.  

6.1 Pilot Plant Design and Development 

The pilot plant used in this work was constructed using scaled down calculations 

from the partnered facility. Two scale down factors were used to approximately size the 

components installed in the pilot plant. The first of these factors is a dimensionless number 

scale down based on the straight pipe Reynolds number for a series of flushes. The second 

factor is a volumetric ratio between the total volume of the unpiggable section of pipeline 

and the filter. An accurate representation of the pipeline was developed in our lab by 

balancing these two criteria. The flow of simulant fluid through the pilot plant and the 

design process for the scale down of the system is discussed in the following sections. 

6.1.1 Reynolds Number 

An appropriate scale down factor must be chosen when designing a pilot plant to 

mimic the characteristics of a much larger operation. In this work, a dimensionless number 

was a clear choice for our design. Because this project focuses on the mixing properties 

within sections of pipeline, the Reynolds number for the system was used to scale the 



 

83 

 

system down. The Reynolds Number for an incompressible fluid can be calculated using  

equation (13) 

𝑁𝑅𝑒 =
𝐷𝑣ρ

μ
 (13) 

Where: 𝑁𝑅𝑒 – Reynolds Number, 𝐷 – Pipe Diameter, 𝑣 –Flowrate, ρ –Density, and  

μ –Dynamic Viscosity  

(a)  Line Diameter: At partnered facility, the internal diameter of the pipeline can be 

broken up into two sections. The first section which runs from the external tank to the 

manifold connection is constructed of 3" schedule 40 carbon steel (ID: 3.068"). The second, 

significantly shorter length, is 2" schedule 40 carbon steel (ID: 2.067"). The volumetric 

flow achieved by the selected pump determined the internal diameter of the tube.  

(b) Product Viscosity: The viscosity of the product is a key aspect in determining the 

behavior of the product changeover. Not only this affects the Reynolds number, but also 

the quantity of product remaining within the system. Because the pilot plant is operated at 

room temperature, the product viscosity must be corrected to account for the elevated 

temperatures shown at scale.  

(c) Volumetric Flowrate: The volumetric flowrate of the system is one of the most 

critical aspects of the pilot plant. Selection of the pump that will provide the proper flow 

characteristics is paramount in emulating the design of the at scale operation.  

6.1.2 Volumetric Ratio 

The second metric that was used in our scale down process is the system volume 

ratio. This ratio is defined as the volume of the filter by the volume of the remaining system. 

Accurately recreating this ratio was critical to the design of our system. The system was 
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modelled by theorizing to be a combination of plug flow and well mixed chambers. The 

filter acts as a well-mixed chamber with an initial concentration, and the pipe sections act 

as a plug flow chamber. This volume was determined by slowly filling the plant scale line 

with fluid and recording the corresponding drop in fluid from the filling tank. The system 

volume at the partnered plant was determined to be approximately 32 gallons, with the 

filter containing 13 gallons of product. With these parameters measured, the ratio of the 

filter to the system is calculated to be one part filter to 2.5 parts system.  

6.1.3 Finalized Design 

When deciding on a finalized design there were several limitations that determined 

the products that could be utilized. The first design limitation was based on the tube 

diameter that could be used owing to the restricted available lab space. The maximum tube 

diameter for our project was ¾" OD. The minimum tube diameter was set at ¼" OD, as 

any smaller than this size would require an excessive length of tubing to achieve a similar 

system volume.  

The development of the pilot plant can be divided into the following major components: 

a) Product storage tanks 

b) Product tracking system (measuring balances) 

c) Peristaltic pump 

d) Pressure relief valve (PRV) 

e) Compressed air system 

f) Filter 

g) Fittings and valves 

h) Inline viscometer 

i) Data acquisition system 

The detailed explanation for the selection of each of these components is as follows: 
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A).  Product Storage Tanks: The tank material selected for this application was high density 

polyethylene (shown in Figure 29). This material has an excellent chemical compatibility 

with petroleum lubricants and water. This specific variety of tank had a rounded bottom 

with a ½" bulkhead fitting for easy drainage and rests on a steel stand. They are connected 

to the main pipeline through flexible buna-nitrile hydraulic hoses.  

 

 

Figure 29. Polyethylene Product Storage Tanks - 30 Gallons Capacity, Measuring Scales 

and Metal Foundations 

 

 

B). Product Tracking System (Measuring Balances): The product tracking system best 

suited to our application was a system of three electronic balances resting under each of 

the three 30-gallon product storage tanks. The main criteria for the selection of electronic 

balances were weight capacity, size, polling rate and cost. A simple calculation was used 

to determine the maximum possible weight of the scales based on the density of water (8.34 

lbm/gal) and the weight of the tank stands (~50 lbm). In total the scales must be able to 
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accurately display up to 300 lbs, representing a full tank of water used in early safety tests. 

The second factor in selecting a scale is the size of the scale. In this case, the scale could 

not be wider than two feet, as the total width of the plant is four feet (two side by side).  To 

ensure that the weight of the scales could be accurately measured, the polling rate of the 

scale had to be high enough to capture swings in weight change when the pump is turned 

on and off.  In the end, the scales chosen had a 600 lb weight capacity (illustrated in  

Figure 30). This scale easily meets the minimum weight requirement of 300 lbs and 

remains within the required size constraints at just 19.75" wide. This scale has a 600 lbm 

range (±0.1 lbm), with a maximum capacity of 900 lbm. These scales are connected to a 

digital readout, which then forwards this reading to the data acquisition system via RS485 

connection.   

 

 

Figure 30. Measuring Balances with 600 lb Weight Capacity 

 

 

C). Viking Spur Gear Pump: To effectively handle high viscosity fluids in our project, we 

need a peristaltic pump. While our industrial partner uses sliding vane positive 
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displacement pumps, these are not suitable for the scale of our project. Therefore, we 

explored various peristaltic gear pumps and found that the best fit for our requirements is 

a spur gear pump. Specifically, we chose the viking spur gear pump (illustrated in  

Figure 31, which has a maximum flow capacity of 7 gallons per minute (GPM) and is 

tailored for high viscosity fluids. This pump features a cast iron interior and 3/4" NPT 

ports, which are reduced to ½" outer diameter tubing.  

 

 

Figure 31. Viking Spur Gear Pump, Flow Capacity – 7 GPM 

 

 

For safety and to prevent overpressure, particularly in case of operator error, we 

selected a pressure relief valve (PRV) with a specification that matches the lowest pressure 

rating in our system, which is 100 PSI for the filter. We set the PRV to 70 PSI, which is 

higher than the normal operating pressure at 7 GPM but below the maximum pressure 

rating of the filters. Based on performance charts for lubricant oils up to 500 SSU (108 

cSt), the maximum pressure drop through the valve is 25 PSI, staying within the filter's 

safe limit. We acquired the PRV from Fulflo, specifically the V-Series VSS-3R/3SS/XS 
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model. This valve has an 11 GPM capacity, a set pressure range of 60-175 PSIG, and can 

handle a full 7 GPM flow at approximately 25 PSI overpressure. Its maximum rated 

pressure is 1000 PSI, and it features a buna-nitrile seal with stainless steel construction. 

D). Inline Viscometer: The most crucial property of a lubricating oil is its viscosity, as it is 

essential for achieving optimal performance in any machinery application. Selecting an oil 

with the right viscosity that matches the operating conditions is key. Kinematic viscosity 

testing is vital for confirming the quality of a product batch and the success of a flushing 

operation. Traditional methods for measuring kinematic viscosity typically involve 

sampling and laboratory analysis using glass capillary viscometers. The effectiveness of 

these methods depends heavily on the quality, accuracy, and utility of the data obtained 

from the samples. It is necessary to take precise samples from each batch for process and 

quality control, as well as assurance. However, this approach is labor-intensive, time-

consuming, and prone to errors. To overcome these challenges, automating the viscosity 

testing process can reduce manual labor and operational expenses. Additionally, real-time 

viscosity measurement for a product batch offers extra environmental and logistical 

benefits, as it reduces the need for multiple iterations of the flushing operation. We employ 

a Hydramotion-manufactured inline viscometer (illustrated in Figure 32) to explore the 

benefits of real-time viscosity measurements as compared to traditional sampling methods. 

Key features of the Hydramotion TV5 series, a through-flow viscometer, include its 

seamless bore design, compatibility with pigging systems, a lack of moving parts, and no 

requirement for regular maintenance. This model's viscosity measurement capabilities 

range from 0 to 10,000 centipoise (cP), with a rapid measurement time of just 1 second. 

The device boasts an accuracy of either 1% of the reading or +/- 0.1 cP. It operates 



 

89 

 

effectively within a temperature range of -50°C to 100°C and can handle pressures up to 

100 bar. 

 

Figure 32. Inline Viscometer for Real Time Viscosity Measurement 

 

 

E). Data Acquisition System: Accurate and simultaneous recording of experimental data is 

essential for understanding and gaining insights into the studied process. Recognizing this, 

we identified the need for a data acquisition system (DAQ). The DAQ allows us to 

effectively gather, process, and analyze data from various instruments such as scales, inline 

viscometers, and thermocouples. It offers real-time measurement capabilities, crucial for 

our experimental procedures. This immediate data access is pivotal for monitoring and 

controlling experimental variables, contributing significantly to the effective modeling of 

our system and enabling prompt decision-making. After thorough research and evaluation, 

we chose the DAQ from NI, Labview (illustrated in Figure 33). Our selected system 

includes a cRio-9045 chassis with eight slots for multi-module input, a choice influenced 

by our plans for future expansion and the desire for increased flexibility in adding more 
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parameters to enhance our study's effectiveness. The selection criteria for the DAQ were 

based on specific needs of our experimental pilot plant, focusing on the type of 

measurement signals, the maximum sampling rate, and the number of channels that both 

the individual modules and the chassis can support. The chosen data acquisition system 

aligns with the signal requirements of our equipment. The scales used in the system deliver 

a 9 V DC output, while the inline viscometer delivers a 4 – 20 mA analog signal. 

