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Abstract

Nick Felker
DESIGN AND IMPLEMENTATION OF TRULY RANDOM NUMBER GENERATION

USING MEMRISTORS FOR IN-MEMORY COMPUTING
2023-2024

Dr. Chakraborty, Ph.D.
Master of Science in Electrical & Computer Engineering

This paper proposes a new security module based on non-volatile memory. The module

uses a memristor-based true random number generator to generate random numbers which

can be used for cryptography. The module is implemented in software using a modified

RISC-V instruction set architecture.

The paper evaluates the performance of the module using the RISC-V simulator Gem5.

The results show that the module can generate random numbers at a rate of 63 microseconds

per number, which is faster than the standard C library’s random number generator. The

module can also be used to scramble strings of characters and generate hashes of inputs.
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Chapter 1

Introduction

1.1 Random Number Generators

Generating and using keys is an important method of creating secure connections

between trusted systems on a network. Cyberattacks often try to masquerade with mali-

cious system requests, so networks can be secured by encrypting requests using securely

generated keys.

Private and public key systems rely on the generation of random numbers of a pre-

determined bit-lengths. However, current random number generators are not truly random,

rendering them susceptible to exploitation by malicious actors who can predict the ran-

dom number pattern or by stealing these keys. Exploiting these vulnerabilities can allow

attackers to authorize requests disguised as a trusted system.

There are many different approaches to random number generators. One method

is to use a Gaussian Random Number Generator (GRNG) which selects numbers at ran-

dom based on a Gaussian distribution [1]. Alternatively one may prefer to use a Uniform

Random Number Generator (URNG) which is designed to pick random numbers across a

given range with equal probability.

The Wallace method can be used to efficiently generate random numbers from a

normal distribution by starting with a uniform distribution and transforming that into its

position in an inverse cumulative distribution. It is fast but can be less accurate compared

to a Box-Muller transformation [2].

Previous research has focused on novel techniques to improve the randomness and

unpredictability of the generator. RAVA is one proposed design which uses two reverse-

biased Zener diodes to generate sufficient amounts of noise as the input to a generation
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algorithm [3]. The noise is then measured in a 3 microsecond window and quantized to

high or low. While this approach is easy to implement, the throughput is relatively slow

and is not resilient against environmental and circuit attacks by malicious actors.

In this paper we propose a new security module based on non-volatile memory. We

use memristors, which are non-volatile devices, to achieve true randomness through non-

determinstic means [4]. Our module generates truly random numbers faster than contem-

porary systems, making it a promising solution for secure key generation in low-powered

embedded systems.

We document the software requirements to achieve truly random number generation

and how it could integrate into modern software applications. We contend this will perform

a significant improvement in security across the industry.

1.2 Memristors

The memristor is a passive hardware element first proposed by Chua [5] in 1971

and realized by HP in 2008 [6]. These devices have a dynamic resistance which can be

controlled by passing in voltages. When a high voltage is passed across, its resistance

changes, allowing it to be modified. By programmatically controlling the reads and writes,

the device’s resistance can be quantized and interpreted as a binary value.

dφ = M ·dq (1)

There are many proposed kinds of materials which behave like a traditional mem-

ristor in its ”pinched hysteresis loop” [7]. The memristance is defined as a relationship

between magnetic flux and capacitance above (Equation 1).

M(q) = Ro f f ·
(

1− µ · v ·Ron

D2 ·q(t)
)

(2)

With high voltage, the impedance of a memristor will fluctuate between a high
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resistance Ro f f and a low resistance Ron [8]. This relationship can be defined as a function

of charge as shown above (Equation 2).

1.2.1 Kinds of Memristors

Memristors represent a new class of non-volatile memory devices which exhibit

resistive switching behavior. This means that their resistance can be changed by applying

an electric field or current, and the new resistance state will be retained even after the field

or current is removed. Within this class, there are multiple kinds of physical devices that

have this behavior.

1.2.1.1 Magnetoresistive Random-Access Memory Magnetoresistive Random-

Access Memory (MRAM) is a type of non-volatile memory which exploits properties of

magnetism to store data [9]. Two ferromagnetic plates are used for each memory cell.

One plate is fixed at a specific magnetic polarity while the other plate’s magnetism can be

changed in order to represent a binary value.

1.2.1.2 Phase-Change Memory Phase-Change Memory (PCM) is another kind

of non-volatile memory. When specific electric currents are passed into a memory cell, a

heating element can cause chalcogenide glass to become amorphous or enter one of many

crystal states [10]. Its multiple kinds of states could allow a single cell to hold more than

one bit of data [11].

1.2.1.3 Spin Transfer Torque Magnetic Tunnel Junction One particular hard-

ware device is referred to as either STT-MTJ (Spin Transfer Torque Magnetic Tunnel Junc-

tion) or STT-MRAM (Spin Transfer Torque Memristive Random Access Memory) [12].

Each one has two magnetic layer with particular orientations, as shown in Figure 1. Pass-

ing a current through the thin magnetic layer, it can permanently flip the orientation. Thus,

the orientation of each one can be read as a binary value.

3



Figure 1

STT-MRAM Has Two Layers Which Can Have Opposing or Aligned Magnetic Orientations

1.2.2 Evaluating and Selection of Memristor Hardware

Each type of memristor has its own advantages and disadvantages. MRAM is the

most mature technology and is already being used in some commercial products. It is

fast, energy-efficient, and has a long endurance. However, it can be expensive to produce.

PCM is less mature than MRAM, but it has the potential to be much cheaper and denser.

However, it is slower and less energy-efficient than MRAM.

STT-MTJ is the newest type of memristor and is still under development. It has the

potential to combine the best features of MRAM and PCM, but it is still very expensive

and difficult to produce [13]. This research proceeds with the assumption of improved

manufacturing capabilities.
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1.3 Realization of Memristors

Memristors are a relatively new class of devices, and there is still much research

to be done on how to best realize them in physical systems. One approach is to develop

mathematical and circuit models that can be used to simulate memristor behavior.

Kahale et al. propose a mathematical model for memristors, creating a MATLAB

program to simulate them [8]. Their model is based on accurately measuring the electrical

properties, particularly at the edges of the hysteresis loop.

Many circuit models of memristors have been proposed. Kvatinsky proposed a gen-

eral memristor model called ThrEshold Adaptive Memristor Model (TEAM) [14] and later

Voltage-ThrEshold Adaptive Memristor Model (VTEAM) [15]. This research focuses on

creating models implemented as SPICE models, a common framework for circuit simula-

tion. Using three memristors, one is able to form a 2-input NOR gate.

Another approach to realizing memristors is to develop hardware emulators that

can be used to simulate the behavior of memristors in real time. Luo et al. developed a

hardware emulator of non-volatile memory specifically to create a spiking neural network

[16]. Their emulator is based on a Verilog model of memristors, which can perform matrix

math with high performance.

