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Abstract

Soham Bhattacharya
HARDWARE ACCELERATION OF NUMERICAL METHODS FOR SOLVING

ORDINARY DIFFERENTIAL EQUATIONS
2023-2024

Dwaipayan Chakraborty, Ph.D.
Master of Science in Electrical and Computer Engineering

Along with the advancement in technology, the role of hardware accelerators is in-

creasing consistently, delivering advancements in scientific simulations and data analysis in

scientific computing, signal processing tasks in communication systems, matrix operations,

and neural network computations in artificial intelligence and machine learning models. On

the other hand, several high-speed computer applications in this era of high-performance

computing often depend on ordinary differential equations (ODEs); however, their nonlin-

ear nature can present a challenge to obtaining analytic solutions. Consequently, numerical

approaches prove effective in delivering only approximate solutions to these equations.

This research discusses the implementation of a customized hardware accelerator for solv-

ing an ordinary differential equation (ODE) by utilizing numerical approaches while eval-

uating several performance metrics, including on-chip power consumption, FPGA hard-

ware resources, and timing summary. The third-party vendor AXI4 stream Xilinx single-

precision floating-point IP support has been used to develop the accelerator for solving the

ordinary differential equation using those methods. The accelerator will determine the iter-

ation approximation result of the ODE using those methods. The entire work uses VHDL

hardware description language and the Xilinx Vivado Design Suite and has been deployed

on the Zynq-ZC702 FPGA Evaluation Board, along with a design space exploration.

v
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Chapter 1

Introduction

High-performance computing is the ability to perform complex computations at

very high speeds. High-performance computing includes parallel computing, cluster com-

puting, and grid computing. In this realm of high-performance computing, there has been

an assumption amongst programmers that, with the new generation of microprocessors,

their software will run significantly faster and more smoothly. Recent research in the field,

however, raised a question on how we can optimize and enhance the software utilization in

these new architectures.

1.1 Architecture For General Purpose Processors

Classically, the Von-Neumann architecture [1] in Figure 1 was the primary architec-

ture that has had a profound impact on the domain for ages. Figure 1 illustrates not only the

overall framework of the architecture but also each integral component. In the architecture,

the three primary components of a Von Neumann architecture are i) the central process-

ing unit (CPU), the primary device for executing instructions; ii) the memory unit - a vital

repository that temporarily stores data and instructions until the CPU processes them; and

iii) the input and output devices - which employ communication between users or other

systems through physical interfaces. The CPU further comprises an Arithmetic/Logic Unit

(ALU), along with some registers and a Control Unit. This control unit consists of an in-

struction register and a program counter. Although this architecture is well-known in the

domain, it has several drawbacks too. The major drawback is the processor-memory bot-

tleneck [2]. This is due to the register file and dynamic random access memory (DRAM)

forming the architecture’s memory block. However, large amounts of data cannot be stored

in this register file; thus – an issue arises with capacity limitations. The data necessitates

1



utilization of the DRAM for storage; however, being a generally slower memory unit - this

results in performance throttling of the entire architecture. Therefore, the responsibility for

slowed-down performance within the architecture lies solely with its memory block if it

fails to operate at a faster rate. For this reason, this challenge is termed the “Von-Neumann

Bottleneck”.

Figure 1

The Von-Neumann Architecture

1.2 Challenges Of General Purpose Processors

In 1965, Gordon Moore originally predicted the doubling of transistor density each

year [3] while in 1975, the prediction was revised, which eventually became the ”Moore’s

Law” [4]. The law states that the number of transistors in an integrated circuit will double

2



every two years [5]. Since transistor density increases quadratically along with the linearly

growing speed, architects opted for utilizing more transistors to enhance performance. Al-

though Moore’s Law continued for a longer time compared to Dennard scaling, the era of

Dennard scaling [6]concluded first. Thus, more transistors are switching now which means

it signifies more power. Also, the energy budget does not rise and the single inefficient

processor has been replaced with multiple efficient cores. In this case, there are no more

tricks left to keep making big advancements in cost performance and energy efficiency for

general-purpose architectures. Since the energy budget is limited due to electromigration,

mechanical, and thermal limits of chips, we need to reduce the energy per operation if we

need to seek higher performance. Given this overhead, slight modifications to present cores

might give us 10 percent enhancements. However, if we desire a leap in performance by

one order of magnitude while retaining programmability then we must increase the amount

of arithmetic operations per instruction from just one to hundreds. The demise of Dennard

scaling states that the computer architect has to find a new way to exploit instruction level

parallelism (ILP), which was the primary architectural method to gain performance of the

device. The catch is that the instruction level parallelism caused greater inefficiency. To

keep the pipeline full, the branches are predicted and the code is speculatively placed on the

pipeline of the execution. Sometimes the predictions of the branches can be beneficial or

not. When it is perfect, speculation improves performance while saving energy, but when

it is not, the processor can throw away the incorrect speculated instructions along with the

wastage of energy and performance. This wasted energy adds up and is greater, although

the processor uses additional energy to restore the previous state. And, thus the multicore

era [7, 8] was born and it shifted the responsibility of finding parallelism and determining

how to use it to both programmer and language system. But it also fails to resolve the

energy-efficient computation that was aggravated by the end of Dennard scaling. More

cores lead to more power being used almost equally as fast. Regrettably, the power getting

into a processor needs to be taken out as heat. This means that multicore processors are
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limited by thermal dissipation power (TDP), which is the average amount of power that a

package and cooling system can remove effectively. To attain higher rates of performance

improvement – similar to what we experienced in the 1980s and 1990s – it will be necessary

for us to adopt fresh architectural approaches concentrating on making integrated-circuit

capability utilized more efficiently. To make this kind of efficiency possible it requires a

major alteration in computer architecture that moves away from general-purpose cores to-

wards domain-specific architectures (DSAs) [9]. Domain-specific architectures (DSAs) are

a possible solution to alleviate this challenge through their several properties such as cus-

tomized instruction sets, pipelining and parallelism, specialized memory hierarchies, and

reduced instruction overhead. DSAs are an effective tool to handle computational needs

while improving performance designated for a specific task. A brief description of the

domain-specific architecture has been provided in Chapter 2.

1.3 Solution Of Ordinary Differential Equations Using Numerical

Methods

Often referred to as nature’s language, differential equations [10] provide a way to

describe and understand many natural phenomena in a precise and systematic way. Differ-

ential equations capture the dynamics of physical systems and are fundamental to progress

in the computational sciences. It is known that systems of differential equations can be

solved analytically to obtain exact solutions. Yet often, we cannot achieve this due to the

intricate nature of the systems under study. For workloads that involve high-performance

computation, ordinary differential equations (ODEs) are often utilized, but modern general-

purpose processors - referred to as CPUs - generally offer a modest throughput for solv-

ing these equations. This is where the power of scientific computing and domain-specific

architectures can be leveraged. In approximating solutions to differential equations and

effectively exploring their behavior, numerical methods are often instrumental.
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1.4 Overview Of The Proposed Work

Firstly, this research delves into the implementation of a simple hardware accel-

erator for an application for obstacle detection awareness for disabled individuals. It in-

volves working with the riscv64 compiler, a customizable and reconfigurable RISCV-based

system-on-chip (SOC) design tool, ”Chipcron”, and various open-source tools like Icarus

Verilog simulator [11], gtkwave waveform viewer [12], and yosys synthesizer [13]. This

approach leads towards designing and creating a gate-level netlist for the tape out in case

of any hardware accelerators meant to perform for a specific workload. After that, the

research focuses primarily on the design and development of hardware accelerators for

solving ordinary differential equations using different numerical methods. The preliminary

research concentrated on the implementation of a hardware accelerator design for two nu-

merical methodologies, such as the Euler and Modified Euler methods, for solving ordinary

differential equations. The work has been specifically done using Very High-Speed Inte-

grated Circuit Hardware Descriptive Language (VHDL) in Xilinx Vivado Software and the

AXI4 stream single-precision floating-point IP units from Xilinx Vivado have been used to

implement and analyze the hardware accelerators specifically for these two methods. The

accelerator is typically deployed on the Zynq ZC702 FPGA Evaluation Kit.
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Chapter 2

Background

This chapter will discuss in-depth reviews of two specific areas: i. Domain-specific

Architectures and ii. RISC-V micro-architecture.

