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Abstract 

Kevin Yanagisawa 

MRI IMAGE REGRESSION CNN FOR BONE MARROW LESION VOLUME 

PREDICTION 

2022-2023 

Erik Christopher Brewer, Ph.D. 

Master of Science in Biomedical Engineering 

 

Bone marrow lesions (BMLs), occurs from fluid build up in the soft tissues inside 

your bone. This can be seen on magnetic resonance imaging (MRI) scans and is 

characterized by excess water signals in the bone marrow space. This disease is 

commonly caused by osteoarthritis (OA), a degenerative join disease where tissues within 

the joint breakdown over time [1]. These BMLs are an emerging target for OA, as they 

are commonly related to pain and worsening of the diseased area until surgical 

intervention is required  [2]–[4]. In order to assess the BMLs, MRIs were utilized as input 

into a regression convolutional neural network (CNN). Initial experimentation handled 

the MRI using each individual slice in a 2D convolutional neural network as a baseline 

model, eventually progressing to a tensor stacked input into a 3D convolutional neural 

network. The viability and effectiveness of the models were evaluated using mean 

absolute error (MAE), mean squared error (MSE), root mean squared error (RMSE), and 

R2. The 3D regression CNN models were observed to perform better than the 2D 

regression CNN models.  
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Chapter 1:  

Introduction 

 

1.1. Research Motivation 

Osteoarthritis of the knee is well known for the cause of pain and disability that 

affects millions of patients at some point in their lifetime. This results in a decreased quality 

of life and economic impacts in terms of health care costs and lost productivity [5]. Along 

with these effects, bone marrow lesions (BMLs) are commonly found in patients with knee 

osteoarthritis [6]. These BMLs can cause further inflammation and discomfort for the 

patients and have potential cause in the approximate 700,000 total knee replacements 

performed annually in the United States [7]. In 2008, Scher found that there was a nine-

fold increase in the rate of progression to total knee arthroscopy within three years when 

there was an associated BML identified on MRI compared to patients without an associated 

BML [4]. Total knee arthroplasty is a major surgery, so other methods needed to be 

developed to prevent BMLs.  

In recent years, a subchondroplasty procedure was developed to treat BMLs by 

injecting a calcium phosphate bone substitute into the diseased areas of subchondral bone 

under the guidance of a fluoroscope [8]. This joint-preserving treatment that helps reverse 

the progression of pain and immobility was used in patients with bone marrow lesions in 

the knee. To identify the diseased area, MRI scans were typically used. These BMLs can 

be described as high T2 and low T1 signal intensity detection and low T1 signal on 
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magnetic resonance (MR) fluid-sensitive sequences [9]. These areas can be visually 

identified when looking at the MRI scans, but the volume of the BML must be estimated 

by the clinician. During this procedure, since the volume of the BML is not known precisely 

based on the MRI, there can be potential pitfalls such as not directing the calcium phosphate 

into the center of the BML and not abutting the subchondral plate [10]. This would be 

known as underfilling and may not remedy the symptoms caused by BMLs. On the other 

hand, overfilling and rapid delivery of the calcium phosphate may occur, leading to 

postoperative pain [10], [11]. With complications revolving around knowing how much 

calcium phosphate injection is needed, there is an ensuing need for technology that can 

utilize the MRI scans and have a predictive outcome for the volume of injection needed to 

treat the BML. 

The aim of this research is to develop a model that can use MRI scans of patients with 

BMLs as its input and provide predictions on the volume of injection needed to treat the 

BML.  
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Chapter 2:  

Background 

 

2.1. Prevalence and Scope of Bone Marrow Lesion 

Bone marrow lesions (BMLs) can be found across all age groups and all genders. 

In a study involving 328 younger adults aged 31-41, researchers set out to describe the 

prevalence and environmental, structural, and clinical correlates of BMLs [12]. Through 

this, the overall prevalence of BML was 17% and positively correlated with increasing age 

and previous knee injuries. In another study observing healthy middle aged women, 

researchers sought to determine the risk factors for BMLs [13]. There, 176 women with no 

prior history of knee injury or clinical care had MRI scans done on their dominant knee; 

13% of them had knee BMLs. A similar study took MRI scans of 266 Japanese women 

without evidence of osteoarthritis (OA) and found that there was a 35.3% prevalence of 

BMLs [14]. For patients that do not have healthy knees, there is an even greater potential 

for BMLs. A study evaluated the prevalence of BMLs in 255 subjects with knee pain and 

found that 11% of subjects with no (OA) had BMLs, 38% of subjects with preradiographic 

OA had BMLs, and 71% of subjects with radiographic OA had BMLs. With this prevalence 

across all genders and ages, there is a need for proper diagnosis and treatment of this 

disease. 
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2.2. Treatment Options 

Treatment options for BMLs have commonly been focused on conservative care 

and pain management, but in more extreme cases, surgical intervention may be appropriate. 

2.2.1. Conservative Care 

Conservative care commonly includes symptomatic treatment or pharmacological 

treatment. Symptomatic nonoperative treatment involves anti-inflammatory drugs, 

removable walker boot, partial weightbearing or nonweight-bearing, physiotherapy, and 

message therapy[15]. Recovery times using these conservative care treatment options can 

be anywhere from 6 to 12 months, with no definable duration time of use. Pain management 

options include different medications such as prostacyclins, bisphosphonates and 

polysulfated polysaccharides, as well the use of pulsed electromatic fields[15]. Depending 

on the medication used and the duration of usage, they can provide instant pain relief or 

eventual improvement after months of usage. Additionally, side effects vary dependent on 

the medication used and the dosage. It has also been seen that low vitamin D levels can be 

cofactor in the development and aggravation of many orthopedic diseases.  

2.2.2. Surgical Intervention 

When conservative care is not effective, surgical intervention can be called for, and 

this is typically in the form of core decompression or subchondroplasty. Core 

decompression involves drilling a hole in the affected area to reduce pressure and allow for 

increased blood supply. This method is not commonly used, but may be considered for a 

rapid decrease in symptoms and improvement.  



 

5 

This has a low morbidity and can be done as an outpatient procedure, but the procedure 

requires partial weightbearing and physiotherapy. Even with this, in a study of 38 patients 

with hip bone marrow edema, core compression compared similarly, if not equal or worse, 

than the medication iloprost [16]. Subchondroplasty is a relatively new procedure which 

involves a localized injection of calcium pyrophosphate bone substitute into the bone 

marrow lesion cavity to help preserve the joint [17]. In order to inject the calcium 

pyrophosphate cement, MRI scans are needed to identify and localize the diseased area. 