Additionally, the thermocouple module is designed for type C series input, complementing 

perfect temperature measurement required for our system. The core of our data acquisition 

system is the cRio-9045 chassis, with an 8-slot housing for accommodating various 

modules. In this work we utilized three of these slots for specific modules. The first slot 

was occupied by NI–9870 and facilitates mass readouts from the scales. This module uses 

a GPIB interface for interaction with the scales for simultaneous readouts. The second slot 

housed the NI – 9212 module paired with TB – 9212 allowing for precise temperature 

measurements. The third module contained the NI -9203 module dedicated to viscosity 

readouts from the inline viscometer. 
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Figure 33. Data Acquisition System (DAQ) 

 

 

The finalized CAD design of the pilot plant is illustrated in Figure 34. Furthermore,  

Figure 35 illustrates the engineered pilot plant in the laboratory. 

 

 

Figure 34. Computer-aided Design (CAD) of the Pilot Plant 
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Figure 35. Engineered Pilot Plant in the Laboratory 

 

 

6.2 Process Flow Diagram of the Pilot Plant 

A process flow diagram of the developed pilot plant, replicating a single-family 

line is illustrated in Figure 36. The phenomena of the commingled oil formation were 

studied using this design.
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Figure 36. Process Flow Diagram of the Pilot Plant 

 

 

The system illustrated in Figure 36, flows from right to left in order to accurately 

represent how the pilot plant was constructed and the way fluid moves from the first two 

tanks to the third tank. Starting at the two tanks pictured to the right, the simulant fluid is 

filled into the two tanks to start, with Tank 1 fluid representing the residual fluid and  

Tank 2 representing the flushing fluid of the system. As a note, all three tanks are on scales 

in order to determine the quantity, or mass, of fluid moving through the system and the 

flowrate of the simulant fluid when the scales are paired with a time of flush. This is 

essential to determining how the system behaves as fluid flowrate greatly affects the mixing 

behavior within the pipelines and the time necessary to simulate a flush. Draining from 

below the tanks, the simulant fluid encounters a tee, where one side of the tee leads to the 

drain line used to drain the tanks and the other side leading to the pump. The drain line ball 

valves denoted in the process flow diagrams are by default closed unless the system is 
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being drained. The section between the pump and each of the two tanks are separated by 

ball valves (BV1 and BV2), as this controls which fluid will be pushed through the system 

depending on whether the system is being prepared for a flush with the residual fluid  

(Tank 1) or is in the process of flushing (Tank 2). For example, if the system is being 

flushed, BV2 will be open and BV1 will be closed. After the ball valves, the fluid reaches 

the pump where it is then propelled through the rest of the system. Immediately after the 

pump there is a pressure gauge which, in conjunction with the pressure gauge at the end of 

the line, allows the operator to determine the outlet pressure of the pump and the total 

pressure drop of the system. The fluid then reaches a cross in the pipeline where there are 

three options, the first of which is achieved by opening BV3. This allows the residual fluid 

to recycle back into Tank 1 to allow the pump to reach steady state and to prime the pump 

with the simulant fluid. The second option is the open BV4, which allows the flushing fluid 

to recycle back into Tank 2, achieving the same result as BV3. The final option is to open 

BV5, which allows the simulant fluid to flow through the rest of the system. After BV5, 

the system encounters a bend where the pipes reach a higher height to allow the user greater 

access to the filter and compressed air lines. Next is the air ball valve, which in conjunction 

with the pressure regulator and air flowmeter allows compressed air to be blown through 

the system for increased drainage of the residual product. The fluid enters the bag filter 

shortly after which filters the fluid and includes a drain line to allow for better filter 

drainage. This filter was chosen to represent the partner industrial plant filters most 

accurately, which is also a bag filter and has an equal system to filter volume ratio. After 

the filter, there is a U-bend in the line followed by a one-way valve, which is also 

representative to that of the partner industrial facility. The U-bend in conjunction with the 
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one-way valve allows for the modeling of simulant fluid holdup in the system and the 

effectiveness of system drainage. The simulant fluid then reaches the “manifold”, which 

connects the one-way valve to the filling spear and Tank 3. Located on the manifold is a 

pressure gauge to determine the pressure drop of the system and a drain line, which is 

utilized for system drainage. Shortly after is the in-line viscometer, which records the 

viscosity of the simulant fluid as it flows through the system and models how the system 

behaves during a flush. The final connection before reaching Tank 3 is an air-bleed valve, 

which is used to bleed all air from the system, and a sampling port used to collect 

intermittent samples during a flush. Lastly, the simulant fluid flows through BV6 and into 

Tank 3, which is the commingled tank and where both the residual and flushing fluids flow 

to at the end of the line. BV6 is utilized to separate the system from Tank 3, which is 

essential when draining the system using compressed air. This tank also had a scale to 

determine how much fluid flowed through the system and a drain line to drain the tank 

after a flush has been performed. 

The pilot plant study is a work in progress and the further studies are being 

performed by the fellow graduate and undergraduate students in the lab. To this end, in the 

next chapter, i.e. chapter 7, we proceed to our second approach of optimizing the flushing 

operations through process systems engineering. In this approach we formulate the flushing 

operation as an optimal control problem and develop a flowrate controlling strategy for 

conducting an efficient flush. 
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Chapter 7 

Process Systems Engineering Approach 

Text and figures are reproduced and adapted with permission from S. S. Jerpoth, R. 

Hesketh, C. S. Slater, M. J. Savelski, and K. M. Yenkie, “Strategic Optimization of the 

Flushing Operations in Lubricant Manufacturing and Packaging Facilities,” ACS Omega, 

p. acsomega.3c04668, Oct. 2023, doi: 10.1021/acsomega.3c04668. 

7.1 Optimal Control Problems and Applications 

In the course of the flushing procedure, a mixture comprising both the remaining 

oil and the incoming oil is generated. As we progress through each time step, the proportion 

of the incoming lubricant in the mixture steadily rises while the proportion of the remaining 

lubricant steadily diminishes. This dynamic evolution over time signifies that the system 

is in a state of continuous change, thus categorizing it as a dynamic system. Optimal control 

theory, a mathematical discipline, specializes in identifying the most efficient methods for 

regulating dynamic systems. In this chapter, we delve into the development and 

optimization of the flushing procedure, treating it as an optimal control problem. 

Within the petroleum industry, optimal control problems are indispensable tools 

applied across a range of crucial processes and operations. These applications encompass 

various domains: Reservoir management relies on optimal control to maximize 

hydrocarbon extraction from oil reservoirs while contending with complex constraints and 

uncertainties. This entails finely tuning injection rates, strategically placing wells, and 

adjusting operational variables to optimize oil and gas recovery [110]–[112]. Advanced 

methods such as model predictive control (MPC) and Pontryagin's maximum principle find 
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utility in this context [113]–[115]. Optimal control plays a pivotal role in drilling 

operations, enabling real-time adjustments to drilling parameters. This adaptability 

enhances drilling efficiency and reduces the likelihood of accidents [116]–[118]. Pipeline 

management is another arena where optimal control strategies come into play, ensuring the 

streamlined and cost-effective transport of oil and gas [119], [120]. This involves managing 

factors such as pressure regulation, optimizing flow rates, and minimizing energy 

consumption. Finally, in the complex landscape of refinery scheduling, optimal control 

techniques are essential for crafting efficient production schedules. These schedules are 

carefully crafted to meet market demands while optimizing resource allocation and 

minimizing operational costs. Together, these applications underscore the indispensable 

nature of optimal control in enhancing efficiency and effectiveness within the petroleum 

industry [121]. 

Optimal control is a field that examines the details of control functions, specifically 

examining their properties and characteristics. These control functions, when integrated 

into differential equations, yield a solution that seeks to either minimize or maximize a 

designated performance index or objective. In practical engineering applications, these 

control functions take the form of control strategies, which essentially dictate how a system 

or process should be controlled [122]. 

Optimal control deals with the properties of control functions, such that these 

functions, when inserted in differential equations, give a solution that minimizes or 

maximizes a performance index. In engineering applications, the control function is a 

control strategy. The differential equations describe the dynamic response of the 

mechanism to be controlled and depend on the control strategy employed [122]. The 
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evaluation of the time-dependent operating profiles, in terms of the control variable, is used 

for optimizing the process performance [123]. It's worth noting that optimal control 

problems present unique challenges compared to other types of optimization problems 

where decision variables are scalar. This complexity arises due to the dynamic nature of 

the decision variables in optimal control. Decision variables in optimal control are 

functions over time, and optimizing these functions within a dynamic system necessitates 

a more complex approach. Consequently, optimal control problems demand specialized 

methodologies and tools tailored to address these dynamic complexities. 

In this chapter, the focus is on optimizing the pipeline flushing process at a lubricant 

facility through dynamic system analysis. The key element to manage this system 

dynamically is the regulation of the oil flow rate used in the flushing operation, which has 

been established as the control variable in this study. The objective here is to develop a 

control policy for the flow rate that can adapt over time, a goal pursued through dynamic 

optimization strategies. By reaching a theoretically ideal flow rate profile, we have 

gathered critical data that can guide both the design and supervision of the flushing 

operation moving forward. Solving the optimal control problems necessitated a deep dive 

into mathematical theories, leveraging techniques including dynamic programming, the 

calculus of variations, discrete-time non-linear programming, and the application of 

Pontryagin’s maximum principle [124], [125]. The mathematical depth involved in some 

of these techniques; both calculus of variations and dynamic programming rely on the use 

of second-order differential equations and partial differential equations, introducing a high 

level of mathematical complexity. Pontryagin’s maximum principle, on the other hand, 

simplifies the process significantly by requiring only first-order differential equations, 
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thereby reducing computational demands and presenting a more appealing option 

compared to the other methodologies [123]. 

7.2 Viscosity Blending Correlations 

Traditional viscosity testing methods, following the ASTM D445 standards [109], 

are time-intensive, often taking between 20 to 30 minutes . This lengthy process results in 

significant operational pauses. Addressing this inefficiency, our study aims to improve in-

line control during the flushing process by formulating models to predict the viscosity of 

lubricant blends in real-time. We have incorporated viscosity blending correlations from 

the American Petroleum Institute’s Technical Data Book (API-TDB) [126], [127]. The 

specific correlation, denoted by equation (1), computes the viscosity of a blend comprised 

of two or more components, using the cubic-root average of the viscosities of the individual 

components. This calculates the viscosity of the blend and also provides insight into the 

concentration of each component. With this equation, we can monitor in real-time how the 

viscosity of the mixture adjusts to meet the requirements of the new lubricant during the 

flushing process. 