2.1 Domain-Specific Micro-Architecture

Several years ago, hardware manufacturers grappled with complexities in their ar-

chitecture: power dissipation; leakage current; and wire delays - issues that caused sig-

nificant setbacks [14–17]. During this period, stagnation arose in the improvement of the

single-core micro-architecture, prompting a shift of attention towards new design models.

These new design models give rise to the “multi-core” micro-architecture. This approach

involves the incorporation of multiple cores onto a single die (functional electronic com-

ponents fabricated on a thin piece of silicon) [18]. However, the approach was short-lived

and prompted the manufacturers to utilize more compact and efficient designs to deal with

high computing demands.

To reconcile the conflicting demands of computing power and performance, many

computer architects embraced a solution, which was later termed ”domain-specific archi-

tectures” (DSAs) or “hardware accelerators” [19]. The graphics processing unit (GPU)

sector has notably flourished over the last decade through the successful implementation

of this strategy. DSAs are the configured hardware for a specific application or workload

that aims to deliver improved performance, efficiency, and low computing power by often

outperforming general-purpose central processing units (CPUs) in their designated tasks.

This approach helps to minimize CPU overload and memory space consumption, meet-

ing the evolving demands of computational tasks in various domains of scientific com-

puting [20–24]. In Figure 2, an overview of a hardware accelerator architecture has been
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presented [20], demonstrating how the central processing unit (CPU) ’offloads’ its task

to the accelerator in this diagram. Subsequently, executing the task faster than the CPU

and delivering results directly back to the CPU. DSAs might have different forms such

as Application-specific integrated circuits (ASICs), Field-programmable gate arrays (FP-

GAs), Graphics Processing Units (GPUs), and Tensor Processing Units (TPUs).

Figure 2

Overview Of An Architecture Of A Hardware Accelerator (adopted from [16])

2.2 RISC-V Micro-Architecture

RISC-V [25] is an open-source instruction-set architecture (ISA) that follows the

concept of Reduced Instruction set architectures (RISC). It holds high value because of the

key properties mentioned below:
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a. Instruction set architecture (ISA): A collection of basic instructions like arith-

metic and logic operations or data transfer tasks that a processor can execute.

b. Base Integer ISA: RISC-V can handle base integer instructions, which include

tasks like integer arithmetic and logic, data shifting or moving, controlling the flow of

programs, and system calls.

c. Modular Extensions: RISC-V additionally has support for various modular ex-

tensions such as Multiply/Division (M), Floating-point (F), Vectors (V), Atomic (A), Bit

Manipulation (B), and Cryptographic (C) extensions.

d. Register Files: There are 32 registers in RISC-V, with each register having a

size of 32 bits in the case of RV32I, 64 bits for RV64I, and 128 bits for RV128I instruc-

tion set formats. These are utilized to keep temporary values and operands while doing

computations.

e. Pipelined Architecture: RISC-V processors often use a pipelined architecture to

enhance the speed of instruction flow. This pipeline includes different stages like fetching

an instruction, decoding it, executing the operation, accessing memory, and finally writing

back results. The process of pipelining lets many instructions be handled at once, making

things work faster overall.

The RISC-V instructions can be classified into several formats such as R-type

(Register-type), I-type(Immediate-type), S-type(Store-type), B-type(Branch-type), U-type(Upper-

Immediate-type), and J- type(Jump-type) [26]. The RISC-V instruction sets are given in

Figure 3.
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Figure 3

RISC-V Instruction Sets

9



Chapter 3

Literature Review

The intersection of micro-architecture and differential equations is observed pri-

marily in two distinct areas. Specifically, they are:

• Acceleration of scientific computing workloads based on systems of differential

equations with commercially pre-built accelerators.

• Acceleration of scientific computing workloads based on systems of differential

equations with customized, application-specific hardware accelerators.

An in-depth overview of the current methodologies and implementation of hard-

ware accelerators is presented below.

3.1 Commercially Pre-Built Accelerators For Scientific Computing Workloads

Commercial pre-built accelerators such as ”general-purpose graphics processing

units” (GPUGPUs) have played a vital role in scientific computation because they offer

parallel computing capabilities. The researchers in [27] delve into the potential of graph-

ics processing units (GPUs) for enhancing speed during scientific calculations, notably

those associated with Monte Carlo simulations of classical spin models in statistical me-

chanics. The research findings underscore that careful algorithm optimization for specific

GPU architectures can yield significant speed-ups, often exceeding two orders of magni-

tude, emphasizing the importance of GPUs in the future of computational science. Another

study [28] suggests that optimizing the DLR TAU code [29] by profiling the most time-

consuming processes, testing new partitioning algorithms, and exploring hardware accel-

eration with GPUs a crucial components for performance acceleration. Simulations for

computational fluid dynamics (CFDs) have been readily ported to the GPGPU paradigm.

Methods for improving an unstructured grid solver’s efficiency on modern graphics
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hardware are proposed in [30], with a focus on the three-dimensional Euler equations for

inviscid, compressible flow. The performance of the solver based on two benchmark cases,

such as a National Advisory Committee for Aeronautics wing (NACA0012) and a missile

has been demonstrated. The implementation of these techniques resulted in an average

speed-up factor of roughly 9.5× over parallelized OpenMP code running on a quad-core

CPU and about 33× over the equivalent serial code, indicating potential advantages within

computational fluid dynamics problem-solving tasks.

In general, software tools for fluid dynamics modeling, analysis, and simulation

are largely available to the community [31]. Researchers in [32] have harnessed the inher-

ently parallel structure of GPUs to enhance combustion modeling - a move that resulted

in significant acceleration of simulations and improvements in predictive capability. The

GPU-enhanced algorithms significantly outperform CPU-only simulations, with computa-

tional time scaling less favorably on CPUs, and GPUs are expected to play an increasingly

important role in future combustion modeling. Although not explored at length, there are

some prior works focused on porting generalized multigrid solvers to GPUs [33].

3.2 Customized, Application-Specific Hardware Accelerators For Scientific Com-

puting Workloads

The work done in this area cuts across multiple problem domains. The research

in [34] employs an FPGA-based system to simulate two-dimensional Ising lattices, achiev-

ing considerable speed improvements over single CPU, single GPU, and prior FPGA sys-

tems. A superior hybrid random number generator has been introduced in this study and

demonstrates the value of FPGAs for scientific computing, particularly Monte Carlo simu-

lations. Another study in [35] introduces a methodology for optimizing FPGA implemen-

tations of digital signal processing (DSP) circuits to minimize hardware area while main-

taining a minimum throughput constraint. By combining module selection and resource-

sharing techniques during pipeline synthesis, two different exploration algorithms yield
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more efficient results compared to when either technique is used independently.