Currently, MRIs and ultrasounds are the only technology used to identify these locations.  

The subchondroplasty procedure is the preferred surgical intervention method 

because of its minimally invasive properties while still being effective [7]. Patients who 

need this procedure are typically evaluated using different scoring methods including the 

visual analog scale (VAS) to measure pain, International Knee Documentation Committee 

(IKDC), Knee Injury and Osteoarthritis Outcome Score (KOOS), or the Western Ontario 

and McMaster Universities Arthritis Index (WOMAC) [18]. By using these grading scales, 

improvement can be quantified post-operation. Although this method is effective and 

minimally invasive compared to other surgical interventions, it still comes with its own 

complications. Reported complications include extravasation of calcium phosphate into the 

surrounding soft tissues or joint [19], [20],[21], postoperative pain [8], [19], [22], and 

drainage at the injection site[8]. The extravasation of calcium phosphate is also known as 

overfilling. This overfilling occurs because the amount of calcium phosphate to use for 

each patient is not automatically determined, it is up to the discretion of the doctor. To  
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estimate the appropriate volume of injection, the doctors utilize MRI scans of the patient’s 

knee. 

2.3. CNN for Medical Imaging 

2.3.1. Magnetic Resonance Imaging 

Standard MR modalities include fat-saturated T2-weighted and T1 weighted MRIs. 

T1 weighted MRIs enhance the signal of the fatty tissue and suppress the signal of water. 

T2 weighted MRIs enhance the signal of water. This causes T1 weighted MRIs to show 

only fat as the brighter areas in the scan and T2 weighted MRIs to show fat and water as 

brighter sections of the scan. For bone marrow lesions, the T1 weighted MRI will show an 

abnormally low signal at the point of disease and the T2 weighted MRI will show an 

abnormally high signal [23, 24]. The most validated MRI image biomarker is T2 mapping, 

which bases its measurements on T2 relaxation time [25]. 

MR viewing planes include axial, coronal, and sagittal planes.  The axial plane 

makes cross sections of the knee from top to bottom. The coronal plane takes slices through 

the knee from front to back. The sagittal plane looks through the knee from side to side.  

2.3.2. Convolutional Neural Network  

A convolutional neural network (CNN) is a deep-learning algorithm designed to 

use different interconnected layers for learning patterns or features of raw input data. For 

this experiment, these layers included convolutional layers, pooling layers, flattened layers, 

and fully connected layers. Within a convolutional layer, a filter or kernel is applied to the 

input data to extract features. These features produce a feature map that highlights the 
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patterns within the data. The pooling layer down-samples the dimensions of a feature map, 

effectively reducing the size while preserving important information. This helps reduce the 

complexity of the computations and reduce overfitting. Flattened layers are used to convert 

the multidimensional feature map into a one dimensional vector. This is in preparation for 

use in the fully connected, or dense layer. The fully connected layer connects every layer 

of the model and is used as the final layer. With each dense layer, an activation function is 

used to introduce non-linearity into the neural network. This allows for complex and non-

linear relationships to be learned from the data.    

2.3.2.1.  CNN for Medical Imaging. CNNs are commonly used in medical 

imaging tasks such as image classification, object detection, and image segmentation. In 

previous studies, CNNs were utilized to locate and classify brain tumors [26–28]. 

Muhammad [27], for example, goes into detail about surveying which deep learning based 

method is best for brain tumor classification. Additionally, CNNs have been used to predict 

ages based on MRI images. Pardakhti [29] used a 3D regression CNN to train a brain age 

estimation system.  
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Chapter 3:  

Research Aims 

 

The main objective of this research is to develop a model based on pre-operative 

MRI scans that can predict the volume of filling needed during a subchondroplasty 

procedure. Typically, when treating a patient for their bone marrow lesion (BML) the 

surgeon will fill the affected area with a calcium-phosphate based bone cement. The 

problem arises due to the surgeon not being able to tell the exact volume of filling necessary 

solely based off the MRI scans. The amount of filling is determined by the surgeon when 

they feel a push back from the syringe. Without this measurement, there is no way to 

prevent overfilling or underfilling.  

We plan on doing this by developing MRI imaging techniques that utilize both a 

deep learning algorithm with a regression CNN model and cropping methods to provide 

surgeons with accurate injection volumes. Others have used regression CNN models for 

age estimation, density estimation, or identification of areas within an MRI, but ours is 

unique because it works with novel pre-operative MRI scans of BMLs. Therefore, 

preoperative MRIs of each patient with accompanying volumes of injection may similarly 

be a novel way to guide clinicians on the treatment of BMLs. But to date, no group has 

attempted this with the subchondroplasty procedure. 

In addition, the output from an MRI scan are multiple slices through the body part 

being inspected. By utilizing tensors, the MRI scans can be read into the model not as 

individual images, but as a singular stack of images. With this ability, viewing planes of 
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the MRI and modalities of the MRIs can be combined and read as one patient. Our objective 

is to create an informed delivery strategy for percutaneous fixation of BMLs. 

The specific aims of this work are: 

Specific Aim #1: Create a baseline regression CNN model that utilizes various 

viewing planes from BML MRI scans. 

Specific Aim #2: Create a 3D regression CNN model that utilizes tensor stacked 

MRI viewing plane images 

Specific Aim #3: Utilize 3D regression CNN model with combinations of viewing 

plane inputs. 
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Chapter 4:  

Base Regression CNN Model 

 

4.1. Introduction 

Convolutional neural networks (CNNs) have been utilized in medical imaging 

studies involving classification, segmentation, or prediction models [30–32]. When an MRI 

scan is completed, a three-dimensional image of the scanned area gets split into multiple 

sections called slices. Each one of these slices had the same height, width, and thickness, 

so all together they show the desired area as a three-dimensional image. A common usage 

of these MRI scans is to use each slice as an input for a CNN [33–35]. Using each slice of 

the MRI scan as an input can be utilized in detection of brain tumors [34], segmentation 

[30,33], and regression [35],31]. For the regression studies, determination of the best model 

was based on the RMSE, MSE, and MAE metrics. A study that predicted brain age using 

slices of an MRI compared multiple CNN models [31]. In order to make a comparison 

between these CNN models, the authors utilized the RMSE and MAE values. This allowed 

them to look across the models and compare to see which one had the lowest RMSE and 

MAE result. Through this, they found that their 2D Slice model performed better than their 

3D models. With these models, it is also important to observe the convergence of the loss 

function to ensure it reaches its minimum [36].  