In our context, the suffix ‘A’ stands for residual lubricant and the suffix ‘B’ stands 

for upcoming lubricant (flushing lubricant). 

µ𝐴𝐵 

1
3  =   𝑥𝐴  µ𝐴

1
3 +  𝑥𝐵  µ𝐵

1
3  (17) 

Where: µ𝐴𝐵
  −  Viscosity of mixture of lubricant A and B (cSt) 

 µ𝐴
    −  Viscosity of residual lubricant (cSt) 

 µ𝐵
    −  Viscosity of upcoming lubricant (flushing oil) (cSt) 

 𝑥A   − Mass fraction of residual lubricant  

𝑥B   − Mass fraction of upcoming lubricant (flushing oil) 
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Note: In the reference Riazi 2005 [126], 𝑥A  and 𝑥B  in equation (17) stands for mole fraction 

of the pure components. However, in this work we noticed that the mole fractions and mass 

fractions for the lubricant mixtures had negligible difference and therefore to eliminate the 

computational complexities, we considered 𝑥A  and 𝑥B  to be the mass fractions. 

To validate the API-TDB recommended blending correlation for lubricant 

mixtures, a series of experiments were conducted following this stepwise procedure: 

Step 1: We prepared known compositions of lubricant mixtures, ranging from a volume 

fraction of 0.1 to 0.9, with each sample incrementing by 0.1. This resulted in a total of 

eleven samples. We ensured the accuracy of sample preparation by selecting a total sample 

volume of 25 ml and carefully measuring the weights while mixing the two lube oils. This 

allowed us to obtain precise mass fraction data for each of the eleven samples. 

Step 2: The kinematic viscosity of each sample was determined according to the ASTM 

D445 guidelines [109], using ubbelohde viscometers and a constant temperature bath setup. 

Step 3: We compared the experimentally measured viscosity values with those calculated 

using the blending correlation. In Figure 37 (left), you can see the ubbelohde viscometers 

and the constant temperature bath setup used in the experiments. The changing colors 

depicted in Figure 37 (right) visually represent the increasing concentration of the golden-

colored lube oil in a mixture of translucent and golden lube oil with known mass fractions. 

We conducted the validation of calculated viscosity values against experimentally 

measured values for two distinct lubricant mixtures, as illustrated in Figure 37 . The 

agreement within a 5% margin of error confirmed the applicability of the blending 

correlation to lubricant mixtures. 
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Figure 37 (left) illustrates the Ubbelohde viscometers and a constant temperature 

bath setup that was used for the experiments. The changing colors in Figure 38 visually 

depict the increasing concentration of the golden-colored lube oil in a mixture of 

translucent and golden lube oil of known mass fractions. The validation of the calculated 

viscosity values against the experimentally measured values was carried out for two 

distinct lubricant mixtures, as shown in Figure 38. The agreement within a 5% margin of 

error between the experimental and the calculated values confirmed the applicability of the 

blending correlation to lubricant mixtures. 

 

 

Figure 37. Constant Temperature Bath Setup with Ubbelohde Viscometers for Kinematic 

Viscosity Measurement (left) Sample Vials of Known Mass Fractions of Lubricant 

Mixtures (right)
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Figure 38. Validation of API-TDB Blending Correlation for Lubricant Mixtures. Blue Data 

Points Indicating the Experimentally Measured Values of Kinematic Viscosity and Red 

Curve Illustrating the Calculated Value from the Blending Correlation 

 

 

7.3 Dynamic First Principles Model of Flushing Operation 

Let us consider that initially, lubricant A is processed through the pipelines. After 

the packaging of ‘lubricant A’ is completed, the upcoming batch of lubricant B is to be 

packaged as illustrated in Figure 39. Hence, the pipelines must be flushed with lubricant B 

until the desired specifications are reached. 

 

 

Figure 39. Illustration of a Changeover Operation in a Lubricant Pipeline with a cross 

sectional area ‘𝐴𝐶 ’ and total length ‘L'. 

 

 

Below are the list of model parameters and variables used for the problem formulation:  

Model Parameters: 

µ𝐴
    −  Viscosity of residual lubricant (cSt) 

µ𝐵
  −  Viscosity of upcoming lubricant (flushing oil) (cSt) 
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𝜌𝐴 −  Density of lubricant A (kg/m3) 

𝜌𝐵  −  Density of lubricant B (kg/m3) 

𝐴𝐶  −  Cross-sectional area of the pipeline (m2) 

𝐿 −  Total length of the pipeline (m) 

𝑉 −  Total volume of the pipeline (m3) 

Model Variables: 

µ𝐴𝐵t  −  Viscosity of blend of lubricant A and B (cSt) 

𝑚At  −  Mass of lubricant A (kg) 

𝑚 −  Total mass of the system (kg) 

𝑥At  −  Mass fraction of lubricant A 

𝑥Bt  −  Mass fraction of lubricant B 

𝑄𝑡   −  Volumetric flowrate of lubricant B (m3/s) 

𝑡   −  Flushing time (s) 

A general mass balance equation for lubricant A and B is derived below: 

Accumulation =  Input −  Output +  Generation −  Consumption (18) 

Assumptions: (1) Initially the pipeline is completely filled with lubricant A before the 

lubricant B is processed. (2) The densities of lubricants A and B is approximately the same. 

(3) There is no chemical reaction taking place in the pipeline. 

The model parameters  𝜌𝐴, 𝜌𝐵 , 𝐴𝐶 , 𝐿, and 𝑉 remains unchanged for the system. 

However, the parameters µ𝐴
  and µ𝐵

  changes with respect to each case study and the effect 

of the changes have been discussed in results section. 

The generation and consumption term in equation (18) can be neglected as there is no 

chemical reaction taking place in the pipeline. Therefore, 

𝑑𝑚At 

𝑑𝑡
=  0 − 𝜌𝐴

 𝑥At 𝑄𝑡  +  0 –  0 (19) 
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Writing equation (3) in terms of mass fraction 

𝑑𝑥At 

𝑑𝑡
 𝑚 =  −𝜌𝐴

 𝑥At 𝑄𝑡 (20) 

𝑑𝑥At 

𝑑𝑡
=  

𝜌𝐴
 𝑥At 𝑄𝑡

𝑚
 (21) 

𝑚 =  𝜌. 𝑉  (𝐴𝑠𝑠𝑢𝑚𝑖𝑛𝑔 𝜌𝐴 =  𝜌𝐵 =  𝜌) (23) 

𝑚 =  𝜌𝐴𝐶 𝐿 (24) 

Substituting equation (24) in equation (21)  

𝑑𝑥At 

𝑑𝑡
=  −

𝑥At 𝑄𝑡

     𝐴𝐶 𝐿
 (25) 

Similarly, 

𝑑𝑥Bt 

𝑑𝑡
=  

𝑥At 𝑄𝑡

     𝐴𝐶 𝐿
 (26) 

Differentiating equation (1) w.r.t ‘t’ and substituting the values of  
𝑑𝑥At 

𝑑𝑡
  and 

𝑑𝑥Bt 

𝑑𝑡
  

𝑑µ𝐴𝐵𝑡
 

𝑑𝑡
=  

3𝑥At 𝑄𝑡

     𝐴𝐶 𝐿
 [𝑥𝐴𝑡 µ𝐴

1
3  +  𝑥𝐵𝑡 µ𝐵

1
3 ]

2

 [µ𝐵

1
3 − µ𝐴

1
3 ] (27) 

Equations (25), (26), and (27) represents our first principles models. These models were 

then validated against well designed experimental data. More details in regard to the 

validation is presented in section 7.4. 

7.3 Validation of First Principles Models 

Our partnered lubricant facility processes over 15,000 unique products in a given 

production year. We first started by collecting and analyzing data from the regular flushing 

operations conducted by this facility. Our analysis gave us a strong indication that the 



 

105 

 

flushing operation was not optimum, and the flush time was chosen based on the operator’s 

experience and through trial-and-error method. Therefore, in the subsequent phase, we 

formulated and executed a set of structured experiments to acquire empirical data points 

for the purpose of validating our mathematical models. The procedural sequence observed 

during these experiments within the plant is outlined as follows: 

Step 1: 25 ml sample bottles, were prepared ensuring proper labeling.  

Step 2: Prior to initiating the flush, the initial volume of the feed tank was recorded.  

Step 3: The flush procedure was initiated with well-defined time. 

Step 4: Over a flush duration spanning from 60 to 120 seconds, based upon operator’s 

experience, samples were collected at every 10-second interval.  

Step 5: Upon completion of the flush, the timer and the sample collection were halted.  

Step 6: The final volume of the feed tank for then documented. 

Step 7: Subsequently, the collected samples were dispatched to the laboratory for kinematic 

viscosity testing.  

The samples taken at 10-second intervals provided us with valuable insights into 

how the viscosity of the mixture, comprising residual and fresh lubricant, progressed 

toward meeting the desired specifications of the new lubricant at each time increment. The 

flushing data for twenty-five different changeover operations were analyzed and compared 

against the mathematical models.  Confirmation of the accuracy of our models in 

representing the flushing operation was established with an agreement within a 7% margin 

of error. This means that the percentage error between the experimental and the simulated 

results was within 7%. Figure 40 provides a comparative analysis between the experimental 

data points and the simulated outcomes for four specific changeover operations. We have 
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singled out these four changeovers from the total of twenty-five, as they offer a clear and 

illustrative depiction of the transition providing further insight into the effectiveness of our 

models in capturing these transition scenarios.  

 

 

Figure 40. Validation of Developed First Principles Models with Empirical Data Points 

Collected from Well-Structured Experiments Conducted at the Partnered Lubricant 

Facility 

 

 

Table 11 illustrates the viscosity difference between the residual and flushing oil and the 

flushing flowrate for each of these test cases.



