
Rowan University Rowan University

Rowan Digital Works Rowan Digital Works

Theses and Dissertations

6-20-2024

AN EMPIRICAL STUDY ON DETECTING AND EXPLAINING AN EMPIRICAL STUDY ON DETECTING AND EXPLAINING

GLOBAL STRUCTURAL CHANGE IN EVOLVING GRAPH USING GLOBAL STRUCTURAL CHANGE IN EVOLVING GRAPH USING

MARTINGALE MARTINGALE

Tarun Teja Kairamkonda
Rowan University

Follow this and additional works at: https://rdw.rowan.edu/etd

 Part of the Applied Mathematics Commons, and the Computer Sciences Commons

Recommended Citation Recommended Citation
Kairamkonda, Tarun Teja, "AN EMPIRICAL STUDY ON DETECTING AND EXPLAINING GLOBAL
STRUCTURAL CHANGE IN EVOLVING GRAPH USING MARTINGALE" (2024). Theses and Dissertations.
3253.
https://rdw.rowan.edu/etd/3253

This Thesis is brought to you for free and open access by Rowan Digital Works. It has been accepted for inclusion
in Theses and Dissertations by an authorized administrator of Rowan Digital Works. For more information, please
contact graduateresearch@rowan.edu.

https://rdw.rowan.edu/
https://rdw.rowan.edu/etd
https://rdw.rowan.edu/etd?utm_source=rdw.rowan.edu%2Fetd%2F3253&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/115?utm_source=rdw.rowan.edu%2Fetd%2F3253&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=rdw.rowan.edu%2Fetd%2F3253&utm_medium=PDF&utm_campaign=PDFCoverPages
https://rdw.rowan.edu/etd/3253?utm_source=rdw.rowan.edu%2Fetd%2F3253&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:graduateresearch@rowan.edu

AN EMPIRICAL STUDY ON DETECTING AND EXPLAINING GLOBAL
STRUCTURAL CHANGE IN EVOLVING GRAPH USING MARTINGALE

by

Tarun Teja Kairamkonda

A Thesis

Submitted to the
Department of Computer Science

College of Science and Mathematics
In partial fulfillment of the requirement

For the degree of
Master of Science in Computer Science

at
Rowan University

May 3, 2024

Thesis Chair: Shen-Shyang Ho, Ph.D., Associate Professor, Department of Computer
Science

Committee Members:
Anthony Breitzman, Ph.D., Professor, Department of Computer Science

Guimu Guo, Ph.D., Assistant Professor, Department of Computer Science

© 2024 Tarun Teja Kairamkonda

Dedications

I dedicate this manuscript to my incredible family, especially to my mother Sujatha

Kairamkonda, whose unwavering support, boundless encouragement, and selfless sacri-

fices have been my guiding light. Their strength, determination, and love have continually

inspired me to strive for excellence. Throughout every challenge and triumph, they have

been my constant source of motivation. I would not be where I am today without the

profound impact they have had on my life.

Acknowledgements

I would like to express my sincere appreciation to Dr. Shen-Shyang Ho for his ex-

ceptional guidance and unwavering support throughout my thesis journey. I extend my

thanks to the Association for Computing Machinery (ACM) SIGAPP Student Travel Award

Program and Rowan University School of Graduate Studies (SGS) for the travel grants

that supported my travel to present a conference paper related to this thesis at the 39th

ACM/SIGAPP Symposium On Applied Computing in Avila, Spain, and to the Rowan Uni-

versity Computer Science Department for the teaching fellowship, which have been instru-

mental in supporting my academic pursuits. This thesis was also partially supported by the

National Science Foundation (NSF) grant no. 2213658.

iv

Abstract

Tarun Teja Kairamkonda
AN EMPIRICAL STUDY ON DETECTING AND EXPLAINING GLOBAL
STRUCTURAL CHANGE IN EVOLVING GRAPH USING MARTINGALE

2023-2024
Shen-Shyang Ho, Ph.D.

Master of Science in Computer Science

There is a growing interest in practical applications involving networks of interacting

entities such as sensor networks, social networks, urban traffic networks, and power grids,

all of which can be represented using evolving graphs. Changes in these evolving graphs

can signify shifts in the behavior of interacting entities or alterations in the patterns of

their interactions. Identifying and detecting these changes is crucial for addressing poten-

tial challenges or opportunities in various domains. In this study, we propose an approach

for detecting structure change in evolving graphs based on the martingale change detec-

tion framework on multiple graph features extracted over time. Our research investigates

the impact of different graph properties encoded using different feature representations

on the evolving graph change detection task. Moreover, performing change detection on

multiple graph features allows us to pinpoint which aspects of the graph behavior have

changed and provide explanations for identified changes. We demonstrated empirically

the robustness of our proposed approach on synthetic evolving graphs generated using

different graph-generating algorithms, including scale-free, phase transition, and random

small-world evolving graphs. Furthermore, we demonstrate that the proposed martingale

approach maintains a desirable false positive bound even when different feature represen-

tations are used. Finally, we demonstrate monitoring martingale values for different graph

properties on a real-world evolving graph sequence to explain the detected change points.

v

Table of Contents

Abstract . v

List of Figures . viii

Chapter 1: Introduction . 1

Chapter 2: Background . 4

2.1 Graph: Notation and Definitions . 4

2.2 Change Detection Problem for Evolving Graph . 5

2.3 Martingale Method for Change Detection . 6

2.4 Graph Representations and Embeddings. 9

Chapter 3: Literature Review . 18

3.1 Change Detection in Univariate Time Series . 18

3.2 Change Detection in Dynamic Network . 18

3.3 Other Relevant Recent Work . 20

Chapter 4: Proposed Methodology . 21

4.1 Overview . 21

4.2 Martingale-based Change Detection Procedure for Evolving Graph 22

4.3 Feature-based Explanation for Detected Change in Evolving Graph us-
ing Multiple Graph Features . 22

Chapter 5: Experimental Results . 24

5.1 Synthetic Graph Generation . 24

vi

Table of Contents (Continued)
5.2 Evaluation Measures . 33

5.3 Experimental Design. 35

5.4 Change Detection Empirical Results and Discussions . 36

5.4.1 The Effect of Threshold λ on False Positive Rate 37

5.4.2 Performance Comparison . 38

5.5 Monitoring Real World Data and Change Explanations 42

5.5.1 MIT Social-Network Evolution Dataset Description 42

5.5.2 Results and Discussions . 44

Chapter 6: Conclusion and Future Work. 49

6.1 Conclusion . 49

6.2 Future Work . 49

References . 51

Appendix A: Additional Results - False Positive Rates . 55

Appendix B: Additional Results - Precision . 57

Appendix C: Additional Results - Recall . 59

Appendix D: Additional Results - F1-score . 61

vii

List of Figures

Figure Page

Figure 1. A Static Graph Structure Showing Nodes and Edges 4

Figure 2. Example of Two Graphs Drawn from Two Distributions of Graph of
Different Structures. 5

Figure 3. An Illustration of Non-Conformity Score for a Graph Snapshot xi in
a 2D Feature Space. 7

Figure 4. Overview of Evolving Graph Change Detection Using Martingale
Over Time . 21

Figure 5. Monitoring Evolving Graph Feature Distributions Change for Multi-
ple Features Over Time. 23

Figure 6. Example of an Erdős-Rényi Type Evolving Graph with Change in p
from 0.2 to 0.4 at t = 100. 25

Figure 7. Example of a Barabási-Albert Type Evolving Graph with Change in
m from 1 to 2 at t = 100 . 28

Figure 8. Graph Snapshot Centroids of the Barabási-Albert Evolving Graph in
Figure 7 as 2D SVD Graph Feature Vectors from t = 1 to 200 with
Change Point at t = 101 . 29

Figure 9. The Mean Values of Elements in Degree Centrality Feature Vector
for |V | Nodes for a Synthetic Evolving Graph Using the Erdos-Rényi
Model with Change Point at t = 101. 37

Figure 10. Monitoring the Martingale Values of the Seven Features of an Erdos-
Rényi Type Evolving Graph with Three Change Points 38

Figure 11. False Positive Rate Against λ on Four Graph Features on a Newman-
Watts-Strogatz Type Evolving Graph . 39

Figure 12. Precision Against λ Using SVD Feature on Newman-Watts-Strogatz
(NWS) Type Evolving Graphs with Varying Degree of Structural
Change. 40

viii

List of Figures (Continued)

Figure Page

Figure 13. Recall Against λ Using LSVD Features on Erdos-Rényi Type Evolv-
ing Graph with Varying Degree of Structural Change. 41

Figure 14. Recall Against λ Threshold Using SVD Features on Different Types
of Evolving Graphs. 42

Figure 15. F1 Measure Against λ Using Degree Centrality Feature on Barabási-
Albert Type Evolving Graph. 43

Figure 16. Mean Delay Time Measure Against λ Using Eigenvector Centrality
Feature on Internet Autonomous Systems Type Evolving Graph. 44

Figure 17. Mean Delay Time Measure Against λ Using SVD Feature on All
Types of Evolving Graphs. 45

Figure 18. Monitoring Martingale Values Over Time for the MIT Social Evolu-
tion Experiment Dataset . 45

Figure 19. Visualization of the Graph Structure Around Thanksgiving Day for
the MIT Social Evolution Experiment Dataset. 47

Figure 20. Visualization of the Graph Structure Around the New Year Day for
the MIT Social Evolution Experiment Dataset. 48