A novel framework for the real-time evaluation of one-dimensional computational

fluid dynamics (1D-CFD) models is presented in [36], deployed on a field-programmable

gate array (FPGA) to enhance fuel pressure estimation in diesel engines. Demonstrating

significant resource savings and scalability, the approach uses precision-timed (PRET) pro-

cessor cores and a configurable, heterogeneous architecture to meet real-time constraints

and model a diesel fuel system efficiently. FPGA-based computing systems have also been

designed to accelerate iterative linear-equation solvers [37], achieving high performance

with low memory bandwidth. The implemented prototype, using a pipelining approach

across multiple FPGAs, demonstrated linear scalability and outperformed software execu-

tion on a microprocessor.

The Johnson and Moon equation and the Mackey-Glass equation, both nonlinear

time-delay systems, have been implemented on an FPGA [38]. Using the fourth-order

Runge-Kutta method and 32-bit IEEE-754-1985 floating-point standards, the systems are

implemented on a Xilinx Virtex-6 FPGA, with maximum frequencies of around 432 MHz

and results that align with numerical simulations. Alongside the implementation, the nu-

merical algorithms themselves are also major contributors to performance [39]. The re-

search findings from FPGA-based deployment in [28] show significant computational gains

from optimization, better scalability with the graph partitioner algorithm, and promising re-

sults from a mixed hardware-software computation platform for simulations.

Computational fluid mechanics problems are a prime candidate for customized co-

processor-based acceleration, especially in the aerospace domain. The authors of [40] in-

troduce a novel hardware solver based on the open-source RISC-V instruction set architec-

ture for solving ordinary differential equations (ODEs). The study designs reconfigurable

co-processors that implement Euler and Runge-Kutta numerical methods for ODE solving.

The coprocessor achieves a remarkable 4.8x performance improvement in the best-case

scenario, with only a marginal increase of 13.3 percent in hardware resources and 8.1 per-
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cent in additional power dissipation. A high-performance hardware accelerator is designed

to improve the solution speed for ordinary differential equations (ODEs) in [41] for use

in high-performance computing applications. The implemented hardware accelerator on

an FPGA board demonstrates up to 14x speedup compared to a single-core CPU solution,

although speedup decreases with increasing ODE-solver complexity or precision due to

reduced parallelism on the FPGA. The topic of generalized multigrid solvers accelerated

by hardware has been explored to a minimal extent. The researchers present a hardware

implementation of the V-cycle Multigrid method for solving the 2D-Poisson equation using

FPGAs, demonstrating greater performance compared to similar iterative solvers and a C++

version of the algorithm. The Multigrid hardware solution notably outperforms its software

counterpart, offering significant speedups, particularly for smaller problem sizes [42].
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Chapter 4

Motivation

Given the shortcomings of general-purpose processors in making performance bet-

ter, be it through ILP techniques or methods using multicore, and also with Dennard scaling

and Moore’s Law no longer effective - it seems quite unlikely that processor architects and

designers will succeed in maintaining significant rates of performance enhancements for

general-purpose processors. A clear choice that can be seen as long-lasting is ”domain-

specific computing” or what some might call ”hardware acceleration”. Hardware accel-

eration emerges as a crucial tool for a wide range of computational tasks across various

domains due to the increased benefits in energy efficiency, parallel processing capabilities,

and better performance (high accuracy with less processing time). The term “parallel pro-

cessing capabilities” refers to the system’s ability to perform multiple tasks simultaneously.

The parallel processing competencies of those accelerators allow overall performance im-

provements in workloads that contain large and complicated numerical computations [43].

Parallel processing also involves decomposing a larger computationally complex task into

smaller concurrent problems with careful consideration of data sharing, communication,

and dependencies between parallel tasks to ensure effective and accurate results. The re-

search in [44] pointed out, that memory access has turned into a costly operation when

compared with arithmetic computations. Accessing a block within a 32- 32-kilobyte cache

takes approximately 200× more energy than adding up a 32-bit integer, then it is quite evi-

dent that we must optimize these accesses to lower energy consumption. DSAs can utilize

memory hierarchy more efficiently. DSAs have an additional characteristic that they can

work with less precision when it is enough. Regular CPUs usually possess 32 and 64-bit

integers along with floating-point (FP) data. In numerous cases of machine learning and

graphics tasks, this accuracy could be excessive. For instance, in deep neural networks
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(DNNs), when we do inference, we often use 4-bit, 8-bit, or sometimes 16-bit integers

that help increase the throughput of both data and computation [45]. For applications re-

lated to DNN training also it assists but is not necessary; using 32 bits works well while

at times only employing 16 bits is enough. Finally, another critical factor necessary for

high-performance scientific simulations is the system’s scalability. Systems with parallel

processing capabilities can branch out to satisfy growing computing needs or scale up to

tackle bigger issue sizes.

Exploring numerical method solutions based on hardware acceleration and under-

standing the associated challenges in their development remains a crucial task [46,47]. This

approach helps in assessing the current state of hardware-accelerated scientific computing,

identifying future directions, and potentially uncovering breakthroughs within this rapidly

evolving field. In addition, this study also seeks to (1) highlight the synergies between dif-

ferent disciplines like pure science, theoretical mathematical concepts (especially those of

the realm of differential equations), computer science, and engineering, and (2) scrutinize

how their integration can lead to ground-breaking improvements in computational science.

This holistic perspective is essential for fostering innovation and enhancing the capability

to tackle complex scientific problems with greater precision and efficiency. This research

also delves into the investigation based on the intricate relationship between differential

equations and hardware acceleration in the realm of scientific computations.
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Chapter 5

Methods And Implementation

This chapter delves into a small hardware accelerator design that can be controlled

from a C program and also with RISCV32I ISA format using a reconfigurable and cus-

tomizable RISC-V System on Chips (SOC) tool, “Chipcron Tool”. Now, the question arises

how does our C program turn into a hardware representation? In Figure 4, the flow diagram

from application software to hardware implementation has been represented. Whenever we

are writing any C program, that program typically serves as our ”Source Code”. The out-

put of the source code will be translated into assembly language (or instructions) using any

compiler. The compiler will turn our code into specific instructions through a ”.exe” file.

The assembler then takes our .exe file and converts it into binary, which is termed the ”ma-

chine language” or ”machine code” (represented using logic ’0’s and ’1’s). The machine

code will then be fed to the hardware and accordingly, it generates the output and will be

used for tape out.

In [48], the design of the hardware accelerator specific for obstacle detection for

disabled individuals has been implemented. The whole processor for designing the accel-

erator has been described. At first, the C code for our accelerator will be written with some

inline assembly instructions. The snippet for the C code is provided below in Figure 5. In

this code, we have initialized some variables such as ‘sensor’, ‘buzzer’, ”buzzer reg”, and

”mask”. These variables are used to store sensor readings and buzzer states respectively.

The variable sensor is taken as an input and the buzzer is served as an output in the code.

