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Abstract 
 

Lawrencia Maame Ofosua Akuffo 

EVALUATION OF BRIDGE DETERIORATION FACTORS: FROM DESIGN 

PARAMETERS TO COMMUNITY IMPACT  

2023-2024 

Adriana Trias Blanco, Ph.D. 

Master of Science in Civil Engineering 

 

The structural health and economic variables influencing the state of bridges in New Jersey 

are thoroughly examined in this thesis. The predictive modeling of bridge conditions using 

stepwise selection and linear logistic regression approaches is the primary focus of the 

opening chapter. With its precise predictions about bridge condition, either being fair/good, 

our model identifies bridge features which affect the deterioration of bridges the most.  

     The second section of the analysis has two parts. We first started by examining the time-

to-failure of bridges under various load scenarios (ADT/Live Loads, Environmental 

Loads/Conditions) and for different bridge materials in the first section. For the second part, 

we investigate the impacts of the median household income of the people living in a county 

on bridge conditions. This insight, combined with statistical analysis to find the time-to-

failure of the bridges, suggests prioritizing specific bridge types in low-income areas to ensure 

longevity despite limited funds. 

In the third chapter, we address the skew angle of the bridges and its influence on structural 

integrity because, from the previous analysis, we found that the skew angle has a 0.7% effect 

on the hazard/probability of deterioration of the bridge.  
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Chapter 1: 

 

Introduction 

Background 

    About 46,000 (7.5%) of the 617,000 public road bridges in the US were deemed to be in 

bad condition in 2019. These statistics and a few well-publicized accidents involving 

highway bridges have led to assertions that the United States is facing a bridge catastrophe. 

Bridges are essential parts of the transportation network because they allow cargo and 

people to move between different areas. However, due to a variety of factors like traffic 

volumes, environmental conditions, and material degradation, bridges, like all 

infrastructure assets, are susceptible to deterioration over time (Bhandari et al., 2023). 

Bridges must be periodically inspected for safety and longevity, and prompt maintenance 

and restoration plans must be put in place. The development of machine learning and data 

analytics techniques in recent years has made it possible to create models for evaluating 

the condition and health of bridges using readily available data sources, including the 

National Bridge Inventory (NBI) (Pugliese et al., 2021). By using historical data for the 

analysis, these models will hopefully help transportation agencies allocate resources more 

effectively and prioritize maintenance tasks. 

    Firstly, in order to manage missing values and outliers, the research requires thorough 

data pretreatment, including cleaning and filtering (Kwak & Kim, 2017). After that, 

prediction models are constructed using machine learning methods, with a focus on 

determining important variables that affect the bridge condition. The preprocessed data is 

also used to perform a comprehensive statistical analysis of bridges using Kaplan-Meier 
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survival analysis and the Cox proportional hazards (PH) model to determine the time-to-

failure of these bridges.  

    The Kaplan-Meier estimator provided survival probabilities over time, indicating the 

proportion of bridges that remain functional without failure. The Cox PH model was 

employed to assess the impact of various covariates on the probability of bridge failure 

find how long the bridges last before they reach the failure mode and together with 

household income, assess the impacts of the bridge condition in the county economically. 

In light of the fact that tolls, gas taxes, user fees, and user taxes, in addition to federal road 

funds, provide the majority of the funding for bridge reconstruction, this analysis sought to 

identify any relationships between how long a bridge takes to get to the failure mode, the  

percentage of good and fair bridges in each county and household income, and the features 

which affect bridge deterioration the most (Joseph Bishop-Henchman, 2013). 

    The results gave a clear correlation, showing that counties with lower household incomes 

had a greater percentage of bridges rated as fair. This highlights how important economic 

variables are in determining the state of bridges and emphasizes the necessity for creative 

methods to finance and priority in order to successfully overcome inequalities in 

infrastructure upkeep. Several performance indicators are used to assess the models' 

prediction accuracy, giving valuable information about how well the models predict the 

different bridge conditions (fair/good) (Steyerberg et al., 2010). 

    After determining the variables that lead to bridge deterioration, and doing a statistical 

analysis, we looked at the features that were identified to be contributors to the 

hazard/probability of failure and did a further analysis into two extreme features; we looked  
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into the features that were identified by the Cox Proportional Hazard model and realized 

some interesting facts. Skew angle was identified as being the bridge feature with one of 

the lowest contributions to failure which was interesting because not much research has 

been done into it to ascertain why as it is often overlooked in favor of more significant 

features like prestressed concrete, which has the highest contribution to deterioration has 

no doubt, a substantial amount of research done to look at why this is so.  

    This study intends to improve our knowledge of the variables causing bridge 

deterioration and also determine how household income affects revenue collected for 

bridge rehabilitation, thus enabling proactive maintenance planning by utilizing predictive 

modeling approaches and time-to-failure analysis. The results should help transportation 

authorities optimize their infrastructure management procedures, which will ultimately 

guarantee the longevity, dependability, and safety of bridge assets.  

Motivation and Context 

     Most of the bridge network in the United States is aging and degrading past its planned 

service life, posing a serious infrastructure concern. Nearly 40% of the nation's bridges are 

over 50 years old, and 9.1% are categorized as structurally inadequate, according to the 

ASCE Infrastructure Report Card. Although there have been initiatives to address this 

problem, such as a 3% drop in structurally flawed bridges over the past ten years, it is 

unclear if these efforts will be maintained or accelerated (ASCE’s 2021 Infrastructure 

Report Card, 2021). 

    Given the scope of the issue, replacing all outdated and inadequate bridges would not be 

a practical solution. Instead, in order to securely extend the lives of existing bridges, it is 
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imperative to create quick, accurate, and affordable methods for detecting, predicting, and 

fixing problems with them (Capacci et al., 2022). In this process, assessment is essential 

because it allows for the early identification and characterization of flaws, which in turn 

allows for the development of efficient prognoses and repair plans (C. Crawford, 2023). 

    Bridge condition assessments have always placed a strong emphasis on load ratings 

which are based on the design considerations (FHWA's policy for Items of the Coding Guide) and 

traditional inspections, which are informed by practical and experience based information 

created by owner agencies (U.S. Department of Transportation Federal Highway 

Administration, 2018). However, there is a paradigm shift toward enhancing traditional 

approaches with nondestructive evaluation (NDE) and structural health monitoring (SHM) 

technologies due to advancements in sensing, simulation, and information technologies, as 

well as the urgency of aging infrastructure (Malekloo et al., 2022). 

    Notwithstanding the possible advantages of Non-Destructive Testing and Structural 

Health Monitoring technologies, there are obstacles to their general adoption, including as 

implementation-related costs and disruptions to the traveling public (Blabac et al., 2023). 

However, there is a rising understanding of the necessity of utilizing these technologies to 

raise the efficacy and efficiency of bridge condition assessment, which will ultimately 

increase the resilience and lifespan of the country's bridge infrastructure (United States 

Department of Transportation Federal Highway Administration, 2021) 

    Within this framework, machine learning modeling with data from the National Bridge 

Inventory (NBI), together with engineering analysis, offers a viable method for evaluating 

numerous bridges at once without much disruption to traffic and inconvenience to road 
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users while also reducing cost. Models can be used to identify important elements 

impacting bridge conditions, prioritize maintenance interventions looking at bridge 

longevity and survival analysis, and provide guidance for decision-making processes 

related to bridge asset management by utilizing data-driven approaches like machine 

learning and statistical analysis (Mohamed Mansour et al., 2019). 

The study also sought to create a well-balanced program that reflected the growing 

interdependence of the transportation system, the overall economy, and the flow of people 

and products (NJDOT Local Bridges Fund, 2017). Through the identification and 

comprehension of the variables affecting bridge conditions, this study aids in the creation 

of fair transportation systems that cater to the requirements of many populations. This 

knowledge also guides attempts to enhance infrastructure resilience and address the issues 

posed by growing transportation networks in the future through strategic planning and 

policy decisions (Saif et al., 2018). 

Intellectual Merit 

This study's use of predictive modeling tools to assess and estimate bridge conditions using 

data from the National Bridge Inventory (NBI); while using time-to-failure analysis and 

the correlation between household income and bridge condition to make prioritization of 

funds for rehabilitation and also throwing light on how much the skew angle contributes to 

deterioration, an often-overlooked feature, is what gives it its intellectual quality.   

Approximately every two years, FHWA evaluates and assesses the performance and 

condition of the country's roadways and bridges, records the amount spent thus far by all 

governmental levels, and projects the amount of money that will be required in the future 
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to maintain or enhance the current performance and conditions (Issues For Congress, n.d.; 

Liu & Xiang, 2024)  

The objective of this work is to improve our comprehension of bridge deterioration patterns 

by obtaining valuable insights from a large dataset through the use of statistical analysis 

and machine learning methods. To be more precise, the approach entails thorough 

preparation of the NBI data in order to fix missing values and guarantee data integrity. By 

using stepwise selection, the most important elements affecting the condition of the bridge 

are found, offering important information on the main causes of bridge deterioration. This 

method not only makes it easier to estimate bridge conditions accurately, but it also 

establishes the groundwork for focused maintenance plans and infrastructure planning 

initiatives. 

Additionally, this study attempts to shed light on the factors impacting infrastructure repair 

by examining the association between household income and bridge condition across 

various counties in New Jersey while considering the survival analysis of the bridges. 

Policymakers and transportation authorities need these insights to create fair and efficient 

plans for managing and investing in infrastructure (USDOT, 2023). All things considered, 

this study advances the use of machine learning techniques in transportation engineering 

and provides useful instruments for enhancing the sustainability and resilience of 

infrastructure. 

