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Abstract

Steven Arroyo
FEDERATED LEARNING BASED AUTOENCODER ENSEMBLE SYSTEM FOR

MALWARE DETECTION ON INTERNET OF THINGS DEVICES
2023-2024

Shen-Shyang Ho, Ph.D.
Master of Science in Computer Science

New technologies are being introduced at a rate faster than ever before and smaller in

size. Due to the size of these devices, security is often difficult to implement. The existing

solution is a firewall-segmented “IoT Network” that only limits the effect of these infected

devices on other parts of the network. We propose a lightweight unsupervised hybrid-cloud

ensemble anomaly detection system for malware detection. We perform transfer learning

using a generalized model trained on multiple IoT device sources to learn network traffic

on new devices with minimal computational resources. We further extend our proposed

system to utilize federated learning such that IoT devices feed their output to a cloud server

enabling more detection capabilities while keeping the network traffic secure on the device

itself maintaining data privacy. We validate this system by creating a simulation testbed to

conduct attacks on the IoT devices to evaluate how well the detection system works. We

also compare transfer learning using multiple sources to a single source to show how the

detection model of a target device is impacted by transfer learning. Empirical results on

two datasets, one from the 2016 Mirai botnet attacks on IoT devices and the other from

Gafgyt malware attacks on various IoT devices, show the competitiveness and feasibility

of our proposed solution.
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Chapter 1

Introduction

In this past decade, technology has continually improved exponentially, as people

are integrating with it more than ever. Access to state-of-the-art technology at our fingertips

will only continue this trend. At the center of this growth, Internet of Things (IoT) devices

are the infrastructure delivering this change for both individuals and businesses. Accom-

panying this growth has been increased exploits and attacks on these IoT devices, which

have cost billions of dollars in 2023 alone. Yearly reports from just the past few years have

shown a 400 % increase in IoT device attacks, with a 1000% increase targeting universities

and institutions alone [1]. Other reports show similar increases over the past few years [2,

3]. Based on these reports coupled with the rapid production of IoT, nearing 201 billion

devices, this problem is only going to get worse [4].

There has been research done to solve this IoT device cybersecurity problem. Gen-

erally, some of this work involves communications with a cloud and sending network data,

which could get intercepted causing a major vulnerability. The latest research focuses on

federated learning, a decentralized system of IoT devices that sends model weights to the

cloud to update a global model for the device status [5, 6, 7, 8, 9].

In this thesis, we describe and explain our proposed federated learning autoencoder

decentralized anomaly detection system. This system uses minimal computationally inten-

sive autoencoders in favor of using feature extraction and a variety of statistics to make

an efficient solution. We perform transfer learning using a generalized model trained on

a large dataset with millions of packet data from 9 IoT devices to learn network traffic on

new devices with minimal computational resources. We perform federated learning to send

our device model outputs in a secure manner to the cloud to enable more robust detection

capabilities. We also create an attack test bed to evaluate the entire system as this is the
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first step in moving the system out of the dataset and into the real world.

The preliminary proof of concept of the architecture presented in this thesis was

first published in [10]:

• S. E. Arroyo and S.-S. Ho, “Autoencoder ensemble method for botnets detection on

IOT devices,” in 2022 21st IEEE International Conference on Machine Learning and

Applications (ICMLA), December 2022, pp. 715–720.

A poster which provides an overview of the architecture in the thesis and covers the feasi-

bility of this idea was published in [11]:

• S. E. Arroyo and S.-S. Ho, “A Hybrid-Cloud Autoencoder Ensemble Method for

BotNets Detection on Edge Devices,” in the 8th IEEE International Conference on

Fog and Edge Computing (ICFEC), May 2024.

A journal paper titled “Robust Autoencoder Ensemble Method for Botnets Detection on

Internet-of-Things Devices” covers the entire architecture to its entirety showing how the

system performs on real time systems is currently under reviewed for the “Expert Systems

and Applications” journal.

This thesis is organized as follows. In chapter 2 we briefly describe related works

and background that makeup the core components of the system. In chapter 3 we describe

in detail the design of the entire system from when a packet arrives to when it gets classified

and sent to the cloud. In chapter 4, we discuss results of this system and impact of transfer

learning using the Kitsune dataset for both Mirai and Gafgyt attacks. Lastly, chapter 5

discusses the creation of the test bed where real attacks are conducted onto simulated IoT

Devices to measure performance of the system.

2



Chapter 2

Background and Related Work

2.1 Anomaly Detection

Anomaly detection of network traffic data is a well studied topic that has been used

for the purpose of Intrusion Detection Systems (IDS) firewalls, router and IoT Security. The

goal is to create a model of the data, understand the distribution, and flag inputs that vastly

vary. The first network intrusion detection algorithm was created in 1986 with a focus on

statistics to detect abnormalities in the network traffic [12]. Since then, with the increase

availability in compute resources and efficiency along with the advancement of machine

learning (ML) technologies, anomaly detection research has pivoted more toward machine

learning based approaches [13]. Because predictive model created by these algorithms

are powerful at classification tasks and analysis, ML has become an indispensable tool for

anomaly detection tasks.

Generally, anomaly detection focuses on determining the differences between what

is considered normal and abnormal which becomes a binary classification task. There

have been numerous supervised and unsupervised algorithms created for dealing with these

tasks [14, 15, 16, 17, 18]. The general architectures used for network intrusion anomaly

detection are gated recurrent unit (GRU) [14], Long-Short Term Memory (LSTMs) [15],

deep neural Networks (DNNs) [16] and autoencoders [17]. GRU and LSTMs are time-

series based neural networks that learn their model weights through time. The advantage

of these models is that they account for time at the expense of being more computationally

complex. DNNs and autoencoders account for time through feature extraction where DNNs

may take an autoencoder output as an input to feature extraction. These models are less

computationally intensive and presented as competitive solutions.
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2.2 Transfer Learning

Transfer Learning is a machine learning technique used in situations when there is

not enough data to create a good predictive model for a target task. This is done typically

by improving the model for a target task built off of a dataset related to the target task (e.g.,

image classification). This model will be trained on both data from the target task and

its related tasks resulting in a better representation for the target task. Another advantage

for using transfer learning is its ability to learn information in less epochs meaning less

computation resources are necessary for learning [19, 20] .

