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Abstract 

Armani Rodriguez 
HIERARCHICAL QUANTIZED AUTOENCODERS: USING HIERARCHICAL 

MODELS FOR DATA COMPRESSION ACORSS MULTIPLE DOMAINS 
2023-2024 

Silvija Kokalj-Filipovic, Ph.D. 
Master of Science in Computer Science 

 

In the era of vast data processing and transmission, sending data over a channel 

for downstream operations is a very common occurrence. The bandwidth of this data 

channel acts as a limiting factor in this operation, capping the amount of data that can be 

sent over a time period. Therefore, in addition to pursuing advancements in networking 

technology, there exists a need for more efficient means of data compression. Learned 

compression is the application of machine learning models to the data compression 

problem, and in this study, we leverage the ability of neural networks to learn the 

underlying structure of the training data to perform more informed compression, 

achieving a greater compression ratio than algorithmic data compression. Specifically, we 

analyze the efficacy of a model known as the Hierarchical Quantized Autoencoder 

(HQA) for lossy data compression across various datasets. This model adds a novel 

hierarchical architecture to the quantized auto encoder, the current standard for learned 

data compression, which not only allows for a higher compression ratio but adds 

flexibility to the model as the desired compression ratio can be set at inference time. We 

evaluate the performance of this model across different image datasets and propose a new 

model of the same structure as HQA but with a modified architecture suited to compress 

radio frequency (RF) data. We find that using hierarchical models, we can achieve a high 

compression ratio with minimal sacrifice to the performance of the downstream task.
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Chapter 1 

Introduction 

 Machine learning refers to the development of computer algorithms that can learn 

from data, rather than following explicit instructions. Very often we come across tasks 

that are trivial to us humans due to our innate intuition but are overwhelmingly difficult 

to complete from an explicit algorithmic approach. Examples of these problems include 

image classification, audio to text transcription, and language translation. These problems 

all deal with types of data catered for human perception such as images, sound, and text. 

For a computer to effectively use and process said datatypes, it must be able to deeply 

understand the underlying structure and patterns within the data. The neural network, 

machine learning model motivated by the biology of the brain, accomplishes this through 

being trained on an ideally large set of data known as the training set. Through this 

training process, the neural network will learn the underlying patterns in the data and can 

apply what it has learned to novel data unseen in the training set. 

1.1 Problem Statement 

 The major recent developments in machine learning combined with the 

effectiveness of machine learning models being positively correlated with the amount of 

training data has made data more valuable than ever before. The sheer amount of data 

being collected has brought about the popularity of distributed systems where data is 

collected and then transported elsewhere over a data channel for downstream tasks. 

Whether this data channel be a wireless network channel or a physical cable, it will have 

a bandwidth, or a maximum transfer rate. Thus, there are two directions one can go in 

improving the flow of data, that being increasing the bandwidth, or decreasing the size of 
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the data. In this research, we focus in the latter while considering the security 

implications by studying our model’s robustness to adversarial attacks [1]. 

1.2 Data Compression and Learned Compression 

Data compression is the process of finding a new representation of data such that 

it can be represented in a fewer number of bits. Data compression can be lossless, in 

which zero information is lost and the original data can be reconstructed from the 

compressed representation with zero distortion. Conversely, lossy compression allows for 

minimal distortion to achieve a greater compression ratio than lossless compression.  

 Learned compression refers to the use of machine learning models to achieve 

lossy data compression. The motivation behind learned compression is to leverage the 

ability of neural networks to learn the underlying patterns behind data to achieve a 

compression codec that is more data informed, and thus in theory more effective than 

algorithmic compression.  

 Rate distortion theory, which describes the mathematical foundations of lossy 

compression, describes a distortion function. This distortion function 𝑑(𝑥, 𝑥%) accepts as 

input the original datapoint 𝑥 and the datapoint reconstructed from the compressed 

representation 𝑥%. The output of 𝑑(𝑥, 𝑥%) is a measure of distortion or difference between 

the original and reconstructed datapoints. For lossless compression, the output of 𝑑 is 

always zero since lossless compression has zero distortion by definition. For lossy 

compression, our goal is to minimize 𝑑  while maximizing the compression ratio which 

represents the ratio between the original size in bits and the compressed size in bits. We 

will use a distortion function, specifically the squared-error distortion function, as our 
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criterion for training. However, we will not use distortion as our criterion for model 

selection, instead we focus on the performance of our downstream operation. 

1.3 The Classification Problem 

Classification is a recurring problem in data science, in which we seek to label 

input data as belonging to a certain class. For example, a bank may want to classify 

whether a transaction is fraudulent or not given its properties. All our input data in this 

research will have some set of classes associated with it, and our downstream operation 

will be classifying the data. Thus, we will measure how well our compression model 

performs based on how accurately the reconstructed data can be classified compared to 

the original. 

1.4 Adversarial Attacks 

Deep classifiers are subject to a vulnerability known as an adversarial attack. 

Such attacks are orchestrated by crafting an adversarial example, or a piece of data 

specifically crafted to perturb the model and produce an inaccurate output. The process of 

creating these adversarial inputs is taking a normal input datapoint and adding a certain 

amount of adversarial noise scaled by a small value 𝜀 such that there is a minimal 

perceptible difference between the original and adversarial datapoints [2].  