Kim et al. built upon that research this with a FPGA-based model which is able

to perform a greater variety of applications including fast fourier transformations and AES

encryption [17].

1.3.1 Physical Realization of Memristors

The goal is to have physical memristor devices which are available in large quan-

tities for manufacturing in devices such as smartphones and IoT devices. There is a lot of

ongoing research into production for commercial applications.

One promising approach is to use crossbar arrays of memristors to create logic gates
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and memory devices. Crossbar arrays are simple and scalable, and they have the potential

to be used to create high-performance, low-power computing systems [18]. Chakraborty

et al. examined sneak-paths in crossbar architectures, where signals travel through incor-

rect paths and can lead to data errors [19]. This requires second-order design in order to

minimize the risk of mistakes.

1.4 Applications of Memristors

As models have developed, they have been used in pursuit of specific applications.

With fast, low-power, small memory systems, a lot of research has targeted specific kinds

of applications.

1.4.1 Neural Networks

Memristors are particularly well-suited for use in neuromorphic computing sys-

tems, which are inspired by the human brain [20]. Neuromorphic computing systems are

able to learn and adapt in a way that is similar to how the human brain works. This makes

them ideal for applications such as machine learning and pattern recognition. Schuman et

al. examine novel algorithms which can run in neuromorphic computers [21].

The pinched hysteresis effect of memristors has been studied in relation to building

neural networks. In addition to Luo et al, other research has been done on this subject.

Joshi et al. studied the use of memristors in generalized resistive RAM (ReRAM)

accelerators for deep learning [22]. They examine the benefits but also analyze non-

idealities. One example they study is PUMAc, which uses a custom instruction set archi-

tecture (ISA) with a custom compiler in order to optimize the use of registers and optimize

for power. Their research also looks at TraNNsformer, optimized for training AI models

and GENIEx, which is a simulator for non-ideality conditions.

Lazaro et al. propose a physical simulator built on top of a 1.2V LTSpice model

called KNOWM, implemented in a real memristor development kit in order to study clas-
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sifier models [23].

In order to study the usage of memristive memory in neural networks and deep

learning, an open-source software package called MemTorch has been developed [24]. It is

written on top of the PyTorch framework for Python-based machine learning applications

[25]. This framework uses simulations of memristors, creating a virtual crossbar represen-

tation in order to research novel applications and use-cases.

In addition to developing simulations and models, more recent work has focused

on manufacturing real hardware. Yao et al. presented a convolutional neural network

(CNN) chip implemented with 2048 real memristors to develop a five-layer CNN in order

to achieve high accuracy on MNIST image recognition [26].

An experiment performed last year by Wan et al. developed NeuRRAM, a physi-

cal RRAM-based chip which uses compute-in-memory to perform machine learning tasks

accurately with great improvements in energy efficiency [27].

1.4.2 Edge Computing and Other Applications

Edge computing is a paradigm in which data is processed and analyzed at the edge

of the network, rather than being sent to a central cloud server. Memory that requires a

small amount of area and no power consumption in a passive state makes it work well for

Internet of Things (IoT) applications. Specifically, the use of memristors has been studied

in a number of edge computing applications.

Huanhuan et al. studied the use of memristors to accelerate the ShuffleNetV2 im-

age classification algorithm on low-power devices [28]. They found that memristors can be

used to achieve significant performance improvements over traditional hardware accelera-

tors.

Donato et al. share research on the input/output behaviors of non-volatile mem-

ory to reduce errors, energy consumption, and speed [29]. They propose a system called

MEMTI which uses a multitask learning technique to improve the performance of an image

7



classification model.

As IoT devices have low power requirements, Pala et al. propose a system called

Freezer which caches device state in non-volatile memory as a power cycle occurs [30] in

order to achieve two orders of magnitude improvement in backup time.

Research into the machine learning capabilities of memristors could enable AI in

edge computing applications without requiring a lot of power. Contemporary AI on the

edge sensors require large batteries in the hundreds of milliamp-hours, which then neces-

sitate large and expensive charging circuits [31]. Reducing costs and power could enable a

broader adoption of sensors in a greater number of applications.

Tan et al. recently processed a convolutional neural network (CNN) using a 16-

level ReRAM in-memory compute architecture to serve as the core for an electronic nose,

which takes in gas and concentration data to identify the kinds of odors in the air [32].

For data-rich applications such as mixed reality (XR), edge computers need to be

able to process a lot of data in a small, wearable form factor while consuming a small

amount of power [33].

The behavior of memristors present other kinds of applications which have been

less studied up to this point. First, they could serve as a new form of analog memory and

analog devices such as amplifiers, filters, and digital-to-analog converters [34]. Shin et

al. demonstrated the use of memristors to build a midband differential gain amplifier [35].

Memristors have also been shown to be used in bandpass filters [36].

This could lead to the development of new electronics which are more efficient and

smaller than contemporary hardware. Also, they can be connected together to form logic

gates and other kinds of circuit components.

Research has also been conducted into its resilience to space-based radiation, which

can cause single-event upsets [37, 38]. The ”MemSat” project was a CubeSat which

launched with the aim to test the reliability of memristor-based memory compared with

standard and radiation-hardened NAND flash memory.
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1.4.3 Software Implementation of Memristors

Software implementations for memristors and non-volatile memory have been slower

to develop than hardware implementations. This is because memristors are a relatively new

technology, and there is still much research to be done on how to best use them in software

systems.

Having fast memory which is also non-volatile can impact a lot of applications and

software libraries. As memristors are non-volatile, they retain their state even after power

is removed. This can be beneficial for some applications, but requires larger rewrites of

these applications. Memaripour et al propose a framework called Breeze for non-volatile

memory management which is able to achieve some minor performance improvements

[39].

Another challenge of implementing memristors in software is that they are analog

devices. This means that their state can vary continuously, rather than being discrete like the

state of a traditional memory cell. This requires fine-tuning of analog-to-digital hardware

and the need to develop new error correction algorithms [40].

Ye et al. propose a transparent approach where the first two bits of a memory ad-

dress can be encoded with the desired memory architecture without requiring large rewrites

[41].

Agrawal et al. studied the usage of memristors in stochastic computing [42]. Stochas-

tic computing is a type of computing that takes advantage of the probabilistic nature of

analog devices. Agrawal et al. showed that memristors can be used to perform stochastic

operations more efficiently than traditional hardware.

Abreu presents new challenges to programming stochastic computer systems, as

they must be resilient to inherent noise and their distributed nature [43].

Sliper et al. proposed a software journaling framework for tasks in intermittent

computing systems [44]. Intermittent computing systems are systems that are frequently

powered off and on. Sliper et al.’s framework allows tasks to be resumed intelligently
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even if the system is powered off before the task is complete. This generally is known as

persistent computing [45].