Broader Impact 

The utilization of National Bridge Inventory (NBI) data to estimate bridge conditions has 

the potential to have far-reaching effects that go beyond the domain of infrastructure 
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management. This research improves our understanding of bridge deterioration trends and 

opens the door for creative structural engineering education applications by utilizing 

machine learning techniques and statistical analysis (Bridge Selection and Data 

Preparation, n.d.). 

One effect is the creation of virtual laboratories that use data from actual bridges to provide 

students with immersive learning environments. Students can investigate and engage with 

real bridge structures through these virtual labs, learning about the mechanisms underlying 

degradation and damage under typical operating circumstances. In addition to improving 

students' comprehension of structural engineering principles, this practical method offers 

useful insights into the upkeep and administration of infrastructure (Roosendaal et al., 

2010). 

In addition, the incorporation of stress maps and real displacement onto structural members—

possibly via the use of augmented reality technology—offers stimulating prospects for bridging the 

knowledge gap between engineering education and practical applications. Students can better 

understand the intricacies of structural behavior and the effects of maintenance decisions by seeing 

structural performance visualized in real-time. Through the promotion of a better comprehension 

of infrastructure resilience and sustainability, this immersive learning experience improves 

the relevance and applicability of structural engineering courses.  

Overall, this research has wider implications that go beyond transportation engineering and 

include improvements in structural engineering education. This research equips upcoming 

generations of engineers with the knowledge and abilities required to tackle the difficulties 

of contemporary infrastructure management by utilizing cutting-edge technology and real-

world data. 
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Objectives 

The overarching objective of this research is to evaluate the impact of bridge deterioration 

on vulnerable communities due to unforeseen geometry and design parameter implications. 

To accomplish this, two specific goals have been established: (a) Investigate the impact of 

full-scale bridge geometry on deterioration patterns, and (b) Quantify the impact of girder 

design parameters on its structural capacity. The specific objectives selected to develop 

this study will contribute to understanding the impact of pre-inception decisions on the 

long-term performance of bridges. 

Predictive Modeling for Bridge Condition Assessment 

The goal of Section 1, presented in Chapter 3, is to create a framework for evaluating the 

state of bridges using data from the National Bridge Inventory (NBI).  

● Determine the main causes of the decline in bridge condition. 

● Create prediction models using NBI data to forecast the state of the bridge. 

● Assess the predictive models' accuracy and dependability. 

● Examine how predictive modeling could help guide decisions on bridge asset 

management. 

Time-to-Failure and Analysis on The Impact of Median Household Income on Bridge 

Condition 

The goal of Section 2, presented in Chapter 4, is to develop and validate time-to-failure 

models and to perform a detailed statistical analysis to identify significant factors affecting 

bridge longevity; while considering the impact of the median household income on the 

bridge condition of the different counties. 
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Time-To-Failure Analysis (Objectives) 

• Estimate the survival probabilities of bridges using Kaplan-Meier survival analysis. 

• Identify key factors influencing the probability of bridge failure through the 

application of the Cox proportional hazards model. 

• Provide data-driven insights that will inform maintenance strategies and optimize 

resource allocation.  

Impact of Median Household Income on Bridge Condition (Objectives) 

• Investigate the relationship between median household income and bridge 

conditions using Pearson correlation analysis. 

• Analyze the correlation between household income levels, and the proportion of 

bridges in good or fair condition. 

• Provide data-driven insights to guide maintenance strategies and enhance resource 

allocation efficiency. 

Skew Angle and Deterioration Rate Analysis 

● Determine a correlation between the skew angle of bridges and their deterioration 

rate. 

● Evaluate the correlation between the skew angle and the deterioration rate through 

ANOVa analysis. 
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Methodology 

Predictive Modeling for Bridge Condition Assessment  

 

Figure 1.  

 

Flow Chart for Predictive Analysis 

 

 

• Gathering of Bridge Data: We acquired the National Bridge Inventory (NBI) dataset from 

the appropriate governmental bodies or agencies in charge of managing the bridge 

infrastructure. Extraction of pertinent features from the NBI dataset was also done. 

These attributes include traffic statistics (such as average daily truck traffic), 

environmental parameters (such as total precipitation), and bridge characteristics (such 

as primary span material, number of spans, and age). 

• Data Preparation and Transformation: Using R programming, researchers cleaned the 

dataset to remove outliers, inconsistent values, and missing values. Exploratory Data 

Analysis (EDA) was used to learn more about the distribution and connections between 
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variables. To guarantee consistency and stability during model training, we normalized 

and scaled numerical features. 

• Splitting the dataset: Using stratified random sampling, the preprocessed dataset was 

split into training and validation sets. To evaluate the predictive performance of the 

model, allocate 70% of the data for model training and 30% for model validation. 

• Model Development: Predictive Model and Logistic Regression: We used an R package 

(caret) to implement a machine learning method called logistic regression.  Creating a 

mathematical equation that defines y (the result variable) as a function of one or more 

predictor variables (x) is the aim of a regression model. Next, using new values for the 

predictor variables (x), this equation can be utilized to predict the outcome (y). (Haidara 

Saleh & Jamil Antone Layous, n.d.). Using results that indicate fair or poor conditions, 

stepwise selection was applied to determine which bridge condition predictions are the 

most important. Stepwise Selection examines the impact of eliminating each variable 

in the present model. It then eliminates the least informative variable, unless it 

continues to provide meaningful insight into the response. Utilizing a subset of 

characteristics from the training dataset, we trained the prediction model, then used 

cross-validation to optimize the model's selected parameters. 

• Model Assessment: Using relevant assessment metrics, such as accuracy, specificity, 

sensitivity, and area under the receiver operating characteristic curve (AUC-ROC), we 

assessed the trained model's performance on the validation dataset. To evaluate 

statistical significance, we computed the model's accuracy of 95% confidence intervals.  

• Results and Discussion: To determine the major elements impacting bridge condition, 

we have to interpret the model coefficients or feature importance scores. Examining 
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the effects of particular predictors on model forecasts and efforts to prioritize bridge 

maintenance was done. To guarantee dependability and generalizability, we validated  

• model results using robustness tests and sensitivity analysis.  

Identification of Knowledge Gaps 

● Researchers determined any potential gaps in knowledge and study constraints, 

such as those related to the availability of data, model assumptions, and the 

generalizability of the results.  

● They also spoke about how the research’s conclusions may affect both current and 

upcoming investigations as well as real-world bridge infrastructure management. 

● Suggestions will have to be made for filling in the gaps found and enhancing the 

predictive modeling methods used to assess the state of bridges. 

 

Time-To-Failure of Bridges and Analysis Of Impact Of Median Household Income 

On Bridge Condition 

Data for this study was obtained from the National Bridge Inventory (NBI), which includes detailed 

information on bridge characteristics, conditions, and environmental factors. Key variables 

considered in the analysis include bridge materials, average daily traffic (ADT), freeze-thaw cycles, 

total precipitation, and skew angle. The data was then cleaned to take out missing or inaccurate 

data. 
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Figure 2.  

 

Flow Chart For Time-to-Failure Analysis and Analysis of Impact of Household Income 

on Bridge Condition 

 

 

• Bridge Data Collection: We acquired the National Bridge Inventory (NBI) dataset from 

the info bridge portal. To get a more accurate representation, we extracted bridge data 

from 1999 to 2024. (https://infobridge.fhwa.dot.gov/) This is because, for the time-to-

failure analysis, we needed to account for the times that the bridge moved from good 

to fair, unlike the predictive model in the previous section, where we used data from 

2023 since we were concerned with the most current data and not necessarily how long 

it took the bridge to move from good to fair condition. 

• Data Preparation and Transformation: Using R programming, we cleaned the dataset to 

remove outliers, inconsistent values, and missing values. Exploratory Data Analysis 

(EDA) was used to learn more about the distribution and connections between 

variables. 
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• Kaplan Meier Analysis:  This was applied to determine the probability of a bridge failure 

developing over time. The capacity of Kaplan-Meier to handle censored data—cases 

in which the event of interest (like failure or deterioration) has not yet happened for 

any participants by the study's conclusion—is what sets it apart from other methods. 

This flexibility is particularly useful for the dependability study of infrastructure, such 

as bridges, as it allows for a more thorough and accurate analysis of survival data in 

situations when not every subject has experienced the event. (N. Dudley et al., 2016) 

• Cox Proportional Hazard Analysis:  the Cox Proportional Hazards (Cox PH) model was 

chosen because is its capacity to examine the effects of several factors on the hazard or 

chance of an event happening with the least amount of presumption regarding the 

underlying survival distribution. The Cox PH model is very flexible to different 

survival data types since it does not require a particular form of the baseline hazard 

function, unlike many other models. (N. Dudley et al., 2016) 

• Median Household Income and Impact on Bridge Condition:  The analysis gives a clear 

picture of the median household income of the various counties, which is then tied to 

the condition of the bridges in these counties. This analysis was done by extracting 

household income data from the Census Bureau. The Pearson correlation was the 

statistical tool that was used to find the correlation between median household income 

and bridge conditions.(Peter Samuels & Mollie Gilchrist., 2014) 

Skew Angle and Deterioration Rate Analysis 

The data used in this study was collected from the InfoBridge web portal, led by the Federal 

Highway Administration of the United States of America (10). The following steps were taken to 

collect and process the data for this study (Figure 2). 
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Figure 3.  

 

Data Collection and Processing Flowchart 

 

 

● Bridge Data Selection: the bridges selected for this study were all in New Jersey. Aside 

from the fact that New Jersey has over 6,000 bridges, a representative sample size for 

a more accurate analysis, the climatic conditions, age, materials used, and maintenance 

culture of the different counties and owners also differ across the state, giving a more 

varied data set. Not all bridges in New Jersey are skewed. Skewed configurations are 

occasionally required when safety and alignment difficulties (congested locations, 

natural or manmade impediments, complicated intersections, etc.) mandate critical 

highway and highway bridge design considerations. For this study, all the bridges, 

including ones with skew angle of 0, were considered to establish the correlation 

between skew angle and bridge deterioration. 

