Document Type
Article
Version Deposited
Published Version
Publication Date
8-18-2019
Publication Title
Organic Process Research & Development
DOI
10.1021/acs.oprd.9b00244
Abstract
Combined cooling and antisolvent crystallization enables crystallization of many pharmaceutical products, but its process design typically neglects solvent composition influences on crystallization kinetics. This paper evaluates the influence of solvent-dependent nucleation and growth kinetics on the design of optimal, multistage mixed-suspension, mixed-product removal (MSMPR) crystallization cascades. The ability to independently select temperature and solvent compositions in each stage of the cascade serves to greatly expand the attainable region for a two-stage cascade, with diminishing returns for additional stages. Failure to include solvent-dependent kinetics can result in simulating incorrect attainable regions, active pharmaceutical ingredient (API) yields, and crystal size distributions. This work also demonstrates that commonly employed crystallization process design heuristics, such as equal antisolvent addition and decreasing temperature in successive stages, can result in suboptimal process design if kinetics are strongly solvent dependent.
Recommended Citation
J.M. Schall, G. Capellades, J.S. Mandur, R.D. Braatz, A.S. Myerson. Incorporating Solvent-Dependent Kinetics to Design a Multi-Stage, Continuous, Combined Cooling/Antisolvent Crystallization Process. Organic Process Research & Development 2019, 23, 1960-1969.
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 4.0 International License.
Comments
This is an open access article published under a Creative Commons Non-Commercial No Derivative Works (CC-BY-NC-ND) Attribution License