The fast gradient sign method (FGSM), a vastly popular method for creating 

adversarial noise, works by calculating the gradient of the loss function 𝐽(𝜃, 𝑥, 𝑦) with 

respect to each input feature to create noise which maximizes the loss. The formula for 

creating an adversarial example from an arbitrary input 𝑥 is given by Equation 1. 

𝑥!"# 	= 	𝑥 + 	𝜀 × sign3∇$𝐽(𝜃, 𝑥, 𝑦)5 (1) 
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We see that generating an adversarial example requires the attacker to have 

knowledge of the model parameters θ, the loss function 𝐽, and the true label of 𝑥	denoted 

𝑦. For now, this leaves defense against adversarial example attacks as an information 

security problem while machine learning researchers study ways of constructing deep 

classifiers that are robust to said attacks. 

 

Figure 1 

An Example of Creating Adversarial Data Using FGSM. [2] 

 

1.5 Significance 

The use of a deep compression model can make a significant difference in the speed 

in which data is transferred. In our paper we focus on compressing two different data 

types, that being image data and radio frequency (RF) data. Both data types are extremely 

diverse and compression of these datatypes for faster transfer has many use cases. 

1.5.1 Image Data  

Most people are familiar with image data and interact with digital images daily. 

Images, especially high-resolution images, are rather expensive to transfer over a data 

link since every single pixel must be represented. A learned compression codec with a 
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high compression ratio could improve loading speeds of webpages, reducing the load on 

the server and reducing the cost of operating a website serving image data which receives 

many requests per second. Additionally, machine learning powered applications where 

images are sent from a user’s device to an external server for processing before the result 

is then pushed back to the device are becoming exceedingly popular. These applications 

often suffer from poor performance when the user does not have a fast and stable internet 

connection and are often expensive to run due to the networking capabilities needed to 

support such a large stream of input data. This compression scheme could save precious 

bandwidth reducing operations costs and improving user experience. 

1.5.2 Radio Frequency (RF) data 

Waveform data is an extremely versatile datatype as any piece of data can be 

interpreted as a signal. A prominent example of the vast transmission of RF data is next 

generation cellular concepts such as Artificial Intelligence Radio Access Networks (AI-

RAN) [3] which uses AI for real time analysis of traffic data and network load. 

Waveform data can also represent audio signals, underground seismic activity, or brain 

waves (EEG-signals) and other biological signals. Research into learned compression 

regarding time series data such as radio frequency data is quite scarce due to most learned 

compression research being focused on image data. 

RF data is usually found at the lowest layers of network models and is the 

physical representation of information being transmitted over network channels. Not only 

is compressing RF data extremely versatile as any data can be converted to RF data, but 

compressing information at the physical network layer can help optimize every wireless 

channel faster and more effectively. 
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A major breakthrough in the generation of new vision content (images and video, 

even movies) has been recently achieved by so called diffusion models. The most 

successful diffusion models use vector quantized variational autoencoders as the core of 

their diffusion process primarily because it lowers the computational complexity and 

allows better resolution. For those models to be leveraged in the waveform domain, it is 

important to explore the utilization of vector quantized variational autoencoders in that 

domain. 
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Chapter 2 

Prior Work 

This chapter provides an overview of the prior work in the field of learned compression 

as well as prior research on hierarchical autoencoders.  

2.1 Autoencoder Based Approach 

We will discuss the specifics of the theory of autoencoders in Chapter 3. 

Autoencoders use an unsupervised learning approach to learn an efficient representation 

of the input data in a lower dimensional latent space. Variants of autoencoders such as the 

variational auto encoder, which maps input data to a probability distribution, have found 

success with both generation of deepfakes and learned compression. The vector quantized 

variational autoencoder (VQ-VAE), another generative autoencoder variant, has also 

been successful in the field of learned compression [3].  

2.2 Transform-Based Approach 

 Transform based learned compression involves transforming the input data into an 

intermediary domain that is easier and more efficient to compress. Machine learning 

models such as deep neural networks can learn these transforms from the data which 

leads to data informed compression. Examples of the transform-based approach include 

learned image compression using convolutional neural networks and learned audio 

compression using time-frequency transforms. Perhaps the most well-known form of 

transform based compression is JPEG, where images are treated as signals and the fast 

Fourier transform algorithm is used to compress images in this codec. 
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2.3 Attention Based Approach 

Attention based models, such as the transformer model introduced by Vaswani et. 

al. [4], have impressive sequential prediction power. Thus, we can harness this power to 

achieve learned compression by keeping only the most relevant parts of the data, while 

letting the attention-based model fill in the blanks.  

2.4 Generative Adversarial Network Approach 

 Generative adversarial networks use two models, a generator and a discriminator, 

to achieve the generation of deepfakes. There is a recurring theme of repurposing 

generative models for learned compression. Generative models usually learn an efficient 

underlying representation of the input data while having the training objective of creating 

high quality deepfakes that are indistinguishable from original data. This ability is one we 

can often leverage for data compression. 