The ‘mask’ is initialized with some value, 0xFFFFFFFD, generally for some bitwise opera-

tions. The assembly inline instructions, “and”, and “or” have been used to perform bitwise

operations on the register “x30” using the values of ”buzzer reg” and mask. Depending on

the value of the sensor, the code will set or reset the buzzer. Finally, the code will update
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the register “x30” with the new values of “buzzer reg”. Then, the RISC-V compiler and

SPIKE simulator have been used to compile the code. The Spike simulator, specifically

designed to execute RISC-V assembly programs for various RISC-V versions, has been

used. It is an open-source RISC-V ISA (Instruction Set Architecture) simulator developed

primarily by the RISC-V project. The following command will be used to compile the code

using RISC-V Compiler:

→ riscv64-unknown-elf-gcc -march=rv64i -mabi=lp64 -ffreestanding -o output as-

sembly.c

The simulation result when the sensor value is 0 and 1 has been given in Figure 6

and Figure 7. In Figure 6, when the sensor value is 0, i.e., if there’s no object, the buzzer will

throw as 0. Similarly, in Figure 7, the buzzer will be 1 if any object is detected through the

sensor. All the results will be generated using the SPIKE simulator through the following

command:

→ spike pk output

The C code will be converted into assembly instructions using the two commands

specific to the RISC-V compiler: → riscv64-unknown-elf-gcc -march=rv32i -mabi=ilp32

-ffreestanding -nostdlib -o out assembly.c

→ riscv64-unknown-elf-objdump -d -r out ¿ obstacledetection.txt

The Disassembly of the machine instructions into their assembly instructions has

been represented in Figure 8. In the first column, the address of the ‘main’ program has

been generated through the RISC-V compiler. In the figure, it has been seen that the address

of the main program or the program counter(PC) has been started from “00010054” and it

is increasing by 4, as the program counter (PC) = PC + 4.

The next column shows the machine instructions used for the particular assembly

instructions. It symbolizes the instruction in machine code, given as a hexadecimal value.

Normally, in machine language, commands are coded into binary numbers that the proces-

sor can immediately execute. Hexadecimal representation is frequently employed to show
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machine code because it gives a smaller, easier-to-read way of presenting these binary in-

structions. In the third and fourth columns, the RISC-V assembly instructions have been

shown according to the C code of our application.

The assembly instructions will be then fetched into a javascript object notation

(.json) file with the specific instructions used for our assembly program. A snippet of the

.json file has been given in Figure 9. The .json file consists of several RISC-V instructions

based on the RISC-V architecture and it is specifically designed for a 3-stage pipelined

processor, which will be generated by the Chipcron tool in the next step.

The Chipcron tool will generate the processor and its corresponding testbench ac-

cording to our specific needs of the application. A portion of the Verilog file of the pro-

cessor generated by the Chipcron tool is given below in Figure 10. Icarus Verilog is a

simulation and synthesis tool for Verilog that comes as open-source. Verilog is a hardware

description language (HDL), used to design and simulate digital circuits. With Icarus Ver-

ilog or iverilog, users can write code in the form of Verilog which describes digital circuits

and then give it to simulate how these circuits will behave. In the case of GTKWave, it

is an open-source waveform viewer, which can be freely accessed and used. It assists in

analyzing and visualizing the results of simulations from digital circuit simulations. Users

frequently utilize it with Verilog and VHDL simulators like Icarus Verilog to watch wave-

forms that are produced during simulation runs. After the generation of our processor and

test bench, the functional simulation using open-source simulators like Icarus Verilog and

gtkwave will be generated, which is given in Figure 11. Functional simulation is a process

to identify if the behavior of our given program is generating the result correctly or not.

According to the figure, it has been seen that what we are expecting, is giving the result as

“PASS”, which states our design is functioning correctly according to our requirements.

The next step is the synthesis of our design. In simple terms, synthesis is converting

a system’s description that is at a high level into its representation at a lower level. This

implementation can then be used in hardware. The design of the hardware accelerator will
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then be synthesized using Yosys synthesizing tool using the SKY130 Process design kit

(PDK), an open-source PDK developed for the SkyWater 130 nm semiconductor process

in Figure 12. After utilizing and adjusting the static ram (SRAM) from the PDK to our

design, the gate-level synthesized netlist will be generated in Figure 13. These synthe-

sized net-lists state that the design is working correctly after synthesis. These netlists will

be utilized for the tape out of our specific application or task after physical design proce-

dures [48].

Figure 4

The Flow Diagram From Application Software To Hardware Representation
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Figure 5

A Snippet Of The C code For The Obstacle Detection With Inline Assembly Instructions
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Figure 6

Spike Output When The Sensor Value Is 0

Figure 7

Spike Output When The Sensor Value Is 1.
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Figure 8

Disassembly Of The Machine Instructions Into Their Assembly Instructions
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Figure 9

A Portion Of The Conversion Of The Assembly Instructions To Json File Format
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Figure 10

Generation Of The Verilog Files Of The Processor Design And Its Associated Testbench
Using The Chipcron Tool
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Figure 11

Simulation Using VVP Tool Through Icarus Verilog

Figure 12

The Internal Representation Of The Accelerator Design In The Form Of A Netlist Using
Yosys Synthesizing Tool
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Figure 13

Gate-level Synthesis Simulation Results Of The Hardware Accelerator
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Chapter 6

Numerical Methods For Solving Ordinary Differential Equations

Several numerical methods exist to solve ordinary differential equations. Our pre-

liminary research focused on two simple yet efficient methods for solving ordinary differ-

ential equations: the Euler method and its counterpart, the Modified Euler method. An

overview of these two numerical approaches has been explored below.

6.1 The Euler Method

The Euler method was first proposed in 1768 by Leonardo Euler [49]. This method-

ology is a first-order numerical method generally used to solve ordinary differential equa-

tions with a pre-defined initial value. Here, the term “first-order” refers to the local error or

more specifically the error per step, which is directly proportional to the square of the step

size. Furthermore, the global error, or the error at a given time, is directly proportional to

the step size. Constructing more complex numerical methods can employ this applicable

method. Now, the question that naturally surfaces: what makes it so useful? Primarily, it

is simple, and with the ease of its implementation and understanding, it is computation-

ally efficient for solving a wide range of ODEs, making it an ideal choice for numerous

modeling and simulation tasks. The structural analysis field, computational biology sector,

chemistry domain, and computer graphics arena all frequently utilize the Euler method; its

applications extend even further. The Euler method can be represented as:

yn+1 =yn+ hf (xn , yn) (1)

xn+1=xn + h (2)
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In equation (1), f (xn, yn) represents the function for the ODE. ‘h’ is the step size.

The Euler method is generally used to approximate the value of ‘y’ with a given initial

value of ‘x’.

6.2 The Modified Euler Method

The modified Euler method, also known as the ‘Heun method’, is another numerical

method for solving ODEs [50]. It offers more accuracy in approximations when compared

with the Euler method. Generally, this approach considers not only the initial estimate

based on the local slope but also an average slope over the step. Computational chem-

istry, physics, biology, etc are some of the applications of the modified Euler method. The

following equations represent the Modified Euler method.

yn+1 = yn + hf (xn+h/2, yn+h/2*f(xn, yn)) (3)

xn+1 = xn + h (4)

Here, n = 0,1,2,...,(x - x0)/h, h is the step size, f(xn, yn) denotes the function in the

equation, specified in (3).