In addition to designing circuits to efficiently perform in-memory computing, soft-

ware interfaces will need to be designed to receive memory and instructions from a central

processing unit (CPU). Not enough research has focused on instructions that fit into mod-

ern instruction set architectures (ISA) which are consistent but also can be extended to

work with this new domain of analog signals [46]. Additionally, improvements to program

compilers will need to updated to incorporate these instructions.

1.4.4 File Systems

Memristors have the potential to revolutionize the way that file systems are de-

signed. Traditional file systems are designed for volatile memory, which means that all

data is lost when the power is turned off. Memristors, on the other hand, are non-volatile,

which means that data can be retained even when the power is off.

Wu et al. explored the use of memristors in file systems for intermittent computing

systems [47]. Intermittent computing systems are systems that are frequently powered off

and on. Wu et al.’s research showed that memristors can be used to create file systems that

are able to resume operations automatically after a power cycle.

When a low-power, potentially batteryless device, is rebooted, it must be able to

resume those tasks automatically.

Most memristor applications are studied with two states: high resistance and low

resistance. However, the device resistance can change along a spectrum between both ends.

This could be used to create denser storage by using a memristor cell to store multiple bits.

An analog-to-digital converter connected to a memristor which supports additional middle

tiers of resistance would enable a multi-bit cell.

One experiment by Rao et al. created an 11-bit conductance level manufactured

onto a real CMOS chip. This enables a single memristor to store 2048 bits of data reliably
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[48]. Improved performance per memristor cell can enable this hardware to perform well

at a greater scale even if manufacturing each one is more difficult compared to standard

NAND flash today. This would also have performance improvements for area size and

power.

1.4.5 NVM-Only Systems

Research on memristors and their applications in computing have touched upon the

idea of an NVM-only system [49]. Given the benefits of non-volatility, what would an

operating system look like where there was only non-volatile memory instead of standard

RAM?

NVM-only systems have numerous theoretical advantages over a traditional mem-

ory system including power efficiency, resilience, and performance. Storage-class memory

is the name given to this class of low-power non-volatile memory architectures [50].

One challenge is that NVM-only systems require new operating systems and soft-

ware that are designed to take advantage of the unique properties of NVM. Another chal-

lenge is that NVM is still a relatively new technology, and it can be more expensive than

traditional memory. Despite many promising factors, it has yet to prove itself in real sys-

tems.

NVM memory systems haven’t achieved speeds comparable to contemporary RAM

[51]. Still there is plenty of research on improving computer architectures to take advantage

of this technology.

1.5 Processing In-Memory

STT-MRAM circuits are an active area of research for being useful for memory

while also having low power and area requirements. Unlike DRAM, it is non-volatile and

thus doesn’t require constant power refreshing. These benefits allow it to serve as a viable

candidate for next-generation memory.
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As computing evolves, with new chips promising smaller sizes and faster speeds,

the current computer architecture design has revealed bottlenecks that have slowed down

improvements. The ”Von Neumann bottleneck” [52] describes the issue where moving data

from memory to processing requires a lot of energy and slows down the pace of execution.

Memristors offer a way to circumvent this bottleneck.

Memristors can be laid out in a crossbar structure and used to create logic gates [53].

A memory device that can also perform logic would enable certain computer operations to

be executed entirely within the memory unit. This in-memory processing [52] would then

serve as an alternative for some instructions rather than the Von Neumann architecture.

The kinds of operations that can be performed in-memory is an area of active re-

search. Song et al. recently proposed ReFloat, which uses resistive RAM to perform

floating point operations and matrix-vector multiplication in the analog domain [54]. By

removing the computation bottleneck and centralizing memory and compute operations,

they were able to achieve an order of magnitude improvement in performance.

1.6 Secure Enclaves

Secure enclaves are dedicated hardware environments or coprocessors where trusted

code can be executed [55]. This may be integrated into existing CPUs such as Intel’s Soft-

ware Guard Extensions (SGX) or an external hardware peripheral where users can securely

authorize operations using their credentials [56]. These environments are critical for ensur-

ing executable operations are verified.

New organizations like the FIDO alliance building new standards for secure re-

quests over the Internet. These standards use second-factor hardware authentication and a

transparent, passwordless system to improve trust and reduce the risk [57].

In all of these cases, there is a need to use modern cryptography and random num-

bers to generate keys which are unpredictable by malicious actors. As software systems

are unable to be truly random, they will use various deterministic values which seed the
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number generation algorithm which can be exploited [58]. Slow processors mean it is pos-

sible for an attacker to exploit the system by controlling the moment a random number is

generated.

A seed is supposed to be a value which sets the initial state in pseudo-random

number generators [59]. The kinds of values used should be difficult for attackers to guess.

If they have the initial seed, they will be able to generate the same numbers as you. Often

a system timestamp is used, although it requires a sufficient amount of resolution to match

the desired entropy.

In one recent cryptocurrency application, a bug made it easy for attackers to break

the random number generator to steal private keys [60]. This wallet generated a passkey

with only 32 bits, a small amount of entropy. Additionally, the input seed was incorrectly

entered, making it easy to exploit.

Another recent security vulnerability uses a lattice. This is essentially a struc-

ture which contains a series of vectors in vector space, which can often be likened to a

specifically-constructed matrix or a graph. It can be useful in crytographic applications.

Here, it was used to break RSA private keys due to bugs in the hardware implementation

[61].

Other RNG bugs have made it trivial to determine both future and previous num-

bers, which can reveal a large number of internal secrets to a potential attacker [62]. There

is a trade-off between communication performance and security. If the total number of bits

are too low, attackers are able to brute force a small number examples to obtain private

keys [63]. However, greater entropy comes at a cost of a slower speed in generating each

cryptographic key.

The security concerns are amplified in IoT systems, where devices require minimiz-

ing power and area. This results in slower processors which are often unable to perform

state-of-the-art cryptography. New paradigms like backscattering can minimize the need

for on-device power [64], but then requires processing to be low-power as well. Addition-
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ally, small cheap sensors do not have much space for additional expensive components.

Major attacks on networks of devices have been exacerbated by poor security prac-

tices including re-use of passwords and out-of-date cryptography [65]. There’s a strong

need to create a cryptographically secure random number generator [66].

Memristors and STT-MRAM are promising technologies to address contemporary

challenges of security and performance in embedded systems. Using them to generate

truly random numbers through secure processors should allow IoT devices to be made

more secure and efficient.

1.7 Encryption

Cryptography as a field requires a way to securely generate keys for both encryption

and decryption. This is critical to transmit private content over the Internet. As our data

needs continue to grow, it is important that the amount of computing time dedicated towards

encryption does not similarly grow.

Memristors have the potential to be used to improve the performance and security

of encryption algorithms. Memristors are non-volatile memory devices that can be used to

create physical random number generators (PRNGs). PRNGs are essential for generating

secure keys, and memristor-based PRNGs have the potential to be more secure and efficient

than traditional PRNGs.