Another element of an MRI scan is the viewing plane. The viewing planes are the 

axial, coronal, and sagittal planes, and each one of these shows the same area on a patient, 
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but from a different view. There have been studies to determine the best viewing plane to 

use when looking at a knee MRI [37, 38], but in these cases, they were not looking for bone 

marrow lesions. In addition, radiologists were the people to review the MRI scans, so it 

was all manually determined by the radiologists. With a lack of studies comparing the 

different viewing planes, it is important to determine if the best viewing planes are similar 

between the manual method by radiologist and the use of a CNN. 

The models for each of these CNNs can vary, but most of them contain similar 

elements including convolution layers, max pooling layers, activation layer, and a fully 

connected (dense) layer. In addition, models may be pretrained using transfer learning and 

use various CNN architectures, but for this model, training from scratch, based on the 

model from Bellary [32], performed better.  

Therefore, the purpose of this specific aim is to develop a model based on these 

prior slice by slice studies and compare their metrics with commonly accepted values to 

determine the validity of the model. Furthermore, we will compare different viewing planes 

to determine which is best when being inputted into the CNN. Since the MRI scans are 

inputted into this model one slice at a time and not one full MRI at a time, it is understood 

that a combination of all the slices creates a 3D representation of the scanned body part. 

Therefore, we will selectively compare the predicted output of the model on individual 

slices to their neighboring slices.   
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4.2. Methods 

4.2.1. Pre-Processing 

Before loading the images into the model, preprocessing steps were taken to 

enhance the information fed into the model. After downloadeding, MRIs were typically of 

shape 256 x 256 voxels or 512 x 512 voxels and contained 20-30 images per patient per 

viewing plane. To encapsulate the largest bone marrow lesion, an 80mm x 80mm bounding 

box was drawn around the center of the bone marrow lesion. This step was completed using 

ImageJ. Once the size of the image was reduced, slices were selected to be used in the 

model. An example of slices can be seen in Figure 1. The largest bone marrow lesions 

spanned over 10 slices, so in order to encapsulate only the bone marrow lesion for this 

patient, the minimum number of slices needed was 10. The bounding box of 80mm x 80mm 

and slice removal until only 10 slices remained was done on all images.  
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Figure 1. Example of multiple slices from an MRI scan 

4.2.2. Architecture 

The input of the slice by slice model were individual slices of an MRI scan, and 

each slice was assigned the true value of injection volume as used by physician. Once these 

images were fed into the model, they went through a convolution layer, max pooling, 

convolution layer 2, max pooling layer 2, a flatten, 2 RELU activation dense layers, and 

finally a linear activation dense layer. This architecture can be seen in Table 1. 

 

 



 

14 

Table 1 

 

Slice by Slice Model CNN Architecture 

 

Layer Output shape Parameter Values 

Conv1 254 x 254 x 64 1,792 

MaxPool1 127 x 127 x 64 0 

Conv2 125 x 125 x 64 36,938 

MaxPool2 62 x 62 x 64 0 

Flatten 246016 0 

Dense1 64 15,745,088 

Dense2 64 4160 

Dense3 1 65 

 

 

4.2.3. Dataset 

This study focuses on three magnetic resonance (MR) sequences of 35 preoperative 

knees from Dr. Sean McMillan Orthopedics & Sports Medicine and Rothman Orthopedic 

Institute. All patients have been affected by and treated for their bone marrow lesions 

through a subchondroplasty procedure in their femoral or tibial condyle. Before treatment, 

a preoperative MRI scan was taken so the areas of infection can be identified. Postoperative 

injection volume of calcium phosphate compound was recorded and exists as the ground 

truth. This model included 10 images per patient, 350 images total, for each viewing plane 

(coronal, sagittal, and axial). Subject data selected for the study are required to have all 

sequences acquired.  
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4.2.4. Experimental Conditions 

The Keras library with its ‘ImageDataGenerator’ was utilized to apply 

augmentation techniques, aiming to enhance diversity and robustness of the training 

dataset. A rescale at 1./255, rotation of 20 degrees, shear by a factor of 0.2, zoom into the 

image by a factor of 0.2, shifts in the horizontal and vertical directions by 20% of its width 

and height, horizontal flip, and brightness transformations from -0.5 to 0.5 were 

implemented as experimental conditions. The model was run for 100 epochs to ensure 

convergence. 

4.2.5. Metric for Evaluation of Regression Model  

To understand the performance of a model, it is important to understand the metrics 

for evaluation. This allows for understanding of the performance and allows others to 

comprehend how well your model is doing. For this regression model, three metrics will 

be observed for evaluation. This includes R square (R2), mean absolute error (MAE), mean 

square error (MSE), and root mean square error (RMSE). Such metrics can be seen in other 

regression models [39] . 

4.3. Results and Discussion  

The primary objective of this body of work was to develop a model capable of 

predicting subchondroplasty injection volumes based on bone marrow lesions from MRI 

scans. Table 2 summarizes the results from the slice by slice model for the axial, coronal, 

and sagittal views on the testing dataset. Each model was trained and evaluated using either 

12 patient (120 slices) for training, 3 patients (30 slices) for validation, and 5 patients (50 



 

16 

slices) for testing or 27 patients (270 slices) for training, 3 patients (30 slices) for validation, 

and 5 patients (50 slices) for testing. Each of the models exhibited convergence, as 

demonstrated by the decrease in the mean squared error loss function over the training 

epochs seen in Figure 2. Models were trained over 100 epochs to ensure the convergence 

of the model. At this point, additional training does not improve the model, so it is around 

the final loss value. This means the model is around as good as it will be and the data 

potentially fits the model well.  

 

 

 

 

 

The best MAE and MSE was shown in the coronal 27 patient (270 slices) dataset 

with a value of 0.249561 and 0.139518, respectively. The coronal 27 patient (270 slice) 

dataset also showed the best RMSE and R2 values at 0.37352 and -0.45820, respectively. 