2.5 HQA 

 The HQA model for compressing images was created and studied by Williams et. 

al. [5] for the purposes of generation and data compression. Their paper studied HQA 

from an information theory perspective where rate distortion metrics were used to 

measure the effectiveness of HQA as a lossy compression codec. 
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Chapter 3 

Methodology 

 We seek to measure the efficacy of our model in a variety of domains; thus, we 

will perform our experimentation on three different datasets. Each dataset will require 

modifications to the models pertinent to the complexity and topology of the data; 

however, the general process remains constant. We first split our dataset into a training 

set and a test set. We then train our hierarchical learned compression model and our deep 

classifier on our training set. Our experiment begins by notating the accuracy score 

achieved by the deep classifier on the test set. We compare with the accuracy score 

achieved by the deep classifier on the test set transformed by being compressed and then 

reconstructed by the compression model. For our image datasets, we will compare HQA 

against JPEG, a widely used lossy compression scheme for image data. 

 

Figure 2 

An Illustration of Our Compression Experiment. 

 

 We then test our hypothesis regarding the resiliency of our proposed compression 

scheme to an adversarial example attack attempted on the downstream classification task 
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by transforming the test set to adversarial examples before comparing the accuracies of 

the classifier on the original attacked images with the reconstructed attacked images. 

 

Figure 3 

The Process of Testing Our Models’ Resiliency to Adversarial Attacks. 

 

3.1 The Model Architecture 

The model architecture we will be using for compression is known as a 

hierarchical quantized autoencoder (HQA). To get a total comprehension of this model, 

we must first discuss our preliminary model known as HAE and the motivation behind 

vector quantization. 

3.1.1 Autoencoders and the Hierarchical Auto Encoder (HAE) 

 An autoencoder is an unsupervised machine learning model used to learn efficient 

encodings of the input data while minimizing distortion. An autoencoder has two 

components, that being the encoder and the decoder. The encoder takes as input the 

original data 𝑥 and outputs a representation of 𝑥 as vectors in a lower dimensional latent 

space. We call this representation 𝑧, and it is effectively the compressed representation of 

𝑥. The decoder takes as input 𝑧 and outputs 𝑥% which denotes the lossy reconstruction of 

𝑥. Any criterion can be imposed on 𝑥 and 𝑥% depending on the use case of the 

autoencoder. For our use case of compression, we seek to minimize the distortion 
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between 𝑥 and 𝑥%	. We call this distortion measure the reconstruction loss, and we use the 

mean square error, shown in Equation 2, for reconstruction loss. 

ℒ%&' =
1
𝑁<

(𝑥( − 𝑥)>)*
+

(,-

(2) 

 The hierarchical autoencoder model is made up of 𝑁 encoder and decoder pairs 

denoted (𝐸-, 𝐷-), (𝐸*, 𝐷*), … , (𝐸+ , 𝐷+). The 𝑛’th layer of this model is comprised of the 

composition of the encoders 𝐸- ∘ 𝐸* ∘ … ∘ 𝐸. followed by the composition of the 

decoders 𝐷. ∘ 	𝐷./- ∘ … ∘ 𝐷-. Each layer is trained separately, and a model of 𝑛 layers is 

trained using the following procedure: 

1. Create (𝐸-, 𝐷-), (𝐸*, 𝐷*), … , (𝐸., 𝐷+). 

2. Train layer 1 consisting of 𝐸- and 𝐷-.  

3. To train layer 𝑙 ∈ {2, … , n}, freeze all (𝐸0 , 𝐷0), 1 ≤ 𝑘 < 𝑙 before the first 

epoch. 

Freezing the encoder and decoder modules means that the gradient of the loss 

function with respect to their parameters are ignored, therefore the weights of the 

encoders and decoders are not affected by the training of later layers and only the deepest 

layer’s modules are trained. This maintains the integrity of each layer allowing the user to 

select which layer to use at inference time as opposed to having no choice but to 

compress using the deepest layer. 

This simple autoencoder does not effectively compress data enough and is not the 

focus of this research, but it does share the same structure and encoder and decoder 

components with HQA, thus we use HAE for quicker hyperparameter tuning and transfer 

learning. 



 

    
12 

3.1.2 Vector Quantization and the Vector Quantized Variational Auto Encoder  

 The Vector-Quantized Variational Auto Encoder is a model introduced by Oord, 

Vinyals, and Kavukcuoglu [3]. It was famous for its use in OpenAI’s generative text to 

image model DALL-E. The model is an auto encoder which performs vector quantization 

on the latent vectors. Vector quantization (VQ) achieves a much greater level of 

compression by using persistent storage, such that the latent vectors 𝑍& = {𝑧&-, 𝑧&*, … } can 

be each represented by a set of integer indices rather than by a set of vectors. Apart from 

VQ quantizing 𝑍& into an array 𝑍1 of integers, VQ-VAE also enhances the autoencoder 

by applying variational inference to learn the posterior distribution 𝑃3𝑍1N	𝑥), which 

defines VQ-VAE as a generative model, allowing it to generate new samples by sampling 

the prior over the latent space. However, in this research we will instead leverage this 

functionality for compression rather than generation of deepfakes. 

3.1.2.1 Vector Quantization Vector quantization is a process of discretizing a 

space through use of a vector quantization codebook denoted 𝑄. This codebook has a size 

which denotes the number of vectors or codewords it contains. The process of quantizing 

an input 𝑧& is simply choosing a codeword from the codebook based on that input. Oord. 

et. al. [3] propose Equation 3 which simply chooses the nearest neighbor of the input in 

the codebook based on Euclidean distance.  