● Data Preparation and Transformation: Data collected from field assessments, 

performance monitoring, NDE testing, possibly laboratory analysis, and other sources 
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is combined and structured in a defined format. This process is part of cleaning the data 

to correct errors, inconsistencies, or missing information and assuring data quality and 

integrity. The data for this analysis was cleaned using the structure number to identify 

the bridges. The year built, deck condition rating, years it takes to deteriorate a scale 

down, and skew angle were then selected for the various structure numbers. This 

eliminated data entries with missing information and could not be attributed to any 

specific bridge. The data was transformed by converting raw data into a more structured 

and usable form using various operations and calculations. Data cleaning, aggregation, 

summarization, and the creation of derived variables are examples of this. 

● Data cleaning: Data cleaning is the process of discovering and repairing or deleting 

errors, inconsistencies, and inaccuracies in a dataset. It is also known as data cleansing 

or data scrubbing. It is a vital stage in data preparation to assure the data's quality and 

dependability for analysis, modeling, or other data-driven tasks. We cleaned the data 

by remedying missing values; we removed rows and columns with excessive missing 

data depending on its impact on the analysis. We also removed duplicates and identified 

outliers with extreme values to be either removed or transformed to fit the data needed 

for our analysis. Finally, we removed the redundant data which did not contribute to 

the data analysis. 

● Data aggregation: A mathematical process that summarizes or combines several values 

within a dataset to produce a single representative value is known as an aggregation 

function, also known as an aggregate function or summary function. We used the 

average/mean to find one representative value for the years it takes for the condition 

rating to drop by one. Count was used to determine the number of occurrences or data 
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points inside a specific category, thus the total number of bridges. We used variance, a 

measure of the spread of data points around the mean that measures the dispersion or 

variability of values within a dataset, and standard deviation, a measure of the average 

distance between data points and the mean that quantifies the dispersion or variability 

of values within a collection for the hypothesis testing. 

● Data Summarization: Data summarization is the process of condensing and displaying 

a dataset or a subset of data simply and informally. It is also known as data aggregation 

or summarizing statistics. Data summarization provides a high-level overview of the 

dataset's properties, patterns, and insights. Histogram was employed to display the 

distribution of numerical data by dividing the data range into intervals and representing 

the frequency or count values in each category/interval. 

● Descriptive Analysis: Descriptive analysis techniques are used to understand the 

fundamental properties and trends in data. This includes summarizing data using 

statistical measurements, creating visualizations (e.g., charts and graphs), and detecting 

noteworthy patterns or outliers. Excel was used in the descriptive analysis of this data. 

The deck condition rating was first plotted against the skew angle to see how the 

bridges deteriorate according to the skew angle. A trend was then established for how 

long it takes the condition rating to drop by one point for all the bridges, and finally, a 

graph of how long the condition ratio takes to drop by one point is plotted against the 

skew angle.  

● Correlation and Trend Analysis: the correlation and trend analysis intended to establish 

a relationship between the two variables (deck condition rating and skew angle). The 
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degree and direction of the association between two variables are assessed using 

correlation analysis. This scenario investigates the relationship between bridge deck 

condition rating and skew angle. A positive connection suggests that as the skew angle 

grows, so does the bridge deck condition rating. A negative connection, on the other 

hand, indicates that a larger skew angle is connected with a poorer bridge deck 

condition grade. The process of assessing the pattern or direction of change in the 

bridge deck condition rating regarding the skew angle over time or across a sample of 

bridges is known as trend analysis. This analysis aids in the identification of any 

systematic trends or tendencies in the data. One method is to categorize bridges based 

on their skew angle ranges (e.g., 0-5 degrees, 6-10 degrees, etc.) and then compute the 

time it takes for the bridge deck condition rating to drop by one point for each group. 

We can examine the trend and identify any regular trends by charting these average 

years over the skew angle range      

Thesis Structure for Each Section 

Chapter 1: Introduction 

● An overview of the significance of assessing the bridge conditions and the 

requirement for predictive modeling techniques, time-to-failure analysis, an 

analysis to see the impact of median household income on bridge condition and 

skew angle analysis.  

● An explanation of the preparation procedures and the dataset from the National 

Bridge Inventory (NBI).  
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● A description of the study's goals, which include the creation of prediction models 

and the examination of variables that indicate the time-to-failure and condition of 

bridges therefore impacting the economy of the counties.  

● A discussion of the research's importance in directing maintenance schedules and 

tackling the problems associated with bridge deterioration. 

Chapter 2: Literature Review 

● A summary of the body of research on predictive modeling, time-to-failure 

analysis, and the impact of median household income on bridge condition for bridge  

condition assessment, emphasizing the application of machine learning approaches 

like logistic regression, stepwise selection methods, Kaplan Meier, Cox PH and 

Pearson Correlation analysis while looking into research that talks about the Skew 

Angle of a bridge and its effects on deterioration of the bridge.  

● A review of studies examining the association between different factors, including 

age, traffic volume, and bridge material, and condition of the bridge.  

● The significance of precise bridge condition assessment in guaranteeing 

dependable and secure transportation infrastructure is examined. 

Chapter 3: Predictive Modeling for Bridge Condition Assessment Approach 

● An explanation of the process followed in the creation of prediction models for 

bridge condition evaluation.  

● A description of how the dataset was divided into training and testing subsets, along 

with how stepwise selection was used to find important predictors.  
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● Information on the model evaluation measures that were applied, such as the 

Receiver Operating Characteristic (ROC) area under the curve (AUC), sensitivity, 

specificity, and accuracy. 

Chapter 4: Time-to-Failure Analysis  

a) Using Kaplan-Meier and Cox Proportional Hazards Models: 

● Detailed explanation of the methodology followed in conducting the time-to-failure 

analysis of bridge conditions using Kaplan-Meier survival analysis and Cox 

proportional hazards (PH) modeling. 

● Description of the steps taken to preprocess the National Bridge Inventory (NBI) 

data to ensure it was suitable for survival analysis. 

● Methodology for applying the Kaplan-Meier estimator to analyze survival 

probabilities and identify critical failure points over time. 

● Description of the process for developing the Cox PH model, including the 

identification and selection of covariates that significantly influence the probability 

of bridge failure. 

● Explanation of how hazard ratios (HRs) were interpreted for different covariates, 

including their statistical significance (p-values). 

● Interpretation of survival curves and hazard functions to provide insights into 

bridge longevity and factors that affect bridge failure. 

b) Correlation Analysis Using Pearson Correlation for Bridge Condition and 

Median Household Income: 

● Detailed explanation of the process used to analyze the relationship between bridge 

condition and median household income using Pearson correlation analysis. 
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● Description of how the relevant data was extracted from the NBI and census bureau. 

● Explanation of how the dataset was divided into appropriate subsets to analyze the 

correlation between bridge conditions (categorized as good, fair, or poor) and 

median household income in different regions. 

● Description of preprocessing steps, including normalization of income data and 

categorization of bridge conditions. 

● Discussion of the Pearson correlation coefficient (r) as the primary measure for 

evaluating the strength and direction of the relationship between bridge condition 

and median household income. 

● Explanation of the statistical significance (p-value) of the correlation coefficient 

and its interpretation. 

● Analysis of the results, including plots and correlation matrices, to visually and 

statistically interpret the relationship between bridge conditions and household 

income levels. 

Chapter 5: Skew Angle Analysis  

• A comprehensive overview of the procedure for applying statistical tools to 

examine the connection between bridge Skew Angle and Deterioration Rate. 

• Explaining the process used to extract the useful information from the Federal 

Highway Administration's Long-Term Bridge Performance Online Portal. 

• An explanation of the dataset's division into suitable subsets in order to examine 

the relationship between deterioration rate and skew angle 

• An explanation of the preprocessing procedures, such as the classification of skew 

angles and setting up the statistical analysis 
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• Examining the relationship between Skew Angle and Deterioration Rate with 

ANOVA as the main statistical tool. 

• An explanation and interpretation of the ANOVA results' statistical significance 

(p-value) 

• Plots and statistical interpretation are included in the analysis of the data to assess 

the relationship between skew angle and degradation rate. 

Chapter 6: Interpretation and Conclusions 

● An analysis of the different modeling findings, including the models' accuracy and 

the importance of the predictor variables and time-to-failure analysis, while looking 

at the effects of the skew angle on deterioration rate. 

● An examination of the correlation between household income and bridge condition 

in the counties of New Jersey, with a focus on the budgetary implications for bridge 

maintenance. 

● Interpretation of the results in light of planning and policy-making for bridge repair.  

● An examination of the research's wider effects on economic growth, equitable 

access to transportation resources, and transportation infrastructure.  

Chapter 7: Future Work 

● A highlight of the major conclusions and how they will affect further study and 

application.  

● Suggestions for additional research into particular indicators of bridge condition as 

well as methods for enhancing financing and regulations for bridge repair.  
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Chapter 2:  

 

Literature Review 

Predictive Modeling for Bridge Condition Assessment 

Predictive modeling has been widely used in infrastructure management to forecast the 

condition and lifespan of bridges. Techniques such as linear regression, logistic regression, 

and machine learning algorithms have been employed to develop models that assist in 

maintenance planning and resource allocation. 

Bridge condition assessment is a crucial component of infrastructure management that 

affects economic productivity, public safety, and traffic efficiency. In the past, manual data 

collection and analysis techniques have been used to augment the visual inspections carried 

out by qualified engineers in traditional methods of bridge inspection and evaluation. 