Arumi et al. proposed a current-starved ring oscillator with an odd number of non-

volatile memory inverters, which would alternate an output signal of HIGH and LOW,

which then becomes an input for the next output. With a non-deterministic high resistance

value, the oscillator frequency becomes unpredictable and thus chaotic [67]. By adding a

transistor, the system is able to control the drain current and the oscillation.
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1.7.1 Image Encryption

Image encryption is one extension of cryptography which involves converting an

image into noise predictably so that it can be decrypted back to the original source only by

having the original keys.

Previous research has investigated topics including using neural networks to encrypt

and decrypt images with a high degree of sensitivity while also performing well in terms

of megabits-per-second. Bigdeli et al. propose using a Hopfield neural network which uses

three secret parameters and chaos functions to do this task reliably [68].

Lin et al. build on this research by using a theoretical memristor network to ac-

complish the same tasks [69]. Das et al. build a memristor-based image encryption system

which supports colored images [70]. Their encryption algorithm uses truly random num-

bers to rotate and scramble small segments of the image. This workflow is shown below in

Figure 2. The algorithm is shown below in ??.

Chen et al. examine a faster image encryption algorithm which uses pseudo-random

number generation and a 480-bit external key [71]. However, relying on an external pseudo-

random component can present additional security risks that can be mitigated through an

integrated design.
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Figure 2

The Operations to Perform Image Encryption With Memristors

Figure 3

Algorithm 1. For Scrambling and Encrypting an Image
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Chapter 2

Design & Implementation

2.1 Hardware Circuit

The proposed hardware implementation for the security module is based on the

STT-ANGIE design by Perach et al. [4]. This circuit consists of a capacitor, N memristors,

and N sense amplifiers. Specifically they choose STT-MRAM as the hardware for the

memristors due to their low power requirements. This is shown in Figure 4.

There are three stages to perform this number generation. First, the processor

charges the capacitor to Vinit . Next, it discharges the capacitor across the N memristor

cells. Finally, the sense amplifiers read the output of each memristor. A sense amplifier

generally is an electronic circuit which is able to magnify the difference in voltage of two

nodes [72]. This amplified voltage can then be quantized to a binary value. Each output,

being a binary value, can be concatenated together to form an N-bit number. This workflow

is shown in Figure 5.

The individual material properties of each memristor cell cause the output voltage

of each memristor to be slightly different in a way that is non-trivial to replicate perfectly.

It also is difficult for physical analyzes of individual cells by observing the physical state.

This resistance to common side-channel attacks results in a truly random number which

cannot be easily obtained by an attacker.

Other designs for memristive random number generators explore specific kinds of

distributions. Dong et al. present a memristor-based Gaussian random number generator,

though only at the hardware level [1].
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Figure 4

Hardware Diagram of a Truly Random Number Generator Using STT-MRAM

Figure 5

Operation Flowchart for Generating an N-Bit Random Number
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Table 1

Added RISC-V Instructions

Instruction Machine Code Description

TRNG.RESET 0x8006027 Charges capactior

TRNG.ENABLE 0xA006027 Discharges caps to memristors

TRNG.READ 0xC006027 Reads impedance of memristors

2.2 Instruction Set Architecture

To implement the hardware circuit in software, three new instructions were added to

the RISC-V instruction set architecture [73]: trng.reset, trng.enable, and trng.read. Each

instruction is meant to take a single clock cycle. These instructions and opcodes are shown

in Table 1.

The trng.reset instruction is implemented as J-type instruction which takes a single

numerical parameter. This input value is used as the seed. This is useful for simulation

purposes but can also serve as an optional modifier to the voltage which will charge the

capacitor.

The trng.enable can also be implemented as a J-type or U-type instruction although

it has no parameters. This instruction discharges the capacitor into each memristor in the

row.

The trng.read can be implemented as any instruction with a destination register.

This can also be a J-type instruction with no parameters. This instruction reads the value of

each memristor, quantizes it into a binary value, and then concatenates them into a single

N-bit number which is placed into Rd .

A single user-level C-lang function can be written which executes these three as-

sembly instructions in sequence by taking a pointer and setting the value to the output of

the trng.read instruction.

19



2.3 Cryptography Functionality

The proposed security module can be used to implement a variety of higher-level

cryptographic functions. For example it can generate hashes, scramble strings of characters,

and generate one-time passcodes.

Based on the MemHash paper, a function was developed to perform a one-way

scramble function on a string of characters in userspace [74]. A 6-bit character encoding

was defined using primarily alphanumeric characters and assorted punctuation. For each

character in the provided string, a random number is generated. Then the modulus is taken

in order to generate the output character.

Generating hashes of inputs can serve as a key to unlock privileged data. Another

function is written which takes in a hashed input. If that input matches the expected en-

crypted string, it will output the desired user secret key. Otherwise, it will output an error

message.

For example, consider a password manager application which stores a collection

of secret passwords in a secure memory space. To access any one of these passwords,

it requires a primary password. However, for security purposes this password should be

encrypted in transit. The password can be encrypted before being checked.

As shown in Figure 6, if my primary password is PASSWORD, this scramble func-

tion may first generate the hashed password BN,?9? ==!9A. The secrets manager will

check this against its own stored hash with the same value. Only then will it respond with

the expected output.
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Figure 6

Flowchart Where a Primary Key Can be Securely Exchanged for Secret Key
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Chapter 3

Results

3.1 Simulations Using Gem5

To test the performance of our proposed security module, we used the RISC-V

simulator in Gem5 [75]. The Gem5 simulator creates a reproducible, deterministic envi-

ronment which can run binaries compiled with the modified RISC-V toolchain. A small

change to the Gem5 environment allows for implementations of our three custom instruc-

tions [76]. Software models for the capacitor, memristor cells, and memristor controller

were created. The controller was defined to generate 16-bit numbers, with each cell having

slightly different memristance values to represent these material non-idealities. The code

for these changes in Gem5 is shown in Appendix A.

One quirk is that the Gem5 environment is very deterministic, such that the rand()

function will return the same results on each test run. To add some variety, the trng.reset

introduces a seed parameter which is provided to the srand() function to create more vari-

ety.

This test configuration simulated a 1 GHz RISC-V processor with DDR3 memory

which, when started, will only execute the test program and then shut down. Table 2 shows

the specific parameters chosen. In Gem5 these configurations are represented by a Python

file which includes a path to a binary executable to run.

A test program was defined which could perform the operations described above.

Two versions were developed. One emulates the truly random number generator using

these custom instructions. The other uses the standard C library to perform the same ac-

tions. Optimizations were disabled when compiling each program for fair results.
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Table 2

Gem5 Test Parameters

Property Value

Memory Ranges 512MB

CPU RiscvTimingSimpleCPU

DRAM Type DDR3-1600

DRAM Capacity 512MB

DRAM Config 8x8

Clock Speed 1 GHz

3.2 Random Number Generation

In this program, 16-bit random numbers were generated and printed for N iterations.

