Document Type

Article

Version Deposited

Published Version

Publication Date

9-14-2020

Publication Title

Applied Sciences

DOI

10.3390/app10186401

Abstract

Subsurface temperature is a critical indicator for the identification of the risk associated with subsurface fire hazards in landfills. Most operational landfills in the United States (US) have experienced exothermic reactions in their subsurface. The subsurface landfill area is composed of various gases generated from chemical reactions inside the landfills. Federal laws in the US mandate the monitoring of gases in landfills to prevent hazardous events such as landfill fire breakouts. There are insufficient investigations conducted to identify the causes of landfill fire hazards. The objective of this research is to develop a methodological approach to this issue. In this study, the relationship was investigated between the subsurface elevated temperature (SET) and soil gases (i.e., methane, carbon dioxide, carbon monoxide, nitrogen, and oxygen) with the greatest influence in landfills. The significance level of the effect of soil gases on the SET was assessed using a decision tree approach. A naïve Bayes technique for conditional probability was implemented to investigate how different gas combinations can affect different temperature ranges with respect to the safe and unsafe states of these gases. The results indicate that methane and carbon dioxide gases are strongly associated with SETs. Among sixteen possible gas combinations, three were identified as the most probable predictors of SETs. A three-step risk assessment framework is proposed to identify the risk of landfill fire incidents. The key findings of this research could be beneficial to landfill authorities and better ensure the safety of the community health and environment.

Comments

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Applied Sciences is an Open Access journal published by MDPI.

Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Share

COinS