 

107 

 

Table 11 

Viscosity Gradient between the Residual and the Flushing Lubricant, and Flushing 

Flowrate of the Selected Test Cases 

Test 

Case 

Viscosity of 

Residual Oil (cSt) 

Viscosity of 

Flushing Oil (cSt) 

Viscosity 

Difference (cSt) 

Flushing 

Flowrate (m3/s) 

1 130.26 305.39 175.13 0.003 

2 54.85 15.06 39.79 0.006 

3 82.84 44.8 38.04 0.006 

4 113 63.2 49.8 0.005 

 

 

To illustrate, consider test case 1 where the residual lubricant had a viscosity of 

130.57 cSt, while the new lubricant measured 305.39 cSt. This results in a significant 

viscosity difference of 174.82 cSt, signifying a transition from a low-viscosity oil to a high-

viscosity one. The experimental data points are denoted by orange markers, while the blue 

curve highlights the results simulated using our first principles models. Similarly, in test 

case 2, the residual lubricant exhibited high viscosity, whereas the flush oil had a lower 

viscosity, i.e. this was a changeover from a high viscosity to a low viscosity oil resulting 

in a viscosity difference of 39.79 cSt. For test case 3, the viscosity difference was 37.17 

cSt, and in test case 4, it was 48.56 cSt providing further insight into the effectiveness of 

our models in capturing these transition scenarios. 
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7.5 Formulation of Optimal Control Problem 

Our objective is to have the upcoming oil (lubricant B) completely free of the 

residual oil (lubricant A) at the final collection point. Hence, the viscosity of the blend at 

the final time point should be equal to the viscosity of the lubricant B. Mathematically, our 

objective can be formulated to minimize the difference between the viscosity of the blend 

and the viscosity of lubricant B by finding an optimum flushing time, as shown in  

equation (28).  

𝑀𝑖𝑛 𝐽 =  [ µ𝐴𝐵𝑡

 

 
(𝑡𝑓𝑖𝑛𝑎𝑙) − µ𝐵]2 (28) 

The state of our system is controlled through the flow rate of lubricant B (flushing oil). 

Hence, the variable 𝑄𝑡 represents the control variable of the system. The process 

performance is determined by attaining the desired viscosity of lubricant B. Given the 

values of the state variables 𝑥𝑖 [𝑤ℎ𝑒𝑟𝑒 𝑥𝑖 = (𝑥𝐴𝑡 , 𝑥𝐵𝑡 , µ𝐴𝐵𝑡

 )] and the control variable 𝑄𝑡 at 

time 𝑡, the differential equations (25), (26), and (27) specify the instantaneous rate of 

change in the state variables.  The developed optimal control problem was solved using 

two solution approaches, viz. Pontryagin’s maximum principle and discrete-time nonlinear 

programming (NLP). 

7.5.1 Solution Using Method#1: Pontryagin’s Maximum Principle 

The application of the maximum principle requires an introduction of additional 

variables known as adjoint variables and a Hamiltonian. Three adjoint variables ‘𝑧𝑖’, 

corresponding to each of the state variables, and a Hamiltonian was used in this work. The 

introduced adjoints must satisfy equation (30), and the Hamiltonian must satisfy  
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equation (31). The details of the derived adjoint and Hamiltonian equations are provided 

in Appendix A. Table 12 summarizes the various quantities that describe our model.  

𝑑𝑥𝑖

𝑑𝑡
=  f (𝑥𝑖 , 𝑄𝑡 , 𝑡) (29) 

𝑑𝑧𝑖

𝑑𝑡
= − ∑ 𝑧𝑗  

𝑛

𝑗=1

𝜕𝑓𝑗

𝜕𝑥𝑖
 (30) 

𝑑𝑧𝑖

𝑑𝑡
= − ∑ 𝑧𝑗  

𝑛

𝑗=1

𝜕𝑓𝑗

𝜕𝑥𝑖
 (31) 

 

Table 12 

Quantities that Describe the Developed First Principles Mathematical Model 

 

 

 

For evaluating the Hamiltonian derivative, we use an analytical method proposed 

by  Benavides and Diwekar, 2013 [124] which introduces an additional variable 

corresponding to each state variable and adjoint variable. The variable 𝜃𝑖 corresponds to 

Quantity Mathematical Model 

Parameters µ𝐴
 , µ𝐵

 , 𝐴𝐶 , 𝐿 

State variables 𝑥𝑖           =            [𝑥𝐴𝑡 , 𝑥𝐵𝑡 , µ𝐴𝐵𝑡

 ] 

State equations 𝑑𝑥𝑖

𝑑𝑡
 = f (𝑥𝑖, 𝑄𝑡 , 𝑡) 

Adjoint equations 𝑑𝑧𝑖

𝑑𝑡
 =  - ∑ 𝑧𝑗  𝑛

𝑗=1

𝜕𝑓𝑗

𝜕𝑥𝑖
 

Hamiltonian equations H  = ∑ 𝑧𝑖  𝑓(3
𝑖=1 𝑥𝑖, 𝑄𝑡 , 𝑡) 
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each of the state variables 𝑥𝑖 and the variable Ф 𝑖 corresponds to each of the adjoint 

variables 𝑧𝑖, respectively. These equations are described in detail in Appendix B. 

𝑑𝑥𝑖

𝑑𝑄𝑡
 and Ф 𝑖 =

𝑑𝑧𝑖

𝑑𝑄𝑡
 (32) 

𝑑 (
𝑑𝑥𝑖

𝑑𝑡
 )

𝑑𝑄𝑡
=  

𝑑 (
𝑑𝑥𝑖

𝑑𝑄𝑡
 )

𝑑𝑡
=  

𝑑𝜃𝑖  

𝑑𝑡
 (33) 

𝑑 (
𝑑𝑧𝑖

𝑑𝑡
 )

𝑑𝑄
=  

𝑑 (
𝑑𝑧𝑖

𝑑𝑄𝑡
 )

𝑑𝑡
=  

𝑑Ф 𝑖 

𝑑𝑡
 (34) 

𝑑𝐻

𝑑𝑄𝑡
=  ∑ (

𝑑𝐻

𝑑𝑥𝑖
)

3

𝑖=1

(
𝑑𝑥𝑖

𝑑𝑄𝑡
) +  ∑ (

𝑑𝐻

𝑑𝑧𝑖
)

3

𝑖=1

(
𝑑𝑧𝑖

𝑑𝑄𝑡
) (35) 

Thus, the complete model will consist of three state equations [equations (25) – 

(27)], three adjoint equations, and twelve Hamiltonian equations. The algorithm starts with 

the initial guess of flowrate 𝑄𝑡. Next, state equations represented by (29) are solved for the 

interval of 𝑡0 to 𝑡𝑓 using forward integration and employing Euler’s method. Then, the 

adjoint equations represented by (30) are solved using backward integration. Next, the 

optimal control variable 𝑄𝑡 is obtained by finding the extremum of the Hamiltonian at each 

time step, using the optimality condition of [|dH/d𝑄𝑡|] < tolerance. Our tolerance limit is 

zero.  If the optimality condition is not satisfied, the flowrate 𝑄𝑡 is updated using the 

gradient, such that the updated flowrate profile improves the objective function. Figure 41 

shows the flowchart for the solution approach. 

 

 



 

111 

 

 

Figure 41. Flowchart of Solution Technique Using Maximum Principle Approach 

 

 

In this work we experienced that the execution time for the Pontryagin’s maximum 

principle algorithm exceeded over 60,000 seconds. Hence to overcome this drawback we 

used discrete-time nonlinear programming (NLP) solution method. In the discrete-time 

NLP solution approach, the total time is discretized into ‘n’ known intervals and the state 

equations are solved for each interval. More details of the method are presented in the 

following section 7.5.2.  

Stop 

[dH/d𝑄𝑡]< tolerance 

START 

Assume initial flowrate value  𝑄𝑡= a constant value  

Solve equations 
𝑑𝑥𝑖

𝑑𝑡
 = 𝑓(𝑥𝑖 , 𝑄𝑡 , 𝑡) from 𝑡0 to 𝑡𝑓 using forward integration 

Solve equations 
𝑑𝑧𝑖

𝑑𝑡
 = 𝑓(𝑥𝑖 , 𝑧𝑖 , 𝑄𝑡 , 𝑡) from 𝑡𝑓 to 𝑡0 using backward integration 

Compute the values of  
𝑑𝐻

𝑑𝑄𝑡
 = ∑ (

𝑑𝐻

𝑑𝑥𝑖
)3

𝑖=1 (
𝑑𝑥𝑖

𝑑𝑄𝑡
) + ∑ (

𝑑𝐻

𝑑𝑧𝑖
)3

𝑖=1 (
𝑑𝑧𝑖

𝑑𝑄𝑡
) 

Yes 

No 
𝑄𝑡

new = 𝑄𝑡
old+M 

𝑑𝐻 

𝑑𝑄𝑡
(𝑡) 
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7.5.2 Solution Using Method#2: Discrete-Time Non-Linear Programming (NLP) 

In the discrete-time NLP solution method, the total flush time is discretized into 

known ‘n’ equal intervals. The objective function stays the same as shown in equation (36) 

and it is subjected to the integrated form of the state equations [equations (37) and (38)]. 

These equations are solved for each interval. Let’s consider for an example the total flush 

time was 60 seconds and we divide the total flush time into 6 equal intervals of 10 seconds 

each as illustrated in Figure 42. The solution algorithm solves the state equations for each 

interval. In this solution approach the control variable ‘𝑄̅’ is provided as a vector and we 

specify the system specific maximum and minimum constraints for our control variable 

(flowrate of lubricant B). 

 

 

Figure 42. Discretization of Total Time into Equal Intervals to Solve the State Equations 

within Each Interval.

 

  
 
 
  
  
  
 

 
  
  

         

  

                  

𝑄̅  
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𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒: 𝑀𝑖𝑛 𝐽 = [ (µ𝐴𝐵𝑡

 

 
(𝑡𝑓𝑖𝑛𝑎𝑙) − µ𝐵)/µ𝐵]2 (36) 

Subject to:  

𝑥𝐴𝑡
=  𝑒𝑥𝑝 (−

𝑄̅𝑡

𝐴𝑐𝐿
) (37) 

𝑥𝐵𝑡
= 1 −  𝑒𝑥𝑝 (

−𝑄̅𝑡 

𝐴𝑐𝐿
) (38) 

Equation for µ𝐴𝐵𝑡

  

µ𝐴𝐵𝑡

1
3  =   𝑥𝐴𝑡 µ𝐴

1
3 +  𝑥𝐵𝑡 µ𝐵

1
3  (39) 

Next, we solve the state equations for the 1st interval to achieve the desired 

objective function. If the optimality criteria is not satisfied, the flowrate is updated for the 

next interval such that the updated flowrate profile improves the objective function. The 

iterations continue for ‘n’ intervals until the desired optimality condition is achieved. i.e., 

the difference in the viscosities of the blend and the viscosity of lubricant B is minimized. 