In recent years, pre-trained models built on large datasets exist for many learning

problems where transfer learning is necessary [19, 20, 21, 22]. However, there are not

many for the IDS anomaly detection task because there is not one standard model being

used. There is research being done on transfer learning using raw packet data [23] that

shows transfer learning is plausible for the IDS task and can be built upon.

2.3 Federated Learning

Since the introduction of federated learning, researchers have been studying use

cases in health, defense, and general cybersecurity [5, 24, 9, 8]. Historically, data would

be offloaded to the cloud for compute clusters to create ML models. Federated learning

mitigates the need for this by bringing a decentralized learning approach to machine learn-

ing that increases security on the devices. To achieve this, machine learning is done on

the device itself instead of sending valuable statuses to the cloud. This prevents tampering

with the data because the model is localized as well as one leverages compute resources

that already exist. Then, the output of the model is encrypted and sent to the cloud for

further analysis [5, 6, 7, 8]. In this case, the cloud takes this localized data and forms a

generalized understanding of all the network traffic being presented.

There have been multiple algorithms that leverage federated learning for anomaly

4



detection of network traffic. Generally, these algorithms leverage the use of a machine

learning model (GRU, LSTM, Autoencoder) on the device that act as inputs for a global

model that updates the weight to create a full picture of the network traffic [5, 6, 7, 8, 9]

. With the introduction of federated learning, there has been improved performance when

compared to the same model without federated learning.

2.4 Autoencoders

Traditional autoencoders are artificial neural networks that minimize the input lay-

ers to a “bottleneck” which is the smallest possible representation of the data in the archi-

tecture. This smallest representation gets reconstructed to a full representation of the input

data.

Autoencoders are often used in anomaly detection for their ability to create low di-

mensional representations extracted from high dimensional features. Because of this, many

recent algorithms for anomaly detection use autoencoders to feed these representations into

another neural network to create a final classification [25, 26, 27, 28]. Autoencoders are

also often used for their ability for unsupervised learning. This is because loss is based on

the training input data and their output reconstruction without the need for labels.

Much of the latest anomaly detection research takes the basic architecture and mod-

ifies it to try and create stronger representations. This often leads to competitive, powerful

results that are efficient and can be used for the IoT problem [29, 30].

2.5 Damped Incremental Statistics

Damped Incremental Statistics is a term popularized by the Kitsune model to de-

scribe the feature extraction algorithm used to extract network packets into 115 features [31].

Generally, the network packet would get stored into 23 statistics mapping with the Mac

Address Layer, IP Layer, and Transport layer of the OSI model. From here, these 23 statis-

tics are extracted with 5 different damping factors from windows of time as far back as

5



a minute [32]. These make up the 115 features used to describe a network packet. This

feature extraction method used is powerful for time series statistics. The extracted features

are good for reducing space complexity because only a few features need to be retained

over time [33].

6



Chapter 3

Proposed System and Methodology

In this chapter, we describe and explain our proposed federated learning autoen-

coder decentralized anomaly detection system in detail. The system uses minimal com-

putationally intensive autoencoders in favor of using feature extraction and a variety of

statistics to achieve an efficient solution.

3.1 System Overview

Figure 1 shows a general overview of how the proposed anomaly detection sys-

tem works for a single network packet during execution. When a packet is observed, the

Damped Incremental Statistics o⃗ (see subsection 3.2.2) are computed. We cluster these

features into multiple non-overlapping feature sets that are fed into their respective autoen-

coder a⃗i. Then all the encoders will make a vote g(x) as to whether the packet is anomalous.

Each vote is stored over a period of time and sent to a cloud database and removed from the

devices. The vote data sent to the cloud is used to construct a statistical model to happening

across the entire network.

7



Figure 1

Overview of How the Proposed Anomaly Detection System Works on a Simple Two-Device
Network When One Network Packet Is Observed

3.2 Feature Extraction and Packet Reader

3.2.1 Overview

The feature extractor derives multiple statistics from a packet in a way that is com-

putationally and spatially efficient. The data that comes in is simply the packet size with

header information describing the two devices communicating with one another. The ob-
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jective is to map this packet data with the header in a way that we can derive meaningful

statistics about a packet. Kitsune and our feature extractor map the packet data to the

Open Systems Interconnection (OSI) model [32]. The main difference is that our feature

extractor extrapolates differences about destination packets as well to create additional fea-

tures for discovering anomalies. Figure 2 shows how we map to the OSI model using

just the packet data and the information from the header. This can be extrapolated to any

source-destination combination. MAC addresses are used to generate statistics for packets

at Layer 2. IP addresses are used at Layer 3. In Layer 4, we map to the source and desti-

nation devices during transmission to track the communications. By using these mappings,

we represent what is happening at each of these layers.

Figure 2

Feature Extraction by Mapping Packet Data and the Information from the Header to the
OSI Model

3.2.2 Damped Incremental Statistics Usage

Incremental Statistics (IS) [32] are snapshots of fundamental statistics about the

data without storing all the data over time. Instead, the processed data used to derive

9



statistics are stored in a tuple form which is much more space-efficient.

Let P be a set of packets {p1, p2, p3, ..., pn} for a particular device. Note that P is of

fixed set size when training offline; however, when training online (or real-time) data P is

dynamic and typically the number of packets received from n−1 seconds ago. This means

that when training in real time, pn is the latest observation.

Table 1 shows the fields we extract from each packet p. In particular, TOA is

the time of arrival that we receive p and m is the size of the data in packet p. We use

the extracted information to create our Incremental Statistics. These extractions provide

features that we can use to create our mappings and descriptors to gain insights into what

is happening during packet communication.
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Table 1

Information Extracted from Each Packet Data

Packet Field Description

m packet size

isrc IP Source Address

idst IP Destination Address

msrc Mac Source Address

TOA Time of Arrival

srcprt Source Port

dst prt Destination Port

We would like to track how consistent a device is communicating with the hosts and

if there are any sudden changes. For this reason, we extract the so-called 1-Dimensional

Statistics (1D). We focus on monitoring both the TCP/IP connections as well as MAC

connections. We monitor TCP/IP and MAC connections separately for the scenarios where

a MAC address changes for a particular IP (i.e., ARP poisoning). There are also instances

where some devices may be talking with layer 2 protocols that would be missed if we didn’t

monitor the MAC addresses. We want to use msrc,mdst, isrc, idst (See Table 1) for tracking
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and to create at least 2 different 1D instances (MAC and IP). Table 2 shows the extracted

1D and the statistics (DS) we want to derive for each packet. Note that 1D are computed

after each observation p and DS are simply equations that do not need to be calculated until

they are necessary which saves space.