6.3 Runge-Kutta Methods

Runge-Kutta numerical methods are widely used to solve ordinary differential equa-

tions (ODEs). Among the Runge-Kutta methods, second-order, third-order, and fourth-

order Runge-Kutta solvers are commonly used variants for approximating the solutions to

the differential equations. The second-order Runge-Kutta numerical method or the “RK2”

method [51] is a simple, yet effective method, that updates the solution of each step by

approximating the derivative at a particular location in the ODE with a weighted average

of two slopes. This approach is thereby garnering favor due to its reasonable accuracy and
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high computing efficiency in numerous real-world applications. In comparison to RK2, the

third-order Runge-Kutta technique, or the “RK3” method, [52] offers better accuracy. In

this technique, to approximate and update the result, three slopes and their weighted aver-

ages need to be calculated. As a result of the increased analyzing effort, the derivative is

approximated more accurately, which makes it appropriate for ODEs with steeper gradients

or when greater accuracy is needed. Runge-Kutta fourth order differential equation solver

method, also known as the “RK4” method [53] is used to approximate the value of ‘y’ with

a given value of ‘x’. RK4 methods are typically used to resolve the initial-value problems

of differential equations [54]. The general form to describe the fourth-order Runge-Kutta

method to solve an ODE is given below:

K1 = f(xn,yn) (5)

K2 = f(xn+h/2,yn+hK1/2) (6)

K3 = f(xn+h/2,yn+hK2/2) (7)

K4 = f(xn+h,yn+hK3) (8)

and,

yn+1 = y +(h/6)(K1 + 2K2 +2K3 + K4 ) + O(h5) (9)

xn+1 = xn + h (10)

The accelerator will be made up of several modules, including the functional computation

block (FCB), where the function of the ODE is indicated, the K-Blocks, which execute or-

dinary differential equations of coefficients using the FCB, and the Runge-Kutta Modules,

which compute the values of xn+1 and yn+1 . Additionally, a memory unit that holds the

29



value of the approximation of xn+1 and yn+1 will be introduced. A control unit, to im-

plement the custom instructions per the RISC-V ISA standard, will be implemented. The

implementation includes the register file to initialize unit values into specific registers. The

hardware accelerator sets some initial set of values of x and y and a third-party vendor

AXI4 stream single-precision floating-point IP support from Xilinx Vivado will be utilized

to generate the results for all the respective values for the four coefficients K1 , K2 , K3 , K4.

After issuing the necessary single custom instructions to initialize, flush, update, and store

for each case following the RISC-V ISA format; the accelerators will execute ’n’ iterations.

In numerical methods, floating-point representation is a crucial concept that exhibits an im-

pressive capability to represent a wide range of real numbers. The number of significant

digits or bits that may be utilized to represent the fractional component of a floating-point

integer is referred to as precision in floating-point arithmetic. It establishes how accurately

real numbers may be represented in the limited memory of a computer. Small inaccuracies

can add up and compromise the accuracy of findings in numerical computations, hence

the precision of a floating-point representation is essential. The standard defines three ba-

sic formats for floating-point representation: a. Half-precision; b. Single- Precision and c.

Double-Precision. Balancing computing efficiency and accuracy determines an appropriate

level of precision in numerical techniques. Though it uses more memory and processing

power, higher precision typically yields more precise results. Furthermore, it is crucial to

comprehend the limitations of floating-point accuracy for minimizing issues like round-

ing errors and numerical instability in numerical computations. This work also conducts

a design-space exploration [55] for the half, single, and double-precision floating-point ar-

chitecture of the hardware accelerator. Additionally, it will also evaluate the performance

in terms of power consumption, hardware resource usage, and timing analysis for all three

floating-point precision formats in Runge-Kutta numerical solvers. The main contribution

of this study aims to identify which hardware implementation of the Runge-Kutta solver

yields superior performance metrics at a given clock frequency.
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Chapter 7

Micro-Architecture Description

7.1 Overview

The hardware accelerator shown in Figure 14 comprises a register file, a 64-bit

memory unit, a control unit, and a module that will perform the solution to the differential

equations using Euler or modified Euler methodologies. In our case, the ordinary differ-

ential equation for which the hardware accelerator has been implemented using the Euler

method and the modified Euler method has been specified in equation (11).

f (x,y) = xy(xy)/2 (11)

The register file, control unit, and memory unit have been designed identically for

both the Euler and modified Euler methods, except the functional module which will per-

form the specific task for solving the differential equation (11) using Euler or modified Eu-

ler method. The accelerator initiates with x0 and y0 set at 2 and 1. The step size h has been

set up to 0.1. The control unit operates the accelerator based on custom instructions, over-

seeing all other modules including the memory unit, register file, and Euler/modified Euler

module. It employs third-party Xilinx single-precision floating-point IP support in devel-

oping this accelerator for differential equation solutions using those methods. Through

xn+1 and yn+1, the next iteration values will be generated.

7.2 Micro-Architecture Of The Accelerator

In Figure 14, for implementing the accelerator, a set of internal buses has been uti-

lized. In the case of the register file, three inputs such as clock, source register(rs1), and
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w en (write enable) have been employed. Another input, the clock will be set as the sys-

tem’s clock. In our context, we focus on a specific aspect - Source Register (rs1); this is

a five-bit register address utilized within the control unit’s 32-bit instruction format. For

developing the instruction format for the accelerator to run the operation for solving the dif-

ferential equation (11), two custom instructions for each method have been implemented.

The Euler method demonstrates an initialization instruction format, “Euler Initialization”

(EI), which will load all the contents of xn , yn , h from the register file to the 64-bit memory

unit. Another instruction format, “Euler Update” (EU), which only updates the contents,

has been demonstrated.

The Euler Update comprises two parts: a. Flush Mode; and b. In Store Mode.

When the one-bit write enable is ‘1’, the accelerator will operate for EI and EU Store

mode, whereas when it is ‘0’, it will operate for the EU Flush mode instruction format. The

Modified Euler Method follows an identical methodology. Two instruction formats have

been initialized for the modified Euler method too, which are “Modified Euler Initializa-

tion” (MEI) and “Modified Euler Update” (MEU) instruction formats. The content of the

register file will produce 32-bit data to xn , yn , h in the memory unit to generate the result

for the Euler and modified Euler method. Additionally, the other two control signals such

as flush, and initial (init) generated from the control unit will operate within the memory.

The ’init’ serves as a one-bit control signal, set to ’1’ for EU store mode; otherwise, it

functions as ’0’. In case of a one-bit flush control signal, it will flush out the contents of the

xn , yn , and h to the Euler or modified Euler module. A 12-bit address, “addr” is used as

the starting address in the memory unit to store the variables as well as Euler or modified

Euler parameters. For the Euler or modified Euler method, the content of the xn , yn , h

will be generated from the memory unit and it will generate the result xn+1 and yn+1 for

each iteration and will again be stored in the memory unit in their specific addresses. After

each operation, this method updates a current memory address known as “cma out”, thus

explaining its internal functionality in the below section.
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Table 1 provides a comprehensive description of the internal buses within the micro-

architecture of the hardware accelerator of the ordinary differential equation, stated in the

equation (11), employing both methods. It includes details such as bus names, sources, and

destinations for each bus along with their respective functions.

