Components in aqueous Hibiscus rosa-sinensis flower extract inhibit in vitro melanoma cell growth

Karina H. Goldberg
Ariel C. Yin
Archana Mupparapu
Edward P. Retzbach
Gary S. Goldberg

See next page for additional authors

Follow this and additional works at: https://rdw.rowan.edu/csm_facpub

Part of the Medicinal and Pharmaceutical Chemistry Commons

Recommended Citation

This Article is brought to you for free and open access by the College of Science & Mathematics at Rowan Digital Works. It has been accepted for inclusion in Faculty Scholarship for the College of Science & Mathematics by an authorized administrator of Rowan Digital Works.
Authors
Karina H. Goldberg, Ariel C. Yin, Archana Mupparapu, Edward P. Retzbach, Gary S. Goldberg, and Catherine F. Yang
Short communication

Components in aqueous *Hibiscus rosa-sinensis* flower extract inhibit *in vitro* melanoma cell growth

Karina H. Goldberg a, Ariel C. Yin b, Archana Mupparapu b, Edward P. Retzbach b, Gary S. Goldberg b, c, Catherine F. Yang d

a Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ 08028, USA
b Department of Molecular Biology and Graduate School of Biomedical Sciences, Rowan University School of Osteopathic Medicine, Science Center, 2 Medical Center Drive, Stratford, NJ 08084, USA

corresponding author. Molecular Biology, School of Osteopathic Medicine, Rowan University, B307 Science Center, 2 Medical Center Dr., Stratford, NJ 08084, USA. Tel.: +1 856 566 6718.

E-mail address: gary.goldberg@rowan.edu (G.S. Goldberg).

Peer review under responsibility of The Center for Food and Biomolecules, National Taiwan University.

Copyright © 2016, Center for Food and Biomolecules, National Taiwan University. Production and hosting by Elsevier Taiwan LLC. This is an open access article available under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Skin cancer is the most common form of cancer and its incidence is rising. Melanoma causes about 80% of all skin cancer deaths, and is notoriously resistant to current treatments. Less than 25% of metastatic melanomas respond to existing therapies. In addition, melanoma often reoccurs after initial response, and these cases can be extremely aggressive. Patients with advanced melanoma have a median survival of less than 1 year, and a 3-year survival rate of only 10–15%.

Unfortunately, over 40 years of work and clinical trials with alkylating agents (e.g. DTIC), taxanes (e.g. taxol), signaling inhibitors (e.g. tamoxifen), and cytokines (e.g. interleukins and interferons) has not significantly increased melanoma survival rates. In fact, melanoma kills over 50,000 people around the world each year. Alternative methods are clearly needed to prevent and treat melanoma.

Hibiscus rosa-sinensis is a flowering plant native to tropical Asia. Hibiscus is commonly consumed in teas made from its flowers, leaves, and roots. In addition to casual consumption, Hibiscus is also used as an herbal medicine to treat hypertension, cholesterol production, and cancer progression.

Reports indicate that hibiscus extracts can inhibit the growth of cancer cell types including mammary carcinoma, leukemia, and melanoma. For example, recent studies found that *Hibiscus* polyphenols inhibit melanoma cell growth and viability. However, while *H. rosa-sinensis* flowers are commonly used to make medicinal tea, these previous studies were performed with organic solvent extracts of leaves from different strains, namely *Hibiscus sabdariffa*.

Here, we examined the effects of aqueous *H. rosa-sinensis* flower extract on melanoma cell growth. Results from these studies indicate that this extract contains components that inhibit melanoma cell growth.
cell growth. However, these data also suggest that more than one component is responsible for this effect, and these components act together to produce an optimal response. Thus, *H. rosa-sinensis* flowers may offer a source of products that can be used to prevent or treat melanoma, possibly in combination with other therapies.

