Document Type

Article

Version Deposited

Published Version

Publication Date

9-28-2020

Publication Title

Applied Sciences

DOI

10.3390/app10196801

Abstract

Subsurface fires and smoldering events at landfills can present serious health hazards and threats to the environment. These fires are much more costly and difficult to extinguish than open fires at the landfill surface. The initiation of a subsurface fire may go unnoticed for a long period of time and undetected fires may spread over a large area. Unfortunately, not all landfill operators keep or publish heat elevation data and many landfills are not equipped with a landfill gas extraction system to control subsurface temperatures generated from the chemical reactions within. The timely and cost-effective identification of subsurface fires is an important and pressing issue. In this work, we describe a method for using satellite thermal infrared imagery at a moderate spatial resolution to identify the locations of subsurface fires and monitor their migration within landfills. The focus of this study was the Bridgeton Sanitary Landfill in Bridgeton, MO, USA where a subsurface fire was first identified in 2010 and continues to burn today. Observations from Landsat satellites over the last seventeen years were examined for surface temperature anomalies (or hot spots) that may be associated with subsurface fires. The results showed that the locations of hot spots identified in satellite imagery match the known locations of the subsurface fires. Changes in the hot-spot locations with time, as determined by in situ measurements, correspond to the spreading routes of the subsurface fires. These results indicate that the proposed approach based on satellite observations can be used as a tool for the identification of landfill subsurface fires by landfill owners/operators to monitor landfills and minimize the expenses associated with extinguishing landfill fires.

Comments

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Applied Sciences is an Open Access journal published by MDPI.

Creative Commons License

Creative Commons Attribution 4.0 License
This work is licensed under a Creative Commons Attribution 4.0 License.

Published Citation

Nazari, R.; Alfergani, H.; Haas, F.; Karimi, M.E.; Fahad, M.G.R.; Sabrin, S.; Everett, J.; Bouaynaya, N.; & Peters, R.W. (2020). Application of Satellite Remote Sensing in Monitoring Elevated Internal Temperatures of Landfills. Applied Sciences 2020, 10, 6801.

Share

COinS