The total time of program execution within Gem5 for both programs was measured. As the

Gem5 simulation was set to run at 1GHz, the times are defined in nanoseconds. As shown

in Table 3, the MTJ program quickly becomes faster as more random numbers have to be

generated.

Running these tests more granularly, it shows that each random number genera-

tion in the standard case takes 69 microseconds while taking 63 microseconds in the MTJ

case. This means that more random numbers could be used while maintaining existing

performance, which can help with security.

3.3 Password Retrieval

In a second program, a user-generated password is hashed for N iterations. The

total time of program execution with Gem5 for both programs was measured. The code for

this program is shown in Appendix C.
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Table 3

Performance of Generating N Random Numbers

Iterations CPU (ns) STT-MTJ (ns) % Difference

5 427923 411351 96.1%

6 497013 472206 95.0%

50 3551399 3273333 92.2%

100 7013797 6454726 92.0%

150 10474907 9626550 91.9%

200 13946042 12802170 91.8%

As shown in Table 4, the standard case continues to outperform the MTJ case for

any number of iterations. Scrambling an 11-character phrase ”Hello World” takes 2.0 mil-

liseconds in the standard case while it takes 1.93 milliseconds in the MTJ case for each

iteration. This allows more phrases or longer phrases to be scrambled at contemporary

performance.

The difference in speed does reach a bottleneck quickly as a lot of CPU time is

taken by performing the array lookups for the scramble operations and relatively little time

is spent generating random numbers.

3.3.1 Ideal Bit Length

The ideal number of bits to generate is worthwhile investigating as well. The num-

ber of bits in the Gem5 simulator was adjusted from 1-32, doubling in each iteration. The

amount of time it took to run 5 iterations versus 6 iterations was checked and then the

difference was used to obtain the per-iteration value.

Figure 7 and Figure 8 below shows the length of time to generate a single N-bit

random number or scramble a single character using an N-bit system. As shown from the
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Table 4

Performance of Scrambling N Messages

Iterations CPU (ns) STT-MTJ (ns) % Difference

5 10052966 9741418 96.9%

6 12043380 11669562 96.9%

50 97973371 95672377 97.7%

100 195846534 191248596 97.7%

150 293719696 286824815 97.7%

200 391592859 382401034 97.7%

simulations, the more bits used in the MTJ architecture leads to slightly longer performance

times but still manages to be faster than current architectures up to 16 bits. The number of

bits did not meaningfully change the performance of standard systems.

In a production system, the number of bits would be used to generate each character

of an encrypted message. Keys with a greater amount of entropy would generate a random

value for every bit of the final key.

3.4 Measuring and Comparing Randomness

To measure the randomness of algorithms, the National Institute for Statistics and

Technology (NIST) have developed different statistical tests that aim to measure entropy.

The frequency test can be run on a large dataset of numbers [77].

A short program was written to generate 1024 random numbers in both configura-

tions. See Appendix B for the code. These numbers were then converted to binary. A count

of the ones and zeros of each binary number was taken using a short JavaScript program.

See Appendix D for the code. Both values were set to generate 32-bit numbers. The distri-
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Figure 7

Performance of Random Number Generation by Bit Length

Figure 8

Performance of Scrambling Characters Generation by Bit Length
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bution of numbers using the standard Gem5 CPU configuration is shown in Figure 9. The

distribution of numbers using the STT-MRAM configuration is shown in Figure 10.

In a perfectly uniform, random distribution, the ratio of ones to zeros should be

exactly 0.5. We can see from Table 5 that both the CPU and STT-MRAM cases have

averages close to 0.5.

We next must calculate a ratio between the summation Sn and the square root of the

number of entries n, where n = 1024 in our test case. Sn is defined as the sum of the total

count of ones subtracted by the total count of zeros as shown in Equation 3. In a perfectly

uniform, random distribution, these counts should cancel out. In a random sample, this

value will not be perfectly matched and the value of Sobs is meant to statistically verify that

this number is within expected bounds.

We then calculate a statistical value Sobs which is shown below in Equation 4.

The statistical test is shown in Equation 5. The value of Sobs must be lower than

φ−1, which here represents the percent point function of the standard normal distribution.

The value of α is set as 0.01 as our p-value.

Given the test conditions, Sobs must be less than 0.840 to be considered sufficiently

random. The results are shown below in Table 6.

We can see that the STT-MTJ is statistically shown to be random, 23 percent lower

than the value calculated for the standard CPU case. However, we also see that the value

for that case is higher than our expected threshold.

As noted above, Gem5 generates the same random numbers each time the simula-

tion begins as it is very deterministic. This probably means it is not a very good platform

for testing randomness in a system. It may be true that Gem5’s implementation of random

numbers is not sufficiently random. At the same time, we do see that our STT-MTJ system

is much better even in this case.

Sn = ∑Oi −∑Zi (3)
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Figure 9

1024 Random Numbers Generated by Gem5

Table 5

Statistical Measurements of Random Number Sets

Config Average Standard Deviation

CPU 0.484 0.089

STT-MTJ 0.487 0.078

Sobs =
|Sn|√

n
(4)

Sobs < φ
−1(1− α

2
) (5)
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Figure 10

1024 Random Numbers Generated by STT-MRAM

Table 6

Statistical Calculations of Random Number Sets

Config Sn Sobs

CPU 32 1.009

STT-MTJ 25 0.783
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Table 7

Statistical Measurements of Random Number Sets

Config Average Standard Deviation

CPU 0.484 0.089

STT-MTJ 0.487 0.078

Windows 0.501 0.088

Table 8

Statistical Calculations of Random Number Sets

Config Sn Sobs

CPU 32 1.009

STT-MTJ 25 0.783

Windows 6 0.186

3.4.1 Expanded Randomness Testing

After these initial results, we can expand the systems we use to measure and com-

pare entropy. The C program run in Gem5 was recompiled to run on a Windows 10 PC,

outside of the sandboxes and virtual environments. This program was then run to generate

random numbers using the CPU. The average and standard deviation are shown in Table 7.

The Windows execution environment is much closer to a perfect average, suggest-

ing that Gem5 was providing a barrier even in the STT-MTJ test. These random numbers

can then be processed in the same way as above to obtain values of Sn and Sobs, as shown

in Table 8.

We see that the Windows CPU is much more random than the Gem5 CPU. It may

require a physical realization of this system to verify whether the 23 percent improvement
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in entropy is still applicable.
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Chapter 4

Discussion

Getting consistent improvements to operation time can allow for more complex ran-

dom number generation in the same amount of time. For additional security, the number of

bits can increase to provide more entropy and reduce the likelihood of brute force and birth-

day attacks. Additionally, hashing operations can support longer phrases without reducing

performance.

It should be acknowledged that the number of bits in a standard processor do not

affect time where they do when using a memristive system. This may be an artifact of trans-

ferring register data back to the program and could be improved through future compiler

optimizations. At the same time, it appears that 16 bits is an appropriate size to achieve

performance benefits while maximizing entropy.