𝑧1 = min1∈3 ∥ 𝑧& − 𝑞 ∥* (3)

 Note that the “slices” of 𝑍& denoted 𝑧& must have the same dimensionality as the 

codebook vectors 𝑞 This quantization scheme effectively partitions our latent space into 

regions, where each region corresponds to all the vectors which quantize to a certain 

codeword. This is illustrated in Figure 4. 
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Figure 4 

An Illustration of Vector Quantization in Two Dimensions. 

 

The vectors in the codebook are trainable parameters in the VQ-VAE model, and 

thus the model must learn an optimal codebook during training time on top of optimizing 

the reconstruction error. Using a deterministic posterior, our loss function for VQ-VAE 

becomes Equation 4. 

ℒ43/456 = ℒ768 + ||sg[𝑧&] − 𝑧1||* + 𝛽||𝑧& − sgW𝑧1X||* (4) 

 Where sg[⋅] denotes the stop gradient function, and 𝛽 is a hyperparameter which 

regularizes the amount in which the encoder should be trained relative to the codebook. 

Because of the transfer learning and due to the nature of the model, it is evident training 

the codebook vectors to minimize the distance from the codewords to the encoder output 

is more important than training the encoder to minimize the distance from the encoder’s 

output to the codewords. Thus, we choose 𝛽 as a small value between 0 and 1. 

3.1.3 The Hierarchical Quantized Auto Encoder 

 The hierarchical auto-encoder (HQA) inherits the hierarchical structure and 

training patterns of HAE but adds one quantization module 𝑄 for each layer. The forward 

propagation process for an HQA model consisting of two layers is as follows: 
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1. Let 𝑥 denote the datapoint to be encoded. 

2. 𝑧&- ← E-(x) 

3. 𝑧&* ← 𝐸*(𝑧&-) 

4. 𝑧1* ← 𝑄*(𝑧&1) 

5. 𝑧&-̂ ← 𝐷*3𝑧1*5 

6. 𝑧1- ← 𝑄-(𝑧&-̂) 

7. 𝑥% ← 𝐷-3𝑧1-5 

In this example, 𝑥% denotes the reconstruction of 𝑥 and 𝑧1* is the compressed 

representation of x.  

 

Figure 5 

A Graphic Representation of the Forward Propagation of an Image Through a 2-layer 
HQA model. [1] 
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In fact, comparing the performance of HQA to VQ-VAE, another generative 

learned compression model that uses codebook learning is trivial, as a single layer HQA 

model is equivalent to the VQ-VAE model. 

3.1.3.1 Stochastic Quantization For the vector quantization step in HQA we 

diverge from the discrete posterior imposed on the codebook of VQ-VAE and instead 

impose a stochastic posterior on our codebook introduced by Sønderby et al. [6] we 

achieve stochastic quantization. Our posterior is defined in Equation 5 as a sampling from 

a categorical probability distribution 𝑄3𝑧1 = 𝑞N𝑥5 where the logits are defined by the 

Euclidean distance from the vector to be quantized to each codeword in the codebook.  

𝑄3𝑧1 = 𝑞N𝑥5 ∝ 𝑒 −	∥ 𝑧& − 𝑞 ∥	* (5) 

 Vector quantization is then accomplished by sampling from 𝑄3𝑧1 = 𝑞N𝑥5. In both 

cases, there exists a non-differentiability problem that we must account for during 

training. For deterministic quantization, we simply copy the gradients from 𝑧1 to 𝑧& 	[3]. 

For stochastic quantization, we use the Gumbel-Softmax reparameterization trick and 

relaxation to achieve a differentiable sample [7]. The temperature of this softmax 

operation is a hyperparameter and best results are achieved by initially setting a high 

temperature allowing the model to explore during the initial phases of training, before 

slowly annealing the temperature as the model nears convergence.  

 3.1.3.1 Compression Ratio of HQA The size of the compressed representation of 

our data depends on the size of the data, the number of channels in the data, and the size 

of our codebook. The encoders and decoders consist of convolutional layers which each 

down sample and up sample by a factor of 2 in each convolution dimension. Thus, an 

input with 𝑐 channels consisting of 𝑛 values each being compressed by a model 
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containing a codebook with |𝑄| codewords, an encoder and decoder using convolutional 

layers of dimensionality 𝑑', and 𝑙 layers, we derive Equation 6 denoting the size of our 

compressed representation in bits: 

𝑆' = log*(|𝑄|)
𝑛
2:"!

(6) 

 The size of our original data can be represented as such: 

𝑆; = 	𝑏 × 	𝑐 × 𝑛	 (7) 

 Where 𝑏 represents the amount of bits in the datatype comprising the original 

data. Our compression ratio 𝑟 is then given by <"
<!

, giving us a general formula for our 

compression ratio in terms of the hyperparameters for our HQA model in Equation 8.  