Figure 14

The Micro-Architecture Design Of The Hardware Accelerator For Solving An Ordinary
Differential Equation Using The Euler And The Modified Euler Methods
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Table 1

The Comprehensive Functional Details Of The Internal Buses For Developing The Hard-
ware Accelerator Using Both Numerical Methods

Bus
Name Source Destination Bus Function

write en
Control
Unit

Register
File

When Write enable is 1, it
will operate for EI and EU
or MEI and MEU Store mode
instruction formats, whereas
‘0’ for EU and MEU Flush
Mode Instruction format.

clock System
Register
File

Operates like an input clock.

Source
Reg
(rs1)

Register
File

Control
Unit

A 5-bit source register ad-
dress will be used in the 32-
bit instruction format of the
control unit.

content
Register
File

Memory
Unit

The register file will gener-
ate 32-bit data as “contents”
of xn, yn, h to the memory
unit to generate the result for
the Euler and modified Euler
method modules. This will be
sent to the output port “con-
tent”.
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Bus

Name
Source Destination Bus Function

addr
Control

Unit

Memory

Unit

Starting address in the mem-

ory module to store the vari-

ables as well as the Euler and

the modified Euler solvers pa-

rameters.

init
Control

Unit

Memory

Unit

A control signal of one bit. It

is to be set as ‘1’ for the EU

and MEU Store Mode opera-

tion, otherwise set as ‘0’.

flush
Control

Unit

Memory

Unit

One-bit control signal, when

it’s ‘1’, will flush out the con-

tents of xn, yn, h to the Euler

and the modified Euler meth-

ods module.

cma out
Memory

Unit

Output Port

of the ac-

celerator

Current memory address and

it will update the memory ad-

dress by 8 every single itera-

tion.
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Bus

Name
Source Destination Bus Function

xn

Memory

Unit

Euler or

Modi-

fied Euler

method

Module

First input ‘x0’.

yn

Memory

Unit

Euler or

Modi-

fied Euler

method

Module

Second input ‘y0’.

h
Memory

Unit

Euler or

Modi-

fied Euler

method

Module

Step size.

p in
Memory

Unit

Euler or

Modi-

fied Euler

method

Module

h/2.

36



Bus

Name
Source Destination Bus Function

xn+1

Euler or

Mod-

ified

Euler

method

Module

Memory

Unit

Output ‘xn+1’ will generate

the result for each iteration of

‘x’.

yn+1

Euler or

Mod-

ified

Euler

method

Module

Memory

Unit

Output ‘yn+1’ will generate

the result for each iteration of

‘y’.

32-bit

RISC-

V-based

custom

instruc-

tions

Top-

level

accel-

erator

module

Control

Unit

Two custom instructions will

be provided to generate the

outputs.
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7.3 Hardware Implementation Of The Euler And The Modified Euler Methods Mod-

ules Within The Accelerator

Both the Euler and modified Euler methods for solving the ordinary differential

equation (11) share an identical functional computation block (FCB). In Figure 15, the

architecture of the FCB is shown featuring support for single-precision floating-point oper-

ations. In FCB, four single-precision floating-point IPs by Xilinx Vivado have been used.

We employ initial values of x and y as 2 and 1 respectively, representing x0 and y0 for the

Euler and modified Euler methods. FPU SUB will operate the subtraction operation in (11)

while the FPU MUL handles operations for ‘xy’ part in (11). Both the floating-point op-

erations undergo another multiplication operation by employing an additional FPU MUL

floating-point block. Finally, the result ‘f’ will be obtained by using ‘P in’ as an input for

the FPU DIV or division operator.

7.3.1 The Euler Method Module

The functional computation block (FCB) in Figure 16 generates the function and

connects it to a multiply-accumulate (MAC) unit. For generating the value of xn+1, a

floating-point addition unit has been taken in which the initial value of ‘x’ will be added

to the step size ‘h’. The MAC unit involves the multiplication of the first two inputs and

then the addition to a third input. In our case, the functional output from the FCB will be

connected to the MAC unit by taking ‘y’ as the second input and ‘h’ as the third input to

generate the result of yn+1. This Euler module is used to generate the result of the iterations

for both xn+1 and yn+1.
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Figure 15

The Functional Computation Block (FCB)

Figure 16

The Micro-Architecture Design Of The Euler Method Module
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7.3.2 The Modified Euler Method Module

Two functional units have been implemented, apart from the Functional computa-

tion block (FCB) in our case. The first unit demonstrates the function f(xn , yn), which does

the specific operation in the equation (11). Meanwhile, another unit called the “Modified

Euler Functional block” has also been implemented. Figure 17 displays the Modified Euler

Functional block. Here, three single-precision floating-point IPs such as FPU Mul, MAC

unit, and FPU ADD have been utilized. With the step size ‘h’, an input port ‘a’ is initialized

with value 0.05 to execute the operation of h/2 in a 32-bit floating-point multiply unit which

will do the in the equations (3) and (4) for the modified Euler numerical method. Figure 15

performs all operations associated with obtaining the functional output of f(xn, yn) in the

equations (3) and (4) similarly. Figure 18, the next unit in sequence, will do the operation

for getting the approximation of the iterations for the modified Euler method for solving

the equation (1). In addition, another MAC unit along with a floating-point addition block

has been developed. Table 2, given below, finally provides the number of Xilinx Vivado IP

single-precision floating-point IP support blocks essential to build the function in (11).

Figure 17

The Modified Euler Functional Block
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Figure 18

The Micro-Architecture Design Of The Modified Euler Method Module

Table 2

The Number Of Xilinx Vivado IP Single-Precision Floating-Point IP Support Blocks Essen-
tial To Construct The Function In (11) Using The Euler And The Modified Euler Methods

Modules FPU ADD FPU SUB FPU MUL FPU DIV MAC Unit

Euler
method

1 1 2 1 1

Modified
Euler
method

2 2 5 2 2
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7.4 An Example Of One Set Of Inputs Being Processed By The Processor For The

Euler Method Solver

Let us take equation (11) and solve it using the Euler method to demonstrate the

flow of the architecture in designing the hardware accelerator.

According to the Euler method,

yn+1 = yn + hf (xn , yn), xn+1 = xn +h, which are stated in equation (1) and (2). Our

initial values of x0 and y0 are 2 and 1. The step size, h is 0.1. With these initial conditions,

the first step is to derive the function specified in equation (11), which is f (x , y)=xy( x y )/

2. Therefore, f (x0 , y0)=x0y0( x0 y0)/2 = 2 x 1 (2 - 1) / 2 = 2 x 1 / 2 = 1.

Therefore, for the 1st iteration, the value of f ( x0 , y0) = 1.

Now, for solving the function, f using Euler methods, we have to use this value in

equation 1 to achieve the value of y1.

So, y1 = y0 + hf (x0, y0) = 1 + (0.1 x 1) = 1 + 0.1 = 1.1.

Similarly, x1 = x0 +h = 2 + 0.1 = 2.1.

The results of 1st iteration to solve equation (11) using the Euler method are:

y1 = 1.1. x1 = 2.1.

For the second iteration, using the same procedure, the values of f, y2 and x2 have

been derived.

f (x1, y1) = f( 2.1, 1.1)=2.1 x 1.1(2.11.1)/ 2=2.31/ 2=1.155. y2 = y1 + hf(x1 , y1) =

1.1 + (0.1 x 1.155) = 1.1 + 0.1155 = 1.2155.

x2 = x1 + h = 2.1 + 0.1 = 2.2.