4.1 Physical Characteristics

In addition to performance benefits when using this in applications, there are ben-

efits in terms of power and physical area. The physical size of an N-bit TRNG using

STT-MRAM is roughly 400µm2 while using as little as 6pJ per-bit [4]. This demonstrates

good performance with minimal hardware impact.

These results also show good results for low-end IoT devices. Additional security

with minimal area and power requirements can allow them to provide improved encryption

when uploading and downloading data in order to minimize the potential risk of an attack.

Further research may focus on ways to improve the circuitry in order to improve

the performance of random number generation. Song et al. investigate ways to optimize

the behavior of the sense amplifier in order to maximize the speed of generation [78].
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4.2 Security Implications

Being able to generate truly random numbers makes it unlikely that attackers are

able to use RNG manipulation to guess the values of keys. As the randomness depends

on process-based differences to increase entropy, an attacker cannot use easily-obtainable

methods to break the RNG.

More research will be needed to examine and mitigate potential attacks which may

manipulate the environmental factors of memristors and change their characteristics in

ways that may weaken their non-determinism. For example, changes in the ambient tem-

perature can alter the ON/OFF state resistances of memristor cells [1]. Taken to more

extreme temperatures, it could cause a way to generate deterministic values. Another fac-

tor to study is how the manipulation of supply voltage could cause a deterministic output

[67].
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Chapter 5

Future Work

I envision a truly-random number generator having the most benefit for Internet of

Things sensors, which will require cryptography to send encrypted data to a base station

without consuming a lot of power or using a lot of physical area.

A fleet of low-cost sensors can measure soil moisture on large farms, then send their

results to an irrigation system to provide the perfect amount of water for crops. Precision

agriculture can improve yields and reduce food waste without needing more land [79].

Cities can deploy sensors to monitor traffic, both pedestrian and vehicles. Dense

environments can often become congested, and measuring usage can help urban planners

understand what work needs to be done to improve resident quality of life.

These sensor networks can send data over Low-Powered Wide Area Networks

(LoWPAN), which enable signals to be sent and relayed over many miles [80]. In cities,

they can send data over 5G networks.

Additionally, low-powered sensors can take advantage of ambient broadcasts and

use backscattering to remove the need for batteries. Data can be safely cached in memris-

tors as memory cells through intermittent computing, then broadcast when it has accumu-

lated enough power.

5.1 Cryptographic Integration

Future work should investigate standardized cryptographic and hashing algorithms

to incorporate them into this memristor processing unit through in-memory computing. In

particular, encrypting image and video frames efficiently is an active area of research. There

are a number of companies creating security cameras and market cloud-based analyses of

video content. AI vision is also coming to more gadgets including robot vacuums [81]. The
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sensitive nature of these videos mean high-quality encryption is necessary for consumers

to trust their data is secure.

It might be possible that existing algorithms are not ideal for memristor processing

units. In that case, security experts should work with NIST to develop new standards along

with tests to measure randomness.

5.2 Firmware Improvements

The results are demonstrated for 1-bit memristor cells. Future work could inves-

tigate performance at higher bit-levels. This may reveal areas for optimization, including

lower power and area in order to achieve similar or better results.

The focus of this research was comparing non-volatile memory to an equivalent

volatile memory architecture. Most of the hardware specifications were the same. If the

system hardware was taken into account, there could be other opportunities for optimiza-

tion.

For example, the truly-random number generator is activated and the number is

sent to a volatile memory space. Future developments could develop a single hardware unit

which has both random number generation and memory which can be called once by the

CPU to improve performance.

Other hardware changes could include investigating performance changes at slower

or faster CPU clock speeds, lower or higher memory sizes, and the effects of parallelization

to measure relative performance.

Additionally, this research focuses on just a single example of how memristors can

be used to accelerate computing performance. There are many other operations which

could be researched and the number of instructions can grow to lead to, on net, a large

improvement in performance.

As memristor outputs are analog in nature, changing the output of each cell to

support additional conductance levels can offer greater performance [34]. However, trade-
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offs with security must also be considered and studied.

5.3 Security Verifications

The security implications of memristor processing units have not been studied thor-

oughly but will be necessary to develop sufficient trust among high-risk institutions. Future

work should include a closer examination of this proposed TRNG to see whether it is more

secure than the state-of-the-art of whether there could be novel attacks.

For example, external magnetic fields could be used to forcibly reset the memris-

tor inputs [74]. A high temperature could generally affect the performance and lead to

more predictability. There may be necessary mitigations in both hardware and software to

prevent these kinds of attacks.

5.4 Hardware Integration

This research was not conducted using physical hardware. Future research should

look at the physical limitations of memristors for in-memory computing, such as the up-

per bound for speed and endurance [46]. Adopting a different circuit design like a ring

oscillator has been shown to theoretically improve generation speeds [67].

In this work, I only investigated STT-MRAM as a potential hardware choice. Future

work could examine other kinds of non-volatile memory such as PCM to see if it would

have faster switching times and allow for random numbers to generated faster.

5.5 NVM-Only Systems

The benefits of using memristors is clearest in the Internet of Things, but can grow

over time as more improvements are developed. More research and development of in-

memory computing can highlight additional performance changes. This may lead devices

to forego NAND Flash and RAM entirely and use a hybrid system of memristor cells for
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storing both volatile and non-volatile data.

Microcontrollers and other small mobile devices would benefit a lot, but these ben-

efits could grow to include more powerful hardware. The development of NVM neural

networks could accelerate a lot of modern applications while running offline, on-device.

Although RAM by default is faster, additional benefits from processing in-memory can

reduce the Von Neumann bottleneck and generally improve compute performance.

This kind of system would require many applications to be redesigned. Not only

would they change the kind of memory, but the behavior would change. Closing an ap-

plication would not necessarily reset the memory and a reboot would not necessarily fix a

computer in a bad state. This would provide programmers with more choices in how their

applications run across sessions.
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Chapter 6

Conclusion

In this paper, I have developed an in-software simulation of a memristor processing

unit and developed a TRNG using these memristors. This TRNG can generate numbers at

a speed comparable or better than current architectures.

The RISC-V instruction set was amended to include three new commands relating

to charging, discharging, and reading data to this processing unit. The RISC-V compiler

and the Gem5 systems were updated in order to handle these new instructions and provide

the CPU with random numbers.

A small program was written in C to call these new instructions to perform mes-

sage scrambling. Compared to using a scrambling program using standard pseudo-random

number generation, this new program was just as fast or faster.

This makes it a promising candidate for innovative applications which require truly

random number generations. I believe this proposed TRNG can be a valuable tool for

applications that require efficient security.