2. Materials and methods

2.1. *Hibiscus* extract preparation

Dried *H. rosa-sinensis* flowers were incubated with 10 volumes (w/v) of boiling water for 20 min and cooled to room temperature. This 10% solution was then clarified by centrifugation, sterilized by filtration through 0.2 micron filters (Millipore), frozen, and lyophilized to dryness. This dried extract was suspended in water to a final concentration of 50 mg/ml.

2.2. Extract fractionation

To examine molecular weights of bioactive compounds, extract was fractionated as previously described. Briefly, components greater than 50 kD were concentrated over centrifugal membranes with a 50 kD nominal molecular weight pore size (EMD Millipore Amicon UFC5050). Filtrates were then concentrated over centrifugal membranes with a 3 kD nominal molecular weight pore size (EMD Millipore Amicon UFC5003) to concentrate components between 3 and 50 kD, and obtain material below 3 kD as filtrates. Size fractionation was verified by SDS-PAGE on 18% gels stained with SilverQuest dye (Invitrogen LC6070). Concentrated material,

Fig. 1. Hibiscus extract inhibits melanoma cell growth. (a) B16F10 melanoma cells and nontransformed NIH3T3 fibroblasts (5,000 cells per well) were grown overnight before being incubated for 72 h with indicated concentrations of hibiscus extract and photographed (bar = 280 microns). (b) Cells were counted and shown as the number of cells in a 500 x 500 micron area in the center of each well (mean ± SEM, n = 3). Single and double asterisks denote *p* < 0.05 and *p* < 0.01 compared to untreated control cells, respectively.
filtrate, and unfractionated extract were diluted in cell culture medium to achieve final concentrations equivalent to 4 mg/ml of original unfractionated extract.

2.3. Cell culture

B16, NIH3T3, and LA25 cells were maintained in DMEM (Hyclone SH30021) supplemented with 25 mM HEPES (Hyclone SH3027) and 10% FBS (Seradigm 1400-500) at 37 °C in 5% CO2 and 100% humidity as described.14–18 B16 and NIH3T3 cells were plated at 5000 cells/well in standard 24 well culture plates and allowed to adhere to plates for 24 h. Different concentrations of aqueous plant extract were then added and cells were incubated for an additional 72 h. LA25 cells were grown overnight at non permissive temperature (40 °C) before being incubated for 24 h at permissive (33 °C) and nonpermissive (40 °C) temperatures with or without hibiscus extract, and then stained with Trypan blue to distinguish living and dead cells. Cells were analyzed on an inverted Zeiss Axiovert microscope and counted from images with the aid of Zeiss Axiovision software as previously described.14,15 Cells treated with fractionated extracts were trypsinized and counted with a Coulter counter as previously described.13,15 Statistics were analyzed with Graphpad Prism Software version 5 as previously described.14,15

2.4. Western blotting

Protein extracted from LA25 cells grown at permissive (33 °C) and nonpermissive (40 °C) temperature was analyzed by Western blotting to detect total v-Src (Millipore 05-185), active Src (phosphorylated at tyrosine 416) (Millipore 04-857), and β-actin (Sigma A1978) as previously described.16

3. Results

3.1. H. rosa-sinensis flower extract inhibits melanoma cell growth

An aqueous extract of H. rosa-sinensis flowers was prepared according to basic recipes used to make tea. Effects of this extract on cell growth were examined after sterilization by filtration. As shown in Fig. 1, this extract inhibited melanoma cell growth in a dose dependent manner. This extract reduced melanoma cell growth by 2 fold at 1 mg/ml, and 4 fold at 2 mg/ml.

Interestingly, this extract preferentially inhibited growth of melanoma cells over nontransformed fibroblasts. Although there did seem to be a trend for fibroblast growth inhibition, this effect was not significant, even at concentrations up to 8 mg/ml (see Fig. 1). These data are consistent with recent studies indicating that H. sabdariffa leaf extracts contain polyphenols that specifically inhibit the growth of melanoma cells, but not nontransformed cells.10

3.2. Bioactive components of H. rosa-sinensis flower extract can be fractionated by size

The aqueous H. rosa-sinensis flower extract was fractionated to examine the nature of its bioactive components. Centrifugal filtration was used to obtain products greater than 50 kD, between 3 kD and 50 kD, and less than 3 kD. The effect of these fractions on melanoma cell growth was then examined at an original concentration of 4 mg/ml, which potently inhibited melanoma cell growth (Fig. 1).