𝑟 = 	
𝑆;
𝑆'
=

𝑏
log*|𝑄|

	𝑐2:"! 	 (8) 

3.2 Datasets 

In this research we use the MNIST handwritten digit dataset [8] and ImageNet100 

as our image datasets and the modulations dataset from the torchsig library [8] as our RF 

dataset. The MNIST dataset consists of 70,000 28x28 black and white images of 

handwritten numeric digits from 0-9. ImageNet100 [10] is a subset of the well-known 

ImageNet [10] dataset, consisting of full color 224x224 images of various everyday 

objects and animals. As suggested by its name, ImageNet100 is a subset that only 

includes 100 of the 1000 classes. The modulations dataset is a synthetically created 

dataset consisting of communications signals modulations. We will only use a subset of 

the classes available in the modulation’s dataset. Those being 4ask, 8pam, 16psk, 

32qam_cross, 2fsk, and ofdm-256. 
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3.3 MNIST Methodology 

 Prior to training, we resize the dataset to 32x32 such that each image consist of 

1024 pixels (bytes), and split the dataset into a train set and test set of 60,000 and 10,000 

samples respectively. We initialize a 5 layer HQA model with a codebook size of 256 and 

encoder and decoder blocks that use 2D convolutions. This gives us a compression ratio 

of 4: for layer 𝑙.  

3.3.1 Training 

 This section delves into the details of training this model. Unless stated otherwise, 

this applies to all datasets and iterations of HQA. 

 3.3.1.1 Optimization We will use a variant of the well-known Adam stochastic 

optimization algorithm known as Rectified Adam (RAdam) introduced by Liu et al [8]. 

RAdam rectifies the high variance problems and the tendency of failing to properly 

generalize during the few initial steps suffered by Adam and other adaptive learning rate 

optimization algorithms. RAdam rectifies this by ignoring the momentum term for the 

initial steps of the algorithm and lowering the initial earning rate during the warmup step 

to achieve less variance and faster convergence. 

 3.3.1.2 Learning Rate Scheduling It is often advantageous to anneal the learning 

rate η during training such that the trainable parameters are modified less drastically as 

the model nears convergence. We used Flat + Cosine Annealing to schedule our learning 

rate, choosing to keep our learning rate constant for the first 𝑇= steps of training before 

applying cosine annealing. Our learning rate at a step 𝑡 is given by Equation 9. 
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η> = n
𝜂max, 𝑡 < 𝑇=

𝜂min +
-
*
(𝜂max − 𝜂min) p1 + cos r

?/@#
@max

𝜋tu , 𝑡 ≥ 𝑇=
(9)

 Where 𝜂max is our initial learning rate, 𝜂min is a configurable minimum, and 𝑇max 

is the total number of training steps we will perform. We choose 𝑇= =
*
A
𝑇max such that the 

learning rate is annealed after two-thirds of the training is completed. We bound our 

learning rate by letting 𝜂max = 4 ∗ 10/B and 𝜂min = 4 ∗ 10/C. 

 

Figure 6 

The Curve of Our Learning Rate Using Flat+ Cosine Annealing. 

 

 3.3.1.3 Learning the Codebook The codebook is the most important aspect of 

the model to learn as it not only achieves compression but acts as the largest source of 

distortion in the model. The codebook is also difficult to train properly due to utilization 

problems. Similar to the mode collapse problem suffered by GANs, the VQ-VAE can 

suffer from suboptimal codebook utilization. This occurs when only a small fraction of 

the codebook is used and can happed due to bad initialization or improper training. The 

stochastic quantization helps alleviate this issue, as well as codebook resets. Codebook 

resets introduced by Williams et. al. [5] seek to increase the usage of underutilized 
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codewords. It works by accumulating the number of usages of each codeword over a 

certain number of batches. If the least used codeword 𝑞: is used 3% or less than the most 

used codeword 𝑞D, 𝑞: is reset according to rule defined in Equation 10. 

𝑞: ≔ 𝑞D + 𝜖 (10) 

 Where 𝜖 ∈ 𝒩(0,0.01). This ensures that no codewords that otherwise would be 

useful are underused due to bad initialization. We considered the number of steps 

between each reset as a hyperparameter and achieved the best results by periodically 

increasing this value. 

3.3.2 MNIST Classifier 

 LeNet, a convolutional neural network proposed by LeCun et al. [9] in 1998, 

remains popular to this day due to its high effectiveness and ease to implement. LeNet 

utilizes two 2D convolutions for feature extraction followed by a multi-layer perceptron 

with a hidden layer consisting of 84 neurons for classification. We utilize the cross-

entropy loss function which is standard for training a classification problem with more 

than two classes. 

3.4 ImageNet100 Methodology 

 ImageNet100 being another image dataset, our procedure will be similar to that of 

MNIST. We must consider that the input shape is different (224x224x3) rather than 

(28x28). Thus we must modify our compression model to expect an input with three 

channels (red, green and blue) rather than one (grayscale), and output an image with three 

channels. ImageNet100 being a much more complex dataset with 100 different classes, 

we must use a more complex classifier. We choose to use ResNet-50, a 50-layer 

convolutional neural network for classification [14]. The final layer consists of a multi-
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layer perceptron consisting of 1,000 neurons. We modify this such that the output 

consists of only 100 neurons and perform fine tuning on a ResNet-50 instance pretrained 

for ImageNet.  

 We also note that our compression ratios per layer are different than those on 

MNIST.  ImageNet100 samples consist of 3 channels, and using our equation for r we get 

a compression ratio of 3 × 4: for layer 𝑙. 