Although these techniques have been the foundation of bridge maintenance procedures for 

many years, they are fundamentally constrained by their subjectivity, reliance on human 

judgment, and incapacity to handle massive amounts of data quickly (Omar & Nehdi, 2018; 

Xia et al., 2022). 

Over the years, the state of practice in bridge condition assessment has changed 

dramatically due to the necessity for efficient methods to maintain public safety and 

manage aging infrastructure. More advanced methods of evaluating bridge condition have 

been available for study and use thanks to developments in data analytics and technology. 

Assessing and evaluating the state of the bridge appropriately and precisely is a crucial part 

of maintaining bridges that are already in place. Condition evaluations, which can be 

completed in a variety of methods, are essential for learning about a bridge's true state and 
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the extent of any potential damages. They also serve as the foundation for choices about 

future maintenance (Björnsson et al., 2019). 

The application of data-driven methodologies and machine learning to improve bridge 

condition assessment has gained popularity in recent years. Research like the one 

mentioned above has shown how predictive modeling methods may be used to evaluate 

sizable datasets, like the data from the National Bridge Inventory (NBI), and pinpoint the 

main variables affecting bridge condition. Researchers have developed prediction models 

with outstanding accuracy and predictive power by using variables including main span 

material, bridge age, traffic patterns, and environmental considerations, along with 

techniques like stepwise selection (Hurtado et al., 2024). 

The use of R programming for model construction and data preprocessing indicates a move 

in the direction of more advanced analytical techniques for bridge evaluation. This 

methodology facilitates the combined use of heterogeneous datasets, encompassing 

structural attributes, traffic intelligence, and environmental factors, to enhance 

comprehension of the intricate interplay impacting bridge state across temporal dimensions 

(Gomez-Cabrera & Escamilla-Ambrosio, 2022; Ilbeigi & Ebrahimi Meimand, 2020). 

The results of research like this one show that although traditional assessment techniques 

still have a place in bridge management, data-driven approaches have the ability to 

supplement and improve current techniques. These methods open the door to more 

proactive and well-informed repair priority efforts by offering insights into the critical 

factors impacting bridge deterioration and enabling focused investigations. 
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In summary, the literature points to a shift in bridge condition assessment techniques 

toward ones that are more comprehensive and data-driven, driven by advances in 

computational techniques, technology, and the growing availability of large-scale 

infrastructure datasets. In order to identify and solve structural faults more accurately, 

efficiently, and reliably, the field of bridge assessment is going to gain from ongoing 

research into new approaches and instruments. 

Knowledge Gap 

• Integration of Multiple Data Sources: Predictive models may be more accurate and 

reliable if they incorporate data from multiple sources, including as inspection reports, 

sensor data, and previous maintenance records, even if the NBI offers a comprehensive 

dataset for bridge state assessment. Subsequent studies want to investigate strategies 

for integrating heterogeneous data sources efficiently to enhance predictive 

capabilities.  

• Integration of Advanced Data Analytics Techniques: Although the study shows that 

machine learning techniques are useful for predicting bridge conditions, the application 

of advanced analytics techniques, such as deep learning, ensemble learning, and 

explainable AI, has the potential to improve model accuracy and interpretability even 

further. By revealing intricate connections between bridge characteristics and condition 

outcomes, these methods may contribute to the development of more reliable predictive 

models. 

• Validation and Model Generalization: By dividing the dataset into training and 

validation sets, the study's validation methodology offers preliminary understandings 

of model performance. To evaluate the generalizability of predictive models, additional 
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validation is required on separate datasets and in various geographical areas. In order 

to guarantee consistency and relevance across a range of bridge assets, future research 

ought to concentrate on verifying model performance in a variety of scenarios.  

• Interpretation and Actionability of Results: Although the study finds important 

predictors of bridge condition, it is still difficult to turn these results into practical 

advice for those who maintain bridges. Subsequent investigations ought to prioritize 

the creation of frameworks and decision-support instruments that streamline the 

integration of predictive model results into practical maintenance approaches. 

Time-to-Failure Analysis 

Survival analysis methods, including the Kaplan-Meier estimator and Cox 

proportional hazards model, have been applied to assess the time-to-failure of structural 

components. These two closely comparable statistical techniques are commonly used in 

time-to-event studies (N. Dudley et al., 2016). Cox analysis is multivariate, whereas 

Kaplan-Meier is a univariate method. Numerous well-known elements of parametric and 

nonparametric statistical methods, such as confidence intervals, independent and 

dependent variables, and null hypothesis testing, are used in both. These methods provide 

insights into the factors that influence the durability and performance of bridges over 

time.(N. Dudley et al., 2016) 

The likelihood of survival and the anticipated service life of bridge decks would 

alter with age. According to the conditional probability theory, the additional information 

obtained from the fact that a bridge deck has previously lasted a certain number of years 
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changes (increases) the initial likelihood of surviving at succeeding years. (Nabizadeh et 

al., 2020). 

             Various factors, including material properties, environmental conditions, traffic 

loads, and design characteristics, impact the condition and longevity of bridges. 

Understanding these factors is crucial for developing effective maintenance and 

rehabilitation strategies. High performance concrete (HPC) was created to satisfy the 

demands of the transportation sector when building bridges even though the relationship 

between material characteristics and field performance is still not entirely clear. (Vinit 

Barde et al., n.d.). Even though prestressed and reinforced concrete have been used 

severally to build both old and new bridges, modern concrete materials are becoming more 

and more crucial to the construction of concrete bridges because they make it easier to 

strengthen and repair already-existing bridges, quickly replace damaged sections of 

existing bridges, and design new, difficult bridge projects as compared to older 

materials.(Lantsoght, 2022). 

Environmental factors also greatly affect bridge health and the focus should not be 

on just the bridge materials. There has been sufficient studies to determine the impact of 

environmental factors on bridge deterioration but not so much on its impact on performance 

ratings of the bridge. (Hung et al., 2023) 

Knowledge Gap 

• Modeling Uncertainty: One significant challenge in bridge reliability is the uncertainty 

in load predictions. Traffic loads and environmental conditions can vary significantly 

over time, introducing variability into predictive models. This uncertainty makes it 

difficult to accurately forecast the loads that bridges will encounter. Additionally, 
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predicting the degradation of bridge materials under various environmental conditions 

adds another layer of complexity. Material degradation is influenced by a wide range 

of factors, many of which are not fully understood, making it challenging to anticipate 

how different materials will perform over time.  

• Environmental and Climate Effects: The long-term impacts of climate change on 

bridge failure remain poorly quantified, adding to the uncertainty in predictive models. 

As climate change progresses, it will likely alter environmental conditions in ways that 

could significantly affect bridge performance. Moreover, localized environmental 

factors such as salinity and freeze-thaw cycles can have specific, and often severe, 

impacts on bridge materials and structures. The limited understanding of how these 

localized conditions affect bridges complicates efforts to design and maintain resilient 

infrastructure. 

• Load and Resistance Factors: Dynamic loads, such as those from moving vehicles and 

seismic activity, present another area where more research is needed. These loads can 

significantly impact bridge failure, but their effects are not yet fully understood. 

Furthermore, there is variability in the material properties and construction quality that 

affects the resistance of bridges. This variability introduces additional uncertainty into 

models predicting bridge performance and lifespan, highlighting the need for a better 

understanding of these factors. 

• Interdependencies and Network Effects: Bridges are not standalone structures; their 

reliability is interconnected with the broader transportation network. Understanding 

these interdependencies is crucial for comprehensive time-to-failure assessments. 

Additionally, bridge failures can have cascading effects on other critical infrastructure, 
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such as water and electricity systems. The interactions between bridge failure and these 

other infrastructures are not well-studied, which could lead to underestimating its 

broader impacts. 

• Lifecycle Cost Analysis: A more comprehensive approach to lifecycle cost analysis is 

necessary to make better-informed decisions regarding bridge maintenance and repair. 

Current models often do not fully integrate the costs associated with failures and 

ongoing maintenance. By developing models that encompass these factors, decision-

makers can more accurately assess the economic impacts of different maintenance 

strategies and make more cost-effective choices. 

• Behavior Under Extreme Events: The performance of bridges under extreme events, 

such as earthquakes, floods, and hurricanes, requires more detailed study. 

Understanding the failure mechanisms and performance of bridges in these scenarios 

is essential for improving their design and resilience. Additionally, the reliability of 

bridges in the face of man-made threats, such as terrorism and sabotage, is not well 

understood. Research in this area is crucial to developing strategies to protect critical 

infrastructure from intentional harm. 

Skew Angle Analysis 

Bridges are essential for transportation infrastructure, and engineers and policymakers are 

concerned about their long-term performance and safety. President Eisenhower established 

the United States Interstate Highway System in the 1950s to improve commercial and 

military mobility. Its almost 50,000 miles were mainly constructed in 35 years and are now 

part of the country's over 4 million miles of highways (7). Bridges serve an important role 

in transportation by connecting divided locations such as rivers, valleys, or gaps in the 
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topography. They are critical infrastructure for both urban and rural areas, allowing for the 

efficient flow of people, products, and services (8).      

Several research has been conducted to investigate the relationship between bridge skew 

angle and the rate of deterioration. Researchers conducted a study on 313 bridges in Korea 

and discovered that the skew angle was an important factor in the decline of bridge decks. 

The study found that bridges with skew angles above 45 degrees deteriorated faster than 

those with less than 45 degrees (9). 

Another study examined data from bridges and discovered that the skew angle was an 

essential determinant of bridge deterioration. The study found that bridges with skew 

angles above 20 degrees experienced much more bearing damage than bridges with skew 

angles below twenty degrees (6). There are various probable factors for why bridges that 

have large skew angles may deteriorate at a faster rate. For example, the geometry of the 

bridge may result in uneven loading on the bridge components, which can hasten wear and 

tear (3,18). Bridges with large skew angles may also be more subject to environmental 

variables like wind and water, which may lead to rust and other forms of degradation. Also, 

gravity load paths are important for how bridge skew angles behave (6,10). 