In other words, the desired specifications of the new lubricant B are reached. The choice 

of our decision variable is based on time because in real world scenario the plant operators 

at these facilities can provide the input in terms of time. Therefore, we study the optimum 

flowrate in a given time interval to conduct a successful flush. The developed discrete-time 

NLP problem is solved in MATLAB using the constrained optimization algorithm 

‘fmincon’. Figure 43 depicts the flowchart of the solution approach. 
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Figure 43. Flowchart of Solution Technique Using Discrete Time Non-Linear 

Programming (NLP) Solution Approach 

 

 

 

Optimality 
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No 

Stop  

Update 𝑄̅ for the next 
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Start 

Discretize the total flush time into ‘n’ known intervals 

Provide an initial (new) guess of the control variable 𝑄̅ = 
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constraints of 𝑄̅ 

Solve the state equations for each interval to achieve the 

desired objective function 
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7.6 Results and Discussions 

The results and discussions are divided into two sub sections. Section 6.4.1 

illustrates the maximum principle solution approach. Section 6.4.2 explains the comparison 

of maximum principle solution results with the discrete time NLP results and it’s 

comparison with the experimental data. 

7.6.1 Pontryagin’s Maximum Principle Solution Method 

The derivative of Hamiltonian profiles at different iterations for a case study is 

shown in Figure 44. It can be observed that the dH/d𝑄𝑡 value decreases with every iteration.  

 

 

Figure 44. Graph Depicting the Hamiltonian Gradient Profiles for Each Iteration, 

Showcasing a Progressive Reduction in Value with Each Step, Ultimately Reaching the 

Tolerance Limit in the Final Iteration. 
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The final iteration value lies within the given tolerance limit which is a value close 

to zero. Hence, we conclude the flowrate to be optimal and the corresponding profile is 

shown in Figure 45. 

 

 

Figure 45. Profile of Flowrate Corresponding to the Final Iteration where the Hamiltonian 

Gradient Achieves the Desired Tolerance Limit 

 

 

The final iteration of the optimal flowrate profile was used for simulating the state 

equations. The goal was to predict the time step at which the viscosity of the blend reaches 

the desired viscosity limits of the lubricant B. The comparison between the optimum 

flushing time predictions via the maximum principle solution approach, the discrete-time 

NLP solution approach and the experimental data is discussed in section 6.4.2. 

7.6.2 Comparison of Different Solution Methods 

We show a comparison of the maximum principle and the discrete time NLP 

solution approach for a test case 1 in Figure 46. We plot the flush time against the kinematic 

viscosity of the collected lubricant blend samples. Test Case 1 was a changeover operation 
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where the viscosity of the residual lubricant was 130.26 cSt and the desired viscosity of the 

new lubricant was 305.39 cSt. According to the industrial standards, the flushing can be 

stopped when the sample reaches a value within 5% of the desired value. At the partnered 

industrial facility, the operator based upon his experience with this specific product choose 

a total flush time of 290 seconds. However, as explained previously, for our designed 

experiments conducted at this facility, we collected samples at an interval of every 10 

seconds for the total flush time. 

 

 

Figure 46. Comparison of Maximum Principle and Discretized Non-Linear Programming 

Solution Approach for Test Case 1 where the Viscosity of the Residual Lubricant is  

130.26 cSt and the Desired Viscosity of the New Lubricant is 298.56 cSt 

 

 

We tested these samples for their kinematic viscosity and the experimental data 

points are shown by the orange scattered plot in Figure 46. As observed the desired passing 

specification of 298.56 cSt was achieved right at the 18th sample for the total flush time of 
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180 seconds. Our results from the discrete-time NLP solution method (represented by the 

smooth green curve in Figure 46) shows that if the operation was to be conducted at an 

optimal flowrate profile the desired specifications will be achieved at a total flushing time 

of 164 seconds. The execution time for the problem was 250 seconds. Furthermore, we ran 

the simulation for the Pontryagin’s maximum principle solution approach. Furthermore, 

we ran the simulation for the Pontryagin’s maximum principle solution approach 

(illustrated by the dashed curve in blue Figure 46). The execution time for the problem was 

70,360 seconds and the results indicate that the desired specification will be achieved at 

3.8 seconds of the flushing time. However, this is not possible in practical scenario. We 

further compared the optimal flowrate profile for the non-linear programming solution 

method and the maximum principle solution method shown in Figure 47. 

 

 

Figure 47. Comparison of the Optimal Flowrate Profiles for the Maximum Principle and 

the Non-Linear Programming Solution Methods for Test Case 1 
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The flowrate profile for the maximum principle method (dashed curve in blue in  

Figure 47), starts with the initial guess, and starts decreasing for the next 50 seconds of 

interval. It stays constant until 250 seconds and further starts decreasing until the last 

interval. The optimal flowrate profile for the NLP solution method starts with the initial 

guess reaches a maximum value and slightly decreases for the next intervals until the end 

time. Similarly, we compare results for the change in kinematic viscosity against time for 

twenty-five changeover operations and compare the results with the experimental data. The 

graphs for four changeovers are shown in Figure 48. For Test Case 2, the NLP prediction 

for the optimum flush time was almost double as compared to the experimental data. 

Furthermore, the maximum principle prediction for the optimum flush time was only a 

fraction of a second. For the Test Case 3 and Test Case 4, the NLP results obeyed very 

closely with the experimental data. Furthermore, the optimum flush time for the maximum 

principle was still below 5 seconds. The execution time for the NLP solution method was 

within 20 seconds whereas the execution time for the maximum principle exceeded over 

70,000 seconds. 
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Figure 48. Comparison of Maximum Principle and Discrete-Time NLP Solution Approach 

 

 

7.6 Economic and Environmental Significance  

The existing trial and error method that is currently used at lubricant facilities often 

requires the flushing operation to be repeated for multiple iterations and therefore involves 

a significantly large associated flushing volume. Alternatively, if we apply the discretized 

NLP solution approach and conduct the operations at a customized flowrate, we can reduce 

the necessary flushing volume to over 30%. Figure 49 illustrates a comparison of the 

flowrate profile of the discrete-time NLP solution method and the constant flowrate. 

Looking at the area under the curve which illustrates the volume flushed we can observe 

that the green curve (discrete-time NLP) uses less volume as compared to the constant 

flowrate (red line).  
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Figure 49. Comparison of Constant Flowrate with the Flowrate Profile of Discrete-Time 

NLP Solution Method for Test Case 1.

Constant Flowrate = 0.003m3/s 
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To compare the savings in the volume we study the minimum required flush volume for 

existing mode of operation (constant flowrate) with the optimum flowrate profile (discrete 

time NLP). Figure 50 illustrates the required flushing volume in gallons for the existing 

mode of operation and the proposed customized flowrate via discrete-time NLP solution 

approach. As observed the optimized flowrate by discrete-time NLP results in flush volume 

savings of over 30% 

 

 

Figure 50. Comparison of Necessary Flushing Volume in Existing Mode of Operation and 

Discrete-Time NLP Solution Approach 

 

 

Thus, we believe that this approach has great potentials to improve the resource 

conservation and the environmental footprint of these operations. Life cycle assessment 

(LCA) is a scientific method for systematically analyzing the environmental impact and 

the sustainability of various processes and products [128]–[131]. We studied the life cycle 

assessment of the optimized operation with the existing operation using SimaPro software. 
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We focus our calculations on the end-point assessment category considering human health 

(DALY), Ecosystem Quality (PDF*m^2*y), Climate Change (MT CO2-eq), and resource 

(MJ primary). The obtained results are illustrated in Figure 51.  

 

Figure 51. Life Cycle Assessment for Exiting Mode of Operation and Optimized Operation 

at Customized Flowrate 

 

 

7.6 Conclusion 

In this chapter, we confirmed the applicability of API – TDB recommended 

viscosity blending correlations for lubricant mixtures by gathering experimental data from 

known compositions of lube oil blends. In the recommended blending correlations by API-

TDB, the viscosity of the mixture was calculated as the cubic average viscosity of the 

individual components of the mixture and correlated to their mole fractions. However, in 

this work we replaced the mole fractions with the mass fractions as both were 



 

124 

 

approximately the same for lube oil mixtures. The correlations demonstrated close 

agreement with experimental results, staying within a 5% margin of error. Additionally, 

we developed mathematical models based on first principles to represent the flushing 

operations. These models were validated using experimental data obtained from a 

collaborative lubricant blending plant, with the validation showing an agreement within a 

7% error margin. For the optimization of the flushing operation, we approached it as an 

optimal control problem and employed two solution methods: Pontryagin's Maximum 

Principle and Discrete-Time Non-Linear Programming. While the Maximum Principle 

method had a considerably longer execution time, exceeding 70,000 seconds, and yielded 

unrealistic flushing time predictions, the discrete-time NLP solution approach completed 

in under 10 seconds and provided results that closely aligned with experimental data. 

Therefore, the discrete-time NLP solution approach holds significant potential for 

optimizing the trial-and-error-based flushing operation by minimizing the required 

flushing volume to meet the desired specifications. Our research presents a valuable 

strategy for applying optimal control theory and developing customized flowrate profiles 

for conducting an efficient flushing operation.  This approach enables operators to make 

well-informed decisions, reducing operational downtime, and enhancing the economic, 

resource management, and environmental aspects of these processes. 

To this end, in the subsequent chapter, Chapter 8, we delve into our third solution 

approach, which constitutes the data-driven method or machine learning approach, 

completing the three-pronged solution strategy. 
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Chapter 8 

Data-Driven Approach 

8.1 Fundamentals of Machine Learning 

This chapter is committed to applying machine learning methodologies to analyze data 

from current operations and enhance the strategy for optimizing flushing operations. In this 

section, we discuss the foundational principles of ML systems, beginning with an 

examination of the diverse machine learning strategies that are widely adopted in the PSE 

domain. 

