Document Type
Article
Version Deposited
Published Version
Publication Date
12-1-2021
Publication Title
Scientific Reports
DOI
10.1038/s41598-021-81331-3
Abstract
Hitherto acoustic cloaking devices, which conceal objects externally, depend on objects' characteristics. Despite previous works, we design cloaking devices placed adjacent to an arbitrary object and make it invisible without the need to make it enclosed. Applying sequential linear coordinate transformations leads to a non-closed acoustic cloak with homogeneous materials, creating an open invisible region. Firstly, we propose to design a non-closed carpet cloak to conceal objects on a reflecting plane. Numerical simulations verify the cloaking effect, which is completely independent of the geometry and material properties of the hidden object. Moreover, we extend this idea to achieve a directional acoustic cloak with homogeneous materials that can render arbitrary objects in free space invisible to incident radiation. To demonstrate the feasibility of the realization, a non-resonant meta-atom is utilized which dramatically facilitated the physical realization of our design. Due to the simple acoustic constitutive parameters of the presented structures, this work paves the way toward realization of non-closed acoustic devices, which could find applications in airborne sound manipulation and underwater demands.
Recommended Citation
Basiri, Z., Fakheri, M.H., Abdolali, A. et al. Non-closed acoustic cloaking devices enabled by sequential-step linear coordinate transformations. Sci Rep 11, 1845 (2021). https://doi.org/10.1038/s41598-021-81331-3
Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
Comments
This article is licensed under a Creative Commons Attribution 4.0 International License.