Investigating the relationship between bridge skew angle and deterioration rate is critical 

in furthering our understanding of bridge performance. More research is needed to 

investigate this link and find effective solutions to reduce the influence of significant skew 

angles on bridge deterioration. Gaining a comprehensive understanding of the mechanisms 

underlying this correlation will ultimately ensure the safety and efficiency of transportation 

networks for years to come. 
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Knowledge Gap 

• Repair and Maintenance Activities: The kinds, frequency, and potential 

interactions of these interventions with bridge skew angles are not mentioned. 

Gaining a deeper understanding of this relationship may help bridges with 

significant skew angles last longer. 

• Integration of Structural Health Monitoring (SHM): Real-time data from 

structural health monitoring systems is not included in this work, which could 

provide a more dynamic knowledge of how skew angle influences bridge 

deterioration under real-time settings. 

• Non-Linear interactions: Although non-linear interactions could offer a better 

view of the relationship between these factors (skew angle and deterioration rate), 

the study assumes a linear relationship between skew angle and deterioration rate 

and does not investigate the plausibility of such correlations. 

• Regional Comparison: The study does not compare its findings with bridges in 

other climates or locations, even as it applies its findings to bridges in New 

Jersey. The findings' applicability to other regions may be impacted by this gap. 
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Chapter 3:  

 

Predictive Modeling for Bridge Condition Assessment 

 

A predictive model was built using the training data and stepwise selection was used to 

find significant components with p-values less than 0.05. 

Through the application of sophisticated statistical methods like logistic regression, and 

ROC curve analysis, we were able to find the features that cause bridge deterioration and 

forecast the performance of the structure going forward. 

Logistic Regression 

The logistic regression model used for binary classification (fair/poor condition) can be 

expressed as: 

P(Y=1|X) = 
1

1+𝑒−(𝛽0+𝛽1𝑋1+𝛽2𝑋2+⋯+𝛽𝑘𝑋𝑘) 

Where: 

- (Y) is the binary outcome (0 for good condition, 1 for fair/poor condition). 

- (Xi) are the predictor variables (e.g., main span material, number of spans, age of 

the bridge). 

- (βi) are the coefficients estimated by the model.(Haidara Saleh & Jamil Antone 

Layous, n.d.) 

Stepwise Selection Criteria 

Predictors are added or removed repeatedly using the stepwise selection approach 

according to their statistical significance (p-value < 0.05). The Akaike Information 

Criterion, or AIC, is frequently used to determine which model is best: 
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AIC = 2k - 2ln(L) 

Where: k is the number of parameters, and L is the model's likelihood. 

Metrics for Model Evaluation 

 Confusion Matrix. The confusion matrix is typically represented as follows: 

 

Table 1.  

 

Confusion Matrix 

                              Predicted Positive    Predicted Negative 

Actual Positive                 TP                             FN 

Actual Negative               FP                             TN 

 

The predictive analysis technique is the confusion matrix. in the field of machine learning. 

The confusion matrix is used to evaluate the effectiveness of a machine learning model 

based on categorization. Additionally, we might state that a confusion matrix is a 

summarized table of the number of accurate and inaccurate predictions that a classifier (or 

classification model) produces for tasks involving binary classification. 

When N is the number of target classes, a N x N matrix called a confusion matrix is used 

to assess how well a classification model performs. A person might visualize the confusion 

matrix and use the diagonal values to measure the number of accurate classifications to 

assess the model's accuracy.(Haidara Saleh & Jamil Antone Layous, n.d.) 
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i. Accuracy = 
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 

Accuracy: The proportion of accurately anticipated cases—both true positives and true 

negatives—to all instances is known as accuracy.  

ii. Specificity= 
𝑇𝑁

𝑇𝑁+𝐹𝑃
  

Specificity: The proportion of real negative results to the total of false positive results. 

derived from the confusion matrix calculation 

iii. Sensitivity= 
𝑇𝑃

𝑇𝑃+𝐹𝑁
 

The ratio of true positives to the total of true positives and false negatives is known as 

sensitivity (also known as recall or true positive rate), computed using the confusion matrix 

as well. 

iv. A graphical representation called the Receiver Operating Characteristic (ROC) curve is 

used for the assessment of the binary classifier's performance (that is the performance of 

the model to see if it can truly produce the results for the bridge condition when certain 

features have been put into it). At different threshold values, it shows the True Positive 

Rate (sensitivity) against the False Positive Rate (1-specificity). The classifier's 

performance over all threshold values is summed up by a single scalar statistic called the 

Area Under the ROC Curve (AUC). 

True Positive (TP): The quantity of positive cases that were accurately anticipated. Stated 

otherwise, these are the cases where the model properly predicts a positive outcome and 

the actual class is positive. 
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TN (True Negative): The quantity of negative cases that were accurately anticipated. These 

are the cases where the model predicts the class as negative even though the actual class is 

negative. 

FP (False Positive): The quantity of positive cases that were mispredicted. These are the 

cases where the model predicts a class as positive even though the actual class is negative. 

Another name for this is a Type I mistake.  

FN (False Negative): The quantity of negative cases that were predicted incorrectly. These 

are the cases where the model predicts a class as negative even though the actual class is 

positive. 

Findings and Interpretation 

Training and Testing Accuracy of the Model Performance 

Across the entire dataset, the model's accuracy was 83.4%, with a 95% confidence interval 

of (0.8169, 0.8513). 60.8% was the specificity and 91.85% was the sensitivity. 

Model Accuracy 

The model's accuracy is 83.4%. This means that 83.4% of the predictions made by the 

model were correct. Accuracy is calculated as the number of correct predictions divided by 

the total number of predictions. The 95% confidence interval for this accuracy is (0.8169, 

0.8513), suggesting that we can be 95% confident that the true accuracy of the model lies 

between 81.69% and 85.13%. The confidence interval provides an estimate of the precision 

of the accuracy measurement, indicating the model's reliability in its predictions. 
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Specificity 

Specificity, also known as the true negative rate, measures the proportion of actual negative 

cases (e.g., bridges in good condition) that were correctly identified by the model. In this 

case, the specificity is 60.8%, meaning that 60.8% of the bridges that were actually in good 

condition were correctly identified as such by the model. Specificity is calculated as the 

ratio of true negatives to the sum of true negatives and false positives. While the model 

performs well in identifying bridges in fair condition, it is less effective at correctly 

identifying bridges in good condition, with around 39.2% of bridges in good condition 

being incorrectly classified as fair. 

Sensitivity 

Sensitivity, also known as the true positive rate or recall, measures the proportion of actual 

positive cases (e.g., bridges in fair condition) that were correctly identified by the model. 

The sensitivity of the model is 91.85%, indicating that the model correctly identifies most 

of the bridges that are actually in fair condition. Sensitivity is calculated as the ratio of true 

positives to the sum of true positives and false negatives. This high sensitivity suggests that 

the model is highly effective at detecting bridges that require maintenance, ensuring that 

they are not overlooked. 

Notable Characteristics Found 

The main span material (concrete, prestressed concrete, steel, wood, or timber), the number 

of spans in the main unit, the age of the bridge, the maximum span's length, the average 

daily truck traffic (ADT), and the total amount of precipitation were significant factors 

influencing the bridge's conditions. 
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Table 2.  

 

Significant Bridge Features Affecting Bridge Condition 

 

 

AUC Value and ROC Curve 

With an AUC value close to 1, the ROC curve showed that the model had a strong 

discriminatory power and could effectively distinguish between various bridge conditions. 

Figure 4.  

 

ROC Curve 
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Analysis of the Findings 

The predictive model successfully pinpointed the primary causes of bridge deterioration, 

offering insightful information for repair scheduling. The model's dependability is 

demonstrated by its excellent accuracy and AUC value. 

An Overview of the Results 

Using NBI data, this thesis ranked and identified the important structural factors 

influencing bridge deterioration. When predicting bridge conditions, the built predictive 

model showed excellent accuracy and dependability. Disparities in bridge conditions 

according to household income were brought to light by an analysis to determine the impact 

of median household income on bridge condition. 

Practical Implications 

Given the high sensitivity, the model is highly effective at identifying bridges in fair 

condition, which is useful for maintenance planning as it ensures that bridges needing 

attention are not overlooked. However, the lower specificity suggests that the model has a 

tendency to falsely identify some bridges in good condition as fair. This could lead to 

unnecessary inspections or maintenance activities for some bridges that are actually in 

good condition. Balancing between high sensitivity and moderate specificity is crucial for 

optimizing resource allocation and maintenance activities. 
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Chapter 4:  

 

Reliability Analysis 

 

Time-To-Failure Analysis of Bridges And Analysis To Determine The Impact Of 

Median Household Income on Bridge Condition 

              The Kaplan-Meier survival analysis was conducted to estimate the survival 

probabilities of bridges over time. The Cox proportional hazards model was applied to 

identify significant covariates influencing the probability of bridge failure. An analysis was 

also done to find the relationship between median household income and the bridge 

condition so that together with the time-to-failure analysis, more informed decisions can 

be made with regards to funding allocation. 

Mathematical Framework for Time-To-Failure Analysis Methodology 

Kaplan-Meier Survival Analysis 

              The Kaplan-Meier estimator is used to estimate the survival function from lifetime 

data. Modeling of survival data usually employs the hazard function or the log hazard. In 

simpler terms: 

● Cumulative Distribution Function, P(t) tells us how likely the bridge is to fail by 

a certain age. For example, if P(50) = 0.35, it means there is a 35% chance the 

bridge will fail within 50 years 

● Probability Density Function, p(t) shows us how likely the bridge is to fail at an 

exact age. 
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● Survival function, S(t) tells us how likely the bridge is to keep standing beyond a 

certain age, thus the age of a bridge before it fails. If a bridge lasts 50 years before 

it needs to be replaced, its survival time is 50 years. 