Figure 21. False Positive Rate vs λ for Using Different Graph Features for the
Martingale Methods on Erdos-Rényi Type Graphs. 55

Figure 22. False Positive Rate vs λ for Using Different Graph Features for the
Martingale Method on Barabási-Albert Type Graphs. 56

Figure 23. False Positive Rate vs λ for Using Different Graph Features for the
Martingale Method on Internet AS Type Graphs. 56

Figure 24. Precision vs λ Using Eigenvector Centrality Feature for the Martin-
gale Method on Erdos-Rényi Type Graphs with Varying Task Diffi-
culty.. 57

Figure 25. Precision vs λ Using Singular Value Decomposition Feature for the
Martingale Method on Barabási-Albert Type Graphs with Varying
Task Difficulty.. 58

ix

List of Figures (Continued)

Figure Page

Figure 26. Precision vs λ Using Degree Centrality Feature for the Martingale
Method on Internet AS Type Graphs with Varying Task Difficulty. . . 58

Figure 27. Recall vs λ Using Degree Centrality Feature for the Martingale
Method on Newman-Watts-Strogatz Type Graphs with Varying Task
Difficulty. 59

Figure 28. Recall vs λ Using Degree Centrality Feature for the Martingale
Method on Internet AS Type Graphs with Varying Task Difficulty . . . 60

Figure 29. F1 Score vs λ Using Singular Value Decomposition Feature for the
Martingale Method on Erdos-Rényi Type Graphs with Varying Task
Difficulty . 61

Figure 30. F1 Score vs λ Using Eigenvector Centrality Feature for the Martin-
gale Method on Internet AS Type Graphs with Varying Task Difficulty.62

Figure 31. F1 Score vs λ Using Laplacian SVD Feature for the Martingale
Method on Newman-Watts-Strogatz Type Graphs with Varying Task
Difficulty. 62

x

Chapter 1

Introduction

In the era of interconnected systems and ever-evolving networks, the analysis and

understanding of dynamic graph structures have become paramount in various domains

which involve interconnected entities such as social networks, cybersecurity, transporta-

tion, and biological systems, power systems. Dynamic graph networks, characterized by

their changing edges (connections/ interactions) and nodes (objects/ entities) over time,

present unique challenges and opportunities for researchers and practitioners alike. One

critical aspect of managing dynamic graph networks is the identification and characteriza-

tion of anomalous or changed patterns, as these deviations often signify potential threats,

irregularities, or insights within the evolving system. So it is important to monitor the

evolving process to detect unusual changes in patterns either locally or globally [1, 2, 3, 4]

Change detection in evolving graphs involves identifying points in time where the

structure or properties of a graph undergo significant changes. For example, In a social

media platform like Twitter, a change point might be detected when a viral event occurs.

For instance, when a celebrity makes a major announcement, the interaction graph (repre-

senting retweets, replies, and mentions) may show a sudden increase in connectivity and

activity around that time. Identifying these points can help in understanding the dynamics

of information spread and influence within social networks. In a network representing fi-

nancial transactions between entities, a change point might be detected during a financial

crisis or significant market event. For instance, during the 2008 financial crisis, the network

of interbank loans showed significant structural changes as banks altered their lending be-

haviors. Early detection of such changes can provide valuable insights for risk management

and regulatory oversight. The idea is not limited to social network and financial networks

but also include broad variety of domains including biological networks like in gene regu-

1

latory networks, detecting a change point might involve identifying when gene expression

patterns shift significantly, such as when a disease starts to affect an organism or during a

response to a treatment. It is crucial for understanding disease mechanisms and improving

treatment strategies.

One particular task of interest related to change detection for evolving graphs is

anomaly detection. The detection of anomalies in dynamic graph networks is a multi-

faceted problem that requires an understanding of both graph theory and anomaly detection

techniques. This thesis aims to study the problem of global structural change detection in

dynamic graph networks using a martingale change-detection framework to discern struc-

tural pattern change within the dynamic structures of interconnected entities.

The challenges associated with change detection in dynamic graph networks are

diverse and include issues such as identifying local changes, maintaining low false posi-

tive rates (FPR), and reduction of delay time for the detection of a true positive. In this

thesis, we focus on addressing the issues of maintaining low false positive by utilizing a

martingale-based framework to detect global structural changes using multiple graph fea-

tures. Our research delves into dynamic graph networks, extracting diverse features such

as node centrality, edge weight fluctuations, temporal patterns, and community structures,

to be used for change detection. We utilize various graph embedding techniques tailored to

capture different aspects of evolving graph structures.

Performing change detection on multiple graph features allows us to pinpoint which

aspects of the graph behavior have changed and provide explanations for identified changes.

We demonstrated empirically the robustness and performance of our proposed approach on

synthetic evolving graphs generated using different graph-generating algorithms, including

scale-free, phase transition, and random small-world evolving graphs. Furthermore, we

demonstrate that the proposed martingale approach controls and maintains a desirable false

positive rate even when different feature representations are used. In addition, we demon-

strate monitoring martingale values for different graph properties on a real-world evolving

2

graph sequence to explain the detected change points.

By fusing theoretical rigor with practical applicability, our approach aims to ad-

vance the state-of-the-art in dynamic graph analysis, offering a valuable tool for researchers,

practitioners, and decision-makers across diverse domains. In fact, this research contributes

to the broader field of network science and security in a dynamic setting, offering insights

that can be applied across diverse domains to enhance decision-making processes and for-

tify the resilience of interconnected systems.

The main results of this thesis was published in [5]:

• Shen-Shyang Ho and Tarun Teja Kairamkonda, Change Point Detection in Evolv-

ing Graph using Martingale, Proceeding of the 39th ACM/SIGAPP Symposium On

Applied Computing, Avila, Spain, 2024.

The thesis is organized as follows. In chapter 2, we describe the graph notations

and definitions, change detection problem setting, background on martingale method for

change detection, modeling of feature distribution for an evolving graph. We provide a

brief review of existing change detection methods for evolving graph and explanation tech-

niques for graph-related tasks in chapter 3. In chapter 4, we describe the evolving graph

change detection method using martingale and monitoring feature distribution change us-

ing martingale and providing feature explanations for detected change. In chapter 5, we

present and discuss our results on synthetic data and a demonstration using a real-world

dataset. We also compare the performance of our model with existing methodologies using

few evaluation metrics . In chapter 6, we conclude by elucidating the applicability of our

proposed research, discussing both its strengths and weaknesses within the scope of future

studies aimed at enhancing its overall effectiveness and applicability.

3

Chapter 2

Background

2.1 Graph: Notation and Definitions

Definition 1. A graph G is a pair (V,E), where V is a set of vertices (or nodes), and E is

a set of edges between the vertices E ⊆ {(u,v)|u,v ∈V}.

A graph G is called a static graph if its structure and (node or/and edge) feature

values does not change over time. Figure Figure 1 shows an example of a static graph.

Figure 1

A Static Graph Structure Showing Nodes and Edges

Definition 2. An evolving graph is a graph G that changes over time and represented by

a sequence of static graphs (or graph snapshots) (Gk)1≤k≤n such that the observed time

interval length is n.

A graph G is called a dynamic graph if its structure and/or (node or/and edge)

feature values change over time. In some situations, the changes are so significant that the

4

graph structure can be viewed as coming from two different distributions. For example, one

can imagine that a graph evolves from a graph structure similar to the left one in Figure 2

to the right one. One can assume that the two graphs are from two different data sources.

Figure 2

Example of Two Graphs Drawn from Two Distributions of Graph of Different Structures.

2.2 Change Detection Problem for Evolving Graph

In this thesis, each graph snapshot is observed one after another, and only once. As

a snapshot is observed, graph properties and features are extracted from it.

We define the conditional density of the graph feature of interest by

pθ (f (Gk)| f (Gk−1), . . . , f (G1))

such that f : G → F is a transformation for an input graph G at time instance k and re-

turning an output vector F (or a matrix, in general). Feature matrix f (Gk) ∈ R|V |×d are

extracted from a graph at time instance k such that V is the set of nodes for an evolving

graph and d is the feature dimension for each node. In this thesis, we assume that |V | is

fixed over time.

The change detection problem involves the identification of a time instance when a

deviation from the current data generation model starts within a given data sequence. We

formally state our problem statement for evolving graph similar to problem statement in

5

[6]:

Given a sequence of graph snapshots (Gk)1≤k≤n with conditional density for a particular

graph feature

pθ (f (Gk)| f (Gk−1), . . . , f (G1)).

Before change occurs, the conditional density parameter θ = θ0. After the change, θ = θ1.

The online problem is to “detect the occurrence of the change as soon as possible, with a

fixed rate of false alarms” [6].

2.3 Martingale Method for Change Detection

The martingale change detection approach was first proposed in [7] for labeled data

stream. It was further extended to handle the change detection problem for regression

model and unlabeled data stream [8].

Definition 3. Given a sequence of random variables {Mi : 0 ≤ i < ∞}. It is a martingale

M with respect to the sequence {Z1 : 0 ≤ i < ∞} (in particular, M0 is a constant value), if,

for all i ≥ 0 the following conditions hold:

• Mi is a measurable function of Z0,Z1, · · · ,Zi,

• E(|Mi|)< ∞,

• E(Mn+1|Z0, · · · ,Zi) = Mn.

To compute the martingale value at current time instance t = n, one used p-values

pt computed from t = 1 to n. A function h : Xn → [0,1] is a p-value function with respect

to any probability distribution P over X if for all n ∈ N and r ∈ [0,1],

Pn{x ∈ Xn : h(x)≤ r} ≤ r (1)

In statistical significance testing, the p-value provides a measure on how well the data

discredit the statistical null hypothesis.