3.5 Modulations Methodology 

 VQ-VAE and therefore HQA by extension is a model suited to work on images. 

Therefore, we needed to make some changes to the architecture to allow HQA to train on 

time series RF data. This RF data consists of complex numerical data sampled at a 

consistent time interval. Thus, for use in neural networks, we must convert our data to 

two channels consisting of the real and imaginary parts of the original data. Our first 

change to the model architecture is replacing the 2D convolutions to 1D convolutions. 

Because our data consists of both positive and negative values, we replace the sigmoid 

activation at the end of the outer decoder with hyperbolic tangent. We finally add another 

term to our loss function which represents the cosine similarity to preserve the phase, an 

important feature in digital phase modulations [9]. We also add a weight to the cosine 

loss as yet another hyperparameter to control how prevalent this term is in 

backpropagation. We call this novel modified model HQA-RF. 

 Similar to MNIST, we train a deep classifier on the original samples. The 

classifier we use is the pretrained EfficientNet4 model [15] provided by the torchsig 

library [9]. This model is a modified version of EffficientNet4 tailored to classify RF 
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data. We compare the accuracy of the classifier on the original data, with the accuracies 

of the reconstructions over all four layers. 
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Chapter 4 

Results 

4.1 MNIST Results 

 Table 1 shows the accuracy scores of our LeNet-5 classifier trained on the 

original test-set data on the original and reconstructed data by layer. 

 

Table 1 

Accuracy of Original MNIST Samples Compared to the Reconstructed Samples. 

Dataset LeNet-5 Accuracy Compression Ratio 

Original Test Set 0.9909 1 
JPEG (Quality = 100) 0.9914 1.19 
JPEG (Quality = 75) 0.9912 2.03 
JPEG (Quality = 50) 0.9898 2.26 
JPEG (Quality = 25) 0.9902 2.43 
JPEG (Quality = 0) 0.9763 2.84 
Layer 1 Reconstruction Test Set 0.9896 4 
Layer 2 Reconstruction Test Set 0.9863 16 
Layer 3 Reconstruction Test Set 0.951 64 
Layer 4 Reconstruction Test Set 0.8533 256 
Layer 5 Reconstruction Test Set 0.7164 1024 

  
  

We can see from Table 1 that we can push the compression ratio to as much as 64 

before the accuracy score falls below 90%. Compared to the average 10:1 compression 

ratio achieved by JPEG, HQA can push much further with minimal loss in both image 

quality and downstream task performance. Recall that the layer used can be chosen at 

inference time, so with only one model the user can choose how much accuracy they are 

willing to sacrifice in exchange for a higher compression ratio. We visualize the 

distortion between the original and reconstructed samples for each layer in Figure 7. We 
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note that the distortions present are not the result of seemingly random noise, but rather 

the behavior exhibited is samples morphing into other digits as the layers increases. This 

serves to illustrate how our model is data informed, as the expected distortions still take 

the form as valid digits rather than unstructured noise. In the cases where digits remain 

constant across the layers, we see the digits drawn in a slightly different style than the 

originals, again illustrating how well the model learns the underlying patterns and 

structure of the handwriting. 

 

Figure 7 

Comparison of Original and Reconstructions Across All 5 HQA Layers. 

 

 

 

 

 

 

 

After creating adversarial examples based on the classifier using FGSM for 

various values of 𝜀, we proceed with our experiment and perform classification on the 

various reconstructions of the attacked dataset. We performed the same experiment using 

various values for 𝜀 representing attacks of various intensities. In all cases, the 

reconstructions generated from HQA show a resiliency to adversarial noise generated 

using FGSM. We find that performing reconstruction on the attacked images using just 
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one layer of hierarchy before classification adds substantial resiliency to low intensity 

attacks, while more layers are necessary to maximally mitigate high intensity attacks.  

 

Table 2 

Accuracy of Original vs Reconstructed Images With Added Adversarial Noise. 

Dataset (FGSM) Accuracy     
(𝜖 = 0.1) 

Accuracy     
(𝜖 = 0.05) 

Accuracy     
(𝜖 = 0.07) 

Accuracy     
(𝜖 = 0.1) 

Accuracy     
(𝜖 = 0.2) 

Original Test Set 0.9797 0.8579 0.7728 0.6413 0.3298 

Layer 1 
Reconstructions  

0.9873 0.9713 0.9521 0.9013 0.5373 

Layer 2 
Reconstructions   

0.9862 0.9724 0.9645 0.9315 0.7072 

Layer 3 
Reconstructions 

0.9492 0.9325 0.9191 0.8595 0.5347 

Layer 4 
Reconstructions  

0.8514 0.8363 0.8217 0.7851 0.5742 

Layer 5 
Reconstructions  

0.7173 0.717 0.7106 0.6896 0.5591 

 

In addition to the above experiment which used FGSM, we ran a small 

experiment in which we repeated the above process using two additional adversarial 

example attacks. We saw that the resilience of our proposed pipeline is even more 

pronounced, with FGSM performing the best (causing the most perturbance) out of all 

attacks using our modified pipeline. The BIM attack not only performed worse than the 

FGSM attack on the original data, but HQA was also more effective at mitigating the 

BIM attack. While PGD performed better than FGSM on the original data, it too was 

combatted by HQA extremely effectively. The resilience is shown in Figure 8, as the 

accuracy curves of the attacked samples appear to converge closer and closer to the curve 

of the non-attacked samples as more layers of hierarchy are used for reconstruction. 
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Across all attacks of various magnitudes, we can see that applying our compression does 

yield a considerable improvement in accuracy.  