● Hazard Function gives us the probability of failure at any given moment, assuming 

the bridge has made it that far. The hazard function tells you the probability of the 

bridge failing right now, considering it hasn't failed yet. 

              The Kaplan-Meier estimator is a non-parametric statistical method used to 

estimate the survival function from lifetime data. Thus, it helps us understand and visualize 

the likelihood of an event (such as failure, death, or breakdown) happening over time. 

Here's what it does and why it's useful: 

What the Kaplan-Meier Estimator Does 

● Estimates Survival Probability: It calculates the probability that a subject (e.g., a 

bridge) will survive past a certain point in time. This is shown as a survival curve, 

which is a step function that changes at each time an event (like a failure) occurs. 

● Handles Censored Data: In many real-world scenarios, not all subjects will have 

experienced the event by the end of the study. For instance, some bridges might still be 

in good condition when the study ends. The Kaplan-Meier method can handle this 

incomplete information (called censored data) and still provide reliable estimates. 

● Provides Confidence Intervals: It also gives a measure of uncertainty around the 

survival probabilities by providing confidence intervals. This helps in understanding 

the reliability of the estimates. 
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● Compares Survival Between Groups: You can use the Kaplan-Meier method to 

compare survival curves between different groups. For example, you might compare 

the survival of bridges made with different materials or in different environments to 

see if one group has a significantly different survival rate. 

How It Works (in Simple Terms) 

● Initial Setup: You start with a group of subjects (e.g., bridges) and track them over 

time. 

● Tracking Events: As time goes on, you record when each event (failure) happens. 

● Survival Calculation: At each event time, you update the probability of survival by 

multiplying the previous probability by the fraction of subjects that survived past the 

latest event. 

● Step Function: The result is a step function that drops at each event time, showing the 

probability of survival at various points in time. 

             When we talk about the "survival time" of something, like a bridge, we are 

interested in how long it lasts before it fails. We can use some mathematical functions to 

help us understand and predict this survival time. 

h(t) = lim ∆t→0 = 
𝑃𝑟[(𝑡 ≤ 𝑇<𝑡+∆𝑡)|𝑇 ≥𝑡]

∆𝑡
 

                            =
𝑓(𝑡)

𝑆(𝑡)
 

Cox Proportional Hazards Model 

The Cox proportional hazards model is a regression model for survival data, which assesses 

the effect of covariates on the hazard rate. 
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The Cox proportional hazards model, (or simply the Cox model), is a statistical technique 

used in survival analysis to investigate the relationship between the survival time of 

subjects and one or more predictor variables. Here is an overview of what the Cox model 

does: 

Key Features of the Cox Model 

● Assessing Hazard Ratios: The Cox model estimates the hazard ratio (HR) for each 

predictor variable, which quantifies the effect of that variable on the hazard or 

probability of the event occurring. An HR greater than 1 indicates an increased 

probability, while an HR less than 1 indicates a decreased probability. 

● Handling Censored Data: In survival analysis, data can be censored, meaning that for 

some subjects, the event of interest (e.g., failure, death) has not occurred by the end of 

the study period. The Cox model effectively handles such censored data. 

● Time to Event Analysis: The Cox model focuses on the time until the event occurs. It  

is particularly useful for studying the impact of various factors on the timing of events 

like failure of a bridge, patient survival times, or time to equipment failure. 

● No Need for Baseline Hazard Specification: Unlike some other survival models, the 

Cox model does not require the specification of the baseline hazard function. Instead, 

it assumes that the effect of the predictors on the hazard is multiplicative and constant 

over time. 

Components of the Cox Model 

● Survival Function: S(t)The probability that a subject will survive beyond time (t). 
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● Hazard Function: h(t)The instantaneous rate at which events occur, given survival up 

to time (t). 

● Cox Proportional Hazards Model: The model expresses the hazard function as: 

h(t|X))= ℎ𝑜(𝑡)(𝛽1𝑋1+𝛽2𝑋2+⋯𝛽𝑝𝑋𝑝) 

where: 

● h(t∣X) is the hazard at time t given covariates X. 

● ho(t) is the baseline hazard function (common to all subjects). 

● β1,β2,…,βp are the coefficients for the predictor variables X1,X2,…,Xp.  

● Hazard Ratios (HR):Each coefficient βi in the model is exponentiated to give a hazard 

ratio exp(βi). This HR represents the effect of a one-unit increase in the predictor Xi  

on the hazard, holding all other predictors constant. 

● Significance Testing:The p-values associated with each coefficient test the null 

hypothesis that the coefficient is zero (no effect). A small p-value indicates that the 

predictor has a statistically significant effect on the hazard. 

Kaplan-Meier Analysis Results 

The Kaplan-Meier survival curves showed varying survival probabilities for different 

bridge materials and conditions. Critical failure points were identified, indicating periods 

of increased probability for bridge failure. The periods of increased probabilities are 

marked with horizontal lines on the graph. The graph also shows the number at risk-of-

failure or experiencing-the-failure-event below the plot. The number at risk of failure for 

each material is indicated at 0,50,100,150 and 200 years. So, on the extreme left, we have 
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the initial number of bridges at risk of going to the fair (failure), then at 50 years, the bridges 

that did not go to the fair are censored, leaving only the bridges at risk of going to the 

fair(failure). This goes on till the 150-year mark, when almost all the bridges have either 

failed or have been censored. 

 

Figure 5.  

 

Kaplan Meier Curve for Bridge Materials 

 

 

The following table shows the median time to failure for the different bridges, the number 

of bridges at the beginning of the analysis, the events or the number of bridges whose rating 

dropped to 5(fair), the rmean which is the average time until an event occurs (in this 
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context, a bridge failure) for the bridges within each material category, the standard error 

associated with the rmean, providing a measure of the variability or uncertainty in the 

estimation of the rmean. 

These metrics are useful for understanding the durability and expected lifespan of bridges 

made from different materials and for comparing the time-to-failure across these 

categories. Prestressed Concrete Continuous takes approximately 33years to reach failure 

but Masonry takes about 111years to reach failure and this is important when selecting 

bridges for low income areas or for a guided allocation of funds for rehabilitation. 

  



46 

 

Table 3.  

Time-To-Failure for the Different Materials 

 

 

Cox Proportional Hazards Model Results 

The Cox PH model revealed significant associations between covariates and probability of  

bridge failure. Prestressed Concrete (HR = 1.87) and Prestressed Concrete Continuous (HR 

= 1.93) were associated with higher hazard ratios, indicating increased probability of 

failure. This means that Prestressed Concrete has an 87% probability of failure, while 

Main Span Material records n.max n.start Events rmean 

Concrete 7123 7123 7123 5448 69.79093 

Concrete Continuous 1378 1378 1378 1202 64.17755 

Masonry 96 96 96 93 112.88277 

Other Material Main or N/A 

(No Other Span) 56 56 56 32 88.67235 

Prestressed Concrete 30838 30838 30838 17467 53.03632 

Prestressed Concrete 

Continuous 840 840 840 233 50.25412 

Steel 63002 63002 63002 47682 60.86235 

Steel Continuous 8904 8904 8904 4221 56.79163 

Wood or Timber 4390 4390 4390 2891 62.62734 

    se(rmean) median 0.95LCL 0.95UCL 

Concrete   0.2597181 71 71 72 

Concrete Continuous   0.4967833 62 61 63 

Masonry   1.2632614 111 108 114 

Other Material Main or N/A 

(No Other Span)   4.3293248 105 64 111 

Prestressed Concrete   0.1936645 47 47 47 

Prestressed Concrete 

Continuous   2.2244289 33 31 41 

Steel   0.1056178 56 56 57 

Steel Continuous   0.3367471 56 55 57 

Wood or Timber   0.5788708 61 59 62 

 



47 

 

prestressed continuous concrete has a 93% probability of failure. Environmental factors, 

such as the number of freeze-thaw cycles (HR ≈ 0.993) and total precipitation (HR ≈ 

0.9999), were associated with reduced failure probability. The baseline is 1, so numbers 

below one for freeze-thaw and precipitation mean the occurrence of temperature and 

precipitation rather have a low/reduced failure probability. The table below gives the p 

values for the components in column 1, and all the p values are significant because the total 

number of bridges used in this analysis is huge, n= 116000, and such a huge number means 

the slightest change in any feature will be recorded as significant because a large sample 

size means a greater sensitivity of the model.   

 

Table 4.  

 

Cox Proportional Hazard Results 
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Data Analysis Results for Correlation Between Median Household Income and 

Bridge Condition 

The relationship between median household income and the condition of bridges was 

investigated using data that was obtained from the U.S. Census Bureau and NBI. The 

median household income data was obtained from census.gov, and the percentage of 

bridges classified as either 'fair' or 'good' within each county was calculated using R 

statistical functions. To explore the correlation between median household income and the 

proportion of fair bridges, Pearson's correlation coefficient was computed. The analysis 

yielded a Pearson correlation coefficient of -0.45, indicating a moderate negative 

correlation. This suggests that as the percentage of fair bridges in a county increase, the 

median household income tends to decrease.  

 

Figure 6.  

 

Percentage of Fair to Good Bridges In Each County 
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Discussion 

Interpretation of Findings 

The predictive model and time-to-failure analysis provide valuable insights into the factors 

affecting bridge conditions and failure probability. The identified predictors can guide 

maintenance strategies and resource allocation to enhance the longevity and safety of 

bridge networks. 