6

A family of martingales, called the power martingale [9], indexed by ε ∈ [0,1], is

defined as

M(ε)
n =

n

∏
i=1

(
ε pε−1

i
)

(2)

where the pis are the output p-values from the p-value function h, and the initial martingale

M(ε)
0 = 1.

Vovk et al. [9] proposed the idea of testing exchangeability of streaming data using

Equation 2. Ho [7] proposed the use of testing data exchangeability in the streaming data

for detecting changes in the data distribution.

Figure 3

An Illustration of Non-Conformity Score for a Graph Snapshot xi in a 2D Feature Space.

The fundamental building block of the martingale is called the non-conformality

score which quantify how much a data instance (an observation or a prediction) is different

from other data instances [8]. For our change detection problem, a snapshot of the evolving

graph is represented by a feature matrix or vector. To compute the non-conformality scores

for the snapshots of the graph observed so far represented by s a sequence of features

(f (Gk))1≤k≤n, we utilize K −mean clustering such that K = 1. Let C(f (Gk))1≤k≤n be the

7

cluster center. The non-conformality score for graph Gk

S(Gk) = || f (Gk)−C(f (Gk))1≤k≤n|| (3)

such that || · || is some suitable distance measure (for vector or matrix).

Figure 3 shows an example of a 2D feature space for an evolving graph with each

blue point representing a snapshot of the evolving graph. C is the cluster center based on all

snapshots and xi is a new point representing the most recent snapshot. The non-conformity

score of xi is the Euclidean distance between C and xi.

A p-value pn at time instance n in Equation 2 is computed using the p-value func-

tion,

pn({(Gk)1≤k≤n},θi)

=
#{ j : cs j > csn}+θi#{ j : cs j = csn}

n
(4)

where cs j is the non-conformality score for G j, j = 1,2, . . . ,n and θn is randomly chosen

from [0,1] at time instance n [9]. The computed p-values are independent and uniformly

distributed on [0,1] [10]. Using this property, one can show that Equation 2 satisfies the

martingale conditions in Definition 3.

Theorem 1. (Doob’s Maximal Inequality) Suppose that {Mk : 0 ≤ k < ∞} is a non-

negative martingale. Then for any λ > 0 and n ∈ N ,

λP
(

max
0≤k≤n

Mk ≥ λ

)
≤ E(Mn). (5)

If E(Mn) = E(M0) = 1, then from the Doob’s Maximal Inequality (Equation 5) one

has

P
(

max
k≤n

Mk ≥ λ

)
≤ 1

λ
(6)

8

This inequality means that it is unlikely for any Mk to have a value higher than λ if λ

is a big value. However, there is a risk to signal a change detection when there is none.

Equation 6 is an upper-bound for the false positive rate for a change detection task given a

detection threshold value λ when there is none. The amount of risk one is willing to take

for a detection to be a false alarm will determine the λ value to use.

2.4 Graph Representations and Embeddings

As describe earlier in section 2.2, an evolving graph is represented by a sequence of

static graph snapshots (Gk)1≤k≤n. Each graph snapshot is represented by a feature vector

(or matrix).

We define the conditional density of the graph feature of interest by

pθ (f (Gk)| f (Gk−1), . . . , f (G1))

such that f : G → F is a transformation for an input graph G at time instance k and re-

turning an output vector F (or a matrix, in general). Feature matrix f (Gk) ∈ R|V |×d are

extracted from a graph at time instance k such that V is the set of nodes for an evolving

graph and d is the feature dimension for each node. For this paper, we assume that |V | is

fixed over time.

For simplicity, we assume

pθ (f (Gk)| f (Gk−1), . . . , f (G1)) = pθ (f (G))

is the density function for some feature vector random variables.

The transformation f represents a great variety of feature extraction or embedding

methods. It could be as simple as degree centrality calculation, SVD (Singular value de-

composition), and spectral embedding. It can also be more computationally expensive

static graph embeddings such as Node2Vec [11] and GraphSAGE [12] or dynamic graph

9

embeddings [13].

Note that we do not explicitly model the graph feature distribution function for the

martingale approach, but we have utilized the well established graph embedding techniques

which are available at Networkx1 and Scikit Network2 libraries respectively

We briefly describe the seven graph features/embeddings and their graph properties

used in our empirical evaluation:

1. Degree Centrality:

Degree centrality is a fundamental measure of node importance in a network, based

on the number of connections (or edges) a node has. It quantifies the extent to which

a node interacts with other nodes in the network, making it a key indicator of a node’s

prominence or influence.

Mathematically, degree centrality Cd(v) of a node v in a network is calculated as the

ratio of the number of edges incident to node v to the total number of nodes in the

network:

Cd(v) =
degree of node v

n

where:

• degree of node v represents the number of edges incident to node v.

• n is the total number of nodes in the network.

Nodes with higher degree centrality are typically considered more central or influ-

ential, as they have a greater number of connections to other nodes. The number of

elements in this feature vector equals to the number of nodes in the graph.

1networkx, https://networkx.org/documentation/stable/reference/algorithms/index.html
2sknetwork, https://scikit-network.readthedocs.io/en/latest/reference/embedding.html

10

https://networkx.org/documentation/stable/reference/algorithms/index.html
https://scikit-network.readthedocs.io/en/latest/reference/embedding.html

2. Eigenvector Centrality:

Eigenvector centrality is a measure of node importance in a network that takes into

account both the number of connections a node has and the importance of those

connections. Nodes with high eigenvector centrality are not only connected to many

other nodes but are also connected to nodes that themselves have high centrality.

Mathematically, the eigenvector centrality Ce(v) of a node v in a network is calculated

as the eigenvector corresponding to the largest eigenvalue of the adjacency matrix of

the network:

Ax = λx

where:

• A is the adjacency matrix of the network.

• x is the eigenvector corresponding to the largest eigenvalue λ .

The elements of the eigenvector x represent the eigenvector centrality values of the

nodes in the network. Nodes with higher eigenvector centrality values are considered

more central or influential in the network.

3. Betweenness Centrality:

Betweenness centrality is a measure of a node’s importance in a graph based on the

number of shortest paths that pass through it. Nodes with high betweenness centrality

act as bridges or connectors between different parts of the graph, facilitating the flow

of information or resources. It quantifies the influence of a node in controlling the

flow of information or resources between other nodes in the graph. It is particularly

useful for identifying key nodes that play crucial roles in maintaining connectivity or

facilitating communication within the network.

11

The betweenness centrality CB(v) of a node v is calculated as the fraction of shortest

paths between all pairs of nodes that pass through v. Mathematically, it is defined as:

CB(v) = ∑
s ̸=v̸=t

σst(v)
σst

where:

• σst is the total number of shortest paths from node s to node t.

• σst(v) is the number of those shortest paths that pass through node v.

To calculate betweenness centrality for each node in the graph:

(a) Compute all shortest paths between every pair of nodes in the graph using Di-

jkstra’s algorithm [14];

(b) For each node v, count the number of shortest paths that pass through it while

iterating over all pairs of nodes.

(c) Calculate the betweenness centrality of node v using the above formula.

Betweenness centrality provides valuable insights into the structural importance of

nodes in a graph. Nodes with high betweenness centrality serve as crucial intermedi-

aries or bottlenecks in the network, influencing the flow of information or resources.

4. Singular value decomposition (SVD) of the adjacency matrix:

Singular Value Decomposition (SVD) is a matrix factorization technique that de-

composes a matrix into three constituent matrices: U, D, and VT . This technique is

widely used for dimensionality reduction and feature extraction tasks.

In the context of graph embedding, SVD is used to project the nodes of a graph onto

a lower-dimensional space while preserving the structural information of the graph.

This allows for the extraction of meaningful representations of nodes in a lower-

12

dimensional space, facilitating downstream machine learning tasks such as clustering

or classification.

Given an adjacency matrix A representing the connectivity structure of a graph, SVD

decomposes it as follows:

A = UDVT

where:

• U is an orthogonal matrix containing the left singular vectors.

• D is a diagonal matrix containing the singular values.

• VT is the transpose of an orthogonal matrix containing the right singular vec-

tors.

The SVD embedding process involves the following steps:

(a) Factorization: Compute the SVD of the adjacency matrix A to obtain the ma-

trices U, D, and VT .

(b) Dimensionality Reduction: Retain only the top k singular values and their

corresponding singular vectors to reduce the dimensionality of the embedding

space.

(c) Embedding: Project the nodes of the graph onto the lower-dimensional space

spanned by the selected singular vectors.

The resulting embedding matrix contains the low-dimensional representations of the

nodes in the graph, with each row representing the embedding of a node.

5. Spectral Embedding:

Spectral embedding provides a powerful framework for capturing the structural prop-

erties of a graph in a low-dimensional space. By exploiting the spectral properties of

the Laplacian matrix.

13

In spectral embedding, the Laplacian matrix of a graph is utilized to extract informa-

tive features that capture the graph’s topology. The Laplacian matrix encapsulates

the pairwise relationships between nodes in the graph, making it a suitable basis for

spectral embedding. By computing the eigenvectors corresponding to the smallest

eigenvalues of the Laplacian matrix, spectral embedding captures the intrinsic struc-

ture of the graph in a low-dimensional space.

Given an adjacency matrix A, the Laplacian matrix L is defined as:

L = D−A

where:

• D is the degree matrix.