Table 2

1-Dimensional Features Extracted for Each Packet

1-Dimensional Statistics (1D) Formulation

Number of Instances (NOI) |P|

Linear Sum (LS) ∑
|P|
i=0 mpi

Sum of Squares (SS) ∑
|P|
i=0 m2

pi

Time Last Observed (T LO) ∑
n
i=1 TOApi−TOApi,TOAp0 = 0

Derivable Statistics(DS) Formulation

µ
LS

NOI

σ2 SS
NOI −µ

σ
√

σ2
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The motivation for 2-Dimensional statistics (2D) is much more niche than that of a

1D. We have our features for TCP/IP and MAC that we derived in 1D; however, how do

we detect more subtle differences in traffic? For instance, if you are consistently talking

back and forth with an IP sending large masses of data to one another then this IP sends a

small packet to a different port. With the 1D features, we can’t detect something like this

because the 1D features do not account for each socket/port on a device. 1D features also

don’t account for situations where the data is consistent but the communications become

scattered. 2D is introduced to handle situations like the aforementioned where we can track

all overall packet communication between 2 devices as a stream that we can derive further

statistics from.

Table 3 shows what is within each 2-Dimensional statistics and how they are de-

rived. k, j are 1D statistics that describe communications between the src device and desti-

nation device respectively. These communications can be IP - IP communications as well

as IP:PORT - IP:PORT communications.
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Table 3

2-Dimensional Features Extracted for Each Packet

2-Dimensional Statistics (2D) Formulation

Number of Instances (NOI) |P|

k, j k ∈ 1D, j ∈ 1D

Linear Sum (LS) LSk, j

Sum of Squares (SS) SSk, j

Residual Sum Of Squares (RSS) ∑
n
i=0(mpi−µk)∗ (mpi−µ j)

Time Last Observed (T LO) ∑
n
i=1 TOApi−TOApi,TOAp0 = 0

Derivable Statistics (DS2D) Formulation

µ
LS

NOI

σ2 SS
NOI −µ

σ
√

σ2

|2D|
√

u2
i +u2

j

R
√

σ2
i +σ2

j

Covi j
SR

NOIi+NOI j

ri j
Covi j
σi+σ j
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Lastly, we want to cover Jitter between 2 devices. Jitter is the amount of time that

it takes for data from any of the IPs to be received and is integral in detecting Man in The

Middle (MITM) and Botnet attacks. This is because both attacks are time-based and can

be detected with Jitter observers. To calculate Jitter we make a J1D with a 2D input. We

do this to extract the T LO which will serve as our primary value to compute LS and SS

statistics instead of m. Table 4 shows how we extract Jitter as a J1D observation.

Table 4

Jitter Observations for Each Packet

Jitter Statistics (J1D) Formulation

q q ∈ 2D

Number of Instances (NOI) |P|

Linear Sum (LS) ∑
|P|
i=0 T LOqpi

Sum of Squares (SS) ∑
|P|
i=0 T LO2

qpi

Derivable Statistics(JDS) Formulation

µ
LS

NOI

σ2 SS
NOI −µ

σ
√

σ2

An Incremental Statistic IS is a set of 3 DS (MAC, TCP/IP, Jitter) and 2 2D (IP-IP

and IP:Port→ IP:Port)

IS = {DSMAC,DSTCP/IP,JDS,DS2DIP−IP,DS2DIP:Port→IP:Port} (1)

resulting in 23 unique statistics derived for each packet observed. In other words, IS is a
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23-element vector.

As is, we gain insights about packets in real time disregarding TOA. We want

to look at past and current instances more accurately to predict attacks. Here is where

Kitsune introduces a Dampening factor that shows 5 windows of time 100ms, 500ms, 1.5

sec, 10 sec, and 1 min into the past λ = (5,3,1, .1, .01) [32]. To achieve this, we create the

dampening windows for IS as follows.

damp(λ , IS) = 2−λT LOISIS (2)

We apply this dampening factor to IS 5 times for each window to create our input feature

vector o⃗ of size 115.

o⃗ = {damp(λ1, IS),damp(λ2, IS), ...,damp(λ5, IS)}. (3)

o⃗ is what we feed into our autoencoder to gain insights.

3.3 Anomaly Detection Model

3.3.1 Overview

The anomaly detection system is comprised of an ensemble of encoders to find pat-

terns in their respective cluster, an algorithm for deciding the architecture of the neural

network, and a statistical model to form a distribution and learn the low dimensional repre-

sentation. When a new packet is introduced a consensus is taken among the encoders that

evaluate if the packet is anomalous. The advantage of this anomaly detection system is to

use forward propagation sparingly by introducing a statistical threshold model to determine

the anomaly efficiently.

The number of encoders in the ensemble is decided based on the clusters discovered

during feature extraction. This describes the unique high-dimensional patterns that are
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extracted from the original temporal data. One purpose of autoencoders is to simplify the

input data x as much as possible with the least amount of loss for pattern discovery. For this

model, the input data x is reduced to one dimension. In Figure 3 we see the size of each

layer decrease by half until a single dimension representation e(x) before reconstructing

the pattern d(x) of the full extracted dimension . We use the Mean Squared Error (MSE)

of d(x) compared to the input data x to optimize the autoencoder. We use e(x) to learn our

statistical model.

Figure 3

Autoencoder Architecture

When the autoencoder is trained and the encoder is split off, the encoder makes

a prediction for the entire training data. Then we take these predictions and learn the

parameters of a Galton distribution which is our threshold model because previous work has

shown network traffic is typically log-normal [34]. Using the learned Galton distribution,

we obtain thresholds for anomaly detection as opposed to previous work [32] which feed

the encoder value into another neural network for detection. Our proposed method reduces

computations during real-time scenarios.