Implications for Infrastructure Management 

The results underscore the importance of considering both structural and environmental 

factors in bridge maintenance and rehabilitation. Infrastructure managers can prioritize 

maintenance efforts based on the identified risk factors and allocate resources more 

effectively. 

Sociological Evaluation 

The percentage of bridges in fair condition and household income had a negative 

connection (\(r = -0.45\)), according to a Pearson correlation analysis. The negative 

coefficient supports the hypothesis that areas with lower median household incomes are 

associated with a higher proportion of bridges in fair condition. This finding aligns with 

the broader understanding that infrastructure quality is often lower in economically 

disadvantaged areas, which can have significant implications for public policy and resource 

allocation in bridge maintenance and improvement programs. 

Implications for Maintenance and Funding Allocation 

The results emphasize how crucial it is to take the median household income of road users 

into account when allocating funds for bridge maintenance and constructing new bridges 

because some funds are generated from road tolls, user taxes, and gas taxes and areas to 
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supplement the road fund. Some bridges last longer than others from the time-to-failure 

analysis in the previous chapter, hence such bridges should be prioritized when 

selecting/designing bridges for areas with low household income or during maintenance 

scheduling, bridges which do not last long can be prioritized in the allocation of funds to 

ensure more bridges are in the fair conditions even when there is not enough funds to go 

around all the bridges. The general standard and safety of bridge infrastructure can be 

raised by decision-makers by allocating resources to regions that require them more. 
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Chapter 5:  

 

Skew Angle and Bridge Deterioration Analysis 

Literature Review 

Bridges are essential for transportation infrastructure, and engineers and policymakers are 

concerned about their long-term performance and safety. President Eisenhower established 

the United States Interstate Highway System in the 1950s to improve commercial and 

military mobility. Its almost 50,000 miles were mainly constructed in 35 years and are now 

part of the country's over 4 million miles of highways (FHWA, 2020). Bridges serve an 

important role in transportation by connecting divided locations such as rivers, valleys, or 

gaps in the topography. They are critical infrastructure for both urban and rural areas, 

allowing for the efficient flow of people, products, and services ( Nowak & O. Iatsko, n.d.) 

Several research has been conducted to investigate the relationship between bridge skew 

angle and the rate of deterioration. Researchers conducted a study on 313 bridges in Korea 

and discovered that the skew angle was an important factor in the decline of bridge decks. 

The study found that bridges with skew angles above 45 degrees deteriorated faster than 

those with less than 45 degrees (Kong, 2015). 

Another study examined data from bridges and discovered that the skew angle was an 

essential determinant of bridge deterioration. The study found that bridges with skew 

angles above 20 degrees experienced much more bearing damage than bridges with skew 

angles below twenty degrees (Singh, 2016). There are various probable factors for why  

bridges that have large skew angles may deteriorate at a faster rate. For example, the 

geometry of the bridge may result in uneven loading on the bridge components, which can 



52 

 

hasten wear and tear ((US Department of Transportation, 1995),(Solae et al., 2020)). 

Bridges with large skew angles may also be more subject to environmental variables like 

wind and water, which may lead to rust and other forms of degradation. Also, gravity load 

paths are important for how bridge skew angles behave ((Singh, 2016),(Diaz Arancibia et 

al., 2020). 

Investigating the relationship between bridge skew angle and deterioration rate is critical 

in furthering our understanding of bridge performance. More research is needed to 

investigate this link and find effective solutions to reduce the influence of significant skew 

angles on bridge deterioration. This will ultimately ensure the safety and efficiency of 

transportation networks for years to come by gaining a comprehensive understanding of 

the mechanisms underlying this correlation. 

Results  

After examining the dataset, we determined the correlation coefficient between the skew 

angle and the number of years it takes for the bridge deck condition rating to drop by one. 

In our study, we discovered a correlation coefficient of -0.116 for a condition rating of 9 

to 8, -0.210 for a condition rating of 8 to 7, -0.841 for a condition rating of 7 to 6, 0.0069 

for a condition rating of 6 to 5, -0.398 for a condition rating of 5 to 4, and -0.4191 for a 

condition rating of 4 to 3.  

The correlation coefficient always has a value between 1 and -1, and it is used as a general 

indicator of the strength of the association between variables. A positive number indicates 

a positive correlation (as one variable grows, so does the other), a negative value shows a 

negative correlation (as one variable increases, so does the other), and a value close to 0 
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indicates a weak or no association. A correlation coefficient's absolute value indicates the 

size of the correlation: the bigger the absolute value, the stronger the correlation 

(Papadopoulos, 2022). This is shown in Table 1. 

 

Table 5.  

Correlation Coefficient Table 

Correlation Coefficient Correlation Type Correlation Strength 

-0.7 to -1 Negative Very Strong  

-0.5 to -0.7 Negative Strong 

-0.3 to -0.5 Negative Moderate 

0 to -0.3 Negative Weak 

0  Zero None  

0 to 0.3 Positive Weak 

0.3 to 0.5 Positive Moderate  

0.5 to 0.7 Positive Strong 

0.7 to 1 Positive Very Strong 

 

The negative correlation coefficient indicates that the skew angle and the bridge deck 

condition rating have an inverse association. This demonstrates that the bridge deck 

condition rating drops faster as the skew angle increases. However, the correlation 

coefficients suggest a varying association, implying that other factors may significantly 

impact the bridge deck condition rating ((Peter Samuels & Mollie Gilchrist., 2014),(George 

Casella & Roger L. Berger, 2002)). Generally, bridges have a fast deterioration rate between 

conditions 9 and 7, slowing the progression between conditions 7 and 5. To then experience 
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a faster decline after condition 5 is reached. This trend is presented in Table 2, where the 

red-to-green scale represents fast to slow deterioration progress. 

 

 

 

 

Table 6.  

 

Bridge Skew Angle and Years It Takes Condition Rating To Drop By 1 Step 

  Condition Rating 

Skew 

Angles 
9 to 8 8 to 7 7 to 6 6 to 5 5 to 4 4 to 3 Average 

0 3.3 6.1 9.6 8.2 6.0 4.7 6.3 

5 3.5 6.3 9.7 9.6 5.5 3.4 6.3 

10 3.2 6.7 10.5 8.2 5.4 6.3 6.7 

15 3.1 6.6 9.5 10.7 6.7 6.8 7.2 

20 2.9 7.6 9.9 8.7 6.4 4.1 6.6 

25 3.1 7.9 9.8 8.7 5.9 4.3 6.6 

30 3.3 6.6 8.7 10.0 4.9 4.7 6.4 

35 3.0 6.4 9.3 10.3 5.2 5.6 6.6 

40 3.5 6.8 9.4 8.2 7.1 4.2 6.5 

45 6.5 5.4 8.3 6.9 6.1 5.4 6.4 

50 2.0 6.6 8.4 8.7 4.8 6.1 6.1 

55 2.8 6.5 8.7 9.4 6.3 3.0 6.1 

60 2.0 8.3 8.6 9.9 4.5 3.3 6.1 

65 3.0 3.8 8.0 - 4.0 2.0 4.2 

Average 3.2 6.5 9.2 9.0 5.6 4.5  
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The graph in   
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Figure 7 depicts the relationship between the years it takes for a bridge to entire condition 

or quality of the bridge is represented by the condition rating, with higher numbers 

signifying better conditions. The graph's trend line has a rightward slope from left to 

right, showing a clear pattern in the data. This implies that when the condition rating 

reduces (going to the right on the X-axis), the bridge deteriorates by one point in fewer 

years. In other words, bridges with lower condition ratings deteriorate faster than those 

with better condition ratings. This graph gives valuable information about the relationship 

between bridge conditions and the pace of deterioration.  

Based on these data, a statistical study was performed using Analysis of Variance 

(ANOVa) to investigate the potential influence of skew angle on bridge deterioration 

because the bridges represented in the graph belonged to different skew groups (the skew 

angles were grouped in 5s, i.e., 0-5, 6-10 and so on) and they behaved differently. The 

ANOVa study sought to evaluate whether there was a statistically significant difference in 

the rate of deterioration between bridges with different skew angles. The investigation 

found a statistically significant influence of skew angle on bridge deterioration, showing  
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Figure 7.  

 

Graph of Years vs. Condition Rating 

 

 

ANOVa Data Analysis  

A hypothesis test was performed to establish and study the association between bridge 

condition rating and skew angle. Formulation of Hypothesis: (a) Null hypothesis (H0): 

There is no significant relationship between bridge skew angle and condition rating; (b) 

Alternate Hypothesis (Ha): There is a significant relationship between bridge skew angle 

and condition rating. Significance Level: the significant level of this test is 𝛼 = 0.05 

(confidence interval = 0.95) (George Casella & Roger L. Berger, 2002). 

The value of the negative correlation coefficient indicates an inverse association between 

the bridge condition rating and the skew angle. This means the deterioration will occur 

faster for bridges with larger skew angles. The magnitude and direction of the correlation 

reveal information about the link between two variables, as seen in Table 3. 
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The skew angle is categorical, meaning it has been grouped from 0-5 degrees, 6-10 degrees, 

and so forth, providing us with between 13 and 14 counts for each deterioration rating 

group. Then, since the condition rating is continuous, the analysis of variance is the most 

suitable non-parametric test to be used. Excel was used for the ANOVA test, and this test 

provided the test statistic and p-value. The hypothesis test findings show a statistically 

significant association between bridge condition rating and skew angle (p<0.05). See Table 

4 below (George Casella & Roger L. Berger, 2002). This suggests that there is evidence that 

the two variables are associated and that the observed correlation is unlikely to have 

happened by chance alone. 

The findings show a statistically significant relationship between these factors (p<0.05). 

As a result, the null hypothesis is rejected, and we conclude that there is evidence of a 

substantial link between bridge condition rating and skew angle. 