More generally, manufacturing of memristors will need greater scale and lower

costs to make it broadly useful. We have seen more research and adoption of this tech-

nology in recent years and the field of non-volatile memory looks to continue growing in

interest.
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[56] T. Roche, V. Lomné, C. Mutschler, and L. Imbert, “A side journey to titan,” in 30th
USENIX Security Symposium (USENIX Security 21), USENIX Association, Aug.
2021, pp. 231–248, ISBN: 978-1-939133-24-3. [Online]. Available: https : / /www.
usenix.org/conference/usenixsecurity21/presentation/roche.

[57] S. Ghorbani Lyastani, M. Schilling, M. Neumayr, M. Backes, and S. Bugiel, “Is
fido2 the kingslayer of user authentication? a comparative usability study of fido2
passwordless authentication,” in 2020 IEEE Symposium on Security and Privacy
(SP), 2020, pp. 268–285. DOI: 10.1109/SP40000.2020.00047.

[58] T. Ngo and A. Williams, “Entropy lost: Nintendo’s not-so-random sequence of 32,
767 bits,” in Proceedings of the 17th International Conference on the Foundations
of Digital Games, ser. FDG ’22, Athens, Greece: Association for Computing Ma-
chinery, 2022, ISBN: 9781450397957. DOI: 10.1145/3555858.3563265. [Online].
Available: https://doi.org/10.1145/3555858.3563265.

[59] Unknown, Sp 800-90a rev. 1, recommendation for random number generation using
deterministic random bit generators. [Online]. Available: https://csrc.nist.gov/pubs/
sp/800/90/a/r1/final.

44

https://doi.org/10.1147/rd.524.0439
https://doi.org/10.3390/electronics9061029
https://www.mdpi.com/2079-9292/9/6/1029
https://doi.org/10.1109/MM.2018.053631137
https://doi.org/10.1109/ICCAD.2017.8203782
https://doi.org/10.1145/3581784.3607077
https://doi.org/10.1145/3581784.3607077
https://doi.org/10.1145/3581784.3607077
https://www.usenix.org/conference/usenixsecurity21/presentation/roche
https://www.usenix.org/conference/usenixsecurity21/presentation/roche
https://doi.org/10.1109/SP40000.2020.00047
https://doi.org/10.1145/3555858.3563265
https://doi.org/10.1145/3555858.3563265
https://csrc.nist.gov/pubs/sp/800/90/a/r1/final
https://csrc.nist.gov/pubs/sp/800/90/a/r1/final


[60] CVE-2023-39910. Available from MITRE, CVE-ID CVE-2023-39910. Aug. 2023.
[Online]. Available: http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2023-
39910.

[61] K. Ryan, G. A. Sullivan, K. He, and N. Heninger, “Passive ssh key compromise via
lattices,” in 2023 ACM Computer and Communications Security Conference (ACM
CCS), Nov. 2023. DOI: 10.1145/3576915.3616629.

[62] L. Dorrendorf, Z. Gutterman, and B. Pinkas, “Cryptanalysis of the random number
generator of the windows operating system,” ACM Trans. Inf. Syst. Secur., vol. 13,
no. 1, Nov. 2009, ISSN: 1094-9224. DOI: 10 . 1145 / 1609956 . 1609966. [Online].
Available: https://doi.org/10.1145/1609956.1609966.

[63] S. N. Cohney, M. D. Green, and N. Heninger, “Practical state recovery attacks
against legacy rng implementations,” in Proceedings of the 2018 ACM SIGSAC Con-
ference on Computer and Communications Security, ser. CCS ’18, Toronto, Canada:
Association for Computing Machinery, 2018, pp. 265–280, ISBN: 9781450356930.
DOI: 10 .1145 /3243734 .3243756. [Online]. Available: https : / / doi .org /10 .1145 /
3243734.3243756.

[64] C. Yao, Y. Liu, X. Wei, G. Wang, and F. Gao, “Backscatter technologies and the
future of internet of things: Challenges and opportunities,” Intelligent and Converged
Networks, vol. 1, no. 2, pp. 170–180, 2020. DOI: 10.23919/ICN.2020.0013.

[65] A. Harit, A. Ezzati, and R. Elharti, “Internet of things security: Challenges and per-
spectives,” in Proceedings of the Second International Conference on Internet of
Things, Data and Cloud Computing, ser. ICC ’17, Cambridge, United Kingdom:
Association for Computing Machinery, 2017, ISBN: 9781450347747. DOI: 10.1145/
3018896.3056784. [Online]. Available: https://doi.org/10.1145/3018896.3056784.

[66] B. Williams, R. E. Hiromoto, and A. Carlson, “A design for a cryptographically
secure pseudo random number generator,” in 2019 10th IEEE International Confer-
ence on Intelligent Data Acquisition and Advanced Computing Systems: Technology
and Applications (IDAACS), vol. 2, 2019, pp. 864–869. DOI: 10 .1109 / IDAACS.
2019.8924431.
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Appendix A

Code for Gem5 Memristor TRNG

static float C HIGH = 20;

static float C LOW = 0;

class Capacitor

{

public:

uint32 t farads;

float coulombs;

Capacitor() {

// Default

this->farads = 50;

}

Capacitor(uint32 t farads) {

this->farads = farads;

}

void setCapacitance(float coulombs) {

if (coulombs < C LOW) {

this->coulombs = C LOW;

} else if (coulombs > C HIGH) {

this->coulombs = C HIGH;

} else {

this->coulombs = coulombs;

}

}

void charge(float volts) {

// V = Q/C
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// V*C = Q

this->setCapacitance(volts * this->farads);

}

float getVoltage() {

// V = Q/C

return this->coulombs / this->farads;

}

};

static uint32 t R HIGH = 100000;

static uint32 t R LOW = 1000;

class SttMtj

{

public:

uint32 t memristance;

uint32 t resistance;

SttMtj() {

// Default

this->memristance = 50;

}

SttMtj(uint32 t memristance) {

this->memristance = memristance;

}

void setResistance(uint32 t ohms) {

if (ohms < R LOW) {

this->resistance = R LOW;

} else if (ohms > R HIGH) {

this->resistance = R HIGH;

} else {

this->resistance = ohms;

}

}
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void applyWrite(float volts) {

if (volts > 0) {

// Writing

uint32 t prob = rand() % 100;

if (prob < this->memristance) {

this->setResistance(R HIGH);

} else {

this->setResistance(R LOW);

}

}

}

bool read() {

uint32 t middleLine = (R HIGH - R LOW) / 2;

if (this->resistance > middleLine) {

return true;

}

return false;

}

};

static uint32 t memristances[] = {

30, 40, 87, 70, 24, 13, 92, 51, // 8

1, 68, 84, 22, 35, 18, 43, 77, // 16

20, 30, 40, 19, 51, 62, 98, 44, // 24

18, 64, 37, 59, 21, 45, 82, 93, // 32

};

#define MEMSIZE 32

class SttMramTrng

{

public:

Capacitor cap;
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SttMtj row[MEMSIZE];

uint32 t length;