The Laplacian matrix L is then decomposed into its eigenvectors U and eigenvalues

λ1,λ2, . . . ,λn, where n is the number of nodes in the graph.

Spectral embedding is performed by selecting the k eigenvectors corresponding to

the smallest eigenvalues to form the embedding matrix X. Each row of X represents

the low-dimensional embedding of a node in the graph.

The spectral embedding process involves the following steps:

(a) Compute the Laplacian matrix L = D−A of the graph.

(b) Decompose the Laplacian matrix L to obtain its eigenvectors U and eigenvalues

λ1,λ2, . . . ,λn.

(c) Select the k eigenvectors corresponding to the smallest eigenvalues to form the

embedding matrix X.

(d) Each row of X represents the low-dimensional embedding of a node in the

graph.

14

6. Singular Values of Laplacian Matrix (LSVD) :

Singular Value Decomposition on Laplacian Matrix (LSVD) embedding is a graph

factorization technique specifically tailored for dimensionality reduction. It leverages

the spectral properties of the Laplacian matrix of a graph to embed nodes into a lower-

dimensional space. In LSVD, the singular values of the Laplacian matrix are utilized

as the embedding vectors as proposed in Laplacian Anomaly Detection (LAD) [15].

The LSVD embedding process involves the following steps:

(a) Laplacian : Compute the Laplacian matrix L = D−A of the graph as given in

item 5

(b) Singular value decomposition :Perform SVD on the Laplacian matrix L to

decompose it into three matrices:U, D and V using L = UDVT as given in

item 4

(c) Embedding : The diagonal elements of the diagonal matrix D are extracted to

form the resulting embedding vector

7. Node2Vec [11]:

Node2Vec is a technique for generating embeddings for nodes in a graph by lever-

aging concepts from word embedding models like word2vec and adapting them

for graph-based data. It learns continuous feature representations (embeddings) for

nodes in a graph by optimizing a neighborhood-preserving objective.

The node2vec embedding process involves the following steps:

(a) Random Walks : Given a source node u, Node2Vec simulates a random walk

of fixed length l, where each step in the walk is determined by sampling the

next node based on transition probabilities. Formally, let ci denote the ith node

in the walk, starting with c0 = u. The transition probabilities P(ci = x|ci−1 = v)

are defined as follows:

15

P(ci = x|ci−1 = v) =

πvx
Z if (v,x) ∈ E

0 otherwise

where πvx represents the unnormalized transition probability between nodes v

and x, and Z is the normalizing constant.

(b) Search Bias α :To bias the random walks and guide the exploration process,

Node2Vec introduces two parameters p and q. These parameters control how

fast the walk explores and leaves the neighborhood of the starting node u.

• Return Parameter p: Controls the likelihood of immediately revisiting a

node in the walk. Setting p to a high value encourages moderate explo-

ration and avoids 2-hop redundancy in sampling. Conversely, a low value

of p leads the walk to backtrack a step, keeping it “local” close to the start-

ing node u.

• In-Out Parameter q: Allows the search to differentiate between “inward”

and “outward” nodes. A value of q> 1 biases the walk towards nodes close

to the previous node, resembling breadth-first search characteristics. In

contrast, q < 1 encourages outward exploration, akin to depth-first-search

characteristics.

The unnormalized transition probability πvx is further modified by the search

bias αpq(t,x), defined as:

αpq(t,x) =

1
p if dtx = 0

1 if dtx = 1

1
q if dtx = 2

where dtx denotes the shortest path distance between nodes t and x. This search

bias guides the random walk based on the distance from the previous node.

16

(c) Embedding : After performing biased random walks and generating node se-

quences, Node2Vec employs techniques such as Word2Vec to learn embeddings

for each node in the graph. These embeddings capture the structural similarities

between nodes based on their neighborhood relationships.

The resulting graph embedding matrix or vector provides a compact represen-

tation of the entire graph, where each node is represented as a low-dimensional

feature vector. These embeddings preserve important graph properties and can

be used for various downstream tasks such as node classification, link predic-

tion, and graph visualization.

17

Chapter 3

Literature Review

3.1 Change Detection in Univariate Time Series

Sequential Probability Ratio Test (SPRT) [16] was proposed to effectively monitor

and make decisions about aircraft performance and reliability during flight tests at the time

of World War II. The SPRT provided a systematic way to balance the trade-offs between

the risks of making incorrect decisions (e.g., false positives or false negatives) and the costs

associated with collecting additional data.

Cumulative Sum (CUSUM) control chart [17] aimed to improve the detection of

shifts or changes in a process mean. Instead of focusing on individual data points, the

CUSUM chart accumulates the deviations of each data point from a target value over time.

This cumulative approach allows for the detection of small, incremental shifts in the process

mean that may not be easily detected using traditional control charts. CUSUM charts are

widely used in quality control and process monitoring to quickly detect changes in a process

and take corrective action if necessary.

3.2 Change Detection in Dynamic Network

Previous proposed approaches on network change detection problem focused on

converting the sequence of network instances into univariate time series and employing

conventional statistical control techniques for analysis [18, 19].

One of the first online probabilistic learning approach for network change detection

was proposed by Peel et al. [20]. By combining a generalized hierarchical random graph

(GHRG) model with Bayesian hypothesis testing, their approach involves inferring a struc-

tural “norm” for interactions across a sequence of graphs and accurately detecting shifts in

18

this norm over time. The method involves selecting a probability distribution family and a

window size, inferring two models representing change and no-change scenarios within the

window, and conducting a statistical test to determine the better fit model. Later, De Ridder

et al. [21] incorporated implementation of Stochastic Block Model (SBMs) and Bhamidi

et al. [22] implemented preferential attachment model alongside GHRG to improve the

detection performance.

Huang et al. [15] propose Laplacian Anomaly Detection (LAD), and later, Multi-

LAD [23] utilizing Laplacian matrix spectrum for low-dimensional embeddings. LAD

explicitly models short and long-term dependencies using two sliding windows. Their

method of low dimensional representation of the graph snapshot is implemented in one of

our graph features/ embeddings. MultiLAD is introduced as a simple extension of Lapla-

cian Anomaly Detection (LAD) to multi-view graphs.

Aggarwal et al. [24] addresses the problem of differential classification in graph

streams, focusing on predicting significant classification events, such as changes in node

labels, which may indicate important events or patterns of activity. Unlike static collec-

tive classification, this approach emphasizes dynamic and real-time detection of changes in

node classification rather than the actual classification of nodes. Constant-curvature Rie-

mannian manifolds (CCMs) [25] provide a non-Euclidean embedding space for graphs.

The method uses neural networks and adversarial learning to compute graph embeddings

on CCMs and introduces two novel change detection tests operating within this framework,

results show this method surpassing approaches based on traditional Eucledian embed-

dings. DeltaCon [26] handled the graph change detection problem as a lack of similarity

based on node/edge characteristics between two graphs. DeltaCon derives features from

each snapshot of a dynamic network based on sociological theories and calculates feature

similarity between consecutive snapshot pairs. Wang et al. [27] proposed a method using

a dissimilarity scoring function, and a threshold to detect events or changes in the evolving

graph when the dissimilarity of two consecutive snapshots is above the threshold in the

19

latent space. Similar to [28] but considered temporal dependencies of snapshots.

3.3 Other Relevant Recent Work

One recent work on detecting anomalous crowd behaviors in videos involved using

graph networks [29]. By representing individuals as nodes and their movements as edges

in an evolving graph, and utilized max-flow/min-cut optimization which made suitable for

real-time video surveillance applications. Utilization of Siamese graph neural network for

change-point detection by similarity scores of current graph snapshot and comparing with

the recent history was proposed by Sulem et al. [30]. Multi-View Feature Interpretable

Change Point Detection (MICPD) [2] employed a vector auto regressive (VAR) model to

encode high-dimensional network data into a low-dimensional representation and identify

multiple change points by tracking the evolution of multiple targets and their interactions

over time.

In recent years, there is a growing interest in the development of explanability and

interpretability capabilities for concept drift and change detection in a dynamic environ-

ment which the data is streaming [31, 32]. This is an important task for some real-world

applications such as manufacturing process [33]. Existing work related to explanability

issues for graph-related tasks include the ability to explained learned time-evolving graph

embeddings [34], reasoning link prediction on temporal knowledge graph [35] and (mostly)

predictions using graph neural network [36, 37, 38]. To the best of our knowledge, there

is no existing work on explainable global change detection approach to monitor evolving

graphs.

20

Chapter 4

Proposed Methodology

4.1 Overview

Figure 4 shows an overview of the process of using a martingale-based change point

detection approach for an evolving graph. Features are extracted from a graph snapshots

over time. The extracted features are used to compute the set S of non-conformality scores

(different values at different time instance t), p-values and then martingale values at time

instance t. Decision to declare a change detected is based on the threshold value λ . When

a change is declared, the process is reset (i.e., martingale value is reset to one at the next

time instance).