The ANOVa table's "Count" values assisted us in understanding the distribution and 

balance of bridge data across multiple groups or categories of skew angles being compared. 

It enabled comparisons between skew angle groups with varied sample sizes and 

provided insights into the statistical findings' reliability. Summing the squared differences 

between each skew angle data point and the mean of the skew angle yields the sum of 

squares. It measures the total amount of variation within the different skew angle groups. 

The sum of squares is used to calculate the significance of differences between groups or 

factors, with the following calculations in the ANOVa table, such as mean squares and F-

statistics, are derived from it. 
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The terms "between groups" and "within groups" in the ANOVa refer to two independent 

sources of variance being investigated. In this study, these sources of variation helped 

assess the differences or effects of skew angles on the bridges. The F-statistic, or the ratio 

of between-group variation to within-group variation, is used to determine the significance 

of variations across groups. If the F-statistic exceeds a critical value, it indicates that the 

differences between groups are unlikely to arise by chance. In this case, the F-statistic is 

2.333, which is way above the significance level of 𝛼 = 0.05. This indicates that the 

difference in deterioration among the different skew angle categories did not occur by 

chance and, on the contrary, are correlated. 

 

Table 7.  

 

ANOVA Test 

Groups Count 

Number of 

bridges 

Sum 

(Rating/degrees) Average (year) 

Variance 

(year) 

9 to 8 14 1007 45.173 3.226 1.102 

8 to 7 14 4874 91.530 6.537 1.176 

7 to 6 14 8945 128.310 9.165 0.519 

6 to 5 13 4766 117.491 9.037 1.145 

5 to 4 14 1320 78.694 5.621 0.784 

4 to 3 14 594 63.641 4.545 1.900 

 

 

 



60 

 

Table 8.  

 

ANOVA Results 

Source of 

Variation SS Df MS F P-value F crit 

Between Groups 394.879 5 78.975 71.525 1.637 E-27 2.333 

Within Groups 85.020 77 1.104    

Total 479.900 82     

 

By connecting the graph's condition rating information with the statistical data from 

ANOVa, it is possible to conclude that the skew angle significantly influences the bridge 

deterioration rate. 
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Chapter 6:  

Conclusions and Recommendations 

Predictive Modeling for Bridge Condition Assessment 

Synopsis of Results 

This thesis used NBI data to identify and rank important structural variables influencing 

bridge deterioration. The predictive model created showed excellent accuracy and 

dependability for predicting bridge conditions. A correlation analysis showed differences 

in bridge conditions based on household income. 

Overall, the model demonstrates strong predictive performance with high accuracy and 

sensitivity, though it could benefit from improvements in specificity. These metrics help 

in assessing the model’s reliability and can guide further refinement to balance between 

identifying all bridges needing maintenance (high sensitivity) and minimizing false alerts 

(improving specificity). This balance is essential for effective infrastructure management 

and optimal resource allocation in bridge maintenance and repairs. 

Time-to-Failure Analysis and Analysis of the Impact of Median Household Income 

on Bridge Condition 

This study developed a predictive model and conducted a time-to-failure analysis to assess 

the condition and failure probability of bridges in New Jersey. Significant predictors were 

identified, and their impacts on bridge conditions were quantified. This information, used 

together with the results of the correlation analysis between median household income and 

bridge condition, can aid in better allocating road funds. 
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Policy Consequences 

According to the study, median household income should be taken into account when 

allocating funds for bridge repair in order to maintain a fair distribution of resources. 

Infrastructure safety and quality can be increased by concentrating on areas with lower 

household incomes. 

Skew Angle and Bridge Deterioration Analysis 

Correlation is a statistical measure of the relationship between two variables in 

bivariate data, meaning it is a linear connection between two independent variables. The 

correlation coefficient is a numerical measure that reflects the strength of a statistical 

association. The results of this study indicate that the skew angle significantly influences 

the bridge deterioration rate. Even though additional research and analysis are required to 

investigate the underlying mechanisms and potential confounding factors that may 

influence the association between bridge condition rate and skew angle, this research 

provides substantial evidence of their interrelation. Other pertinent variables, such as traffic 

volume, bridge age, or maintenance history, must be considered to understand the factors 

influencing bridge condition because there are many sources of uncertainty in structural 

design, which could also impact deterioration (22, 23). The study effectively established a 

relationship between bridge skew angle and deterioration rate. This finding stresses the 

need to consider bridge skew angle in project planning and infrastructure design to 

maintain bridge longevity and structural integrity. 

Overall Conclusion 

In summary, this thesis has presented a comprehensive examination of the structural health 

and economic variables influencing the state of bridges in New Jersey. The predictive 
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modeling in the first chapter highlighted the critical factors affecting bridge conditions, 

providing a valuable tool for resource allocation and maintenance prioritization. The 

second chapter delved into the time-to-failure of bridges under various load scenarios and 

bridge materials; and the economic impacts on bridge conditions, revealing significant 

insights into the interplay between economic factors and infrastructure quality. The third 

chapter's focus on the skew angle of bridges underscored its influence on structural 

integrity, offering practical recommendations for optimal bridge design. 

By integrating these three areas of analysis—predictive modeling, time-to-failure under 

load scenarios and bridge materials, and the impact of skew angles—the thesis offers a 

holistic approach to bridge management. This multidisciplinary perspective not only 

enhances our understanding of the factors that contribute to bridge deterioration but also 

provides actionable strategies for improving bridge reliability and longevity, particularly 

in economically disadvantaged areas. This comprehensive approach ensures that limited 

resources are effectively utilized, leading to more resilient and well-maintained bridge 

infrastructure. 

Recommendations 

Enhanced predictive maintenance is a crucial step that should be adopted. Utilizing the 

predictive modeling framework developed in this thesis allows for the proactive 

identification of bridges at risk of deterioration. This proactive approach ensures timely 

maintenance and repair, optimizing resource allocation and extending the lifespan of the 

infrastructure. 

Targeted resource allocation is essential for addressing disparities in bridge quality across 

different economic regions. Maintenance and upgrades should be prioritized for bridges in 
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low-income areas, where the study has shown a higher proportion of bridges in fair 

condition. This strategy ensures an equitable distribution of infrastructure quality and helps 

bridge the gap in maintenance standards. 

Based on the findings, it is recommended that infrastructure managers incorporate the 

identified predictors into their maintenance and rehabilitation strategies. Further research 

could explore additional factors and extend the analysis to other regions. 

Additionally, specific maintenance strategies should be implemented based on the different 

materials and load scenarios analyzed. For instance, focusing on bridges that endure higher 

average daily traffic (ADT)/live loads and environmental loads can significantly improve 

overall reliability. These material and load-specific strategies can tailor maintenance efforts 

to the unique demands of each bridge. 

The findings on skew angles should be incorporated into bridge design standards. Bridges 

with skew angles between 15 and 30 degrees should be prioritized, as this range maximizes 

structural integrity and minimizes stress concentrations, thereby reducing the likelihood of 

deterioration. This consideration will ensure that new bridges are designed with long-term 

resilience in mind. 

Developing a comprehensive management plan that integrates median household income 

data, predictive models, and structural health indicators is also recommended. This holistic 

approach ensures that all relevant factors are considered in the decision-making process, 

leading to more robust and sustainable bridge management practices. 

Policy and funding advocacy is vital for addressing the correlation between low household 

income and higher proportions of fair bridges. Advocating for increased funding for bridge 
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maintenance in low-income areas can provide the financial support needed to enhance 

infrastructure quality in these regions. 

Finally, establishing a continuous monitoring system that feeds data back into the 

predictive models is essential. This system allows for ongoing refinement and 

improvement of maintenance strategies, ensuring that the management plan evolves in 

response to new data and changing conditions. By implementing these recommendations, 

transportation authorities can improve the overall condition and longevity of bridges, 

ensuring safe and reliable infrastructure for all communities. 
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Chapter 7 

 

Future Work 

Bridge Condition Assessment  

For future work, researchers can look into enhancing the predictive model by apply more 

complex machine learning methodologies. Also, a deeper understanding of the temporal 

features of bridge deterioration can also be developed by doing longitudinal research. 

We can also employ cutting-edge methods like Kaplan-Meier survival analysis and the Cox 

proportional Hazards model, just as it has been used with this current study to effectively 

create a time-to-failure model, to also generate new data and test the reliability of bridges 

with new construction methods, etc. 

Also, we integrated the impact of median household income by doing an analysis; which 

yielded significant insights into how the economic factors of a community/county affect 

the bridge longevity and maintenance requirements. The thesis gives a comprehensive 

framework that policymakers can employ for making decisions during funding allocation 

for bridge development. This is especially important in areas where toll money is used to 

support roads, since building bridges in underprivileged areas with short lifespans may 

result in early failures and little financing for rehabilitation. 

An interesting discovery was made during the time-to-failure analysis: it was found that 

the skew angle had a 0.7%. This surprising finding led to a more thorough examination of 

the connection between skew angles and structural degradation, a topic that has not gotten 

much attention in the literature to date. Future research can be aimed at understanding how 

skew angles contribute to the overall structural integrity of bridges as there is still a lot that 
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is unknown; has been made possible by the study's investigation of this feature, which 

could have significant consequences for bridge design and building procedures. 

For my doctoral research, I plan to concentrate on employing Abaqus, an advanced 

modeling software, to further explore the reasons for the identification of prestressed 

girders as the primary factor influencing deterioration rates in the time-to-failure 

investigations since it had a really high hazard ratio. The objective is to evaluate the 

remaining load-bearing capability of prestressed girders and identify the underlying 

reasons causing their fast deterioration through a thorough investigation. This will in effect, 

ensure that maintenance and replacement efforts are strategically prioritized to extend the 

service life of prestressed girders and improve the overall resilience of bridge 

infrastructure. 
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