Figure 4 shows a general overview of anomaly detection using an ensemble of

three autoencoders for a single packet for a single device. When a packet is observed,
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we compute the damped Incremental Statistics o⃗. We cluster these features into multiple

non-overlapping feature sets that are fed into their respective autoencoder a⃗i. Then all the

encoders will make a vote g(x) as to whether the packet is anomalous.

Figure 4

Evaluating a Single Packet p Using the Proposed Autoencoder Ensemble for Anomaly De-
tection

3.3.2 Ensemble Size Determination based on Clustering

Let T be a matrix where each row is a single observation o⃗ and each column (col) is

a feature of o⃗ (of size 115). T = {⃗o1; o⃗2; o⃗3; ...; o⃗n} such that n is the number of observations

seen in P. The average for each col is stored in a vector M⃗T = {µ1,µ2,µ3...,µ|col|} and

each corresponding standard deviation in a vector S⃗T = {σ1,σ2,σ3...,σ|col|}. Let Tnorm be

a normalized set of T where we normalize by using col−MTcol
STcol

for each column of T (col).

We use M⃗T and S⃗T later to normalize our execution matrix Enorm (See subsection 3.3.4) as
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well.

We use a correlation distance matrix Tcorr to cluster based on similarity. For this,

we use Pearson correlation. We compute each value of Tcorr as follows.

Tcorr(x,y) = 1− ∑
n
row=0(xrow− x̄)(yrow− ȳ)√

∑
n
row=0(xrow− x̄)∑

n
row=0(yrow− ȳ)

(4)

such that x and y are features of T and x̄ and ȳ are the means of the feature values. We use

Wards algorithm [35] to minimize variability between clusters to create our dendrogram

for hierarchical clustering. We choose a threshold that defines the minimum distance or

“cutoff” for a feature to be a part of each cluster ci. This threshold is used to decide the

number of clusters, K which corresponds to the number of autoencoders in the ensemble.

Let C = {c1,c2,c3...cK} be the set of K clusters. Each cluster ci has a corresponding

data matrix Di and an autoencoder a⃗i to be trained using Di. Prepossessing and clustering

takes place once before training. During execution, these clusters discovered are applied to

the new feature set.

Algorithm 1 Learning Ensemble of Autoencoders
Require: iter ≥ 0

0: for each a⃗i do{Go through each autoencoder}
0: for t ≤ iter do
0: y = d(r0, a⃗i) {Forward Propagation (r0 is a random sample of Di)}
0: ŷ← r0

0: Ein = MSE(y, ŷ)
0: W (t +1) = SGD(Ein,W (t))
0: end for
0: Set µa⃗i,σa⃗i

0: end for=0

19



3.3.3 Autoencoder Training

The input layer of a⃗i takes the data from Di as input. Let r0 be a single data instance

of Di fed into the input layer with dimensionality d equal to the dimensionality of Di. For

layer l,

rl = R(W lrl−1 +bl) (5)

such that the Rectified Linear Unit (ReLU) activation function

R(m) =


m, m > 0

0, otherwise.

and W l and bl are weights and bias at layer l and rl−1 is the output of the previous layer

(l−1). The bottleneck is calculated as

e(x, a⃗i) = e(x) =W
L
2 r

L
2−1 +b

L
2 (6)

and the final decode layer,

d(x, a⃗i) = d(x) =W LrL−1 +bL (7)

L is the number of the autoencoder layers excluding l = 0 and L is assumed to be even,

without loss of generality. The above equations describe how the model forward propagates

to give an estimated output.

To update W (t), we use Stochastic Gradient Descent SGD(Ein,W (t−1)) with Ein =

MSE(d(x),y) such that y is the input data from Di which happens to be r0 in this case and

d(x) is our autoencoder output. Once W is learned for a⃗i, we estimate the thresholds used
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to classify anomalies for the particular autoencoder a⃗i as

µa⃗i =
∑
|M|
j=1 e(x j, a⃗i)

|M|
(8)

and

σa⃗i =
∑
|M|
j=1 e(x j, a⃗i)−µa⃗i

|M|
(9)

where |M| is the total number of instances of M and x j is an instance of M.

3.3.4 Classifying Unseen Instances

Let E be the set of unseen instances. E is represented as a matrix where each row

is a single observation o⃗ and each feature column (col) is a feature of o⃗ similar to T in

subsection 3.3.2. Let Enorm be a normalized version of E using col−MTcol
STcol

. Similarly, for

each cluster ci ∈ C, a⃗i is an autoencoder trained on Di. Ei ⊆ Enorm such that Ei contains

the features that are specific to cluster ci. To classify an unseen instance x, we give each

autoencoder a⃗i a vote,

h(x, a⃗i) =


1, |e(x, a⃗i)−µa⃗i|> d f ∗σa⃗i

0, otherwise.

(10)

d f is a user-defined tuning parameter that decides if the anomaly threshold exceeds a cer-

tain number of standard deviations. x is a single execute instance of Ei. Next, we get a total

vote count from the ensemble of autoencoders,

c(x) =
K

∑
i=1

h(x, a⃗i) (11)
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Then we make the final classification decision for x

g(x) =


Anomaly, c(x)> K

2

Benign, otherwise.

(12)

3.4 Incremental Learning System

3.4.1 Overview

Network traffic is variable in terms of distribution and frequency across even similar

devices. However, training a model from scratch takes time. Transfer learning is introduced

to take a pretrained model and tweak it to the specifications of the digital fingerprint of

the new device’s network traffic. The incremental learning system creates an adaptive

anomaly detector model by introducing new data to the pretrained model. Overtime, a new

fingerprint is created that adapts to the devices traffic.