 
Figure 8 

Accuracy Curves Comparing the Accuracy Score of LeNet on Original Attacked Data 
and Reconstructed Attacked Data Using Various Attack Methods and Parameters. 

 

 

 

 

 

We also hypothesize that the decline in accuracy for greater values of epsilon is 

mainly due to the noise perturbing the perceptual quality of the image rather than the 

noise artificially maximizing the loss function of the classifier. Figure 9 visually shows 

the perceptual perturbance caused by the addition of FGSM generated noise, and 

importantly is shows that the attack loses its imperceptibility as epsilon increases. 
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Figure 9 

 Visualization of FGSM Attacked MNIST Images With Varying Epsilon. Color Map 
Changed From Greyscale to Emphasize Noise. Predicted Class Notated Under Each 
Sample.  

 
 
 
4.2 ImageNet100 Results 

 Upon modifying our HQA model to accommodate the ImageNet100 dataset, we 

proceeded with the same process. Unsurprisingly, due to the added complexity, size, and 

number of classes of the data, ImageNet100 performed worse than MNIST. However, 

visually the images were quite perceptible up to layer 3, which had a compression ratio of 

192 and accuracy of 36%. In comparison, JPEG was able to achieve a maximum 

compression ratio of 59.33 while achieving 22% accuracy. The results of our experiment 

are displayed in Table 3. 
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Table 3 

Accuracy Scores on Original ImageNet100 Samples Compared to the Reconstructed 
Samples. 
 
Dataset ResNet-50 Accuracy Compression 

Ratio 
Original Test Set 0.856 1 
JPEG (Quality = 100) 0.857 1.43 
JPEG (Quality = 75) 0.8526 9.22 
JPEG (Quality = 50) 0.8492 14.02 
JPEG (Quality = 25) 0.8242 21.21 
JPEG (Quality = 0) 0.2224 59.33 
Layer 1 Reconstruction 
Test Set 

0.8254 12 

Layer 2 Reconstruction 
Test Set 

0.7264 48 

Layer 3 Reconstruction 
Test Set 

0.3592 192 

Layer 4 Reconstruction 
Test Set 

0.089 768 

Layer 5 Reconstruction 
Test Set 

0.0314 3072 

 

 

Noticing the drop in accuracy score is much more drastic than with MNIST, we 

visualize the distortion in the reconstructed samples in Figure 10. As an attempt to 

increase the perceptual quality of the model, we trained an equivalent model using 512 

codewords hypothesizing that a more complex dataset would require more codewords to 

accurately represent. This model ended up performing marginally better in the early 

layers but had poor performance in the later layers. Perceptually we can see the deeper 

layer reconstructions in the 256 codeword model are superior to those in the 512 

codeword model. This could be due to the fact that a codebook of size 512 codewords is 

significantly harder to train and that each codeword contains less information, therefore 

leading to more difficulty creating an accurate reconstruction using the same amount.  



 

    
28 

Figure 10 

Reconstructions on 256 Codeword Model (left) vs 512 Codeword Model (right). 

 

We can see the same resiliency to adversarial attacks that we saw in the 

experiment using the MNIST dataset. When compared to attacking the MNIST dataset, 

the attack appeared to be much more effective on the uncompressed data when using 

lower values for epsilon. We hypothesize this is due to the greater number of features as 

well as the greater number of classes, which increases the chance of an attack creating a 

disturbance large enough to cross the decision boundary of the true class. However, we 

see the same trend of achieving maximum accuracy when utilizing only one or two layers 

of hierarchy. Additionally, we notice that adding at least one layer of hierarchy helps 

improve accuracy in all cases. The improvement in accuracy achieved by using one layer 

of hierarchy over no compression is inversely proportional to the intensity of the attack.  
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Figure 11 

 Accuracy Curves Comparing the Accuracy Score of FSGM Attacked ImageNet Samples 
at Each Layer. 

 

 

As imperceptibility is important for the practical efficacy of adversarial attacks, 

we again visualize samples from our dataset that have been attacked at various 

magnitudes. We can see from Figure 12 the loss of imperceptibility as the noise can be 

easily detected past a threshold epsilon.  

 

Figure 12 

FGSM Attacked ImageNet100 Samples. Predicted Class Notated Below. 
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4.3 Modulations Results 

 We conclude the results chapter with our findings from our experimentation using 

the modulations dataset. Due to the large amount of experimentation and modifications, 

we will include a subsection dedicated to model selection in this section. 

4.3.1 Model Selection 

 We used our accompanying HAE-RF model for transfer learning and 

hyperparameter tuning concerning the encoder and decoder. However, to learn the loss 

coefficients and codebook hyperparameters, we performed a large ablation study on our 

HQA-RF model. We varied our codebook initialization, KL divergence loss coefficient, 

commit loss coefficient, cosine similarity coefficient, the number of batch normalization 

layers. We ignored the loss functions and decided to perform this selection exclusively 

using the accuracies. 

 

Table 4 

Select Results from Model Selection With our Best Result Highlighted. 