A study looking at brain age estimation used similar metrics, MAE and RMSE, to the ones 

used here [29], and MSE can additionally seen being used in a study predicting age from 

   

Axial Coronal Sagittal 

Figure 2. Average MSE (over 10 trainings) per epoch. A convergence in MSE value can 

be seen in the Axial, Coronal, and Sagittal models.  



 

17 

structural brain images[40]. Within these studies, they were looking for the model that 

produced the lowest MAE, MSE, and RMSE. This model seems to have MAE, MSE, and 

RMSE metrics similar to the previously listed journal articles, but the R2 result is poor. In 

lieu of this poor R2 result, it is important to note that the data set size used in this model 

was low, 35 patients, where as in similar studies such as a brain age prediction [31], the 

data set was around 10,000 patients. Despite this lack of patients, there was a decrease in 

MSE, decrease in MAE, decrease in RMSE, and increase in R2, when going from 12 

patients (120 slices) to 27 patients (270 slices). In a study using GAN based image 

augmentation to increase the size of their dataset, they found that with more data, their 

classification accuracy increased[41]. In an additional study, which fed additional image 

features into their model, their classification performance improved[42]. With this, even 

though the initial results are poor, this increase in patient count shows potential for 

obtaining better results as the patient count increases. 
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Table 2  

 

Metric Evaluations From Slice by Slice CNN Model Using 12 and 27 Patients. 

MSE, MAE, RMSE, and  R2 Evaluations are From the Test Dataset 

 

 12 Patient, 120 Slice 

Training 

27 Patient, 270 Slice 

Training 

Axial MAE 0.27688 0.26610 

Axial MSE 0.15667 0.15308 

Axial RMSE 0.39582 0.39126 

Axial R2 -0.63751 -0.59997 

Coronal MAE 0.29887 0.249561 

Coronal MSE 0.18814 0.139518 

Coronal RMSE 0.43376 0.37352 

Coronal R2 -0.60264 -0.45820 

Sagittal MAE 0.29536 0.294169 

Sagittal MSE 0.17353 0.169953 

Sagittal RMSE 0.41658 0.41225  

Sagittal R2 -0.81374 -0.77629 

 

 

The secondary objective of this specific aim was to compare the three different 

viewing angles from the MRI scan and evaluate if one provided a better depiction of the 

bone marrow lesion when being fed into a CNN. From this, it appears that the coronal view 

produced the most appropriate BML volume of injection model. In a study which evaluated 

the MRI images for anterolateral ligament of the knee using experienced radiologist found 

that the coronal viewing plane was best for observing and characterizing the anterolateral 

ligament[37]. Such results are also supported in a study on a similar topic. The authors 

compared the coronal to the sagittal view to determine whether coronal imaging allowed 

for better detection when compared to the sagittal view[38]. Through this, the experiments 

found that coronal magnetic resonance images allow for better detection than sagittal 
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images alone. Additionally, another found that sagittal and coronal are better for visualizing 

the areas of disease[43]. This coincides from our own experiment where we found coronal 

to be the best performing.  Additionally, it is important to note the negative R2 values. This 

means that the model does not match the given data well.  

 

 

Axial Coronal Sagittal 

   
Figure 3.  Identification of Bone Marrow Lesion on MRI scans as depicted by the area 

circled in red. 

 

 

Figure 4 depicts each slice of an MRI scan for one patient. It was observed that the 

predicted values are not close to the true value of the bone marrow lesion. Additionally, 

when observing the MRI scans, they all look different. Some of the slices have more visible 

bone marrow lesion than in other slices. Examples of identified bone marrow lesions from 

MRI scans can be seen in Figure 3. With this differing amount of bone marrow lesion per 

slice, it does not make sense to use the same one true value for each slice. The true value 

represents the total injection volume after being completely filled. With this observation, it 

seems that the volume predictions should be different from one another, based on how 
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much bone marrow lesion is visible in the MRI. This can be a potential explanation for the 

negative R2 values.  

When examining Figure 4, certain slices have more observable bone marrow lesion 

and certain slices have greater prediction values. BML can be identified by areas that look 

white or lighter in color on the mid portion of the lateral femoral condyle and the posterior 

lateral tibial plateau [44]. This white portion can be seen best in slices 11 and 12 of Figure 

4. These slices potentially show the bone marrow lesion best since initial cropping included 

slice removal centralized around the bone marrow lesion. This peaking of volume can be 

seen in Figure 4. When looking at slices 15 and 16 from Figure 4, a greater presence of 

white can be seen, but not in these areas or within the bone at all. These additionally have 

greater prediction values. With this increased presence of white in the slices, having a 

greater prediction value seems reasonable. The white areas seen here are not bone marrow 

lesion diseased area, but instead, an area of fat or water. Since the cropping standards were 

meant to bound the greatest sized bone marrow lesions, in terms of how many slices and 

cropped area, there are potentially too many scans for this patient. Instead of only the bone 

marrow lesion being inputted into the model, inaccurate slices without any bone marrow 

lesion were also used in the learning, which could lead to poor training of the model.   
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Slice 7 8 9 10 11 

Prediction 

in cc 

4.434067 4.40012 4.47432 4.54963 4.59267 

 

     

Slice 12 13 14 15 16 

Prediction 

in cc 

4.6276 4.49937 4.516747 4.6479 4.685696 

 

     

Figure 4. Each slice of one patient’s MRI scans. Numbered from 7-16 is the slice 

number in the full series before slicing. The numbers below them are the predicted 

volumes for each scan. The true value for this patient was 5 cc. 

 

 

It is also important to note that this prediction was based on the training of MRI 

images from Dr. McMillian and Dr. Cohen, and volume of treatment by the respective 

physician. This poses a complication with the novelty of the dataset. The total patient count 

was relatively low –35 patients. A greater patient dataset will allow for a wider grasp of 

bone marrow lesions at different volumes of injection. 

4.4. Conclusion 

The slice by slice model provides an unviable measurement for the prediction of 

bone marrow lesion volumes due to the relationship between each slice of the MRI and the 

total injected volume. Even though this is an unviable measurement for the prediction, a 
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baseline model for comparison is set and can be used in comparison with other models. 