To create a robust detection model, we first have to introduce a model that is good

at detecting abnormalities for all IoT devices across the data set. To do this, we create

a larger data set D combining multiple IoT device fingerprints. For this, there are 9 IoT

Devices with roughly 1 million packets (anomalies included) per device. Roughly 143,000

thousand packets are taken across each IoT device to create our detection model. Then an

Anomaly Detection Model is formed using the data from the 7 IoT devices with evaluations

of anomalies for each device. Because the model is general, the distribution threshold will

also be general. As the model adapts to the device, this threshold may need to be adjusted.

When the detection model is trained and ready for deployment, Incremental learn-

ing to a target data device is the next phase. As new packets are introduced, the encoder

goes through a learning phase for 15 epochs. At the end of learning, the distribution is

recompiled by taking a weighted average of the new model outputs and detection model
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outputs. The standard deviations are combined as well as shown in Equation 13. This com-

bined distribution ensures that the adaptive model doesn’t forget the previous distribution

it learned on.

3.4.2 Transfer Learning

Earlier results [10] show that with extended training time, the model can learn traffic

for any particular device. Transfer learning is performed to minimize training time by

adapting a general pre-trained model that can detect anomalies for all devices with data in

D. We again use the approach described in subsection 3.3.2 to determine the number of

clusters and ensemble size for our general model that will be applied to each target device.

For each cluster ci ∈C, there exists a T Li containing all the feature columns and instances

associated with ci at some (future) time instance t ′ for a target device that does not exist in

D. a⃗i is a detection model at some time instance t such that t < t ′. We repeat Algorithm 1

where r0 is now an instance of T Li.

We modified Line 8 in Algorithm 1 to replace the computed sample means and stan-

dard deviations with the weighted means and standard deviations computed using Equa-

tion 13 to account for the weights of the autoencoder and the distribution of all the IoT

devices. These modified statistics describe the one detection model for the target device.

This weighted model is constructed using the weighted mean and standard deviation to

combine the previous and new distributions. To minimize space complexity, we use Incre-

mental Statistics to update µa⃗i,σa⃗i of the current model derived from data observed so far.

In our description below, we use |⃗ai| to define the total number of instances observed so far

for an autoencoder.

Let the sample mean and the variance of the new model for each autoencoder be

δ µa⃗i =
∑
|T Li|
j=1 e(x j ,⃗ai)

|T Li| and δσ2
a⃗i
=

∑
|T Li|
j=1 (e(x j ,⃗ai)−δ µa⃗i)

2

|T Li|−1 of T Li for the target device at time t ′,

respectively. With this adjustment, we can now combine distributions by calculating the

weighted means and standard deviations as follows.
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The updated weighted means for autoencoder a⃗i at time t ′ is

µa⃗i(t
′) =

|⃗ai|
|T Li|+ |⃗ai|

µa⃗i +
|T Li|

|T Li|+ |⃗ai|
δ µa⃗i.

The updated weighted standard deviation for autoencoder a⃗i at time t ′ is

σa⃗i(t
′) =

√
(|⃗ai|−1)σ2

a⃗i
+ |⃗ai|(µa⃗i−µa⃗i(t

′))2 +(|T Li|−1)δσa⃗i + |T Li|(δ µa⃗i−µa⃗i(t
′))

|⃗ai|+ |T Li|−1
.

(13)

This updates the standard deviation and sample mean as the device is receiving

network packages. Some benefits to this method are not having to store the package data

and a reasonable model is learned with limited amount of data quickly. As new packets

are introduced, the weights and thresholds update together to create an updated normal

network data model for detection purpose for the target device. In our study, this model is

trained from 4 IoT devices outside of D.

3.5 Federated Learning Anomaly Detector

3.5.1 Overview

To utilize federated learning for our proposed anomaly detection system, the IoT

devices in question must be able to perform on-device machine learning tasks (with some

minimal computing resources). Each device on the network has a personalized anomaly

detection model that only listens to its data. This creates a real-time, scalable, secure system

that uses computing resources of multiple devices. The model outputs are shared with the

cloud to fully understand the device behaviors and send alerts when a system experiences

abnormalities. Figure 5 provides an overview of how model outputs from multiple devices

are sent to the cloud to learn a detection model.
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Figure 5

Federated Learning Model for Anomaly Detection

Incremental learning is done across each edge device on a network to learn a local

anomaly detection model. The data for this model is taken in real-time and extracted. The

device and distribution are trained over 15 epochs every 30 seconds for 5 minutes. After

this model is finished training, it goes into ”execute” mode; Every 30 seconds a batch of

data is fed into the local model to evaluate the state of the device. Also, an anomaly score

g(x) is sent to the cloud to learn the status of the device. The advantage of this approach is

in the model’s ability to train a new edge device in 5 minutes and gain a good understanding

of the traffic introduced.

Upon receipt of the status of each device in the cloud, a global statistical distribu-
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tion of network quality and abnormalities is learned. The objective is to create a full map of

device statuses across an infrastructure. If multiple devices on a segmented line are experi-

encing anomalies the model can warn the user that a segment is experiencing anomalies for

evaluations to be done. The idea is to stop the domino effect of malicious devices taking

over the network. During training mode, the anomaly status is taken over time to learn a

global distribution. If this distribution exceeds an expected threshold the whole network

can be classified as under attack.

3.5.2 Federated Learning Hyperparameters

We utilize federated learning to leverage decentralized input from various devices

on our network to create a global mapping of network statuses. Let FL be a network with a

set of edge devices ED = {ed1,ed2,ed3, ...,edn} such that n is the number of edge devices

in ED, a prediction database PR and also centralized server CS. For each edi there exists

a detector that contains the ensemble of transfer learned models T D = {a⃗1, a⃗2, a⃗3, ...a⃗k}

where k is the size of the ensemble. T D is trained on all the devices DT and uid is the

unique name given to each edge device ed on the network. An observation o⃗ is extracted

each time a packet is read and added to an observation matrix O (See subsection 3.2.2) such

that O = {⃗o1; o⃗2; o⃗3; ...; o⃗m} and m is the number of packets observed after a time interval

l. Because we are adding to our observation scope and want to retain what the model

predictor has stored we use the weighted update algorithm (See subsection 3.4.2) to train

on each observation after l.