8.1.1 Types of Machine Learning Algorithms 

Supervised learning is a type of machine learning algorithm that uses labeled data 

in its training process [132], [133]. In this approach, both input data (features) and 

corresponding output data (target labels) are utilized to train a model. The model learns to 

map inputs to outputs and, once sufficiently trained, can use this mapping to predict the 

output for new, unseen inputs [134]. It is generally used in tasks such as regression, where 

continuous outputs are predicted, and classification, where outputs are discrete labels 

[135]. Common algorithms in supervised learning include linear regression, decision trees, 

random forests, support vector machines (SVM), and neural networks [136]–[141] 

Conversely, unsupervised learning refers to a category of machine learning wherein 

the model is trained using datasets that lack labeled responses [142]. This implies that the 

training data is composed of input vectors devoid of associated target values. The primary 

objective of unsupervised learning is to unearth concealed patterns and intrinsic structures 

in the data [135]. Algorithms utilized in unsupervised learning predominantly engage in 
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clustering or grouping data points into separate clusters or working to reduce the data's 

dimensionality to identify critical attributes [143]. Typical techniques in unsupervised 

learning encompass K-means clustering, hierarchical clustering, and principal component 

analysis (PCA) [144]. This approach is largely adopted when there is an abundance of data 

and the aim is to decode hidden patterns without being directed towards a specific 

predictive task [145]. 

Reinforcement Learning (RL) represents another class within the machine learning 

spectrum where an agent learns to take decisions in a specific environment predicated on 

feedback, manifested through rewards or penalties [146]. The principal objective for RL 

algorithms is to refine the actions undertaken by the agent to sequentially augment the 

cumulative rewards over a period [147]. RL holds substantial merit in contexts where 

finding the optimal solution demands a significant extent of exploratory efforts and a trial-

and-error approach [148]. Prominent techniques in RL encompass Q-learning, deep Q-

networks (DQN), and policy gradients [149]. 

8.1.2 Feature Selection and Dimensionality Reduction 

Feature selection plays a pivotal role in boosting the precision of predictive models 

by pinpointing the most appropriate variables and refining the dataset. Filter methods, one 

such strategy, examine features individually through measures like correlation and mutual 

information [150]. These criteria determine the relationship of each feature to the outcome 

variable, facilitating the choice of features with the strongest correlation. There are also 

iterative methods that assess sets of features based on the performance of a specified model. 

Familiar iterative strategies encompass forward selection, backward elimination, and 

recursive feature elimination. 
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Dimensionality reduction methods optimize expansive datasets, supporting the efficiency 

of predictive models and optimizing computational efficiency. Principal Component 

Analysis (PCA) [151] stands out as a commonly utilized linear technique that determines 

main components or chief directions that capture the most significant data variation. While 

reducing the data dimensions, PCA preserves a substantial portion of the original data's 

variation [152]. In addition to the above, techniques such as feature agglomeration and 

manifold learning are employed to group features based on their similarities, while 

maintaining complex relationships within the data [135].  

8.1.3 Model Validation and Evaluation  

Model validation involves verifying how well a trained machine learning model 

performs on unseen data. The primary aim here is to detect and prevent issues such as 

overfitting or underfitting [153]. It generally involves using a separate dataset (validation 

set) not seen by the model during training. Strategies for model validation include: 

Train-Validation-Test Split: Splitting the data into training, validation, and testing sets to 

fine-tune the model parameters and assess its performance.  

Cross-Validation: Utilizing techniques such as k-fold cross-validation and stratified K-fold 

cross validation to use different subsets of the data for training and validation, helping to 

ensure the robustness of the model [154]. 

In K-fold cross-validation, the dataset is randomly partitioned into 'k' equal-sized 

subsets. Of the 'k' subsets, a single subset is retained as the validation data for testing the 

model, and the remaining 'k-1' subsets are used as training data. The cross-validation 

process is then repeated 'k' times, with each of the 'k' subsets used exactly once as the 

validation data. The 'k' results can then be averaged to produce a single estimation. K-fold 
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cross validation is used when the distribution of target variable classes is roughly equal. 

However, a drawback is that K-fold cross validation does not guarantee that the distribution 

of the target variable is maintained across all the folds. 

In stratified K-fold cross-validation, like k-fold, the data is divided into 'k' folds. 

However, stratified k-fold cross-validation ensures that each fold has the same distribution 

of the target variable as the entire dataset. This is achieved by splitting the data such that 

each fold has roughly the same percentage of samples of each target class as the complete 

dataset. Hence, it is specifically useful when we have imbalanced classes in our dataset. 

stratified K-fold cross-validation ensures that each fold is a good representative of the 

overall dataset. 

Model evaluation is the process of assessing the predictive performance of a model 

using specific metrics [155]. It's carried out after model validation, using a testing dataset 

that wasn't involved in the training or validation processes. Key aspects include: 

Performance Metrics: Depending on the type of problem (classification, regression, etc.), 

different metrics are used, including accuracy, precision, recall, F1-score for classification 

problems, and Mean Absolute Error (MAE), Mean Squared Error (MSE) for regression 

problems [156]. 

Confusion Matrix: In classification problems, a confusion matrix is often used to 

understand the performance of the algorithm, mainly for binary classification  

problems [157]. A confusion matrix is typically a 2x2 matrix for binary classification 

problems. It consists of four entries: 

True Positive (TP): The cases where the model predicted the positive class correctly. 

True Negative (TN): The cases where the model predicted the negative class correctly. 
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False Positive (FP): The cases where the model predicted the positive class incorrectly (i.e., 

it was actually the negative class). 

False Negative (FN): The cases where the model predicted the negative class incorrectly 

(i.e., it was actually the positive class). 

From the confusion matrix, several important metrics that give insight into the 

performance of the classifier can be derived. These include: 

1. Accuracy: (TP + TN) / (TP + TN + FP + FN) 

This metric gives us a general idea of how often the model is correct in its predictions. It 

is calculated as the number of correct predictions divided by the total number of 

predictions. It is essential to get a high-level view of the model performance but sometimes 

can be misleading, especially when the classes are imbalanced. 

2. Precision: TP / (TP + FP) 

Precision focuses on the positive predictions made by the model, calculated as the number 

of true positives divided by the total number of true positives and false positives. It 

essentially quantifies the correctness of the model in predicting positive cases. High 

precision indicates a low rate of false-positive errors. 

3. Recall: TP / (TP + FN) 

Also known as sensitivity or true positive rate, recall is computed as the number of true 

positives divided by the total number of true positives and false negatives. This metric tells 

us how well the model is identifying positive cases. A high recall value indicates that the 

model catches most of the positive cases, but it might also have a high number of false 

positives. 
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4. F1 score: 2 *(Precision * Recall) / (Precision + Recall) 

The F1 score is the harmonic mean of precision and recall, and it gives a balance between 

the two metrics. It is particularly useful when dealing with imbalanced datasets as it 

considers both false positives and false negatives. A higher F1 score indicates a more robust 

model. 

8.2 Data Acquisition and Preprocessing 

In collaboration with our partnered facility, we undertook a rigorous and systematic 

approach to data acquisition with the primary objective of developing a machine learning 

classification model. This model was based on a dataset inclusive of 14 distinctive  

features — variables that capture the necessary information for predictive analysis. To 

adopt predictive accuracy, the dataset was separated into features and labels. ‘Features’ 

refer to the independent variables, which consisted of the crucial data points helpful in 

making predictions. Concurrently, ‘labels’ denote the dependent variables that we intended 

to predict, essentially representing the categorical outcomes we aimed to accurately 

forecast through the model. In the development phase, we utilized both the feature data and 

label data in a learning process whereby the model established the correlations and 

underlying patterns that gave the relationship between the features and labels. This learning 

phase was important as it enabled the model to accurately classify new, unseen data, relying 

on the understanding it had cultivated during the training process. Our objective was to 

fine-tune this classification model to a state of optimal precision, wherein it can reliably 

analyze and categorize new data based on the foundational learning from the existing 

dataset. Our dataset initially contained 14 features with 1426 datapoints.  These features 

included, production number, production line, date of production, time of production, the 
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name of the product, source tank number, product family classification, the system type, 

the code for bulk items, the documented volume of the flush, the outcome of the flush noted 

as either 'pass' or 'fail', kinematic viscosity measured at both 40°C and 100°C, and the 

average ambient temperature at the time. 

In our endeavor to focus on the most crucial factors, we decided to exclude certain 

features that did not significantly affect the model’s performance. Consequently, we 

narrowed down our dataset to encompass just the kinematic viscosity values recorded at 

40°C and 100°C, the ambient temperature, the specific production line in use, the system 

type, and the ultimate outcome of the flush, distinguished as a 'pass' or 'fail'. This decision 

to include kinematic viscosity was grounded in the fundamental role that kinematic 

viscosity plays in determining lube oil quality, with the specific temperatures of 40°C and 

100°C being chosen in adherence to ISO and ASTM guidelines to accurately represent the 

viscosity-temperature behavior of the oil across a broad temperature spectrum.  

The inclusion of the average ambient temperature as a significant feature was 

motivated by our interest in examining how seasonal variations could potentially influence 

the outcomes of ‘pass’ or ‘fail’. Similarly, the distinct production lines were identified as 

crucial given the existence of diverse family categories, each facilitated by its unique filter 

setup. These lines, characterized by varying lengths, eventually converge at a juncture to 

form a unified line leading to the drum filling station. This integrated segment is termed as 

the drum filling line, whereas the individual pathways feeding into it are referred to as 

family lines, a structural layout detailed in Figure 52. 
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Figure 52. The Drum Filling Station Depicting the Different Family Lines, Filters and the 

Common Drum Filling Line 

 

 

Continuing with the description of our system, we noted that different pipe lengths 

correspond to varying system volumes. This insisted us to delve deeper to understand the 

effects of these system volumes on the successful execution of the flushing process. 

Alongside, we integrated a feature termed ‘system type’ in our analysis to denote the nature 

of the mixture produced during the flushing operation; it could be a mixture involving two 

or three different oils. This is determined based on two potential scenarios that arise during 

changeovers. In the first scenario, both the residual and the upcoming products belong to 

the same family, resulting in a two-oil system. Contrastingly, the second scenario involves 

products from different families, leading to a three-oil system as the upcoming batch mixes 

with residues from both the family and drum fill lines. Our analysis is designed to 
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accommodate these complexities, offering a robust mechanism to predict the 'pass' or 'fail' 

outcomes precisely. 