With how the images are loaded into the model being the primary concern, a new method 

for reading in the images was required where each set of MRI slices can be given a true 

value instead of each slice individually.  
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Chapter 5:  

3D Regression CNN Model With Tensor Stacked Images 

 

5.1. Introduction 

Specific aim 2 sets out to improve upon complications with the slice by slice model, 

primarily how the MRI scans can be utilized with the true value being the entire bone 

marrow lesion and the negative R2 score, discussed in Section 4.3. This will be 

accomplished by using a 3D Regression CNN model.   

The main difference between this experimental model versus the previously 

employed one is the use of tensors, or the stacking the images together. This multi-

dimensional array, consisting of number of patients, number of images, and the size of the 

images, creates a method so every slice from the MRI scan can be read as one patient. This 

singular patient becomes one data point that gets assigned their true value. Use of a 3D 

regression CNN can be seen by Masaru, Pardakhti, or Sturmfels in age estimation studies 

[29], [39], [40]. Within these, they were able to use brain MRI scans as input to their CNN, 

allowing them to estimate the age of the patient or the brain age of the patient. In another 

article from Bellary, in order to input their MRI scans of the knee for segmentation analysis, 

they utilized tensors [32]. These tensors had the form picture numbers x image height x 

picture width x picture depth. Through using this tensor input, they were able to achieve a 

classification model with 99% accuracy. Using a stacked tensor can potentially allow for 

better results and a more accurate representation of the data and injection volume.  
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The effectiveness of using these stacked images in a 3D regression CNN will 

determined by certain metrics -- MAE, MSE, RMSE, and R2. MAE and RMSE can be seen 

used in similar research such as the estimation of ejection fraction from Inomata [45]. 

Within their study, MAE and RMSE were used as metrics to compare the results from the 

image regression model. MSE can also be seen in a 3D pose regression CNN study as a 

minimizer for their model [46], as well as a metric for evaluation in a model to predict 

clinical disability using FLAIR MRIs [47]. R2 was additionally seen in the prediction of 

brain age using 3D regression CNNs [48]. This allowed for a comparison between different 

networks being tested.  

Therefore, the purpose of this specific aim is to improve upon preexisting models 

by using tensor stacked MRI images and determine the validity of the model.  

5.2. Methods 

5.2.1. Preprocessing 

MRI scans were preprocessed in the same way as in Section 4.2.1. After 

downloading, MRIs were typically of shape 256 x 256 voxels or 512 x 512 voxels and 

contained 20-30 images per patient per viewing plane. An 80mm x 80mm bounding box 

was drawn around the center of the bone marrow lesion to capture the largest sized bone 

marrow lesion possible. This step was completed using ImageJ. Once the size of the image 

was reduced, slices were selected to be used in the model. The largest bone marrow lesions 

spanned over 10 slices, so in order to encapsulate only the bone marrow lesion for this 



 

25 

patient, the minimum number of slices needed was 10. The bounding box of 80mm x 80mm 

and slice removal until only 10 slices remained was done on all images.  

 

5.2.2. 3D CNN Architecture 

The input of the patient by patient model were tensor stacked slices of an MRI scan. 

Each of these tensors represents one patient, and each tensor was assigned its true value of 

injection volume as used by physician. Once these images were fed into the model, they 

went through a 3D convolution layer, 3D max pooling, 3D convolution layer 2, 3D max 

pooling layer 2, a flatten, 2 RELU activation dense layers, and finally a linear activation 

dense layer. This architecture can be seen in Table 3. 

 

 

Table 3  

 

Patient by Patient 3D CNN Architecture 

 

Layer Output shape Parameter Values 

Conv1 8 x 254 x 254 x 64 5248 

MaxPool1 4 x 127 x 127 x 64 0 

Conv2 2 x 125 x 125 x 64 110,656 

MaxPool2 1 x 62 x 62 x 64 0 

Flatten 246016 0 

Dense1 64 15,745,088 

Dense2 64 4160 

Dense3 1 65 
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5.2.3. Dataset 

This study focuses on three magnetic resonance (MR) sequences of 35 preoperative 

knees from Dr. Sean McMillan Orthopedics & Sports Medicine and Rothman Orthopedic 

Institute. All patients have been affected by and treated for their bone marrow lesions 

through a subchondroplasty procedure in their femoral or tibial condyle. Before treatment, 

a preoperative MRI scan was taken so the areas of infection can be identified. Postoperative 

injection volume of calcium phosphate compound was recorded and exists as the ground 

truth. This model included 10 images per patient, 350 images total, for each viewing plane 

(coronal, sagittal, and axial). Subject data selected for the study are required to have all 

sequences acquired. 

 Two patient totals, 1 from the training dataset and 1 from the testing dataset were 

temporarily removed from the overall dataset. As seen in Figure 5, there are large 

discrepancies between the bone marrow lesion volumes of the two patients. These 

differences could skew the datasets and produce inaccurate results. With this, the resultant 

patient pool is 33 patients total; 26 patients belonged to the training dataset and 7 patients 

belonged to the testing dataset. Before training, all data from the training and testing were 

normalized so the true volume of bone marrow lesion was between 0 and 1, just as done in 

the slice by slice model.  
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Figure 5. Histogram of entire dataset (training and testing datasets), showing the number 

of patients with a certain bone marrow lesion volume 

 

 

5.2.4. Experimental Conditions 

The Keras library with its ‘ImageDataGenerator’ was utilized to apply 

augmentation techniques, aiming to enhance diversity and robustness of the training 

dataset. A rescale at 1./255, rotation of 20 degrees, shear by a factor of 0.2, zoom into the 

image by a factor of 0.2, shifts in the horizontal and vertical directions by 20% of its width 

and height, horizontal flip, and brightness transformations from -0.5 to 0.5 were 

implemented as experimental conditions.  
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5.2.5. Metrics for Evaluation 

Through using the 3D CNN regression architecture, as shown in Table 3, all of the 

slices from one MRI scan were used as the input. One tensor was created for each patient 

and their MRI scan. By doing this, all of the slices from that particular viewing plane are 

read together as one instead of as separate slices. Since each tensor corresponds to one 

patient’s MRI scans, each true value for the bone marrow lesions can be assigned to one 

tensor. Through this method, all slices from a patient are considered per scan and aids in 

the resolution of the previous complication where each slice was being assigned an 

incorrect true value.  

 

5.3. Results and Discussion  

The primary objective of this specific aim was to develop a 3D regression CNN 

model that was able to take in tensor stacked MRI images as its input, allowing for the 

prediction of subchondorplasty procedure injection volumes. The neural network 

completed predictions on the five patients in the test dataset. This can be seen in Table 4. 