Therefore, the final values of y2 and x2after 2nd iteration are:

y2 = 1.2155. x2 = 2.2.

In this manner, we can solve first-order ordinary differential equations using the

Euler method up to several iterations.

Now, as per the architecture described in Figure 14, whenever we are giving the
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32-bit RISC-V-based “Euler initialization” instruction by the processor, as described in

Section 7.2, the initial values of x0. y0, and h are 2, 1, and 0.1, respectively, according

to our example, will be stored in three different source registers (rs1) of size 5 bits within

the register file. These values will pass to the 64-bit memory unit as “contents.” The 32-

bit RISC-V-based “Euler Update” instruction has two parts: flush and store modes, as

described previously. The control unit will control the memory module through its “Flush”

and “Store” mode. In the case of the Flush mode, when the ”Flush” signal is equal to 1,

the content of the memory unit will serve as inputs for the Euler method module, which

has input ports of x, y, and h. The result from the functional computation block (FCB) in

Figure 15 equates to f(x0 , y0), which is 1. This value then again passes through a MAC

unit, specified in Figure 16, that performs the multiply-accumulate operation with the value

of y1, which is 1 and h = 0.1. The final value of y1 = 1.1 will be obtained from the Euler

method module. Similarly, for x1 = 2.1, the FPU ADD unit in Figure 16, will add the value

of x0 = 2 and h, which is equal to 0.1, to get a result from the Euler method module.

In the Store mode, the values of x1 = 0.1 and y1 = 1.1 are then sent to the memory

unit, which will be stored in new memory locations, and it flows to the Euler method

module to do the operations for x2 and y2. From the Euler method module, the values of

x2 = 2.2 and y2 = 1.2155 will be generated. In this way, the micro-architecture will be

able to generate the iterative solutions of the ODE using the Euler method through 32-bit

RISC-V-based custom instructions from the processor. In Figure 19, a flowchart has been

given to demonstrate the flow of operations for the Euler method in solving the ODE.
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Figure 19

The Flow Diagram Of The Hardware Accelerator For The Euler Method In Solving The
ODE
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Chapter 8

Experimental Results

Due to the increased number of I/O pins on the ZYNQ - ZC702 FPGA Evaluation

Board (xc7z020clg484- 1), the hardware accelerator has been synthesized to operate ex-

tremely well. The subsections include a detailed representation of the power consumption

analysis, utilization summary, and timing analysis.

8.1 Power Analysis

The Xilinx Vivado Power Analyzer tool has been used to determine the total on-

chip power consumption. Specifically, for both the Euler and modified Euler methods -

operating at a clock frequency of 2.85Mhz, the total on-chip power consumed is typically

identical when deployed on ZYNQ - ZC702 FPGA Evaluation Board (xc7z020clg484-1)

with a slight increase of 0.001W in the modified Euler method, compared to its counter-

part. For the Euler method, the total on-chip power consumed by the hardware accelerator

is 0.191W, however utilizing the same parameters, the modified Euler method consumes

the total on-chip power of 0.192W in respect to the single-precision floating-point oper-

ations. Also, the Euler method exhibits a dynamic power consumption of 1%, while the

modified Euler method demonstrates 2%. In both cases, static sources consume the max-

imum power. In Figure 20, and Figure 21, the total on-chip power consumption by the

hardware accelerator for both methods has been illustrated, using two pie charts.

In the case of the Runge-Kutta methods using the same micro-architecture in Fig.3

by just changing the computation unit and for equation 12, Figure 23 shows a graphical

comparative study on power usage for all three floating point precision in Runge-Kutta
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family numerical solutions, which has been designed in [56].

f =−2x− y (12)

A design-space exploration has been given based on the on-chip power consump-

tion of all three floating point formats for the Runge- Kutta solvers for ordinary differential

equations in Figure 22, Figure 23, and Figure 24. Fourth-order Runge-Kutta (RK4) solver

hardware accelerators use the highest power among three orders of Runge-Kutta equations

in the following manner. For a half-precision format, RK4 needs 0.262W of power; for a

single-precision format, it requires 0.635W, and for a double-precision format, it uses about

0.638W at an 80 MHZ clock frequency. In all the other cases for power consumption, RK4

holds the maximum power in three floating point precision formats among all the other two

orders of Runge-Kutta numerical solutions. Table 3 compares on-chip power consumption

for equation (1) using second-order, third-order, and fourth-order numerical methods from

the Runge-Kutta family in three floating-point precision formats and FPGA hardware re-

sources respectively.
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Figure 20

The Percentage Of The Total On-chip Power Consumption By The Euler Method In Solving
The ODE In (11), Including The Static And Dynamic Sources

Figure 21

The Percentage Of The Total On-chip Power Consumption By The Modified Euler Method
In Solving The ODE In (11), Including The Static And Dynamic Sources
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Figure 22

The On-chip Power Consumption Of Second-order, Third-order, And Fourth-order Runge-
Kutta Family Methods For Equation (1) In Half-precision Floating-Point Format

Figure 23

The On-Chip Power Consumption Of Second-Order, Third-Order, And Fourth-Order
Runge-Kutta Family Methods For Equation (1) In Single-Precision Floating-Point Format
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Figure 24

The On-chip Power Consumption Of Second-order, Third-order, And Fourth-order Runge-
Kutta Family Methods For Equation (1) In Double-precision Floating-point Format

Table 3

Comparative Table Of On-Chip Power Consumption For Second-Order, Third-Order, And
Fourth-Order Of Runge-Kutta Family Equations In Half, Single, And Double Floating-
Point Precision Formats

FP Precision
Format

RK2
(Watts)

RK3
(Watts)

RK4
(Watts)

Half (16-bits) 0.165 0.199 0.231

Single (32-bits) 0.205 0.28 0.635

Double (64-bits) 0.356 0.592 0.638
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8.2 Hardware Resource Utilization Summary

For each solver, the maximum number of look-up tables (LUTs), designs distributed

RAM (LUTRAM), which means the LUTs can be used as synchronous RAM, flip-flops

(FF), multipliers (DSP), input outputs (IO), high fanout buffer (BUFG), have been de-

termined for the single-precision floating-point operations format. The resources are the

estimation for implementing the accelerator for the ODE solvers. The results with the per-

centage of resources used in the FPGA are shown in Table 4 for each Euler and Modified

Euler ODE solver. For every RK solver, the maximum number of look-up tables (LUTs),

designs distributed RAM (LUTRAM), flip-flops(FF), multipliers (DSP), input outputs (IO),

and high fanout buffer (BUFG) that can be used in half, single and double precision for-

mats has been determined. Those results along with the percentage of resources utilized

in the FPGA are displayed in Table 5 for ODE solver RK2, Table 6 for ODE solver RK3,

and Table 7 for ODE solver RK4. These resources are a rough estimate to implement the

accelerator for all three ODE solvers. We find in the tables the growing need for resources

from single precision to double precision, and also between ODE solvers. Additionally, all

resource needs are at their fullest maximum for RK4 in every precision format as expected.