SttMramTrng(uint32 t n) {

this->cap = Capacitor(50);

this->length = n;

for (uint32 t i = 0; i < n; i++) {

row[i] = SttMtj(memristances[i]);

}

}

void reset(uint32 t seed) {

srand(seed);

this->cap.charge(5.0); // 5v

}

void enable() {

this->cap.charge(0.0); // Mimic discharge

for (uint32 t i = 0; i < this->length; i++) {

this->row[i].applyWrite(5.0); // 5v

}

}

uint32 t read() {

uint32 t random = 0;

for (uint32 t i = 0; i < this->length; i++) {

// Read each cell in a row to get final out.

random = random << 1;

if (this->row[i].read()) {

random |= 1;

}

}

return random;

}

};

static SttMramTrng sttMramTrng(MEMSIZE);
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constexpr SttMramTrng* sttMramTrng = & sttMramTrng;
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Appendix B

Generate N Random Numbers Program

#define MEM DDR4 1

#define MEM MTJ 2

#if MEM KIND == MEM MTJ

uint32 t truerandom(uint32 t* rng, uint32 t seed) {

uint32 t p1 = seed;

uint32 t p2 = 0;

asm volatile("trng.reset %0, %1, %2\n":"=r"(*rng):"r"(p1),"r"(p2):);

asm volatile("trng.enable %0, %1, ...

%2\n":"=r"(*rng):"r"(p1),"r"(p2):);

asm volatile("trng.read %0, %1, %2\n":"=r"(*rng):"r"(p1),"r"(p2):);

}

#endif

#define ITERATIONS 1024

int main(void)

{

for (uint32 t i = 0; i < ITERATIONS; i++) {

#if MEM KIND == MEM DDR4

srand(i * 100000 + i);

uint32 t rng = rand();

#endif

#if MEM KIND == MEM MTJ

uint32 t rng;

truerandom(&rng, i * 100000 + i);
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#endif

printf("%i\n",rng);

}

return 0;

}
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Appendix C

Scramble Program

#include <stdbool.h>

#include <stdint.h>

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

#define MEM DDR4 1

#define MEM MTJ 2

char scrambleChars[] = {

'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', // 8

'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', // 16

'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', // 24

'Y', 'Z', '0', '1', '2', '3', '4', '5', // 32

'6', '7', '8', '9', ' ', '-', ' ', '=', // 40

'!', '?', '.', ',', '<', '>', '/', '@', // 48

'#', '$', '%', 'ˆ', '&', '*', '(', ')', // 56

'`', '¬', '[', ']', '{', '}', ' |', ':', // 64

};

#if MEM KIND == MEM DDR4

void scramble(char msg[], char output[], uint32 t length) {

for (uint32 t i = 0; i < length; i++) {

srand(i * 100000 + msg[i]);

uint32 t randIndex = rand();

output[i] = scrambleChars[randIndex % 64];
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printf("Scramble char %i: %c -%i-> %c\n", i, msg[i], ...

randIndex, output[i]);

}

}

#endif

#if MEM KIND == MEM MTJ

uint32 t truerandom(uint32 t* rng, uint32 t seed) {

uint32 t p1 = seed;

uint32 t p2 = 0;

asm volatile("trng.reset %0, %1, %2\n":"=r"(*rng):"r"(p1),"r"(p2):);

asm volatile("trng.enable %0, %1, ...

%2\n":"=r"(*rng):"r"(p1),"r"(p2):);

asm volatile("trng.read %0, %1, %2\n":"=r"(*rng):"r"(p1),"r"(p2):);

}

void scramble(char msg[], char output[], uint32 t length) {

for (uint32 t i = 0; i < length; i++) {

uint32 t randIndex;

truerandom(&randIndex, i * 100000 + msg[i]);

output[i] = scrambleChars[randIndex % 64];

printf("Scramble char %i: %c -%i-> %c\n", i, msg[i], ...

randIndex, output[i]);

}

}

#endif

void getSecret(char msg[], char output[], uint32 t length) {

#if MEM KIND == MEM DDR4

char hashedSecret[] = "}0TPSTKFJ&G";

#endif

#if MEM KIND == MEM MTJ

char hashedSecret[] = "BN,?9?==$9A";
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#endif

char pwd[] = "MYPWD";

char noMatch[] = "ERROR";

if (strcmp(msg, hashedSecret) == 0) {

for (uint32 t i = 0; i < length; i++) {

output[i] = pwd[i];

}

} else {

// No match

for (uint32 t i = 0; i < length; i++) {

output[i] = noMatch[i];

}

}

}

#define ITERATIONS 5

int main(void)

{

for (uint32 t i = 0; i < ITERATIONS; i++) {

char in[] = "Hello World";

char out[11];

scramble(in, out, 11);

printf("Scramble msg %s\n", out);

}

char userInputPwd[] = "Hello World";

char hashInputPwd[11];

scramble(userInputPwd, hashInputPwd, 11);

char outputPwd[5];

getSecret(hashInputPwd, outputPwd, 5);

printf("Scramble msg %s\n", hashInputPwd);

printf("Secure enclave returned: %s\n", outputPwd);
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char userInputPwd2[] = "BadPassword";

char hashInputPwd2[11];

scramble(userInputPwd2, hashInputPwd2, 11);

char outputPwd2[5];

getSecret(hashInputPwd2, outputPwd2, 5);

printf("Scramble msg %s\n", hashInputPwd2);

printf("Secure enclave returned: %s\n", outputPwd2);

return 0;

}
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Appendix D

Measure Zeros and Ones Program

const cpu = [ /* Insert numbers here */ ]

const mtj = [ /* Insert numbers here */ ]

const wind = [ /* Insert numbers here */ ]

const cpuToBin = cpu.map(num => num.toString(2).padStart(32, '0'))

const mtjToBin = mtj.map(num => num.toString(2).padStart(32, '0'))

const winToBin = wind.map(num => num.toString(2).padStart(32, '0'))

const countVal = (str, match) => {

return str.split('').filter(char => char === match).length

}

console.log('CPU:')

const cpuOnes = cpuToBin.map(b => countVal(b, '1'))

const cpuZeros = cpuToBin.map(b => countVal(b, '0'))

console.log('> 1:')

cpuOnes.forEach(n => console.log(n))

console.log('> 0:', cpuZeros[1])

cpuZeros.forEach(n => console.log(n))

console.log('MTJ:')

const mtjOnes = mtjToBin.map(b => countVal(b, '1'))

const mtjZeros = mtjToBin.map(b => countVal(b, '0'))

console.log('> 1:')

mtjOnes.forEach(n => console.log(n))

console.log('> 0:')

mtjZeros.forEach(n => console.log(n))
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console.log('Windows:')

const winOnes = winToBin.map(b => countVal(b, '1'))

const winZeros = winToBin.map(b => countVal(b, '0'))

console.log('> 1:')

winOnes.forEach(n => console.log(n))

console.log('> 0:')

winOnes.forEach(n => console.log(n))
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