In the subsequent phase, we implemented feature scaling, a pivotal preprocessing 

procedure in machine learning. This step was essential to standardize the range of 

independent variables or features of the data. By scaling the features, we ensured that each 

one contributes equally to the performance of the model, fostering better convergence 

during training and a balanced influence on the output predictions. Feature scaling is 

particularly critical in algorithms that involve distance computations and gradient descent 

optimization as it helps in accelerating the learning process and finding a more precise 

optimum. Moreover, it aids in mitigating the challenges posed by features that are 

measured in different units or scales, thereby facilitating a harmonious and more effective 

modeling environment. 

Following that, we undertook the process of feature encoding, an essential 

preparatory step in the refinement of our dataset tailored for the requisites of classification 

models in machine learning. This process is helpful in transforming categorical data, which 

is often in text format, into a numerical format that can be more readily analyzed and 

processed by machine learning algorithms. Given that machine learning models predicate 

their functioning on mathematical equations and numerical computations, having data in a 

numerical format becomes a prerequisite to train the model effectively. By converting these 

categorical values into a numerical format, we facilitate the model's understanding of the 

different categories within a feature, hence empowering it to find potential patterns and 

correlations that are fundamentally vital in making accurate predictions. Moreover, feature 

encoding aids in the optimal utilization of computational resources by presenting data in a 



 

134 

 

manner that is streamlined for processing, raising efficiency and precision in the predictive 

analytics of the classification model. 

8.3 Model Development 

We developed a random forest classification model, splitting the data into 80% 

training set 20% testing set. Notably, our dataset contains a substantially higher number of 

'pass' instances compared to 'fail' ones. To circumvent any potential bias stemming from 

this imbalance, we adopted ‘stratified splitting’ during the partitioning process. This 

approach ensures a proportionate representation of both 'pass' and 'fail' categories in each 

subset, thus avoiding the risk of developing a model skewed towards predicting the 'pass' 

outcome predominantly. 

To substantiate the accuracy of our model, we implemented stratified K-fold cross-

validation, a procedure pivotal in the fine-tuning of classification models. In this context, 

'K' explains the number of groups that the training dataset is divided into, a number we 

established as 10 for our model. The stratified nature of this cross-validation means that 

each fold is a good representative of the overall distribution of 'pass' and 'fail' instances, 

safeguarding the reliability and integrity of our predictive model by minimizing bias and 

variance. Moreover, it enables a more comprehensive exploration of the data space, since 

each data point gets to be in the testing set exactly once and in the training set K-1 times, 

thus facilitating a more robust assessment of the model's performance. The choice of K 

holds substantial significance; a higher value of K entails a more exhaustive evaluation but 

at the cost of increased computational resources and time. Therefore, setting K to 10 strikes 

a balanced chord between computational efficiency and obtaining a well-rounded insight 

into the model’s predictive prowess.  



 

135 

 

Following the cross-validation process, we undertook a feature importance 

analysis, a critical step to comprehend how individual features influence the predictive 

capacity of our classification model. Analyzing feature importance is integral in improving 

the precision of classification models as it outlines the distinct impact each feature exerts 

on the predictive outcomes. By examining the weightage accorded to each feature, we can 

pinpoint the variables that are paramount in determining the 'pass' or 'fail' outcomes, 

thereby enhancing our understanding of the underlying patterns and relationships within 

the data. 

8.4 Model Results and Discussion 

8.4.1 Confusion Matrix 

To evaluate our model results, we applied a confusion matrix (illustrated in  

Figure 52) methodology for estimating the reported success and failure scenarios. This 

approach is pivotal in developing a deeper comprehension of the performance of the 

classification model, as it facilitates a comprehensive view of the different classes of 

outcomes – namely true positives (TP), true negatives (TN), false positives (FP), and false 

negatives (FN).
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Figure 53. Confusion Matrix of the Formulated Random Forest Classification Model (‘0’ 

represents successful flushes while ‘1’ represents failed scenarios) 

 

 

Table 13 

Performance of the Random Forest Classification Model 

Model Performance Value 

Total Test Records 116 

Correctly Predicted 110 

Model Accuracy 0.94 

Recall Value 1.0 

Precision 0.94 

F1 score 0.97 

 

 

In this context, we defined a 'true positive' as a scenario where the model correctly 

identified a successful flush operation, symbolized by a '0'. Conversely, a 'true negative,' 

represented by a '1,' would imply a correctly identified failure of the flushing operation. 
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Our analysis also takes into account false negatives and false positives, which denote 

incorrect predictions of pass and fail scenarios, respectively. On exploring the findings, it 

was observed that the model projected 110 true positives, a more than satisfactory outcome 

demonstrating the high number of successful predictions of pass scenarios, mirroring the 

actual recorded data of 110 successful flush operations. Furthermore, the true negative 

cases were zero, denoting the absence of correctly identified fail instances. This is mirrored 

in the false negative predictions also standing at zero, showcasing that no successful 

operation was mistakenly categorized as a failure. However, there were 6 false positive 

predictions, indicating a slight tendency of the model to mistakenly identify successful 

operations as failures. The real data affirms the occurrence of 6 complete failure instances 

in the flushing operations. Drawing comparisons with the real data shows a high recall 

value of 1, signifying that all the positive instances were accurately identified, a 

praiseworthy achievement spotlighting the model’s sensitivity in correctly identifying all 

successful flush operations. Moving forward to precision and accuracy values, both stood 

at 0.94. The precision value explains that the model had a high accuracy in predicting the 

pass scenarios; however, it still registered a minor fraction as false positives, explaining a 

room for refinement to mitigate such errors. The accuracy value of 0.94 indicates a strong 

concurrence between the predictions and the actual data, confirming the reliability of the 

model in predicting the outcomes correctly for a significant majority of the cases. 

8.4.2 K-fold Cross Validation 

The stability observed in the outcomes generated from our random forest 

classification model is largely due to the implementation of stratified K-fold cross-

validation. This technique is central in strengthening the model's reliability and precision. 
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In this setting, 'K' signifies the number of subsets that the data sample is partitioned into; 

our model utilized a 10-fold cross-validation, implying the data was divided into 10 groups. 

This structured approach permits the model to be trained across diverse segments of the 

data, thereby enhancing its proficiency in accurately predicting unseen data. Consequently, 

it achieved a mean accuracy score of 0.93 through this validation process, a figure nearly 

identical to the 0.94 score recorded using the test dataset. Utilizing this method not only 

promotes an optimized use of the data at hand but also provides a trustworthy assessment 

of the model's operational efficacy, a fact corroborated by the close agreement between the 

cross-validation and test accuracies in our evaluation. In conclusion, the harmonized 

accuracy scores of 0.93 and 0.94 not only validate the effective deployment of stratified  

K-fold cross-validation but also highlight its indispensable role in enhancing the robustness 

and predictive accuracy of our random forest classification model. 

8.4.3 Feature Importance 

In the context of random forest classification, understanding feature importance is 

pivotal as it helps in identifying which variables are most consequential in predicting the 

output. Essentially, it offers insights into the relative contribution of each feature in the 

decision-making process of the model. Each feature in the dataset is assigned a score on 

this scale, derived from the model’s learning on how crucial that specific feature is in 

predicting the target variable accurately. These scores are computed based on how much 

the prediction error increases when the feature's values are permuted. The more error 

increases, the more important the feature is considered to be, as it indicates that the model 

relies heavily on that feature to make accurate predictions. 
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Figure 54. Feature Importance of the Developed Classifier Model 

 

 

The analysis of feature importance revealed that the 'system type' exerted the most 

substantial influence on the model, followed sequentially by the 'drum fill' variable and the 

'average ambient temperature.Understanding the hierarchy of feature importance not only 

equips us with the knowledge to refine the model for better accuracy but also fosters a 

deeper understanding of the underlying patterns and relationships within the data, offering 

a robust pathway to the development of more intuitive and efficient predictive tools. 

8.5 Conclusions 

We developed a random forest classification model aimed at accurately 

determining the success or failure outcomes of the flushing operations. The notable 

accuracy achieved through the application of stratified K-fold cross-validation underscores 

the model's substantial reliability. 
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However, the model exhibits a significant area for enhancement, evidenced by the 

null results for both true and false negatives. This reflects the model's current shortfall in 

effectively identifying failure cases, pinpointing a critical area where the sensitivity of the 

model needs amplification. Addressing this will pave the way for a more comprehensive 

understanding and prediction of both success and failure events, fostering a more detailed 

approach to predicting different outcomes. 

In conclusion, the incorporation of a confusion matrix in our analysis has proven 

vital in explaining the specific performance metrics of our classification model. This tool 

has enabled a deep dive into the true dynamics of the predictions made, laying down a path 

for further refining the model. Enhancing both its sensitivity and precision will indeed be 

a significant step towards achieving a well-rounded predictive accuracy in subsequent 

analyses. 
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Chapter 9 

Summary and Future Work 

This dissertation unfolds a new perspective of implementing a comprehensive 

strategy that integrates experimental characterization, the principles of process systems 

engineering, and data-driven machine learning methodologies for enhancing the process 

efficiency and thereby implementing sustainable manufacturing practices. 

9.1 Effective Synthesis Approaches for Renewable Energy Resources: Perovskite 

Solar Cells 

We have introduced a strategy facilitated by computer-aided synthesis for the 

discovery of innovative material alternatives suitable for the fabrication of perovskite solar 

cells, aiming for improved stability, higher efficiency, and controlled costs. This work 

addresses the challenges of formulating PSCs with reduced costs and toxicity, and 

enhanced power conversion efficiency, longevity, and environmental sustainability. 

Central to our approach is the optimized synthesis problem that guides the identification of 

new organic-inorganic substitutes for perovskite crystals through advanced computer-

aided molecular design. 

The research unfolds a computer-aided design synthesis route, enabling the 

selection of novel candidates for the positions A, B, and X in the ABX3 chemical structure 

of the perovskite crystal. This framework provides the flexibility to opt for individual 

materials for sites A, B, and C, predicated on stability and cost-efficiency considerations, 

thus laying a solid groundwork for further explorations. Based on this foundation, the 
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strategy can be expanded to find the integration of varied material combinations at each 

site, potentially encompassing mixed cation and mixed anion perovskites. 