Table 4

The Hardware Resource Utilization Summary Of The Accelerator Design With The Euler
And The Modified Euler Methods In Solving The ODE In (11)

Methods BUFG (%) IO(%) DSP(%) FFs(%) LUTs(%)

Euler 3 71 5 2 9

Modified
Euler

3 71 10 2 13
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Table 5

FPGA Hardware Resources For Hardware Accelerator For The RK2 Method In All
Floating-Point Precision Formats

Elements LUT LUT-
RAM FF DSP IO BUFG

RK2HP 3% 1% 2% 8% 41% 3%

RK2SP 5% 1% 3% 11% 65% 3%

RK2DP 13% 1% 6% 39% 81% 3%

Table 6

FPGA Hardware Resources For Hardware Accelerator For The RK3 Method In All
Floating-Point Precision Formats

Elements LUT LUT-
RAM FF DSP IO BUFG

RK3HP 6% 1% 4% 11% 41% 3%

RK3SP 10% 1% 7% 17% 49% 3%

RK3DP 29% 4% 12% 70% 81% 3%
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Table 7

FPGA Hardware Resources For Hardware Accelerator For The RK4 Method In All
Floating-Point Precision Formats

Elements LUT LUT-
RAM FF DSP IO BUFG

RK4HP 7% 1% 5% 12% 41% 3%

RK4SP 12% 1% 8% 18% 49% 3%

RK4DP 33% 4% 13% 72% 81% 3%

8.3 Timing Summary

The Euler method exhibits a total setup time delay of 6.832ns and a total hold time

delay of 2.705ns. In comparison, the modified Euler method demonstrates a significantly

higher setup time delay at 336.740 ns with only marginally reduced hold-time lag recorded

as 2.230 ns. Considering a clock frequency operating at 2.85 ns, the worst negative slack

(WNS) and worst hold slack (WHS) with the Euler method for solving the equation (11)

are 88.016 ns and 0.165 ns. Employing identical parameters, the modified Euler method

displays the worst negative slack of 13.827 ns and the worst hold slack is 0.183 ns. From

the experimental results, it has been identified that the accelerator designed for the Euler

method, has a lower setup time delay and hold time delay with higher worst negative slack

and slightly lower worst hold slack. In the case of the accelerator designed for the modified

Euler method, it has a significantly higher setup time delay with a marginally reduced hold

time delay. Also, it exhibits a lower worst negative slack and slightly higher worst hold

slack compared to the Euler method.

All the precision formats for every RK solver have determined the setup time, hold

time, and pulse width at 80 MHz clock frequency. Table 8, Table 9, and Table 10 are given
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to assess the timing summary of each solver.

Table 8

Timing Summary For The Hardware Accelerator For The
RK2 Solver

Elements
Setup Time(ns) Hold Time(ns)

Pulse Width(ns)
Min Max Min Max

RK2HP 9.392 9.021 0.254 0.197 5.270

RK2SP 3.523 3.172 0.420 0.294 5.270

RK2DP 12.294 11.909 0.381 0.307 5.270

Table 9

Timing Summary For The Hardware Accelerator For The
RK3 Solver

Elements
Setup Time(ns) Hold Time(ns)

Pulse Width(ns)
Min Max Min Max

RK3HP 7.663 2.147 0.425 0.310 4.020

RK3SP 3.924 3.562 0.418 0.286 6.520

RK3DP 11.626 11.316 0.412 0.243 5.270
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Table 10

Timing Summary For The Hardware Accelerator For The
RK4 Solver

Elements
Setup Time(ns) Hold Time(ns)

Pulse Width(ns)
Min Max Min Max

RK4HP 7.475 2.045 0.405 0.296 4.020

RK4SP 10.957 10.686 0.490 0.241 5.270

RK4DP 11.626 11.316 0.412 0.243 5.270
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Chapter 9

Conclusion

Our preliminary research reveals the implementation of a hardware accelerator for

the Euler and modified Euler numerical algorithms. The research highlights how important

hardware acceleration is becoming in dealing with the computational needs of ordinary dif-

ferential equations (ODEs) for different high-speed computing applications. Customized

hardware accelerators for numerical methods like Euler and Modified Euler methods show

a strong tactic to provide productive solutions for nonlinear equations. The use of Xilinx

Vivado environment and VHDL highlights a strong setup to build hardware accelerators,

showing promise for future progress in ODE-solving methods. It has been observed that

the third-party vendor AXI4 stream Xilinx single-precision floating-point IP support sig-

nificantly improves the hardware accelerator’s performance. This breakthrough improves

not only the existing implementation but also sets a base for making future accelerators that

match various ODE solvers and floating-point representation units. Also, a thorough anal-

ysis, which includes power estimation, use of hardware resources, and timing summary has

been given. The hardware accelerator will work effectively with the ZYNQ ZC702 FPGA

Evaluation Board (xc7z020clg484-1) and at the moment, this article plays a vital role in

improving the findings’ capability to execute using alternate floating-point representations

and methodologies for ODE solvers.
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Chapter 10

Future Work

The future work will contribute to two subsections:

- Design-space exploration for Runge-Kutta Hardware Accelerator for a system of

ordinary differential equations

- Hardware Acceleration for Multigrid and Numerical Methods: A Survey

10.1 Design-Space Exploration For Runge-Kutta Hardware Accelerator For A Sys-

tem Of Ordinary Differential Equations

A second-order ordinary differential equation can be expressed as a system of first-

order differential equations. Generally, most of the numerical methods are designed to

solve for first-order ODEs. Using this technique of breaking down the second-order ODEs

into first-order ODEs will solve the equation faster and more efficiently using standardized

numerical methods such as Euler methods, Runge-Kutta methods, and much more. This

work will deal with the hardware implementation of the Runge-Kutta solver to effectively

solve a system of equations with three variables. Furthermore, a design-space exploration

will be done based on the system of equations [57].

10.2 Hardware Acceleration For Multigrid And Numerical Methods: A

Survey

The intersection of micro-architectures and differential equations will be observed

primarily in three different areas, as outlined below: 1. Hardware implementation of

higher-order non-linear systems, such as chaotic systems, 2. Acceleration of scientific

computing workloads, based on systems of differential equations, with commercial off-
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the-shelf accelerators such as general-purpose graphics processing units, and 3. Acceler-

ation of scientific computing workloads, based on systems of differential equations, with

customized, application-specific hardware accelerators. Researchers often employ multi-

grid methods as preconditioners [58–60] and solvers [61]. These methods can be dissected

into various modalities in any generalized application. One of those modalities is the grid

formation algorithm. This algorithm can dictate the properties of the multigrid methods

as structured, block-structured, or adaptively structured. Another way to classify these

methods is based on computational performance and convergence trajectory. The path of

dependency characterizes the multigrid methods into various cycle types such as V-cycle (a

traversal pattern involving correction steps across different grid resolutions), F-cycle (Also

known as ’Full Multigrid cycle’ with an extra relaxation step at each grid level), and W-

cycle (traversal pattern with additional correction steps at intermediate levels). This survey

will examine the attributes of multigrid methods at the intersection of various modalities

(grid formation algorithm, computational performance, convergence trajectory, and scope

of parallelization). The survey will also delve into an overview of the current methodolo-

gies and implementations designed to accelerate several linear differential equations. This

will provide a comprehensive understanding of how these technologies can be used to en-

hance the performance and efficiency of simulations in various scientific and engineering

applications.
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