There were three patients with 5 cc of actual injection volume and the other two patients 

had 3.5 cc and 10 cc. With this, it seems that many of the output predictions are close to 5 

cc, regardless if it was 3.5 or 10 cc. Even though the predictions are close together, there 

are slight deviations between the predictions. When looking at patient 3, they have the 

lowest actual injection volume from the dataset. This patient having the lowest prediction 

volume can be seen when utilizing the coronal or sagittal models. A similar observation 

can be made about the patient with the greatest injection volume, patient 4. The coronal 
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and sagittal models once again have the greatest patient prediction for the patient with 

largest actual injection volume. In order to better understand why some of these are poor 

predictions, it is important to look at the loss function convergence. This can help determine 

if a model is overfitting [49]. 

 

 

Table 4  

 

Actual vs Predicted Volume of Injection for Axial, Coronal, and Sagittal Viewing Planes 

 

 Patient 1 Patient 2 Patient 3  Patient 4 Patient 5 

Actual 

Injection 

Volume 

5 cc 5 cc 3.5 cc 10 cc 5 cc 

Axial 

Predicted 

Volume 

4.58867 

 

4.49495 

 

4.79698 

 

4.57310 

 

4.40498 

 

Coronal 

Predicted 

Volume 

3.96252 

 

4.86794 

 

3.81790 

 

4.94882 

 

3.8499 

 

Sagittal 

Predicted 

Volume 

5.43437 

 

5.50570 

 

5.40366 

 

5.64669 

 

4.58240 

 

Note. The actual values for each patient were set based on the value that the clinician 

injected during the procedure. 

 

 

When observing the MSE over epoch graphs, Figure 6, for each of these models, 

the loss function converged. This was monitored using early stopping implementations 

with a patience of 5, so if no improvement in training performance was observed for 5 

consecutive epochs, training would be finished and the best model from the ones trained 
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would be used. Such implementations help prevent the model from overly learning the 

training data to the point where it cannot generalize on unseen data, otherwise known as 

overfitting.  

 

 

   
Axial loss graph Coronal loss graph Sagittal loss graph 

Figure 6. MSE over Epoch graphs for Axial, Coronal, and Sagittal viewing planes 

 

 

Table 5 summarizes the results from the patient by patient regression CNN model 

for the axial, coronal, and sagittal views from the test dataset, showing the MAE, MSE, 

RMSE, and R2 outputs [45]–[48].  The lowest MAE, MSE, and RMSE was shown in the 

axial patient by patient model. The greatest R2 value was additionally shown in the axial 

patient by patient model. These outputs suggest that the model using tensor stacked axial 

MRI images performed the best. This differs from other studies [38], [43], where the 

coronal viewing plane was determined as the suggested viewing plane. All patient by 

patient models had improved performance compared to the slice by slice model, regardless 

of the viewing plane. The MSE, RMSE, and R2 from the patient by patient model were 

improvements from the slice by slice model(Table 4 & Table 5). Even with the 
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improvement seen, these two different models cannot be directly compared. Additionally, 

the resultant R2 values from the 3D regression model are still negative. Although nearing 

zero, the R2 value for the coronal, sagittal, and axial viewing planes were negative. This 

means that the model performed worse than a baseline model that guesses the average of 

the pooled R2 output. Figure 7, Figure 8, and Figure 9 show the actual bone marrow lesion 

injection volume against the predicted bone marrow lesion volume. Optimally, a linear 

relationship will have been formed and a rough linear line will be depicted on the graph 

[50]. The coronal test, shown in Figure 7, has datapoints in a rough linear line. The other 

two results, Figure 8 and Figure 9, have greater dispersion of results and less formed 

linearity. With a greater number of testing datapoints, stronger relationships may be 

formed, increasing the R2 value.  Overall, this shows promise for switching to a 3D 

regression model, since there are overall improvements compared to the slice by slice 

model.  
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Table 5 

 

MAE, MSE, RMSE, and R2 of  Patient by Patient Model 

 

Metric Patient by Patient Model 

Axial 

MAE 0.22875 

MSE 0.12311 

RMSE 0.35088 

R2 -0.28676 

Coronal 

MAE 0.23417 

MSE 0.13049      

RMSE 0.36124 

R2 -0.36385 

Sagittal 

MAE 0.21151 

MSE 0.08948 

RMSE 0.29914 

R2 0.06476 

Note. Metric evaluations from the patient by patient CNN model. The MSE, RMSE, and 

R2 come from the test dataset.  

  

 

 
 

Figure 7. Axial actual vs predicted 

test dataset values 
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Figure 8. Coronal actual vs predicted 

test dataset values 

 

 

 

 
Figure 9. Sagittal actual vs predicted test 

dataset values 

 

 

 

For further testing, 2 patients were temporarily removed from the total dataset due 

to the possibility of producing inaccurate results. This removal was only temporary since 

more data could be acquired and have bone marrow lesion volumes similar to theirs. Figure 

5 shows the discrepancy between these two patients and the other patients. In addition, to 
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have more patients for the testing dataset, the validation dataset was removed. Table 6 

shows the output comparison using the 35 patient data pool to using the 33 patient modified 

data pool. Through this new method, most metrics saw improvement. Only the axial and 

sagittal MAE declined after using the 33 patient model. The MSE and RMSE both 

decreased from 35 patients to 33 patients for all three viewing planes. In addition, the R2 

increased for all three viewing planes as well. The positive R2 value can be seen on the 

predicted versus actual graphs shown in Figure 7, Figure 8, and Figure 9. These improved 

results can be indicative of an improved model.  

 

 

Table 6  

 

Metric Evaluations From the Patient by Patient CNN Model When Using Input With and 

Without Potential Outlying Patients 

 

 With Outlying Patients 

(35 patients) 

Without Outlying 

Patients (33 Patients) 

Axial MAE 0.22875 0.257228 

Axial MSE 0.12311 0.083363 

Axial RMSE 0.35088 0.28873 

Axial R2 -0.28676 0.03558 

Coronal MAE 0.23417 0.173305 

Coronal MSE 0.13049 0.0404458 

Coronal RMSE 0.36124 0.20111 

Coronal R2 -0.36385 0.53209 

Sagittal MAE 0.21151 0.2374108 

Sagittal MSE 0.08948 0.066409 

Sagittal RMSE 0.29914 0.25770 

Sagittal R2 0.06476 0.23172 

 

 



 

35 

 

 
 

Figure 10. Axial actual vs predicted test 

dataset values 

 

 

 

 
Figure 11. Coronal actual vs predicted test 

dataset values 
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Figure 12. Sagittal actual vs predicted test 

dataset values 

 

 

 

5.4. Conclusion 

The tensor stacked patient by patient model establishes a different way to process 

these MRI images, and this resulted in improved prediction output from the model. 