For execution, after interval l , we store the predicted observations into a prediction

array PO as follows. Let PO = {g(⃗o1),g(⃗o2),g(⃗o3), ...,g(⃗om)} for each observation o⃗i that

exists in O. We then populate our prediction database PR with each PO across all ed that

exists in ED. Let PR = {PO1,PO2,PO3, ...,POn} such that each instance PO j corresponds

with an edge device ed j using a key uid specific to each ed.

The centralized server CS iterates through PR after l. Based on the total number of
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predicted observations for all edge devices in ED, we compute a threshold T p to decide

whether a network is under attack during the “execute” mode using the following:

class =


UnderAttack, totAnom

totObs ≥ T p

Normal, otherwise.

(14)

a class is gathered after each interval l and is stored each time to help the user understand

the status of their network, totAnom is the number of anomalies detected for all devices in

ED, and totObs is the total number of observations for all edge devices in ED.

Figure 1 shows how the system works when there is only one o⃗ in O. When m

increases in size beyond 1, the algorithm works the same except it runs over all of O cap-

tured after the time interval l. Also, the full data gets sent all at once before getting erased,

not one at a time. One advantage of this is the encoders can run in parallel (3 separate

threads in this example). This is because each encoder does not need each other to make

their predictions, they run independently. Also if necessary, the encoder outputs e(x) could

be configured to be sent directly with g(x) to the central server to do processing instead.

This can lighten the load depending on the flexibility of the edge device executing forward

propagations. The most prominent advantage is the anomaly detection model is adapted

to their own individual device and network packets are never shared with the cloud. This

is because the statistics is extracted from the packet data, and used only during the weight

update algorithm (See subsection 3.4.2).
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Chapter 4

Experimental Results

To evaluate how well the model can generalize a system, we utilize transfer learning

on data from one IoT device source and adapt it to all IoT device targets. We also perform

transfer learning on data from multiple sources and adapt to the same set of target devices.

We compare their performance after the same amount of epochs to evaluate how well the

predictive model adapt to new target IoT devices.

4.1 Experimental Design and Performance Evaluation

The dataset used in our experiments is the popular Kitsune IoT dataset [32]. This

dataset is provided in an Incremental Statistics format similar to what we described in

subsection 3.3.2. They generate this dataset for 9 IoT devices creating about 7 million

packets between anomaly and benign examples. That dataset contains an equal amount of

benign and anomaly examples. The anomaly samples are split into two primary vectors

of botnet attack, Mirai and Gafgyt. Both botnets are used today to cause damage to IoT

infrastructure [36]. A few devices in the dataset do not contain Mirai data (e.g., Samsung

Webcam). We train our ensemble on Damni Doorbell to create a control model that we

use for both single (Damni Doorbell) and multiple source (Damni Doorbell, Simple Home

Security Camera 2, Provision Security 1-2, Ennino Doorbell) transfer learning scenarios.

Based on results from previous work [10], we build our control model by training

45 epochs of our control device data on an ensemble consisting of 3 autoencoders. For

each source we introduce to our control model, we give 15 epochs of training time to that

device’s data to avoid overfitting. Similarly, for the remaining target devices, we also give

15 epochs of training time.

Before we compare multiple sources to a single source, we determine the threshold
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for our anomaly detection model. To do this, we use our control model and apply trans-

fer learning to a single target device and determine between the thresholds of 3 standard

deviations and 5 standard deviations. These values were chosen because they are the thresh-

olds commonly used for Normal Distributions and Galton Distributions, respectively. We

compare their anomaly detection performance using False Positive Rates (FPR) and False

Negative Rates (FNR) on Mirai attack data before and after transfer learning. Our results

are the average FNR and FPR using 5-fold cross validation.

To compare the performance for target devices utilizing transfer learning using

models created from single and multiple data sources, we evaluate their FPR and FNR

(Mirai & Gafgyt Attacks) on all the data and a tenth of the data. We do this to measure how

the combined distribution (Equation 13) affects the model’s performance when all data is

present and just a fraction. This is necessary when we simulate the system so we can get

an idea of how much data is needed to make a notable impact on performance.

4.2 Experimental Results and Discussion

Figure 6 shows the impact that the deviation factor (i.e., number of standard devi-

ation) has on transfer learning performance. When evaluating false positives, we observe

that both instances (i.e., 3 and 5 standard deviations) experience a drop after transfer learn-

ing occurs. Before transfer learning, using 3 deviations performs better than 5 with an FPR

of 2.22% and 5.52%, respectively. This makes sense because no data has been introduced

or adapted to the network traffic of the target device yet. However, after transfer learning,

we observe that 5 deviations becomes a better approximation by an order of magnitude.

This is likely because as the autoencoders adapt to the target traffic, the approximations

better suit a Galton distribution as opposed to a Normal distribution. With false negatives,

we observe a peculiar trend where we see a small increase before and after transfer learn-

ing for 5 deviations. This could be something that happened when creating the combined

distribution (Equation 13) but is more likely to be some statistical fluctuation on the data
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since the increase was so minimal. With 3 deviations, we see a large decrease in FNR after

transfer learning which makes sense after the model began approximating to the network

traffic. Based on these findings, the ideal deviation range is between 4.9 - 5.0 (Based on

FNR trend on 5) so we use deviation factor of 5 for our subsequent experiments.
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Figure 6

Target Device Simple Home Evaluated on a Single Source

(a) False Positives

(b) False Negatives

Figure 7 compares the misclassifications of benign data when using single source
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and multiple sources transfer learning. When evaluating the multiple sources transfer learn-

ing using 10% of the data, we observe instances where the model has difficulty general-

izing, it’s not until after 100% of the data is trained that the model classifies benign data

correctly. This is likely due to the distribution formed by the model (See Equation 13).

As more data are used for training the model, |T Li| also increases in size meaning that an

imbalanced data problem could occur where if the amount of data used for multiple sources

is a million data points and the target is a few thousand those will barely impact the distri-

bution formed. This is shown by observing that after 100% of the data is used the model

becomes better at generalizing and the FPR drops off significantly.
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Figure 7

False Positives of Single vs Multiple Source Transfer Learning

(a) Single Source

(b) Multiple Sources

For single source, we see the same trend with 10% data and increasing to 100%.