Figure 4

Overview of Evolving Graph Change Detection Using Martingale Over Time

21

Algorithm 1 Martingale value computation at time step t
Input: Graph Gt

1: vt = f (Gt).
2: Compute conformal scores for (Gk)1≤k≤t−1 and Gt using vi, i = 1 ≤ j ≤ t based on

(Equation 3)
3: Compute the p-value pt using conformal scores based on (Equation 4);
4: Compute M(t) using (Equation 2) with all previously computed pi, i = 1 ≤ j ≤ t −1

and pt ;
5: if M(t)≥ λ then
6: Change Detected;
7: Alert user of Change Point;
8: Break (from the test process);
9: else

10: Normal (continue the test process)
11: end if

4.2 Martingale-based Change Detection Procedure for Evolving Graph

Algorithm 1 shows step-by-step the computation of martingale value for a snapshot

of the evolving graph Gt at time instance t. Line 1 extracts the feature of interest using f

on Gt . f is one of the feature extraction methods described in section 2.4. Line 2 computes

the conformal scores for all the graph snapshots observed so far using Equation 3. Line

3 computes the p-value pt using Equation 4 with the conformal scores computed in Line

2. Line 4 computes the martingale value at time t using all previously computed p-values

using Equation 2. If the martingale value is greater than a pre-defined threshold λ , the test

signals a change detection, alert the user, and stop (or reset) the change detection process.

If not, the process will continue to monitor the evolving graph.

4.3 Feature-based Explanation for Detected Change in Evolving Graph using Mul-

tiple Graph Features

Figure 10 shows an example of the martingale values of an evolving graph with

structural changes occurring at t=100, 200, and 300 for an evolving graph generated using

the Barabási–Albert model (see chapter 5 for dataset generation description). The mar-

22

Figure 5

Monitoring Evolving Graph Feature Distributions Change for Multiple Features Over
Time.

tingale value is reset when it is greater than λ = 20. One observes from the figure that

martingale-based change detection using the degree centrality vector, SVD embedding,

and LSVD representations are able to detect all 3 change-points. The martingale method is

unable to detect the structural change in the evolving graph using spectral embedding and

Node2Vec features.

We observe that the five graph features exhibit different time-varying distribution

characteristics in the evolving graph. Moreover, there exist some features whose distribu-

tions do not show a change or shift even when a structural change occurs. These features do

not contain useful information about the particular structural change. Hence, by monitoring

the martingale values for different features, one can provide explanation on what type of

feature distribution change occurs as a structural change occurs. It provides feature-based

explanation on why the change occurs at a particular time instance in the evolving graph.

23

Chapter 5

Experimental Results

5.1 Synthetic Graph Generation

We briefly describe four types of evolving graph of different characteristics used to

validate the proposed martingale approach:

1. Erdos-Renyi Graph: The Erdős-Rényi (ER) random graph model, developed by

Paul Erdős and Alfréd Rényi [39], is a foundational concept in random graph theory.

It describes a range of random graphs where nodes are linked by edges based on a

specified probability. There are two main types of ER models: G(n, p) and G(n,m),

where n represents the number of nodes, p is the probability of an edge between any

pair of nodes (for G(n, p)), and m is the total number of edges (for G(n,m)). Figure 6

shows an example of Erdős-Rényi type evolving graph with change in p from 0.2 to

X at t = 100.

(a) Edge Formation:

• For the G(n, p) model, edges are created independently between pairs of

nodes with a fixed probability p.

• For the G(n,m) model, a set number of m edges are randomly added to the

graph.

(b) Degree Distribution:

• The degree distribution of an Erdős-Rényi graph follows a binomial distri-

bution as the number of nodes approaches infinity.

• The distribution of degrees is typically centered around the expected de-

gree, and most nodes have a degree close to this expected value.

24

Figure 6

Example of an Erdős-Rényi Type Evolving Graph with Change in p from 0.2 to 0.4 at
t = 100.

(c) Phase Transition:

• For the G(n, p) model, there exists a critical value of p (referred to as pc)

where, when p is below pc, the graph is usually made up of isolated com-

ponents. However, when p surpasses pc, a large connected component

emerges that includes a significant portion of the nodes.

• This phenomenon, known as a phase transition, occurs as the graph shifts

abruptly from a disconnected state to a connected state as p increases be-

yond the critical value pc.

2. Barabasi-Albert Graph: The Barabási-Albert (BA) model is a network growth

model introduced by Albert-László Barabási and Réka Albert [40]. It’s used to create

scale-free networks, which have a unique structure where a small number of nodes

25

have many connections while most nodes have only a few connections. Here’s how

the BA model works:

(a) Edge Formation:

• When a new node is added, it connects to existing nodes in the network

based on their degree, or the number of connections they already have.

• Nodes with higher degrees are more likely to receive new connections from

the newly added node. This is known as the preferential attachment mech-

anism.

• The probability of connecting to an existing node v is proportional to its

degree kv. Mathematically, the probability Π(v) of connecting to node v is

given by:

Π(v) =
kv

∑u ku

where kv is the degree of node v, and the sum is taken over all existing

nodes in the network.

(b) Degree Distribution:

• The resulting network from the BA model exhibits a scale-free degree dis-

tribution, meaning that the distribution of node degrees follows a power-

law distribution.

• This means that while most nodes have only a few connections, there are

a small number of nodes, known as hubs, that have a disproportionately

large number of connections.

(c) Graph Representations:

• The BA model can be represented by the notation G(n,m), where:

– n represents the total number of nodes in the network.

26

– m represents the number of hubs (high degree nodes) given at the time

of creation. m is typically a fixed number.

(d) Network Evolution:

• As more nodes are added to the network over time, the network structure

evolves dynamically, with new nodes preferentially connecting to existing

high-degree nodes.

• This continuous growth process leads to the formation of hubs and the

emergence of the scale-free property in the network.

Figure 7 shows an example of a Barabasi-Albert type evolving graph with

change in m from 1 to 2 at t = 100. Figure 8 shows the changes in the fea-

ture vector of the centroid of a generated Barabasi Albert-type evolving graph

over time with change point at t = 101 in the 2D SVD graph feature space.

27

Figure 7

Example of a Barabási-Albert Type Evolving Graph with Change in m from 1 to 2 at t = 100

3. Spectral Graph Forge (SGF) [41]: The Spectral Graph Forge (SGF) graph genera-

tor is an algorithm designed to create random graphs G(Gi,α) that mimic the global

properties of a given input graph Gi. It leverages concepts from spectral graph theory,

particularly focusing on the eigenstructure of the graph’s adjacency matrix.

(a) Eigenvector Computation:

• First, SGF computes the eigenvectors of the adjacency matrix of the input

graph.

• These eigenvectors represent the structural properties of the graph, captur-

ing its connectivity patterns.

Note: The scale free topology graph is given as the input graph, replicating

a social network or citation network

28

Figure 8

Graph Snapshot Centroids of the Barabási-Albert Evolving Graph in Figure 7 as 2D SVD
Graph Feature Vectors from t = 1 to 200 with Change Point at t = 101

(b) Filtering:

• Next, SGF applies a filtering process to these eigenvectors. This filtering is

based on a parameter called α , which controls the level of detail preserved

in the eigenvectors.

• It is akin to a low-pass filtering operation, allowing SGF to selectively

retain relevant structural information.

(c) Low-Rank Approximation:

• SGF then approximates the filtered eigenvectors using a low-rank matrix

approximation technique.

• This step helps in reducing the computational complexity and memory re-

29

quirements while still capturing essential graph properties.

(d) Random Graph Construction:

• The filtered and truncated eigenvector values obtained from the low-rank

approximation are utilized as inputs for Bernoulli sampling.

• This sampling process constructs a random adjacency matrix for the output

graph. By sampling based on the filtered eigenvectors, SGF ensures that

the generated graph maintains similar structural characteristics to the input

graph.

(e) Preservation of Properties:

• SGF preserves the number of nodes and their ordering from the input

graph.

• This ensures that the resulting graph closely resembles the properties of

the input one, allowing for direct mapping of attributes and retaining the

essential structural features.

(f) Optional Transformations:

• Additionally, SGF offers options to transform the graph adjacency matri-

ces into other symmetric real matrices, such as identity or modularity ma-

trices. These transformations allow users to focus on specific properties of

interest, such as community structure, by altering the underlying structural

representation of the graph.

4. Random Internet Autonomous System Graph: The Internet Autonomous System

(AS) graph is an undirected graph that emulates the structure of real-world Inter-

net AS network. Elmokashfi et al. [42] developed a graph generation model that

combines network growth mechanisms and preferential attachment principles for the

Internet AS graph.

30

(a) Initial Graph Construction:

• The algorithm G(n) starts by constructing an initial graph structure that

represents the topology of an Internet AS network. This initial graph can

be generated randomly or based on existing network data. n is the number

of graph nodes [100,1000]

(b) Network Evolution:

• The initial graph is then evolved using growth mechanisms inspired by real

Internet AS networks. This involves iteratively adding nodes and edges

while maintaining specific structural properties.

(c) Preferential Attachment:

• New nodes added during the evolution process preferentially connect to

existing nodes in the graph based on their degree (number of connections).

This emulates the tendency of AS networks to form connections with well-

connected ASes.

(d) Scale-Free Degree Distribution:

• The resulting graph exhibits a scale-free degree distribution, where a small

number of nodes (hubs) have many connections, while most nodes have

only a few connections. This distribution closely mirrors the connectivity

patterns observed in real Internet AS networks.

(e) Validation:

• The generated graph is validated against real-world network data to en-

sure that it accurately captures key structural properties of Internet AS net-

works, such as node degree distributions and network diameter.

5. Newmann Watt Strogatz: The Newman-Watts-Strogatz (NWS) graph generator,

often referred to as the Newman-Watts model, is an extension of the classical Watts-

Strogatz (WS) small-world network model introduced by Newman and Watts [43].

31

The NWS model aims to create synthetic networks G(n,k, p) that exhibit both lo-

cal clustering and short average path lengths, characteristic of small-world networks

observed in various real-world systems.