Through this, it appears that the coronal viewing plane allows for the best model creation 

and prediction. Even though these results are promising and have improvement from the 

initial slice by slice model, there are improvements that can be implemented such as a 

multi-plane input into the model. This provides multiple viewing planes as the input for 

one CNN.   
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Chapter 6: 

3D Regression Using Multiplanar Tensor Stacked Images 

 

6.1. Introduction 

Using tensor stacked images from one viewing plane in a 3D regression CNN 

allowed for promising results that improved upon the baseline model. With this, even better 

results are sought and can potentially be accomplished by utilizing multiple viewing angles 

in a singular CNN. In a knee injury detection article, the authors compared a single plane 

analysis to a multi-plane analysis and discovered that using multiple planes improved their 

area under the curve results [51]. Therefore, specific aim 3 utilizes the existing 3D 

regression model by combining multiple viewing planes within each tensor. Since a tensor 

is a multi-dimensional array, multiple images can be used per tensor, as we saw in Chapter 

5. With this concept, it opens the ability of combining multiple viewing planes into one 

tensor. Similar multiplanar tensors have been used, such as in the article from Khan [52]. 

Within this, they sought to segment knee tissue from MRI images, and by using this tensor 

constructed MRI representation, they were able to achieve high accuracy scores. Even 

though the purpose of the study was for knee segmentation purposes, adapting the input to 

apply towards a 3D regression model may allow for a better resultant model. 

In order to determine the validity and performance of the 3D regression model with 

multiple viewing plane stacked tensor input, the same metrics will be observed from 

Chapter 4 and Chapter 5. These metrics include the MSE, MAE, RMSE, and R2. During 
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training, the convergence of the loss function will also be monitored to ensure that training 

does not overfit.  

Therefore, the purpose of this specific aim is to improve upon preexisting models 

by using tensor stacked MRI images from various viewing planes and compare the resultant 

metrics to determine the validity of the model.  

6.2. Methods 

6.2.1. Preprocessing 

MRI scans were preprocessed in the same way as seen in Section 4.2.1. After 

downloading, MRIs were typically of shape 256 x 256 voxels or 512 x 512 voxels and 

contained 20-30 images per patient per viewing plane. An 80mm x 80mm bounding box 

was drawn around the center of the bone marrow lesion to capture the largest sized bone 

marrow lesion possible. This step was completed using ImageJ. Once the size of the image 

was reduced, slices were selected to be used in the model. The largest bone marrow lesions 

spanned over 10 slices, so in order to encapsulate only the bone marrow lesion for this 

patient, the minimum number of slices needed was 10. The bounding box of 80mm x 80mm 

and slice removal until only 10 slices remained was done on all images.  

6.2.2. 3D CNN Architecture 

The input of the patient by patient model were tensor stacked slices of an MRI scan. 

Each of these tensors represents one patient, and each tensor was assigned its true value of 

injection volume as used by physician. Once these images were fed into the model, they 

went through a 3D convolution layer, 3D max pooling, 3D convolution layer 2, 3D max 
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pooling layer 2, a flatten, 2 RELU activation dense layers, and finally a linear activation 

dense layer. This architecture can be seen in Table 3. 

6.2.3. Dataset 

This study focuses on three magnetic resonance (MR) sequences of 35 preoperative 

knees from Dr. Sean McMillan Orthopedics & Sports Medicine and Rothman Orthopedic 

Institute. All patients have been affected by and treated for their bone marrow lesions 

through a subchondroplasty procedure in their femoral or tibial condyle. Before treatment, 

a preoperative MRI scan was taken so the areas of infection can be identified. Postoperative 

injection volume of calcium phosphate compound was recorded and exists as the ground 

truth. This model included 10 images per patient, 350 images total, for each viewing plane 

(coronal, sagittal, and axial). Subject data selected for the study are required to have all 

sequences acquired. 

Through using the 3D CNN regression architecture, as shown in Table 3, all of the 

slices from one MRI scan were used as the input. One tensor was created for each patient 

and their MRI scan. By doing this, all of the slices from that particular viewing plane are 

read together as one instead of as separate slices. Since each tensor corresponds to one 

patient’s MRI scans, each true value for the bone marrow lesions can be assigned to one 

tensor. Through this method, all slices from a patient are considered per scan and aids in 

the resolution of the previous complication where each slice was being assigned an 

incorrect true value.  
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6.2.4. Experimental Conditions 

The Keras library with its ‘ImageDataGenerator’ was utilized to apply 

augmentation techniques, aiming to enhance diversity and robustness of the training 

dataset. A rescale at 1./255, rotation of 20 degrees, shear by a factor of 0.2, zoom into the 

image by a factor of 0.2, shifts in the horizontal and vertical directions by 20% of its width 

and height, horizontal flip, and brightness transformations from -0.5 to 0.5 were 

implemented as experimental conditions. In addition, an early stopping mechanism was 

implemented to help prevent overfitting during training. This early stopping utility had a 

patience of 5 epoch. The models were trained with a batch size of 1 and Adam optimization 

with a learning rate of 0.01.  

6.2.5. Metrics for Evaluation 

Similar to previous chapters, MAE, MSE, RMSE, and R2 were used as metrics for 

evaluation.  