Codebook 
Size 

Codebook 
Dimension 

# 
Residual 
Blocks 

KL Loss 
Coefficient 

Commit 
Loss 
Coefficient 

Cosine 
Similarity 
Coefficient 

# Batch 
Normalization 
Layers 

 
Layer 1 
Accuracy 

 
Layer 2 
Accuracy 

128 128 2 0.1 0.005 0.7 1 0.7898 0.6939 
128 64 2 0.1 0.005 0.7 1 0.6895 0.5360 
64 128 2 0.1 0.005 0.7 1 0.7926 0.3045 
64 64 2 0.1 0.005 0.7 1 0.8012 0.6223 
64 64 3 0.001 0.001 0.7 0 0.8333 0.82 
256 256 2 0.1 0.005 0.7 1 0.8312 0.4181 

 

  

We attempted codebook initialization using both normal and uniform 

distributions. We omitted this as a column since normal distribution performed better in 

100% of our selection runs. We also found that transfer learning the encoder and decoder 
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from HAE-RF was an essential part of training, improving our accuracy as much as 10%. 

Table 5 shows the accuracies of EfficientNet on reconstructions from both HQA-RF and 

HAE-RF. Reminder that the HAE-RF is a preliminary model that does not achieve 

optimal compression. Results from HAE-RF are displayed only for establishing a 

theoretical limit. 

 

Table 5 

Comparing Accuracy of EfficientNet on HQA-RF and HAE-RF Reconstructions (Original 
Accuracy is 100%). 
 
Layer # HQA-RF HAE-RF 

1 0.83 1 

2 0.82 1 

3 0.6666 1 

4 0.6516 1 

5 0.535 0.87333 

 

 

The modulations dataset being a much more complex dataset, we expect to see a 

drop in performance from image datasets with regards to classification accuracy. An 

important feature of IQ data is that it is heavily reliant on preserving the frequency and 

phase, with the “quadrature” or Q component having a phase offset of 90 degrees from 

the “in-phase” or I component. Thus, any noise added by the reconstructions will perturb 

the classifier. We can see this perturbance in the frequency map between the originals 

and reconstructions by visualizing them using spectrograms. 
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Figure 13 

 Spectrograms of Original and Reconstructed Data by Layer. Predicted class notated 
below. 

 

 

With regards to the adversarial attack resiliency, we were unable to find an 

adversarial attack method that is compatible with IQ signals. Traditional adversarial 

attack methods would perturb the phase relationship of the signal, thus making it 

impossible to be received and interpreted as a wireless signal. In order to evaluate the 

robustness of HQA-RF against adversarial attacks, we must apply a sophisticated 

adversarial perturbation that maintains the integrity of the phase information. However, 

this is an ongoing research field and out of the score of this thesis. 

. 
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Chapter 5 

Conclusions and Further Research 

5.1 Conclusions 

 We conclude that our HQA model can effectively compress image data, being 

able to achieve a larger compression ratio than JPEG and in both cases achieving a higher 

accuracy than JPEG at higher compression ratios. We also confirm our hypothesis that 

our proposed data pipeline of compression, transmission, and classification adds 

resiliency to adversarial example attacks targeting the deep classifier for our image 

datasets. 

We also proposed a novel variant of HQA known as HQA-RF which is effective 

at compressing RF data. While it is effective at compressing our synthetically generated 

datapoints, it reveals a weakness to reconstructing noisy data. Further research is required 

to confirm the robustness of HQA-RF to adversarial attacks both general and targeted 

towards IQ data. 

5.2 Further Research 

There are multiple ways our research can be extended. I will propose both 

changes to our models to create higher fidelity reconstructions as well as changes to our 

training and experimentation that should be explored.  

5.2.1 VQ-GAN 

VQ-GAN is a model introduced by Esser et. al. [10] which modifies the VQ-VAE 

structure in two different ways. It adds a GAN component to the decoder to the decoder 

to increase the fidelity of the images. It also uses a transformer to learn the prior 

distribution over the codebook, such that it can choose codewords to generate new 
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images. As stated in chapter 2, we can potentially leave out some codewords and use the 

transformer to generate the missing codewords given the ones we leave in. Using this, we 

can potentially accomplish greater data compression by combining two different 

approaches for learned compression. 

5.2.2 Increasing the Robustness of HQA-RF to Noise 

 By adding synthetic noise to our dataset prior to training, we could potentially 

reduce the sensitivity of HQA-RF to noisy data. Not only would our model serve as a 

proof of concept for a denoising solution, but we could perform further experimentation 

to explore our hypothesis on whether HQA-RF adds resiliency to adversarial attacks. 

5.2.3 Additional Datasets 

 In another project, I have recently found success with using a VQ-VAE model to 

generate audio. I accomplished this by transforming the audio to a spectrogram 

representation and using a transformer to learn the prior over the codewords. However, I 

have not yet found success reconstructing audio using the hierarchical model, and more 

research can be done into exploring this domain using 1D convolutions. 

 I have also recently discovered EEG datatypes which are time series samples of 

brain waves. Augmented neural technology such as Neuralink is already being tested on 

human subjects, and while the ethical ramifications of such technology must be 

considered, there is no doubt that the compression of EEG data for downstream 

processing has many legitimate medical and research-based use cases.  
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