(a) Ring Construction:

• The algorithm begins by constructing a ring lattice over n nodes, forming

an ”n-ring” structure. Each node in the ring is initially connected to its k

nearest neighbors, ensuring high local clustering.

(b) Shortcuts Addition:

• Shortcuts are introduced to the ring lattice by adding new edges with a

certain probability p.

• For each edge (u,v) in the underlying n-ring with k nearest neighbors, a

new edge (u,w) is added with a probability p, where w is a randomly cho-

sen existing node in the network.

(c) No Edge Removal:

• Unlike some variations of the Watts-Strogatz model, where existing edges

may be rewired or removed during the shortcut addition process, the Newman-

Watts-Strogatz model does not involve the removal of existing edges. In-

stead, only new edges are added as shortcuts.

(d) Transition from Regular to Random Network:

• Similar to the original Watts-Strogatz model, the Newman-Watts-Strogatz

model exhibits a transition from a regular lattice structure to a more random

network structure as the probability p of adding shortcuts increases.

• At low values of p, the network retains its regular lattice characteristics

with high local clustering.

• As p increases, the network becomes increasingly random, resulting in

32

shorter average path lengths while preserving a certain level of local clus-

tering.

5.2 Evaluation Measures

1. False Positive Rate (FPR)

False Positive occurs when the system incorrectly classifies a normal instance as an

anomaly or change point. FPR is the ratio of false positives to the total number of

actual negatives (normal instances). Mathematically, FPR can be expressed as:

FPR =
False Positives

False Positives+True Negatives

FPR is a crucial metric for evaluating the performance of an anomaly detection or

change point detection model. A high FPR indicates that the model is incorrectly

flagging normal instances as anomalous or signaling a change, which can be prob-

lematic for the reliability and usability of the system.

2. Precision:

Precision is the ratio of true positives to the sum of true positives and false positives.

It represents the proportion of instances identified as positive (anomalies or change

points) that are truly positive. Mathematically, precision can be expressed as:

Precision =
True Positives

True Positives+False Positives

Precision is a measure of accuracy that specifically looks at how well the system

performs when it claims an instance is positive. It helps answer the question: Of

all the instances the system labeled as anomalies or change points, how many were

actually anomalies or change points?

33

In applications where the cost or consequences of false positives are high, precision

becomes crucial. A high precision value indicates that the system is adept at mini-

mizing the occurrence of false positives, meaning that when it flags an anomaly or

change point, it is likely to be accurate.

3. Recall: Recall or Sensitivity is the ratio of true positives to the sum of true positives

and false negatives. It represents the proportion of actual anomalies or change points

that the system successfully identifies. Mathematically, recall can be expressed as:

Recall =
True Positives

True Positives+False Negatives

Recall is focused on ensuring that the system doesn’t miss actual anomalies or change

points. It answers the question: Of all the actual anomalies or change points, how

many did the system correctly identify?

Recall is often considered alongside precision when tuning a model. There is typi-

cally a trade-off between precision and recall—if you optimize for high recall, you

may experience a decrease in precision, and vice versa.

4. F1 Score: The F1 score provides a balance between precision and recall. It considers

both false positives (precision) and false negatives (recall) and aims to find a middle

ground between these two metrics. Mathematically, the F1 score is calculated as:

F1 = 2× Precision×Recall
Precision+Recall

For applications where the cost of false positives and false negatives is significant,

achieving a high F1 score is desirable. This is especially true in domains such as

healthcare, finance, or safety-critical systems, where maintaining a balance between

precision and recall is crucial.

34

5. Mean Delay Time: The delay time for a detected change point can be defined as the

difference in time instances from the start of the change to the time instance when it

is detected and within t ′ time instances. If the change point cannot be detected within

t ′ time instances, it is a missed detection or false negative.

Mean delay time is a metric that can be relevant in the context of anomaly detection

or change point detection, especially when assessing the timeliness of the detection.

It provides insights into the average time it takes for the system to recognize and

signal the occurrence of an anomaly or change point after it actually happens. Math-

ematically, mean delay time can be calculated as:

Mean Delay Time =
∑

n
i=1(Ti −Ai)

n

where Ti is the time at which the detection system signals the occurrence of the i-th

anomaly or change point, Ai is the actual time of occurrence of the i-th anomaly or

change point, and n is the total number of anomalies or change points.

5.3 Experimental Design

We performed extensive experiments by

1. varying the difficulty of the change detection task by the amount of change to the

key parameter values when change occurs. In particular, δ p is the parameter value

difference when change occurs for the evolving Erdos-Renyi graph. For example,

Figure 9 shows that p increases from 0.4 to 0.6. Hence, δ p = 0.2. For Barabasi-

Albert evolving graph, we use the notation δm for m, the number of hubs. For Erdős-

Rényi graph parameter δ p, we vary from 0.1 to 0.4. Since δ p corresponds to the

change magnitude and δ p = 0.05 does not registered any detection, our results start

with δ p = 0.075. For δm, we vary from 1 to 4.

35

2. comparing the performance of different graph features. We used the seven described

in section 2.4. For SVD embedding, spectral embedding, and node2vec, we use d =

2. For degree centrality vector, the number of elements corresponds to the number

of nodes in the graph. From Figure 10 and Figure 18, one observe that node2vec,

spectral embedding, and betweenness centrality did not perform well in our empirical

study (with majority of experiments showing high missed detection rate). Hence,

their results are not presented in section 5.4. As there are many results, we only

show the representative results for discussion purposes. All other results are found in

the Appendix.

3. varying λ to validate the false positive bound derived from Equation 6. We vary λ

from 5 to 20, corresponding to a false positive upper bound from 20% reducing to

5%.

We construct different types of evolving graph with |V | nodes as described in sec-

tion 5.1. For the first T1 time instances, we use a graph parameter p1. For the next T2 time

instances, the parameter is changed to p2. The change-point occurs at T1 + 1. An exper-

imental trial using an evolving graph with 30 nodes is shown in Figure 9. T1 = T2 = 100

with change-point at time instance 101. For each experiment with a set of specific feature

representation, graph type, and threshold value, we perform 20 trials to obtain precision,

recall, F1 measure, and mean delay time before detection.

5.4 Change Detection Empirical Results and Discussions

Figure 10 shows the martingale values of using the seven graph features described

in chapter 3 for change detection in an experimental trial on an Erdos-Renyi type evolving

graph. From the figure, we observe that not all features were able to detect the change

in structure but with varying delay time. By analysis the above figure, we can say that

Singular Value Decomposition (SVD), Degree Centrality, Laplacian SVD (LSVD), Eigen-

36

Figure 9

The Mean Values of Elements in Degree Centrality Feature Vector for |V | Nodes for a
Synthetic Evolving Graph Using the Erdos-Rényi Model with Change Point at t = 101.

vector centrality are the features which capture changing features in a Erdos-Renyi type

dynamic graph. Using SVD and LSVD features, one observes show decreasing spikes in

martingale values. However, Node2vec, Betweenness Centrality, and spectral embedding

were not able to capture the change points. From these observation, we suspect that the

feature representation which encodes a graph property (or characteristics) is critical in the

performance of the martingale test for change detection.

5.4.1 The Effect of Threshold λ on False Positive Rate

Figure 11 shows the false positive rates obtained for various thresholds for a Newman-

Watts-Strogatz type evolving graph. We observe a decreasing trend in false positive rates as

37

Figure 10

Monitoring the Martingale Values of the Seven Features of an Erdos-Rényi Type Evolving
Graph with Three Change Points

the λ value increases. Similar trend in false positive rates over different thresholds are also

noted in other evolving graph types employing different graph embedding techniques. Our

empirical results validates the false positive bound (Equation 5) for the martingale change

detection method. More results are available in the Appendix.

5.4.2 Performance Comparison

Figure 12 shows a multi-line plot on the precision of change detection values for

Newman-Watts-Strogatz type evolving graphs utilizing SVD embedding with varying de-

gree of structural change, △p, based on the parameter p in an experimental trial. The

higher △p indicates easier task as the structural change is more significant. Each curve

represents a different degree of structural change with different parameter △p. One notes

that the harder task with △p = 0.1 has the lowest precision across all λ values.

One also observes from Figure 12 that the precision increases with increase λ value.

This aligns with theoretical expectations, as reducing false positives should theoretically

lead to an increase in precision. The trend observed in precision further supports this theory,

indicating improved in precision performance measure as false positive rate is minimized.

38

Figure 11

False Positive Rate Against λ on Four Graph Features on a Newman-Watts-Strogatz Type
Evolving Graph

The analogous trend is evident across other evolving graph types and other feature types.

More results are found in the Appendix.

We have observed a consistent trend of increasing recall in Figure 13, indicating

that our model is adept at capturing change points within evolving graphs. The martingale

approach effectively captures a large proportion of the true change point instances among

all actual change point instances in an evolving graph. This pattern persists across different

type of evolving graphs and features. These findings suggest that our approach effectively

detects changes in the graph structure as they occur.

To illustrate that some features may not work well for change detection for specific

type of evolving graphs, we use the SVD feature on four different types of evolving graph as

39

Figure 12

Precision Against λ Using SVD Feature on Newman-Watts-Strogatz (NWS) Type Evolving
Graphs with Varying Degree of Structural Change.

shown in Figure 14. While we observe an increasing trend in recall across different types

of evolving graph, it is noteworthy that the recall for Barabasi-Albert and Erdos-Renyi

model graphs consistently remain above 0.90. On the other hand, the recall for Newman-

Watts-Strogatz and Barabasi-Albert-Internet-Graph are approximately half of those values.