When comparing the multiple and single source transfer learning false negatives in Figure 8
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and Figure 9, we observe the same trend where the single source had low false positives,

resulting in false negatives above 5% for Gafgyt and above 3.4% for Mirai anomaly attacks.

This trend is not the same for the robust model where the false negatives are less than

1× 10−3. This result is expected because multiple sources are trained on more varying

data than a single source implying that the encoder distribution determines a better model

in less time.
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Figure 8

Mirai False Negatives of Single vs Multiple Source Transfer Learning

(a) Single Source

(b) Multiple Sources
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Figure 9

Gafgyt False Negatives of Single vs Multiple Source Transfer Learning

(a) Single Source

(b) Multiple Sources
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Chapter 5

System Simulation and Evaluation

To test the capabilities of the proposed system, we create a simulation testbed

to evaluate anomaly detection performance in real-world scenarios. Figure 10 shows an

overview of the components in the testbed on a virtual LAN (VLAN). “Security Camera”

and “Thermostat” are simulations of those devices’ behaviors on a virtual machine. Fig-

ure 10a shows the background processes that are always happening on the testbed. The

“IoT Server” acts as a Hub to receive IoT information from the two devices and provides

feedback that can get intercepted during MITM attacks. Figure 10b shows the 2 virtual

machines that are attacking the network. Malicious Attacker is our attack suite that does

most of the attacks on the IoT suite (MITM, SYN FLOOD, HPING, SSDP FLOOD) (see

Table 6). “Infected Botnet” is the botnet on the network that is reporting to a C&C Botnet

Server. The “Infected Botnet” conducts Mirai attacks on the system attempting to turn the

Security Camera and Thermostat devices to become part of the botnet. We put this network

under 2 tests. The first test creates a baseline to see how the model performs when no attack

is happening. In the second test, we perform a variety of attacks with the 2 additional attack

virtual machines.
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Figure 10

Overview of Simulation Testbed

(a) Simulated Background Processes

(b) Simulated Attack in the Test Bed
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5.1 Real World System Baseline

This experiment creates a baseline for the Federated Learning Anomaly Detector

on our testbed. We start by creating 2 virtual machines that simulate IoT device behavior.

Then, we install our developed predictive model validated in chapter 4 onto each virtual

machine. Finally, we run the system for a long time with no explicit anomaly attempt.

Figure 10a shows the regular processes happening. In summary, the IoT devices

share their statuses with the IoT Server that will return a response to them. Each device

will also have an SSDP (Simple Service Discovery Protocol) with SSL (Secure Sockets

Layer) server communicating with other IoT devices on the system.

5.2 Simulating IoT Behavior

To simulate device behavior, we want to make the simulation as realistic as possible.

To do this, we decide to simulate security camera data along with thermostat data. They

both are a part of the real device dataset, so model performance should be similar to the

expectation shown in our transfer learning experimental results (See subsection 3.4.2).

To simulate a virtual machine security camera, a server sends a TCP (Transmission

Control Protocol) request between 0 and 10 seconds requesting for a status. The device

will respond with a status measuring the availability of the camera (Up, Degraded, Down).

These statuses are determined based on the usage of the VM CPU resources (>75% = Up,

25-75% = Degraded, <25% = Down). Upon receipt of this status, the server sleeps for 1

second between camera events to process the data. Note that the measurement statuses are

not something evaluated during the training of the system, it is simply just the packet sizes

and time intervals (See subsection 3.3.2).

To simulate a virtual machine thermostat, a server sends a TCP request between 2-

4 seconds requesting temperature. The device will respond with a synthetic measurement

of temperature in the house over to the server that will then process that data and give a
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response. This data is formatted in the same way for both IoT simulations.

Each IoT device sends a multicast announcement to let the network (other devices)

know that it is ready for communication. After this announcement, the devices listen to

simulated SSDP requests to respond with information about the device. Each device also

has a TLS (Transport Layer Security) server to simulate what would be a connection to

the IoT device to sign in. Table 5 shows the specifications of each virtual machine used.

The decision to put 4GB on each virtual machine is because with less than that the virtual

machine does not start.

Table 5

Specifications of Simulated Devices

IP Address Device Simulation Threads Intel i9900k GB of Ram

192.168.68.55 Security Cam 1 4

192.168.68.54 Thermostat 1 4

192.168.68.56 Primary Attack Suite 2 4

192.168.68.57 Infected Botnet 3 4

5.3 Installation of Prediction Model on Devices

We install the trained predictive model onto each individual virtual machine. The

anomaly detection system goes through 1 hour of incremental learning before going into
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detection mode to detect anomalies. We set the detection threshold to 5 standard deviations

based on results from section 4.2 and have the ensemble of autoencoders to vote whether

the device is anomalous or not.

During training, the device communicates and populates data to the prediction

database PR. This communication will get flagged as anomalous or benign if it varies

significantly from what the model learns. We also set a threshold for T p = 0.2 (See Equa-

tion 14) as a comparison to see how the model trained overnight and compare the same

models when anomalies are introduced.

5.4 Evaluation Metrics

We evaluate the system using the percentage of anomalies over time as follows.

percentAnomalies =
NumAnomalies

TotalPacketsSeen
(15)

where NumAnomalies is the number of anomalous packets detected over approximately 20

minutes and TotalPacketsSeen is the total number of packets observed over approximately

20 minutes.

5.5 Baseline (No Anomalies) Model Results and Discussions

The first model that ran overnight with one hour of training, the model kept the full

size of all the devices trained on (|⃗a| = approximately 130,000 trained across 4 devices).

After the training is completed, the model trained on 123,256 additional packets. The

evaluation (See Figure 11) shows the model was able to keep below 2.5% detection rate.

To see how the model performed with less training packets, a model was ran overnight

after 20 minutes of training time (See Figure 12). Roughly 46,000 packets were used for

training for each device. Little seemed to happen and the model showed far less than a 2.5%

detection rate. This could be because it had less training time and was closer to the optimal
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model than the 1-hour model. To evaluate this further, we ran the 1-hour model once more

overnight where instead of keeping the size, we lower it so µa⃗i,σa⃗i stays the same however

|⃗ai| is 13,000 instead. This is to establish an importance weight of maintaining the previous

distribution.