 

6.3. Results and Discussion 

The primary objective of this aim was to determine if combinations of viewing 

planes result in better predictions from the CNN model. Table 7 depicts the actual vs 

predicted volumes of injection for each of the different models. Observations show that 

some predictions are close to the actual value, and others are drastically off. This results in 

relatively poor prediction volumes. When looking at the output from the axial and coronal 

tensor model, many of its predictions are of similar values. This can also be seen for the 
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axial and sagittal tensor model. A potential reason for these poor results can be due to the 

complexity of the model. If this model was too simple, it might not be able to pick up small 

patterns or features. This would cause underfitting of the model. In this case, the easiest 

way to optimize the prediction is to output a fixed average value for all input. This low 

complexity can come from the type of learning, number of trainable parameters, and the 

extracted features [53]. On the other hand, too complex of a model can lead to overfitting 

[54]. Underfitting and overfitting can be better seen when observing the MSE over epoch 

graphs and the actual versus predicted graphs. 
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Table 7 

 

Actual vs Predicted Volumes of Injection for Combinations of Viewing Planes 

 

 Patient 1 Patient 2 Patient 3 Patient 4 Patient 5 Patient 6 Patient 7 

Actual 

Injection 

Volume 

(cc) 

5 3.5 5 4 3.5 5 4 

Axial, 

Coronal, 

and 

Sagittal 

Tensor 

Volume 

Predictio

n  

3.36862

1 

 

3.32330

6 

 

 

 

 

3.66108

2 

 

3.79183

8 

 

4.05652

4 

 

3.54867

7 

 

3.85672 

 

 

Axial and 

Coronal 

Tensor 

Volume 

Predictio

n  

3.05137

5 

 

3.04954

1 

 

3.00772

6 

 

3.01902

5 

 

3.02235

8 

 

3.03895

5 

 

3.00427

6 

 

Axial and 

Sagittal 

Tensor 

Volume 

Predictio

n 

3.00143

1 

 

3.01505

7 

 

 

2.96281

6 

 

3.00438

9 

 

2.95718

7 

 

3.00467

8 

 

3.00372

4 

 

Coronal 

and 

Sagittal 

Volume 

Predictio

n 

3.41688 

 

3.84375

9 

 

4.18374

6 

 

4.81385

6 

 

3.71768

5 

 

4.49060

3 

 

3.80280

4 

 

 

 

 



 

43 

Figure 13 shows the MSE and MAE graphs over epochs. With this, we can see that for 

every model, the graph properly converged following the early stopping implementations. 

This convergence signifies that the model will not improve any further if allowed to go 

additional epochs.  

  

 

    
Axial, Coronal, and 

Sagittal Graph 

Axial and Coronal 

Graph 

Axial and Sagittal 

Graph 

Coronal and 

Sagittal Graph 

Figure 13. MSE and MAE graphs over epoch for different combinations of viewing 

planes. 

 

 

Figure 14 shows the actual versus predicted volumes of injection for each of the different 

combinations of viewing planes. With linear regression, the optimal model would have 

predictions that follow a diagonal line across the graph from the bottom left corner to the 

top right. These graphs additionally aid in determining overfitting or underfitting by 

depicting how well the data points follow the optimal line. The axial, coronal, and sagittal 

plane model and the coronal and sagittal model appear to have predictions that could 

possibly be on the optimal line. The other two models have very poor predictions, and these 

predictions are all under the optimal line. This could possibly mean that the model was 

underfit for the axial and coronal and axial and sagittal models. Additionally, when 

observing the MAE, MSE, RMSE, and R2, the axial and coronal and the axial and sagittal 
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models both performed the worst. This can be seen in Table 8. Out of the four models, the 

coronal and sagittal viewing planes model performed the best since it had the lowest MAE, 

MSE, RMSE, and the highest R2. Although, additionally on this table there is the coronal 

only viewing plane model for comparison. This model performed the best when initially 

testing the 3D regression CNN, and  the coronal only viewing plane had the best results. 

 

 

 

 

Table 8  

 

MAE, MSE, RMSE, and R2 of Models using Different Combinations of Viewing Planes. 

The Coronal Output is From the Previous Model 

 

 Coronal  Ax, Cor, Sag Ax, Cor Ax, Sag Cor, Sag 

MAE 0.173305 0.20558 0.41312 0.43209 0.12688 

MSE 0.0404458 0.35755 0.57186 0.58770 0.29099 

RMSE 0.20111 0.45342 0.64275 0.65734 0.35621 

R2 0.53209 -1.37837 -3.77940 -3.99880 -0.46789 

 

 

    
Axial, Coronal, and 

Sagittal Planes 

Axial and Coronal 

Planes 

Axial and Sagittal 

Planes 

Coronal and Sagittal 

Planes 

Figure 14. Actual vs predicted results from different tensor combinations of viewing 

planes its input. All predictions are made on the testing dataset 
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6.4. Conclusion 

The usage of the 3D regression CNN model with multiplanar inputs allowed for 

combinations of multiple viewing planes. From the combinations tested, the model which 

combined the coronal and sagittal views performed the best but was still worse than when 

only using the coronal viewing plane. Even though the models which combined viewing 

planes performed worse, using multiple viewing planes opens the possibility of using 

combinations of images as the input.  
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Chapter 7:  

Project Summary and Future Work 

 

7.1. Project Summary 

The aims of this research were to create a regression CNN that would take 

preoperative MRI scans of patients with BMLs as input, and output predicted volumes of 

injection for that BML. There is a need for the prediction of BML volume of injection 

because of further pain that can come from overfilling or underfilling during the 

subchondroplasty procedure [8], [11]. The regression CNN model viability was measured 

through the actual versus predicted volumes of injection, the convergence of the loss 

function and the regression metrics MAE, MSE, RMSE, and R2.  

Results from testing 2D and 3D CNN models with varying viewing planes as inputs 

revealed that utilizing 3D regression CNNs with a tensor stacked image input from the 

coronal view provided the best model. This model provided the best predictions, resulting 

in the lowest MAE, MSE, RMSE, and the highest R2.  

7.2. Future Work 

These results demonstrate the potential for training a 3D regression CNN with 

novel preoperative MRI scans of patients with BMLs in order to create a prediction 

algorithm. The methods outlined in this research can be used to evaluate and compare 

against future iterations of the regression model. Going forward, potential avenues for 

testing include using T1 modality MR scans [55], increasing the number of patients being 
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put into the training and testing datasets, and increasing the complexity of the model [40]. 

The addition of T1 modality MR scans can potentially allow the CNN to learn more, simply 

by having access to more and potentially better information about each MRI scan. 

Increasing the dataset may allow the model to draw better generalizations about the training 

set, allowing for better results and predictions. This increase in data can also allow us to 

increase the complexity of the model, but may increase the cost of computation and slow 

down the performance [56]. Overall, the impact of this research allows for preliminary 

volume of injection predictions for patients with BMLs and may aid the doctors in patients 

by preventing overfilling and the related pain. 
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