From this empirical result, one concludes that one needs to select feature type carefully for

different applications to ensure good change detection performance.

We have noticed a consistent trend in F1 scores similar to that of precision and

recall. This observation in Figure 15 is expected, as the F1 score is the harmonic mean

of precision and recall, effectively balancing both metrics. In terms of the actual values,

we found that the F1 scores for change detection on Erdos-Renyi and Barabasi-Albert type

40

Figure 13

Recall Against λ Using LSVD Features on Erdos-Rényi Type Evolving Graph with Varying
Degree of Structural Change.

evolving graphs consistently exceeding when compared to F1 scores on Newman-Watts-

Strogatz and Barabasi-Albert Internet evolving graphs . These findings underscore the

significance of the feature extraction method in change detection, particularly in relation to

the type of applications.

The increasing trend in mean delay time with higher threshold values aligns with

the practical intuition that it takes longer time for the martingale value to reach the threshold

value λ . As the threshold for change detection rises, the model necessitates more data to

exceed this threshold and identify change-points. Consequently, higher thresholds lead to

more delays in change detection. This underscores the critical role of threshold selection

in change-point detection algorithm, as higher thresholds may result in delayed anomaly

41

Figure 14

Recall Against λ Threshold Using SVD Features on Different Types of Evolving Graphs.

detection which can be observed in Figure 16 and Figure 17.

5.5 Monitoring Real World Data and Change Explanations

5.5.1 MIT Social-Network Evolution Dataset Description

The dataset utilized in this study originates from the social evolution experiment

conducted by MIT1, designed to track everyday interactions within a closely-knit student

dormitory. This experiment furnished invaluable data for validating machine learning mod-

els against spatio-temporal patterns and behavior-network co-evolution.

The dataset comprises proximity data collected via a cell-phone application, which

1MIT Social Evolution Experiment, http://realitycommons.media.mit.edu/socialevolution2.html

42

http://realitycommons.media.mit.edu/socialevolution2.html

Figure 15

F1 Measure Against λ Using Degree Centrality Feature on Barabási-Albert Type Evolving
Graph.

periodically scans nearby Wi-Fi access points and Bluetooth devices at six-minute intervals.

This proximity data offers insights into the dynamic interactions and relationships among

individuals within the dormitory community.

Interactions among students were captured through their cell phones from October

2008 to May 2009, spanning a substantial temporal duration. The dormitory under scrutiny

encompassed approximately 80 members, including 30 freshmen, 20 sophomores, 10 ju-

niors, 10 seniors, and 10 graduate student tutors. These interactions are represented as

edges, with individuals serving as nodes, thereby forming an evolving graph over time—a

prime scenario for our test case.

43

Figure 16

Mean Delay Time Measure Against λ Using Eigenvector Centrality Feature on Internet
Autonomous Systems Type Evolving Graph.

5.5.2 Results and Discussions

We monitored the martingale values for each snapshot of the evolving graph and

observed spikes in the martingale values for different graph features as shown in Figure 18.

These spikes indicate change or abnormal points in time, where our change detection model

claims that a property of the graph has changed at specific time of the year. Upon analysis,

we found that many of these detected change points coincided with significant events in

the MIT academic calendar, such as federal holidays like Columbus Day, Thanksgiving,

New Year, Christmas, and summer break. Figure Figure 19 and Figure 20 shows the graph

structure before and after change detection over the Thanksgiving day period and the New

Year day period, respectively.

44

Figure 17

Mean Delay Time Measure Against λ Using SVD Feature on All Types of Evolving Graphs.

Figure 18

Monitoring Martingale Values Over Time for the MIT Social Evolution Experiment Dataset

However, there were instances where spikes occurred that could not be directly

explained by the academic calendar alone. Despite this, we still posit that some of these

45

spikes represent genuine change points, albeit unrecorded in the calendar. This assertion is

supported by the exceptional performance of certain feature embeddings, such as SVD and

Degree centrality, with synthetic data, which correctly identified change points.

It is noteworthy that the Node2Vec embedding, which exhibited poor performance

with synthetic data, successfully detected two change points—Columbus Day and Veterans

Day—highlighting the influence of graph type on embedding behavior.

Regarding the unexplained change points, it is possible that some of them are false

positives. However, further analysis is needed, and additional event or calendar data may

help elucidate these occurrences. Failure to explain these change points may result in them

being classified as false positives.

46

Figure 19

Visualization of the Graph Structure Around Thanksgiving Day for the MIT Social Evolu-
tion Experiment Dataset.

47

Figure 20

Visualization of the Graph Structure Around the New Year Day for the MIT Social Evolution
Experiment Dataset.

48

Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this thesis, we describe a martingale change-point detection approach for evolv-

ing graph by monitoring the martingale values derived from multiple graph features. We

demonstrate empirically that the feature representation that encodes a graph property (or

characteristics) is critical in the performance of the martingale test in detecting the change-

point using synthetic evolving graphs created from four graph (random topology, scale-free,

small-world network) generators and a real-world social-network dataset.

With the continuous growth of graph data and the increasing complexity of real-

world networks, there are numerous avenues for future research and development. As the

size and complexity of graph datasets continue to increase, scalability becomes a critical

consideration. Future research should focus on developing algorithms and computational

techniques that can efficiently process large-scale graph data without compromising accu-

racy or performance.

6.2 Future Work

We plan to conduct comparative studies with recently proposed approaches for

change-point detection in evolving graphs. By benchmarking against state-of-the-art meth-

ods, we aim to identify strengths, weaknesses, and potential areas for improvement in ex-

isting techniques. We intend to extend our work by incorporating additional graph features

beyond those considered in this study. There is immense potential for applying change-

point detection techniques to a wide range of real-world applications. Future research

should explore the practical applications of change-point detection in various domains.

49

We plan to develop graph generating algorithm that creates large size graph with varying

number of nodes over time. An interesting avenue for future research involves developing

predictive models to reduce delay time in detection.

50

References

[1] M. Yoon, B. Hooi, K. Shin, and C. Faloutsos, “Fast and accurate anomaly detection
in dynamic graphs with a two-pronged approach,” in Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining, 2019,
pp. 647–657.

[2] Y. Xie, W. Wang, M. Shao, T. Li, and Y. Yu, “Multi-view change point detection in
dynamic networks,” Information Sciences, vol. 629, pp. 344–357, 2023.

[3] S. Roberts, “Control chart tests based on geometric moving averages,” Technomet-
rics, vol. 42, no. 1, pp. 97–101, 2000.

[4] D. Eswaran, C. Faloutsos, S. Guha, and N. Mishra, “Spotlight: Detecting anoma-
lies in streaming graphs,” in Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, 2018, pp. 1378–1386.

[5] S.-S. Ho and T. T. Kairamkonda, Change point detection in evolving graph using
martingale, 2024.

[6] M. Basseville, I. V. Nikiforov, et al., Detection of abrupt changes: theory and appli-
cation. prentice Hall Englewood Cliffs, 1993, vol. 104.

[7] S.-S. Ho, “A martingale framework for concept change detection in time-varying
data streams,” in Proceedings of the 22nd international conference on Machine
learning, 2005, pp. 321–327.

[8] S.-S. Ho and H. Wechsler, “A martingale framework for detecting changes in data
streams by testing exchangeability,” IEEE transactions on pattern analysis and ma-
chine intelligence, vol. 32, no. 12, pp. 2113–2127, 2010.

[9] V. Vovk, I. Nouretdinov, and A. Gammerman, “Testing exchangeability on-line,”
in Proceedings of the 20th International Conference on Machine Learning, 2003,
pp. 768–775.

[10] V. Vovk, A. Gammerman, and G. Shafer, Algorithmic Learning in a Random World.
Berlin, Heidelberg: Springer-Verlag, 2005, ISBN: 0387001522.

[11] A. Grover and J. Leskovec, “Node2vec: Scalable feature learning for networks,”
in Proceedings of the 22nd ACM SIGKDD international conference on Knowledge
discovery and data mining, 2016, pp. 855–864.

[12] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation learning on large
graphs,” Advances in neural information processing systems, vol. 30, 2017.

51

[13] C. D. Barros, M. R. Mendonça, A. B. Vieira, and A. Ziviani, “A survey on embed-
ding dynamic graphs,” ACM Computing Surveys (CSUR), vol. 55, no. 1, pp. 1–37,
2021.

[14] E. W. Dijkstra, “A note on two problems in connexion with graphs,” Numerische
mathematik, vol. 1, no. 1, pp. 269–271, 1959.

[15] S. Huang, Y. Hitti, G. Rabusseau, and R. Rabbany, “Laplacian change point detec-
tion for dynamic graphs,” in Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, 2020, pp. 349–358.

[16] A. Wald, “Sequential analysis,” john wiley & sons, New York, NY, 1947.

[17] E. Page, “Cumulative sum charts,” Technometrics, vol. 3, no. 1, pp. 1–9, 1961.

[18] C. E. Priebe, J. M. Conroy, D. J. Marchette, and Y. Park, “Scan statistics on enron
graphs,” Computational & Mathematical Organization Theory, vol. 11, pp. 229–
247, 2005.

[19] I. McCulloh and K. M. Carley, “Detecting change in longitudinal social networks,”
Journal of social structure, vol. 12, no. 1, pp. 1–37, 2011.

[20] L. Peel and A. Clauset, “Detecting change points in the large-scale structure of evolv-
ing networks,” in Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 29, 2015.