The model that ran overnight with changing |⃗ai| (|⃗ai| = approximately 13,000 )

shows that the model was successful in learning the simulated traffic. For the majority of

the night, the model stayed below 20% of the average anomalous traffic (See Figure 13).

We do see a spike in that traffic during one interval, and this could be due to turning on

and off lights because SSDP picks up on all IoT devices and this was connected to a live

network with other IoT devices functioning, or, this was an actual mistake of the model.

However, this spike was still below the threshold and would not have been classified as

an anomaly. We use this model for the rest of the experiments. This model was chosen

because regardless of the spike, it showed promise and would be interesting to evaluate

how this model handles anomalies.
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Figure 11

1 Hour Model Ran Overnight on 100% Data

43



Figure 12

20 Minute Model Ran Overnight on 100% Data
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Figure 13

1 Hour Model Ran Overnight on 10% Data

5.6 Injecting Anomalies in Real Time

This experiment consists of simulated attacks on the testbed. After training on

the simulated IoT devices, we conduct attacks on them to see how the proposed system

responds under attack. We conduct a Mirai botnet attack to make the IoT devices become

part of the botnet and use it to scan for other machines on the system. SSDP, SYN FLOOD,

and HPING attacks are flooding attacks meant to overwhelm the system with information

to cause a crash or make the system vulnerable to some other kind of attack. We use

MITM attacks to intercept packets between two devices by jumping in between the flow of

traffic and acting as a “middleman” to forward whatever message to the same system. For

our MITM attacks, we do ARP Poisoning to pretend we are a Mac Address to intercept
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packets.

Both malicious and botnet attacks are never done at the same time and the entire

system is reloaded for the sake of consistency in testing each type of attack. Malicious

attacks cover a large variety of attacks (See Table 6) while botnet attacks consist strictly of

taking over the device and reporting it to the C&C server to do a scan of the network or

attacking another device on the network.

Table 6

Tools for each Attack Vector Used

Malicous Attacker Tool Used For Attack

MITM EtterCap

SSL DOS Attack THC

SYN Flood hping

SSDP Attack DDOS RootSec

Infected Botnet Tool Used For Attack

Mirai Mirai Source Code
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5.7 Creating Attack Virtual Machines (VM)

The “Malicious Attacker” (See Figure 10b) is a Kali Linux VM with 2 Cores of

an Intel i9900k with 4GB of RAM. Tool used for each type of attack (See Table 6) was

installed onto the suite. The second is the “Infected Botnet”, which is intended to handle

strictly botnet attacks. The “Infected Botnet” was created on an Ubuntu Linux VM With 3

Cores of an Intel i9900k and 8GB of RAM designated to the VM. The Mirai Source Code

was put onto this VM and configured to run the C&C server to send commands over to the

infected devices for them to run. In this instance, we tell the devices to SYN Flood the

other device on the network.

5.8 Results and Discussions

In the benign scenario, we showed over 20 minutes of results in section 5.1 because

there was no activity happening that was causing immense spikes. It was just a normal

background process. In this scenario, as we are attacking these devices in a small window,

we are showing results at every 30 seconds as it shows what the traffic looks while the

attack is happening.

Generally, it seems that the federated learning anomaly detector is able to detect

variability in anomalies. During the Mirai Attack (Figure 14) we see that within 30 seconds

after the attack begins the system is able to detect abnormality in the network data. Across

3 of the attacks ( Figure 14, Figure 15, and Figure 16), we observe that the Thermostat

(see Table 5 for device specifications) experiences a lower detection rate or fewer spikes as

opposed to the Security Camera. This could be because Thermostat data might have been

too simple for the model to learn so it could be more difficult to decipher anomalies. With

that being said, the detector is still able to pick up on deviations in the network traffic. Also,

for a more realistic use case of this model, the threshold would be much lower than 20%

and still be able to be detected well.
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Figure 14

Mirai Detection After 1 Hour Model Training
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Figure 15

Hping Detection After 1 Hour Model Training
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Figure 16

MITM Detection After 1 Hour Model Training

Finally, we observe spikes as the system monitor the network traffic ( Figure 14,

Figure 15, Figure 16,Figure 17 and Figure 18). There are instances when there are no

anomaly and instances when there are. This is likely because of the asynchronicity be-

tween the Central Server CS and the devices sending packet updates. The timer interval

l that CS reads from the prediction database PR is the same as the interval the individual

devices send in batches to PR. If CS starts a few seconds after the individual devices, there

will be an inconsistency between what is actually being read and what is being sent. For

instance, during the Mirai attack (See Figure 14) we see 312 packets at 21:55:15, however

at 21:55:45 (l = 30s), we see the packets drop to 106 and increase once more. This is an

example of a sync issue between the devices.

50



Figure 17

SSDP Detection After 1 Hour Model Training
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Figure 18

TCP SYN Detection After 1 Hour Model Training
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Chapter 6

Conclusion and Future Work

We propose a lightweight unsupervised hybrid-cloud ensemble anomaly detection

system for malware detection. We perform transfer learning using a generalized model

trained on multiple IoT device sources to learn network traffic on new devices with mini-

mal computational resources. We further extend our proposed system to utilize federated

learning such that IoT devices feed their output to a cloud server enabling more detection

capabilities while keeping the network traffic secure on the device itself maintaining data

privacy. We validate this system by creating a simulation testbed to conduct different at-

tacks on the IoT devices to evaluate how well the detection system works. We also compare

transfer learning using multiple sources to a single source to show how the detection model

of a target device is impacted by transfer learning. Empirical results on two datasets, one

from the 2016 Mirai botnet attacks on IoT devices and the other from Gafgyt malware

attacks on various IoT devices, show the competitiveness and feasibility of our proposed

solution.

For future work, we intend to test the system further by doing more runs with vary-

ing training times. We also plan on adding more capabilities to the cloud platform to intro-

duce multi-classification of attacks and to provide more analytics. This will also include

taking this system out of the testbed and moving it to a real network for conducting exper-

iments and attacks there. More experiments will also be introduced testing the combined

distribution for transfer learning and testing other ways to update the prediction model.
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