Document Type

Article

Version Deposited

Published Version

Publication Date

12-1-2020

Publication Title

Tsinghua Science and Technology

DOI

10.26599/TST.2019.9010017

Abstract

Social Influence Maximization Problems (SIMPs) deal with selecting k seeds in a given Online Social Network (OSN) to maximize the number of eventually-influenced users. This is done by using these seeds based on a given set of influence probabilities among neighbors in the OSN. Although the SIMP has been proved to be NP-hard, it has both submodular (with a natural diminishing-return) and monotone (with an increasing influenced users through propagation) that make the problem suitable for approximation solutions. However, several special SIMPs cannot be modeled as submodular or monotone functions. In this paper, we look at several conditions under which non-submodular or non-monotone functions can be handled or approximated. One is a profit-maximization SIMP where seed selection cost is included in the overall utility function, breaking the monotone property. The other is a crowd-influence SIMP where crowd influence exists in addition to individual influence, breaking the submodular property. We then review several new techniques and notions, including double-greedy algorithms and the supermodular degree, that can be used to address special SIMPs. Our main results show that for a specific SIMP model, special network structures of OSNs can help reduce its time complexity of the SIMP.

Comments

Copyright by the author(s) 2020. The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

Creative Commons License

Creative Commons Attribution 4.0 License
This work is licensed under a Creative Commons Attribution 4.0 License.

Published Citation

J. Wu and N. Wang. (2020). "Approximating special social influence maximization problems," in Tsinghua Science and Technology, vol. 25, no. 6, pp. 703-711, Dec. 2020, doi: 10.26599/TST.2019.9010017.

Share

COinS