[21] S. De Ridder, B. Vandermarliere, and J. Ryckebusch, “Detection and localization of
change points in temporal networks with the aid of stochastic block models,” Jour-
nal of Statistical Mechanics: Theory and Experiment, vol. 2016, no. 11, p. 113 302,
2016.

[22] S. Bhamidi, J. Jin, and A. Nobel, “Change point detection in network models: Pref-
erential attachment and long range dependence,” The Annals of Applied Probability,
vol. 28, no. 1, pp. 35–78, 2018.

[23] S. Huang, S. Coulombe, Y. Hitti, R. Rabbany, and G. Rabusseau, “Laplacian change
point detection for single and multi-view dynamic graphs,” ACM Transactions on
Knowledge Discovery from Data, vol. 18, no. 3, pp. 1–32, 2024.

[24] C. C. Aggarwal, Y. Li, and P. S. Yu, “On supervised change detection in graph
streams,” in Proceedings of the 2020 SIAM International Conference on Data Min-
ing, SIAM, 2020, pp. 289–297.

52

[25] D. Grattarola, D. Zambon, L. Livi, and C. Alippi, “Change detection in graph streams
by learning graph embeddings on constant-curvature manifolds,” IEEE Transactions
on neural networks and learning systems, vol. 31, no. 6, pp. 1856–1869, 2019.

[26] D. Koutra, N. Shah, J. T. Vogelstein, B. Gallagher, and C. Faloutsos, “Deltacon:
Principled massive-graph similarity function with attribution,” ACM Transactions
on Knowledge Discovery from Data (TKDD), vol. 10, no. 3, pp. 1–43, 2016.

[27] Y. Wang, A. Chakrabarti, D. Sivakoff, and S. Parthasarathy, “Fast change point de-
tection on dynamic social networks,” arXiv preprint arXiv:1705.07325, 2017.

[28] R. S. Caceres and T. Berger-Wolf, “Temporal scale of dynamic networks,” in Tem-
poral networks, Springer, 2013, pp. 65–94.

[29] M. Yang, Y. Feng, A. S. Rao, S. Rajasegarar, S. Tian, and Z. Zhou, “Evolving graph-
based video crowd anomaly detection,” The Visual Computer, vol. 40, no. 1, pp. 303–
318, 2024.

[30] D. Sulem, H. Kenlay, M. Cucuringu, and X. Dong, “Graph similarity learning for
change-point detection in dynamic networks,” arXiv preprint arXiv:2203.15470, 2022.

[31] J. Haug, A. Braun, S. Zürn, and G. Kasneci, “Change detection for local explainabil-
ity in evolving data streams,” in Proceedings of the 31st ACM International Confer-
ence on Information & Knowledge Management, 2022, pp. 706–716.

[32] F. Fumagalli, M. Muschalik, E. Hüllermeier, and B. Hammer, “Incremental permu-
tation feature importance (ipfi): Towards online explanations on data streams,” Ma-
chine Learning, vol. 112, no. 12, pp. 4863–4903, 2023.

[33] H. Choi, D. Kim, J. Kim, J. Kim, and P. Kang, “Explainable anomaly detection
framework for predictive maintenance in manufacturing systems,” Applied Soft Com-
puting, vol. 125, p. 109 147, 2022.

[34] Z. Liu, D. Zhou, and J. He, “Towards explainable representation of time-evolving
graphs via spatial-temporal graph attention networks,” in Proceedings of the 28th
ACM international conference on information and knowledge management, 2019,
pp. 2137–2140.

[35] Z. Han, P. Chen, Y. Ma, and V. Tresp, “Explainable subgraph reasoning for fore-
casting on temporal knowledge graphs,” in International Conference on Learning
Representations, 2020.

[36] P. E. Pope, S. Kolouri, M. Rostami, C. E. Martin, and H. Hoffmann, “Explainability
methods for graph convolutional neural networks,” in Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, 2019, pp. 10 772–10 781.

53

[37] D. Luo et al., “Parameterized explainer for graph neural network,” Advances in neu-
ral information processing systems, vol. 33, pp. 19 620–19 631, 2020.

[38] J. Tang, L. Xia, and C. Huang, “Explainable spatio-temporal graph neural networks,”
in Proceedings of the 32nd ACM International Conference on Information and Knowl-
edge Management, 2023, pp. 2432–2441.

[39] P. Erdős, A. Rényi, et al., “On the evolution of random graphs,” Publ. math. inst.
hung. acad. sci, vol. 5, no. 1, pp. 17–60, 1960.

[40] A.-L. Barabási and R. Albert, “Emergence of scaling in random networks,” science,
vol. 286, no. 5439, pp. 509–512, 1999.

[41] L. Baldesi, C. T. Butts, and A. Markopoulou, “Spectral graph forge: Graph genera-
tion targeting modularity,” in IEEE INFOCOM 2018-IEEE Conference on Computer
Communications, IEEE, 2018, pp. 1727–1735.

[42] A. Elmokashfi, A. Kvalbein, and C. Dovrolis, “On the scalability of bgp: The role
of topology growth,” IEEE Journal on Selected Areas in Communications, vol. 28,
no. 8, pp. 1250–1261, 2010.

[43] M. E. Newman and D. J. Watts, “Renormalization group analysis of the small-world
network model,” Physics Letters A, vol. 263, no. 4-6, pp. 341–346, 1999.

54

Appendix A

Additional Results - False Positive Rates

Figure 21, Figure 22, and Figure 23 show the false positive rates vs λ varying

from 5 to 20 using different graph features for the martingale method on Erdos-Renyi type

graphs, Barabasi-Albert type graphs, and Internet AS type graphs, respectively .

Figure 21

False Positive Rate vs λ for Using Different Graph Features for the Martingale Methods
on Erdos-Rényi Type Graphs.

55

Figure 22

False Positive Rate vs λ for Using Different Graph Features for the Martingale Method on
Barabási-Albert Type Graphs.

Figure 23

False Positive Rate vs λ for Using Different Graph Features for the Martingale Method on
Internet AS Type Graphs.

56

Appendix B

Additional Results - Precision

Figure 24, Figure 25, and Figure 26 show the precision vs λ varying from 5 to 20

using (i) Eigenvector Centrality feature on Erdos-Renyi type graphs, (ii) Singular Value

Decomposition feature on Barabasi-Albert type graphs, and (iii) degree centrality features

on Internet AS type graphs, respectively, with varying task difficulty.

Figure 24

Precision vs λ Using Eigenvector Centrality Feature for the Martingale Method on Erdos-
Rényi Type Graphs with Varying Task Difficulty.

57

Figure 25

Precision vs λ Using Singular Value Decomposition Feature for the Martingale Method on
Barabási-Albert Type Graphs with Varying Task Difficulty.

Figure 26

Precision vs λ Using Degree Centrality Feature for the Martingale Method on Internet AS
Type Graphs with Varying Task Difficulty.

58

Appendix C

Additional Results - Recall

Figure 27 and Figure 28 show the recall vs λ varying from 5 to 20 using degree cen-

trality feature on (i) Newman-Watt-Strogatz type graphs and (ii) Internet AS type graphs,

respectively, with varying task difficulty for the martingale method.

Figure 27

Recall vs λ Using Degree Centrality Feature for the Martingale Method on Newman-Watts-
Strogatz Type Graphs with Varying Task Difficulty.

59

Figure 28

Recall vs λ Using Degree Centrality Feature for the Martingale Method on Internet AS
Type Graphs with Varying Task Difficulty

60

Appendix D

Additional Results - F1-score

Figure 29, Figure 30, and Figure 31 show the F1 score vs λ varying from 5 to 20

using (i) Singular Value Decomposition feature on Erdos-Renyi type graphs, (ii) Eigen-

vector centrality feature on Internet AS type graphs, and (iii) Laplacian SVD feature on

Newman-Watts-Strogatz type graphs, respectively, with varying task difficulty.

Figure 29

F1 Score vs λ Using Singular Value Decomposition Feature for the Martingale Method on
Erdos-Rényi Type Graphs with Varying Task Difficulty

61

Figure 30

F1 Score vs λ Using Eigenvector Centrality Feature for the Martingale Method on Internet
AS Type Graphs with Varying Task Difficulty.

Figure 31

F1 Score vs λ Using Laplacian SVD Feature for the Martingale Method on Newman-Watts-
Strogatz Type Graphs with Varying Task Difficulty.

62

	AN EMPIRICAL STUDY ON DETECTING AND EXPLAINING GLOBAL STRUCTURAL CHANGE IN EVOLVING GRAPH USING MARTINGALE
	Recommended Citation

	Abstract
	List of Figures
	Introduction
	Background
	Graph: Notation and Definitions
	Change Detection Problem for Evolving Graph
	Martingale Method for Change Detection
	Graph Representations and Embeddings

	Literature Review
	Change Detection in Univariate Time Series
	Change Detection in Dynamic Network
	Other Relevant Recent Work

	Proposed Methodology
	Overview
	Martingale-based Change Detection Procedure for Evolving Graph
	Feature-based Explanation for Detected Change in Evolving Graph using Multiple Graph Features

	Experimental Results
	Synthetic Graph Generation
	Evaluation Measures
	Experimental Design
	Change Detection Empirical Results and Discussions
	The Effect of Threshold on False Positive Rate
	Performance Comparison

	Monitoring Real World Data and Change Explanations
	MIT Social-Network Evolution Dataset Description
	Results and Discussions

	Conclusion and Future Work
	Conclusion
	Future Work

	 References
	Appendix Additional Results - False Positive Rates
	Appendix Additional Results - Precision
	Appendix Additional Results - Recall
	Appendix Additional Results - F1-score