3.3. Bioactive components of H. rosa-sinensis flower extract work together to inhibit melanoma cell growth

The combined fractions of this extract inhibited melanoma cell growth by over 60% as shown in Fig. 2. In addition, low molecular weight components below 3 kD also inhibited cell growth, but to a significantly smaller extent of about 30%. Moreover, compounds larger than 3 kD did not inhibit melanoma cell growth. Taken together, these data suggest that while low molecular weight compounds in H. rosa-sinensis flower extract can inhibit melanoma cell growth to some extent, they combine with other higher molecular weight compounds to double their effectiveness.

Fig. 2. Hibiscus extract contains multiple bioactive components. (a) B16F10 melanoma cells (5,000 cells per well) were grown overnight before being incubated for 72 h with no extract (Control), unfractionated hibiscus extract (Total), or fractions containing components of hibiscus extract greater than 50 kD (>50 kD), between 3 and 50 kD (3–50 kD), or less than 3 kD (<3 kD) and photographed (bar = 350 microns). (b) Cells were counted and shown as percent of controls (mean ± SEM, n = 3). Single and double asterisks denote p < 0.05 compared to control cells treated without extract and p < 0.1 between cells treated with total extract or fractions with components less than 3 kD as indicated.
3.4. Hibiscus extract inhibits Src transformed cell growth, but not oncogenic Src kinase activity

The Src kinase has been implicated in melanoma progression,19–21 and is being pursued as a potential chemotherapeutic target.22,23 We utilized LA25 cells transformed by a temperature sensitive oncogenic Src kinase construct to investigate the effects of hibiscus extract on Src transformed cells and kinase activity. As shown in Fig. 3a, hibiscus extract was preferentially toxic to these cells transformed by Src kinase when grown at permissive temperature. However, as shown in Fig. 3b, hibiscus treatment did not inhibit Src kinase activity in these cells. These data suggest that hibiscus extract contains compounds that affect elements downstream of the Src kinase, or unrelated pathways that control tumor cell viability.

4. Discussion

Hibiscus has been consumed for many centuries. In particular, flowers from \textit{H. rosa-sinensis} are used to prepare tea. This beverage is purported to have medicinal properties that ameliorate conditions including cardiac hypertension and cancer.7

Results from this study indicate that \textit{H. rosa-sinensis} tea extracts contain compounds that inhibit melanoma cell growth at concentrations that do not affect nontransformed cells. These data are consistent with recent studies indicating that polyphenols from \textit{H. sabdariffa} inhibit melanoma cell growth.10 Although the polyphenols examined in previous studies were extracted with organic solvents, they may also be present in aqueous extracts used in traditional beverages.

Our results indicate that aqueous \textit{H. rosa-sinensis} flower extract may also contain low molecular weight compounds that inhibit melanoma cell growth. These may also be polyphenols such as those obtained from leaves of different strains as previously reported.11 However, our results also indicate that these compounds actually work with other higher molecular weight compounds to more effectively inhibit melanoma cell growth in a manner that does not inhibit Src kinase activity. Future work should identify these components and evaluate their potential to prevent and treat melanoma, and possibly other cancers. It should be particularly important to determine if these compounds can potentiate the effects of other treatments including traditional cytotoxic therapies, and more targeted agents including BRAF and CTLA4 blockers which target oncogenic serine kinase signaling events and immunomodulation, respectively.14

Conflict of interests

None declared.

Acknowledgments

This work was funded in part by support from the Osteopathic Heritage Foundation and the Graduate School of Biomedical Sciences at Rowan University.

References