Moreover, this approach is adaptive to encompass additional evaluative parameters 

including efficiency metrics, safety protocols, and environmental impacts, thereby 

facilitating a comprehensive multi-objective function analysis. Consequently, this defines 

a path not only for the optimized selection of materials but also towards a broader 

understanding and fulfillment of overarching objectives such as safety and sustainability. 

9.2 Efficient Packaging Operations for Downstream Petroleum Processes – Lube Oil 

Blending Plants 

This research investigates the long-standing and economically significant issue of  

cross-contamination during production changeovers in multiproduct plants — a challenge 

that has persistently hindered operational efficiency for extended periods. Given the limited 

body of existing literature in this area, we developed a comprehensive methodology that 

combines process systems engineering with experimental characterization and data-driven 

approaches. 

During our investigation, we studied a variety of innovative and general 

improvement methods, including the introduction of pipeline coatings, gel pigs, modern 

filter designs, fluid blasting, and vibration cleaning strategies. These alternatives have the 

potential of minimizing oil hold-up in the system and reducing both cross-contamination 

and product downgrading, thus enabling improved operational efficiency. 

Building on this, through strategic data analysis and partnership with industry, we 

studied the drawbacks of traditional techniques. This analysis facilitated the development 
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of a pilot plant, essentially replicating a commercial facility, which enabled the 

performance of well-structured experiments. Within this framework, we examine 

improved operational procedures and formulate strategies for raising enhancements to a 

commercial level, aiming to guide transformative changes in industry practices. 

This work also studies a process systems engineering approach of formulating the 

flushing operation as an optimal control problem and developing methodologies for 

conducting the operations at a customized flowrate. Thereby enhancing efficiency and 

reducing product downgrading.   

Our work presents a methodical roadmap to assist industries in making informed 

decisions. Thereby enabling a significant improvement in operational efficiency coupled 

with enhanced resource management and a reduced environmental footprint. This work, 

therefore, stands as a pioneering initiative, guiding industries towards a horizon defined by 

informed decisions and sustainable operations. 

Looking ahead, we plan to enhance our developed models by incorporating 

additional factors such as viscosity, diffusion coefficients, and frictional losses, which are 

pivotal in fluid hydrodynamics. Additionally, we aim to explore the transferability of our 

solution approach to other sectors with similar operational procedures, including the 

specialty chemical industry, food production, personal care product manufacturing, and the 

pharmaceutical industry. 
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Appendix A 

Supporting Materials for Procedural Enhancements 

The following graphs illustrate the analysis of the enhanced operational procedure 

implemented at the collaborative facility. 

 

Figure A1. Analysis of Implemented Procedural Enhancement for Changeover 5 

 

 

 

Figure A2. Analysis of Implemented Procedural Enhancement for Changeover 6 
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Figure A3. Analysis of Implemented Procedural Enhancement for Changeover 7 

 

 

 

Figure A4. Analysis of Implemented Procedural Enhancement for Changeover 8 
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Figure A5. Analysis of Implemented Procedural Enhancement for Changeover 9 

 

 

 

Figure A6. Analysis of Implemented Procedural Enhancement for Changeover 10 
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Figure A7. Analysis of Implemented Procedural Enhancement for Changeover 11 

 

 

Figure A8. Analysis of Implemented Procedural Enhancement for Changeover 12 
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Appendix B 

ASTM D445 Guidelines for Kinematic Viscosity Testing  

Kinematic viscosity is the ratio between momentum transport and momentum 

storage. Such ratios are called diffusivities with dimensions of length squared divided by 

time and the SI unit is metre squared divided by second (m2/s). Among the transport 

properties for heat, mass, and momentum transfer, kinematic viscosity is the momentum 

diffusivity. Formerly, kinematic viscosity was defined specifically for viscometers covered 

by this test method as the resistance to flow under gravity. More generally, it is the ratio 

between momentum transport and momentum storage. For gravity-driven flow under a 

given hydrostatic head, the pressure head of a liquid is proportional to its density, ρ, if the 

density of air is negligible compared to that of the liquid. For any particular viscometer 

covered by this test method, the time of flow of a fixed volume of liquid is directly 

proportional to its kinematic viscosity, ν, where ν = η ⁄ρ, and η is the dynamic viscosity. 

1. Summary of Test Method 

The time is measured for a fixed volume of liquid to flow under gravity through the 

capillary of a calibrated viscometer under a reproducible driving head and at a closely 

controlled and known temperature. The kinematic viscosity (determined value) is the 

product of the measured flow time and the calibration constant of the viscometer. Two such 

determinations are needed from which to calculate a kinematic viscosity result that is the 

average of two acceptable determined values. 
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2. Apparatus 

Viscometers - Use only calibrated viscometers of the glass capillary type, capable of being 

used to determine kinematic viscosity within the limits of the precision given in the 

precision section. 

Viscometer Holders - Use viscometer holders to enable all viscometers which have the 

upper meniscus directly above the lower meniscus to be suspended vertically within 1° in 

all directions. Those viscometers whose upper meniscus is offset from directly above the 

lower meniscus shall be suspended vertically within 0.3° in all directions (see 

Specifications ASTM D446 and ISO 3105). Viscometers shall be mounted in the constant 

temperature bath in the same manner as when calibrated and stated on the certificate of 

calibration. 

Temperature-Controlled Bath - Use a transparent liquid bath of sufficient depth such, that 

at no time during the measurement of flow time, any portion of the sample in the viscometer 

is less than 20 mm below the surface of the bath liquid or less than 20 mm above the bottom 

of the bath. 

Temperature Control - For each series of flow time measurements, the temperature control 

of the bath liquid shall be such that within the range from 15 °C to 100 °C, the temperature 

of the bath medium does not vary by more than 60.02 °C of the selected temperature over 

the length of the viscometer, or between the position of each viscometer, or at the location 

of the thermometer. For temperatures outside this range, the deviation from the desired 

temperature must not exceed ± 0.05 °C. 

Cleaning Solution – a completely miscibile volatile solvent such as Heptane is suitable. 
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3. General Procedure for Kinematic Viscosity Measurement  

• Adjust and maintain the viscometer bath at the required test temperature 

• Thermometers shall be held in an upright position under the same conditions of 

immersion as when calibrated 

• In order to obtain the most reliable temperature measurement, it is recommended 

that two thermometers with valid calibration certificates be used 

• They should be viewed with a lens assembly giving approximately five times 

magnification and be arranged to eliminate parallax errors 

• Select a clean, dry, calibrated viscometer having a range covering the estimated 

kinematic viscosity (that is, a wide capillary for a very viscous liquid and a narrower 

capillary for a more fluid liquid). The flow time for manual viscometers shall not 

be less than 200 s or the longer time noted in Specifications D446 

• When the test temperature is below the dew point, fill the viscometer in the normal 

manner as required. It is recommended to charge the viscometer outside the bath. 

• To ensure that moisture does not condense or freeze on the walls of the capillary, 

draw the test portion into the working capillary and timing bulb, place rubber 

stoppers into the tubes to hold the test portion in place, and insert the viscometer 

into the bath 

• After insertion, allow the viscometer to reach bath temperature, and then remove 

the stoppers. When performing manual viscosity determinations, do not use those 

viscometers which cannot be removed from the constant temperature bath for 

charging the sample portion. 
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Appendix C 

Supporting Materials for Optimal Control Studies 

The Pontryagin’s maximum principle solution approach involves the use of the adjoint 

equations and the Hamiltonian equations illustrated below: 

Adjoint equations corresponding to the state equations 
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= − ∑ 𝑧𝑗  𝑛
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The maximum principle involves the maximization of Hamiltonian over the control 

variable, the optimality condition is [|dH/d𝑄𝑡 |] < tolerance. The Hamiltonian is a function 

of several variables such as x, t, z, and 𝑄𝑡, hence, its derivative can be expressed as a sum 

of partial derivatives, with respect to each of these variables t, x, y. The complete derivative 

with respect to one variable (t), is given by equation (C.1) 

𝑑𝐻

𝑑𝑄𝑡
 = ∑ (

𝑑𝐻
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The following differential equations are to evaluate 𝜃𝑖  and Ф 𝑖 
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Thus, the general form of these two equations, in terms of the associated variables, can be 

written as  

𝑑𝜃𝑖 

𝑑𝑡
= f (𝑥𝑖, 𝑄𝑡, 𝑡)         (C.8) 

𝑑Ф 𝑖 

𝑑𝑡
 = f (𝑥𝑖 , 𝑧𝑖, 𝑄𝑡, 𝑡)         (C.9)  

For example, if we consider the first state equation for state variable  𝑥𝐴  
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Equation (C.8) is integrated in the forward direction, using a numerical method with the 

initial conditions of  𝜃𝑖( 𝑡0 ) = [0,0,0], while equation (C.9) is integrated in the backward 

direction, with the final boundary conditions of Ф 𝑖( 𝑡𝑓 ) = [0,0,0,0] 

The computational codes for the work can be accessed through the following Github link: 

https://github.com/kmygroup/PhD-Contributions_SSJ.git 

 

  

https://github.com/kmygroup/PhD-Contributions_SSJ.git
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Appendix D 

Educational Contributions 

1. American Society for Engineering Education (ASEE) Annual Conference 2022 

This research was used to enhance the engineering learning experience through the 

“Engineering Clinic Program – A Hallmark of Rowan University”. The program is a 

problem-based learning approach that uses complex real-world problems as a driving force 

to promote student learning of concepts and fundamental principles and provide a graduate 

level research experience to the undergraduate students. The learning outcomes for the 

students are: An ability to demonstrate skills relevant to research and engineering, Ability 

to identify, formulate, and solve multidisciplinary chemical engineering problems, 

Proficiency in conducting standard tests and measurements, designing and conducting  

systematic experiments, developing a pilot plant, and collecting and interpreting the 
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experimental data to improve the processes, An ability to perform data analysis to extract 

meaningful insights, An ability to apply technical writing, presentation, and effective 

communication skills in a broadly defined technical and non-technical audience, An ability 

to apply modern tools of engineering, science, and technology to solve broad categories of 

Chemical Engineering problems, Proficiency to work as an excellent team member as well 

as an excellent leader.   

2. American Society for Engineering Education (ASEE) Annual Conference 2021 

This research was used as a tool for integrating Design Thinking in Chemical 

Engineering for Enhanced student learning. The work was published and presented in the 

2021 ASEE annual conference proceedings. 
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